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Abstract
We prove that the superconvergence of C0-Qk finite element method at the Gauss–Lobatto
quadrature points still holds if variable coefficients in an elliptic problem are replaced by their
piecewise Qk Lagrange interpolants at the Gauss–Lobatto points in each rectangular cell. In
particular, a fourth order finite difference type scheme can be constructed using C0-Q2 finite
element method with Q2 approximated coefficients.
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1 Introduction

1.1 Motivations

Consider solving a variable coefficient Poisson equation

− ∇ · (a∇u) = f , a(x, y) > 0 (1.1)

with homogeneous Dirichlet boundary conditions on a rectangular domain �. Assume that
the coefficient a(x, y) and the solution u(x, y) are sufficiently smooth. Let ‖u‖k,p,� be the
norm of Sobolev spaceWk,p(�). For p = 2, let Hk(�) = Wk,2(�) and ‖ ·‖k,� = ‖·‖k,2,�.
The subindex � will be omitted when there is no confusion, e.g., ‖u‖0 denotes the L2(�)-
norm and ‖u‖1 denotes the H1(�)-norm. The variational form is to find u ∈ H1

0 (�) = {v ∈
H1(�): v|∂� = 0} satisfying

A(u, v) = ( f , v), ∀v ∈ H1
0 (�), (1.2)
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(a) A nx × ny finite difference grid (b) The corresponding (nx − 1)/2 ×
(ny − 1)/2 mesh Ωh for Q2 element

Fig. 1 An illustration of meshes

where A(u, v) = ∫∫
�
a∇u · ∇vdxdy, ( f , v) = ∫∫

�
f vdxdy. Consider a rectangular mesh

with mesh size h. Let V h
0 ⊆ H1

0 (�) be the continuous finite element space consisting of
piecewise Qk polynomials (i.e., tensor product of piecewise polynomials of degree k), then
the C0-Qk finite element solution of (1.2) is defined as uh ∈ V h

0 satisfying

A(uh, vh) = ( f , vh), ∀vh ∈ V h
0 . (1.3)

For implementing finite element method (1.3), either some quadrature is used or the
coefficient a(x, y) is approximated by polynomials for computing

∫∫
�
auhvh dxdy. In this

paper, we consider the implementation to approximate the smooth coefficient a(x, y) by its
Qk Lagrangian interpolation polynomial in each cell. For instance, consider Q2 element
in two dimensions, tensor product of 3-point Lobatto quadrature form nine uniform points
on each cell, see Fig. 1. By point values of a(x, y) at these nine points, we can obtain
a Q2 Lagrange interpolation polynomial on each cell. Let aI (x, y) and f I (x, y) denote
the piecewise Qk interpolation of a(x, y) and f (x, y) respectively. For a smooth functions
a ≥ C > 0, the interpolation error on each cell e is maxx∈e |aI (x) − a(x)| = O(hk+1) thus
aI > 0 if h is small enough. So if assuming themesh is fine enough so that aI (x, y) ≥ C > 0,
we consider the following scheme using the approximated coefficients aI (x, y): find ũh ∈ V h

0
satisfying

AI (ũh, vh) :=
∫∫

�

aI∇ũ · ∇vdxdy = 〈 f , vh〉h, ∀vh ∈ V h
0 , (1.4)

where 〈 f , vh〉h denotes using tensor product of (k + 1)-point Gauss–Lobatto quadrature for
the integral ( f , vh). One can also simplify the computation of the right hand side by using
f I (x, y), so we also consider the scheme to find ũh satisfying

AI (ũh, vh) = ( f I , vh), ∀vh ∈ V h
0 . (1.5)

The schemes (1.4) and (1.5) correspond to the equation

− ∇ · (aI (x, y)∇ũ(x, y)) = f (x, y). (1.6)

At first glance, one might expect (k + 1)-th order accuracy for a numerical method applying
to (1.6) due to the interpolation error a(x, y) − aI (x, y) = O(hk+1). But as we will show in
Sect. 4.1, the difference between exact solutions u and ũ to the two elliptic equations (1.1)
and (1.6) is O(hk+2) in L2(�)-norm under suitable assumptions. The main focus of this
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paper is to show (1.4) and (1.5) are (k + 2)th order accurate finite difference type schemes
via the superconvergence of finite element method. Such a result is very interesting from the
perspective that a fourth order accurate scheme can be constructed even if the coefficients
in the equation are approximated by quadratic polynomials, which does not seem to be
considered before in the literature.

Since only grid point values of a(x, y) and f (x, y) are needed in scheme (1.4) or (1.5),
they can be regarded as finite difference type schemes. Consider a uniform nx × ny grid for
a rectangle � with grid points (xi , y j ) and grid spacing h, where nx and ny are both odd
numbers as shown in Fig. 1a. Then there is a mesh �h of (nx − 1)/2 × (ny − 1)/2 Q2

elements so that Gauss–Lobatto points for all cells in�h are exactly the finite difference grid
points. By using the scheme (1.4) or (1.5) on the finite element mesh �h shown in Fig. 1b,
we obtain a fourth order finite difference scheme in the sense that ũh is fourth order accurate
in the discrete 2-norm at all grid points.

In practice the most convenient implementation is to use tensor product of (k + 1)-point
Gauss–Lobatto quadrature for integrals in (1.2), since the standard L2(�) and H1(�) error
estimates still hold [8,10] and the Lagrangian Qk basis are delta functions at these quadrature
points. Such a quadrature scheme can be denoted as finding uh ∈ V h

0 satisfying

Ah(uh, vh) = 〈 f , vh〉h, ∀vh ∈ V h
0 , (1.7)

where Ah(uh, vh) and 〈 f , vh〉h denote using tensor product of (k + 1)-point Gauss–Lobatto
quadrature for integrals A(uh, vh) and ( f , vh) respectively. Numerical tests suggest that
the approximated coefficient scheme (1.5) is more accurate and robust than the quadrature
scheme (1.7) in some cases.

1.2 Superconvergence of C0-Qk Finite Element Method

Standard error estimates of (1.3) are ‖u − uh‖1 ≤ Chk‖u‖k+1 and ‖u − uh‖0 ≤
Chk+1‖u‖k+1 [8]. At certain quadrature or symmetry points the finite element solution or
its derivatives have higher order accuracy, which is called superconvergence. Douglas and
Dupont first proved that continuous finite element method using piecewise polynomial of
degree k has O(h2k) convergence at the knots in an one dimensional mesh [11,12]. In [12],
O(h2k) was proven to be the best possible convergence rate. For k ≥ 2, O(hk+1) for the
derivatives at Gauss quadrature points and O(hk+2) for functions values at Gauss–Lobatto
quadrature points were proven in [2,4,17].

For two dimensional cases, it was first showed in [13] that the (k + 2)th order supercon-
vergence for k ≥ 2 at vertices of all rectangular cells in a two dimensional rectangular mesh.
Namely, the convergence rate at the knots is as least one order higher than the rate globally.
Later on, the 2kth order (for k ≥ 2) convergence rate at the knots was proven for Qk elements
solving −�u = f , see [7,15].

For the multi-dimensional variable coefficient case, when discussing the superconver-
gence of derivatives, it can be reduced to the Laplacian case. Superconvergence of tensor
product elements for the Laplacian case can be established by extending one-dimensional
results [13,22]. See also [16] for the superconvergence of the gradient. The superconvergence
of function values in rectangular elements for the variable coefficient case were studied in [6]
by Chen with M-type projection polynomials and in [19] by Lin and Yan with the point-
line-plane interpolation polynomials. In particular, let Z0 denote the set of tensor product of
(k + 1)-point Gauss–Lobatto quadrature points for all rectangular cells, then the following
superconvergence of function values for Qk elements was shown in [6]:
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⎛

⎝h2
∑

(x,y)∈Z0

|u(x, y) − uh(x, y)|2
⎞

⎠

1/2

≤ Chk+2‖u‖k+2, k ≥ 2, (1.8)

max
(x,y)∈Z0

|u(x, y) − uh(x, y)| ≤ Chk+2| ln h|‖u‖k+2,∞,�, k ≥ 2. (1.9)

In general superconvergence of (1.3) has been well studied in the literature. Many super-
convergence results are established for interior points away from the boundary for various
domains. Our major motivation to study superconvergence is to use it for constructing a finite
difference scheme, thus we only consider a rectangular domain for which all Lobatto points
can form a finite difference grid.

We are interested in superconvergence of function values for Qk element when the com-
putation of integrals is simplified. For one-dimensional problems, it was proven in [12] that
O(h2k) at knots still holds if (k+1)-point Gauss–Lobatto quadrature is used for P2 element.
Superconvergence of the gradient for using quadrature was studied in [17]. For multidimen-
sional problems, even though it is possible to show (1.8) holds for (1.3) with accurate enough
quadrature, it is nontrivial to extend the superconvergence proof to (1.7) with only (k + 1)-
point Gauss–Lobatto quadrature. Superconvergence analysis of the scheme (1.7) is much
more complicated thus will be discussed in another paper [18].

1.3 Contributions of the Paper

The objective and main motivation of this paper is to construct a fourth order accurate finite
difference type scheme based on the superconvergence of C0-Q2 finite element method
using Q2 polynomial coefficients in elliptic equations and demonstrate the accuracy. The
main result can be easily generalized to higher order cases thus we keep the discussion
general to Qk (k ≥ 2) and prove its (k + 2)th order superconvergence of function values
when using PDE coefficients are replaced by their Qk interpolants: (1.8) still holds for both
schemes (1.4) and (1.5). Moreover, (1.4) and (1.5) have all finite element method advantages
such as the symmetry of the stiffness matrix, which is desired in applications. The scheme
(1.4) or (1.5) is also an efficient implementation of C0-Qk finite element method since only
Qk coefficients are needed to retain the (k + 2)th order accuracy of function values at the
Lobatto points.

The paper is organized as follows. In Sect. 2, we introduce the notations and review
standard interpolation and quadrature estimates. In Sect. 3, we review the tools to establish
superconvergence of function values in C0-Qk finite element method (1.3) with a complete
proof. In Sect. 4, we prove the main result on the superconvergence of (1.4) and (1.5) in two
dimensions with extensions to a general elliptic equation. All discussion in this paper can be
easily extended to the three dimensional case. Numerical results are given in Sect. 5. Section
6 consists of concluding remarks.

2 Notations and Preliminaries

2.1 Notations

In addition to the notations mentioned in the introduction, the following notations will be
used in the rest of the paper:
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• n denotes the dimension of the problem. Even though we discuss everything explicitly
for n = 2, all key discussions can be easily extended to n = 3. The main purpose of
keeping n is for readers to see independence/cancellation of the dimension n in the proof
of some important estimates.

• We only consider a rectangular domain � with its boundary ∂�.
• �h denotes a rectangular mesh with mesh size h. Only for convenience, we assume �h

is an uniform mesh and e = [xe − h, xe + h] × [ye − h, ye + h] denotes any cell in �h

with cell center (xe, ye). The assumption of an uniform mesh is not essential to the proof.

• Qk(e) =
{
p(x, y) = ∑k

i=0
∑k

j=0 pi j x
i y j , (x, y) ∈ e

}
is the set of tensor product of

polynomials of degree k on a cell e.
• V h = {p(x, y) ∈ C0(�h): p|e ∈ Qk(e), ∀e ∈ �h} denotes the continuous piecewise

Qk finite element space on �h .
• V h

0 = {vh ∈ V h : vh = 0 on ∂�}.
• The norm and seminorms for Wk,p(�) and 1 ≤ p < +∞, with standard modification

for p = +∞:

‖u‖k,p,� =
⎛

⎝
∑

i+ j≤k

∫∫

�

|∂ ix∂ j
y u(x, y)|pdxdy

⎞

⎠

1/p

,

|u|k,p,� =
⎛

⎝
∑

i+ j=k

∫∫

�

|∂ ix∂ j
y u(x, y)|pdxdy

⎞

⎠

1/p

,

[u]k,p,� =
(∫∫

�

|∂kx u(x, y)|pdxdy +
∫∫

�

|∂ky u(x, y)|pdxdy
)1/p

.

Notice that [u]k+1,p,� = 0 if u is a Qk polynomial.
• ‖u‖k,�, |u|k,� and [u]k,� denote norm and seminorms for Hk(�) = Wk,2(�).
• When there is no confusion, � may be dropped in the norm and seminorms.
• For any vh ∈ Vh , 1 ≤ p < +∞ and k ≥ 1,

‖vh‖k,p,� :=
[
∑

e

‖vh‖p
k,p,e

] 1
p

, |vh |k,p,� :=
[
∑

e

|vh |pk,p,e
] 1

p

.

• Let Z0,e denote the set of (k + 1) × (k + 1) Gauss–Lobatto points on a cell e.
• Z0 = ⋃

e Z0,e denotes all Gauss–Lobatto points in the mesh �h .
• Let ‖u‖2,Z0 and ‖u‖∞,Z0 denote the discrete 2-norm and the maximum norm over Z0

respectively:

‖u‖2,Z0 =
⎡

⎣h2
∑

(x,y)∈Z0

|u(x, y)|2
⎤

⎦

1
2

, ‖u‖∞,Z0 = max
(x,y)∈Z0

|u(x, y)|.

• For a smooth function a(x, y), let aI (x, y) denote its piecewise Qk Lagrange interpolant
at Z0,e on each cell e, i.e., aI ∈ V h satisfies:

a(x, y) = aI (x, y), ∀(x, y) ∈ Z0.

• Pk(t) denotes the polynomial of degree k of variable t .
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• ( f , v) denotes the inner product in L2(�):

( f , v) =
∫∫

�

f v dxdy.

• 〈 f , v〉h denotes the approximation to ( f , v) by using (k + 1) × (k + 1)-point Gauss–
Lobatto quadrature for integration over each cell e.

The following are commonly used tools and facts:

• K̂ = [−1, 1] × [−1, 1] denotes a reference cell.
• For v(x, y) defined on e, consider v̂(s, t) = v(sh + xe, th + ye) defined on K̂ .
• For n-dimensional problems, the following scaling argument will be used:

hk−n/p|v|k,p,e = |v̂|k,p,K̂ , hk−n/p[v]k,p,e = [v̂]k,p,K̂ , 1 ≤ p ≤ ∞. (2.1)

• Sobolev’s embedding in two and three dimensions: H2(K̂ ) ↪→ C0(K̂ ).
• The embedding implies

‖ f̂ ‖0,∞,K̂ ≤ C‖ f̂ ‖k,2,K̂ ,∀ f̂ ∈ Hk(K̂ ), k ≥ 2,

‖ f̂ ‖1,∞,K̂ ≤ C‖ f̂ ‖k+1,2,K̂ ,∀ f̂ ∈ Hk+1(K̂ ), k ≥ 2.

• Cauchy–Schwarz inequalities:

∑

e

‖u‖k,e‖v‖k,e ≤
(

∑

e

‖u‖2k,e
) 1

2
(

∑

e

‖v‖2k,e
) 1

2

, ‖u‖k,1,e = O(h
n
2 )‖u‖k,2,e.

• Poincaré inequality: let ¯̂f be the average of f̂ ∈ H1(K̂ ) on K̂ , then

| f̂ − ¯̂f |0,p,K̂ ≤ C |∇ f̂ |0,p,K̂ , p ≥ 1.

• For k ≥ 2, the (k + 1) × (k + 1) Gauss–Lobatto quadrature is exact for integration of
polynomials of degree 2k − 1 ≥ k + 1 on K̂ .

• Any polynomial in Qk(K̂ ) can be uniquely represented by its point values at (k + 1) ×
(k + 1) Gauss–Lobatto points on K̂ , and it is straightforward to verify that the discrete
2-norm ‖p‖2,Z0 and L2(�)-norm ‖p‖0,� are equivalent for a piecewise Qk polynomial
p ∈ V h .

• Define the projection operator �̂1 : û ∈ L1(K̂ ) → �̂1û ∈ Q1(K̂ ) by
∫∫

K̂
(�̂1û)wdxdy =

∫∫

K̂
ûwdxdy,∀w ∈ Q1(K̂ ). (2.2)

Notice that �̂1 is a continuous linear mapping from L2(K̂ ) to H1(K̂ ) (or H2(K̂ ))
since all degree of freedoms of �̂1û can be represented as a linear combination of∫∫

K̂ û(s, t)p(s, t)dsdt for p(s, t) = 1, s, t, st and by Cauchy–Schwarz inequality
| ∫∫K̂ û(s, t)p(s, t)dsdt | ≤ ‖û‖0,2,K̂ ‖ p̂‖0,2,K̂ ≤ C‖û‖0,2,K̂ .

2.2 The Bramble–Hilbert Lemma

By the abstract Bramble–Hilbert Lemma in [3], with the result ‖v‖m,p,� ≤ C(|v|0,p,� +
[v]m,p,�) for any v ∈ Wm,p(�) [1,21], the Bramble–Hilbert Lemma for Qk polynomials
can be stated as (see Exercise 3.1.1 and Theorem 4.1.3 in [9]):
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Theorem 2.1 If a continuous linear mapping �: Hk+1(K̂ ) → Hk+1(K̂ ) satisfies �v = v

for any v ∈ Qk(K̂ ), then

‖u − �u‖k+1,K̂ ≤ C[u]k+1,K̂ , ∀u ∈ Hk+1(K̂ ). (2.3)

Thus if l(·) is a continuous linear form on the space Hk+1(K̂ ) satisfying l(v) = 0,∀v ∈
Qk(K̂ ), then

|l(u)| ≤ C‖l‖′
k+1,K̂

[u]k+1,K̂ , ∀u ∈ Hk+1(K̂ ),

where ‖l‖′
k+1,K̂

is the norm in the dual space of Hk+1(K̂ ).

2.3 Interpolation and Quadrature Errors

For Qk element (k ≥ 2), consider (k + 1) × (k + 1) Gauss–Lobatto quadrature, which is
exact for integration of Q2k−1 polynomials.

It is straightforward to establish the interpolation error:

Theorem 2.2 For a smooth function a, |a − aI |0,∞,� = O(hk+1)|a|k+1,∞,�.

Let s j , t j and w j ( j = 1, · · · , k + 1) be the Gauss–Lobatto quadrature points and weight
for the interval [−1, 1]. Notice f̂ coincides with its Qk interpolant f̂ I at the quadrature points
and the quadrature is exact for integration of f̂ I , the quadrature can be expressed on K̂ as

k+1∑

i=1

k+1∑

j=1

f̂ (si , t j )wiw j =
∫∫

K̂
f̂ I (x, y)dxdy,

thus the quadrature error is related to interpolation error:

∫∫

K̂
f̂ (x, y)dxdy −

k+1∑

i=1

k+1∑

j=1

f̂ (si , t j )wiw j =
∫∫

K̂
f̂ (x, y)dxdy −

∫∫

K̂
f̂ I (x, y)dxdy.

We have the following estimates on the quadrature error:

Theorem 2.3 For n = 2 and a sufficiently smooth function a(x, y), if k ≥ 2 and m is an
integer satisfying k ≤ m ≤ 2k, we have

∫∫

e
a(x, y)dxdy −

∫∫

e
aI (x, y)dxdy = O(hm+ n

2 )[a]m,e = O(hm+n)[a]m,∞,e.

Proof Let E(a) denote the quadrature error for function a(x, y) on e. Let Ê(â) denote the
quadrature error for the function â(s, t) = a(sh + xe, th + ye) on the reference cell K̂ . Then
for any f̂ ∈ Hm(K̂ ) (m ≥ k ≥ 2), since quadrature are represented by point values, with the
Sobolev’s embedding we have

|Ê( f̂ )| ≤ C | f̂ |0,∞,K̂ ≤ C‖ f̂ ‖m,2,K̂ .

Thus Ê(·) is a continuous linear form on Hm(K̂ ) and Ê( f̂ ) = 0 if f̂ ∈ Qm−1(K̂ ). With
(2.1), the Bramble–Hilbert lemma implies

|E(a)| = hn |Ê(â)| ≤ Chn[â]m,2,K̂ = O(hm+ n
2 )[a]m,2,e = O(hm+n)[a]m,∞,e.

��
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Theorem 2.4 If k ≥ 2, ( f , vh) − 〈 f , vh〉h = O(hk+2)‖ f ‖k+2‖vh‖2, ∀vh ∈ V h .

Proof This result is a special case of Theorem 5 in [10]. For completeness, we include
a proof. Let Ê(·) denote the quadrature error term on the reference cell K̂ . Consider the
projection (2.2). Let �1 denote the same projection on e. Since �̂1 leaves Q0(K̂ ) invariant,
by theBramble–Hilbert lemmaon �̂1,we get [v̂h−�̂1v̂h]1,K̂ ≤ ‖v̂h−�̂1v̂h‖1,K̂ ≤ C[v̂h]1,K̂
thus [�̂1v̂h]1,K̂ ≤ [v̂h]1,K̂ + [v̂h − �̂1v̂h]1,K̂ ≤ C[v̂h]1,K̂ . By setting w = �̂1v̂h in (2.2),

we get |�̂1v̂h |0,K̂ ≤ |v̂h |0,K̂ . For k ≥ 2, repeat the proof of Theorem 2.3, we can get

|Ê( f̂ �̂1v̂h)| ≤ C[ f̂ �̂1v̂h]k+2,K̂ ≤ C
(
[ f̂ ]k+2,K̂ |�̂1v̂h |0,∞,K̂ + [ f̂ ]k+1,K̂ |�̂1v̂h |1,∞,K̂

)
,

where the fact [�̂1v̂h]l,∞,K̂ = 0 for l ≥ 2 is used. The equivalence of norms over Q1(K̂ )

implies

|Ê( f̂ �̂1v̂h)| ≤ C
(
[ f̂ ]k+2,K̂ |�̂1v̂h |0,K̂ + [ f̂ ]k+1,K̂ |�̂1v̂h |1,K̂

)

≤ C
(
[ f̂ ]k+2,K̂ |v̂h |0,K̂ + [ f̂ ]k+1,K̂ |v̂h |1,K̂

)
.

Next consider the linear form f̂ ∈ Hk(K̂ ) → Ê( f̂ (v̂h − �̂1v̂h)). Due to the embedding
Hk(K̂ ) ↪→ C0(K̂ ), it is continuous with operator norm ≤ C‖v̂h − �̂1v̂h‖0,K̂ since

|Ê( f̂ (v̂h − �̂1v̂h))| ≤ C | f̂ (v̂h − �̂1v̂h)|0,∞,K̂ ≤ C | f̂ |0,∞,K̂ |v̂h − �̂1v̂h |0,∞,K̂

≤ C‖ f̂ ‖k,K̂ ‖v̂h − �̂1v̂h‖0,K̂ .

For any f̂ ∈ Qk−1(K̂ ), Ê( f̂ v̂h) = 0. By the Bramble–Hilbert lemma, we get

|Ê( f̂ (v̂h − �̂1v̂h))| ≤ C[ f̂ ]k,K̂ ‖v̂h − �̂1v̂h‖0,K̂ ≤ C[ f̂ ]k,K̂ [v̂h]2,K̂ .

So on a cell e, with (2.1), we get

E( f vh) = hn Ê( f̂ v̂h) = Chk+2([ f ]k+2,e|vh |0,e + [ f ]k+1,e|vh |1,e + [ f ]k,e[vh]2,e).
Summing over e and use Cauchy–Schwarz inequality, we get the desired result. ��

Theorem 2.5 For k ≥ 2, ( f , vh) − ( f I , vh) = O(hk+2)‖ f ‖k+2‖vh‖2, ∀vh ∈ V h .

Proof Repeat the proof of Theorem 2.4 for the function f − f I on a cell e, with the fact
[ f I ]k+1,p,e = [ f I ]k+2,p,e = 0, we get

E[( f − f I )vh] = Chk+2([ f ]k+2,e|vh |0,e + [ f ]k+1,e|vh |1,e + [ f − f I ]k,e|vh |2,e).
By (2.3) on the Lagrange interpolation operator and the fact [ f − f I ]k,e ≤ ‖ f − f I ‖k+1,e,
we get [ f − f I ]k,e ≤ Ch[ f ]k+1,e. Notice that 〈 f − f I , vh〉h = 0, with (2.1), we get

( f , vh) − ( f I , vh) = ( f − f I , vh) − 〈 f − f I , vh〉h = O(hk+2)‖ f ‖k+2‖vh‖2,∀vh ∈ V h .

��

123



Journal of Scientific Computing (2020) 82 :1 Page 9 of 28 1

3 TheM-Type Projection

To establish the superconvergence of C0-Qk finite element method for multi-dimensional
variable coefficient equations, it is necessary to use a special polynomial projection of the
exact solution, which has two equivalent definitions. One is the M-type projection used
in [5,6]. The other one is the point-line-plane interpolation used in [19,20].

For the sake of completeness, we review the relevant results regarding M-type projection,
which is a more convenient tool. Most results in this section were considered and established
for more general rectangular elements in [6]. For simplicity, we use some simplified proof
and arguments for Qk element in this section. We only discuss the two dimensional case and
the extension to three dimensions is straightforward.

3.1 One Dimensional Case

The L2-orthogonal Legendre polynomials on the reference interval K̂ = [−1, 1] are given
as

lk(t) = 1

2kk!
dk

dtk
(t2 − 1)k : l0(t) = 1, l1(t) = t, l2(t) = 1

2
(3t2 − 1), . . .

Define their antiderivatives as M-type polynomials:

Mk+1(t) = 1

2kk!
dk−1

dtk−1 (t2 − 1)k : M0(t) = 1, M1(t) = t, M2(t) = 1

2
(t2 − 1), M3(t) = 1

2
(t3 − t), . . .

which satisfy the following properties:

• Mk(±1) = 0,∀k ≥ 2.
• If j − i �= 0,±2, then Mi (t) ⊥ Mj (t), i.e.,

∫ 1
−1 Mi (t)Mj (t)dt = 0.

• Roots of Mk(t) are the k-point Gauss–Lobatto quadrature points for [−1, 1].
Since Legendre polynomials form a complete orthogonal basis for L2([−1, 1]), for any
f (t) ∈ H1([−1, 1]), its derivative f ′(t) can be expressed as Fourier–Legendre series

f ′(t) =
∞∑

j=0

b j+1l j (t), b j+1 =
(

j + 1

2

) ∫ 1

−1
f ′(t)l j (t)dt .

Define the M-type projection

fk(t) =
k∑

j=0

b j M j (t),

where b0 = f (1)+ f (−1)
2 is determined by b1 = f (1)− f (−1)

2 to make fk(±1) = f (±1). Since
the Fourier–Legendre series converges in L2, by Cauchy–Schwarz inequality,

lim
k→∞ fk(t) − f (t) = lim

k→∞

∫ t

−1

[
f ′
k(x) − f ′(x)

]
dx ≤ lim

k→∞
√
2‖ f ′

k(t) − f ′(t)‖L2([−1,1]) = 0.

We get theM-type expansion of f (t): f (t) = limk→∞ fk(t) = ∑∞
j=0 b j M j (t). The remain-

der Rk(t) of M-type projection is

R[ f ]k(t) = f (t) − fk(t) =
∞∑

j=k+1

b j M j (t).
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The following properties are straightforward to verify:

• fk(±1) = f (±1) thus Rk(±1) = 0 for k ≥ 1.
• R[ f ]k(t) ⊥ v(t) for any v(t) ∈ Pk−2(t) on [−1, 1], i.e., ∫ 1

−1 R[ f ]kvdt = 0.
• R[ f ]′k(t) ⊥ v(t) for any v(t) ∈ Pk−1(t) on [−1, 1].
• For j ≥ 2, b j = ( j − 1

2 )[ f (t)l j−1(t)
∣
∣1−1] − ∫ 1

−1 f (t)l ′( j − 1)(t)dt .
• For j ≤ k, |b j | ≤ Ck‖ f ‖0,∞,K̂ .

• ‖R[ f ]k(t)‖0,∞,K̂ ≤ Ck‖ f ‖0,∞,K̂ .

3.2 Two Dimensional Case

Consider a function f̂ (s, t) ∈ H2(K̂ ) on the reference cell K̂ = [− 1, 1] × [− 1, 1], it has
the expansion

f̂ (s, t) =
∞∑

i=0

∞∑

j=0

b̂i, j Mi (s)Mj (t),

where

b̂0,0 = 1

4
[ f̂ (−1,−1) + f̂ (−1, 1) + f̂ (1,−1) + f̂ (1, 1)],

b̂0, j , b̂1, j = 2 j − 1

4

∫ 1

−1
[ f̂t (1, t) ± f̂t (−1, t)]l j−1(t)dt, j ≥ 1,

b̂i,0, b̂i,1 = 2i − 1

4

∫ 1

−1
[ f̂s(s, 1) ± f̂s(s,−1)]li−1(s)ds, i ≥ 1,

b̂i, j = (2i − 1)(2 j − 1)

4

∫∫

K̂
f̂st (s, t)li−1(s)l j−1(t)dsdt, i, j ≥ 1.

Define the Qk M-type projection of f̂ on K̂ and its remainder as

f̂k,k(s, t) =
k∑

i=0

k∑

j=0

b̂i, j Mi (s)Mj (t), R̂[ f̂ ]k,k(s, t) = f̂ (s, t) − f̂k,k(s, t).

For f (x, y) on e = [xe − h, xe + h] × [ye − h, ye + h], let f̂ (s, t) = f (sh + xe, th + ye)
then the Qk M-type projection of f on e and its remainder are defined as

fk,k(x, y) = f̂k,k(
x − xe

h
,
y − ye

h
), R[ f ]k,k(x, y) = f (x, y) − fk,k(x, y).

Theorem 3.1 The Qk M-type projection is equivalent to the Qk point-line-plane projection
� defined as follows:

1. �û = û at four corners of K̂ = [−1, 1] × [−1, 1].
2. �û − û is orthogonal to polynomials of degree k − 2 on each edge of K̂ .
3. �û − û is orthogonal to any v ∈ Qk−2(K̂ ) on K̂ .

Proof We only need to show that M-type projection f̂k,k(s, t) satisfies the same three prop-
erties. By Mj (±1) = 0 for j ≥ 2, we can derive that f̂k,k = f̂ at (±1,±1). For instance,
f̂k,k(1, 1) = b̂0,0 + b̂1,0 + b̂0,1 + b̂1,1 = f̂ (1, 1).
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The second property is implied by Mj (±1) = 0 for j ≥ 2 and Mj (t) ⊥ Pk−2(t) for j ≥
k + 1. For instance, at s = 1, f̂k,k(1, t) − f̂ (1, t) = ∑∞

j=k+1(b̂0, j + b̂1, j )Mj (t) ⊥ Pk−2(t)
on [−1, 1].

The third property is implied by Mj (t) ⊥ Pk−2(t) for j ≥ k + 1. ��

Lemma 3.1 Assume f̂ ∈ Hk+1(K̂ ) with k ≥ 2, then

1. |b̂i, j | ≤ Ck‖ f̂ ‖0,∞,K̂ , ∀i, j ≤ k.

2. |b̂i, j | ≤ Ck | f̂ |i+ j,2,K̂ , ∀i, j ≥ 1, i + j ≤ k + 1.

3. |b̂i,k+1| ≤ Ck | f̂ |k+1,2,K̂ , 0 ≤ i ≤ k + 1.

4. If f̂ ∈ Hk+2(K̂ ), then |b̂i,k+1| ≤ Ck | f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.

Proof First of all, similar to the one-dimensional case, through integration by parts, b̂i, j can
be represented as integrals of f̂ thus |b̂i, j | ≤ Ck‖ f̂ ‖0,∞,K̂ for i, j ≤ k.

By the fact that the antiderivatives (and higher order ones) of Legendre polynomials vanish
at ± 1, after integration by parts for both variables, we have

|b̂i, j | ≤ Ck

∫∫

K̂
|∂ is∂ j

t f̂ |dsdt ≤ Ck | f̂ |i+ j,2,K̂ , ∀i, j ≥ 1, i + j ≤ k + 1.

For the third estimate, by integration by parts only for the variable t , we get

∀i ≥ 1, |b̂i,k+1| ≤ Ck

∫∫

K̂
|∂s∂kt f̂ |dsdt ≤ Ck | f̂ |k+1,2,K̂ .

For b̂0,k+1, from the first estimate, we have |b̂0,k+1| ≤ Ck‖ f̂ ‖0,∞,K̂ ≤ Ck‖ f̂ ‖k+1,2,K̂ thus

b̂0,k+1 can be regarded as a continuous linear formon Hk+1(K̂ ) and it vanishes if f̂ ∈ Qk(K̂ ).
So by the Bramble–Hilbert Lemma, |b̂0,k+1| ≤ Ck[ f̂ ]k+1,2,K̂ .

Finally, by integration by parts only for the variable t , we get

|b̂i,k+1| ≤ Ck

∫∫

K̂
|∂s∂k+1

t f̂ |dsdt ≤ Ck | f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.

��
Lemma 3.2 For k ≥ 2, we have

1. |R̂[ f̂ ]k,k |0,∞,K̂ ≤ Ck[ f̂ ]k+1,K̂ , |R̂[ f̂ ]k,k |0,2,K̂ ≤ Ck[ f̂ ]k+1,K̂ .

2. |∂s R̂[ f̂ ]k,k |0,∞,K̂ ≤ Ck[ f̂ ]k+1,K̂ , |∂s R̂[ f̂ ]k,k |0,2,K̂ ≤ Ck[ f̂ ]k+1,K̂ .

3.
∫∫

K̂ ∂s R̂[ f̂ ]k,kdsdt = 0

Proof Lemma 3.1 implies ‖ f̂k,k‖0,∞,K̂ ≤ Ck‖ f̂ ‖0,∞,K̂ and ‖∂s f̂k,k‖0,∞,K̂ ≤ Ck‖ f̂ ‖0,∞,K̂ .
Thus

∀(s, t) ∈ K̂ , |R̂[ f̂ ]k,k(s, t)| ≤ | f̂k,k(s, t)| + | f̂ (s, t)| ≤ Ck‖ f̂ ‖0,∞,K̂ ≤ Ck‖ f̂ ‖k+1,K̂ .

Notice that here Ck does not depend on (s, t). So R[ f̂ ]k,k(s, t) is a continuous linear form
on Hk+1(K̂ ) and its operator norm is bounded by a constant independent of (s, t). Since
it vanishes for any f̂ ∈ Qk(K̂ ), by the Bramble–Hilbert Lemma, we get |R[ f̂ ]k,k(s, t)| ≤
Ck[ f̂ ]k+1,K̂ where Ck does not depend on (s, t). So the L∞ estimate holds and it implies the

L2 estimate.
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The second estimate can be established similarly since we have

|∂s R̂[ f̂ ]k,k(s, t)| ≤ |∂s f̂k,k(s, t)| + |∂s f̂ (s, t)| ≤ Ck‖ f̂ ‖1,∞,K̂ ≤ Ck‖ f̂ ‖k+1,K̂ .

The third equation is implied by the fact that Mj (t) ⊥ 1 for j ≥ 3 and M ′
j (t) ⊥ 1 for

j ≥ 2. Another way to prove the third equation is to use integration by parts
∫∫

K̂
∂s R̂[ f̂ ]k+1,k+1dsdt =

∫ 1

−1

(
R̂[ f̂ ]k+1,k+1(1, t) − R̂[ f̂ ]k+1,k+1(−1, t)

)
dt,

which is zero the second property in Theorem 3.1. ��
For the discussion in the next few subsections, it is useful to consider the lower order part

of the remainder of R̂[ f̂ ]k,k :
Lemma 3.3 For f̂ ∈ Hk+2(K̂ ) with k ≥ 2, define R̂[ f̂ ]k+1,k+1 − R̂[ f̂ ]k,k = R̂1 + R̂2 with

R̂1 =
k∑

i=0

b̂i,k+1Mi (s)Mk+1(t),

R̂2 =
k+1∑

j=0

b̂k+1, j Mk+1(s)Mj (t) = Mk+1(s)b̂k+1(t), b̂k+1(t) =
k+1∑

j=0

b̂k+1, j M j (t).

(3.1)

They have the following properties:

1.
∫∫

K̂ ∂s R̂1dsdt = 0.

2. |∂s R̂1|0,∞,K̂ ≤ Ck | f̂ |k+2,2,K̂ , |∂s R̂1|0,2,K̂ ≤ Ck | f̂ |k+2,2,K̂ .

3. |b̂k+1(t)| ≤ Ck | f̂ |k+1,K̂ , |b̂′
k+1(t)| ≤ Ck | f̂ |k+2,K̂ , ∀t ∈ [−1, 1].

Proof The first equation is due to the fact that Mk+1(t) ⊥ 1 since k ≥ 2.
Notice that M ′

0(s) = 0, by Lemma 3.1, we have

|∂s R̂1(s, t)| =
∣
∣
∣
∣
∣

k∑

i=1

b̂i,k+1M
′
i (s)Mk+1(t)

∣
∣
∣
∣
∣
≤ Ck | f̂ |k+2,K̂ .

So we get the L∞ estimate for |∂s R̂1(s, t)| thus the L2 estimate.
Similar to the estimates in Lemma 3.1, we can show |b̂k+1, j | ≤ Ck | f̂ |k+1,K̂ for j ≤ k+1,

thus |bk+1(t)| ≤ Ck | f̂ |k+1,K̂ . Since b
′
k+1(t) = ∑k+1

j=1 b̂k+1, j M ′
j (t), by the last estimate in

Lemma 3.1, we get |b̂′
k+1(t)| ≤ Ck | f̂ |k+2,K̂ . ��

3.3 The C0-Qk Projection

Now consider a function u(x, y) ∈ Hk+2(�), let u p(x, y) denote its piecewise Qk M-type
projection on each element e in the mesh �h . The first two properties in Theorem 3.1 imply
that u p(x, y) on each edge is uniquely determined by u(x, y) along that edge. Thus u p(x, y)
is continuous on�h . The approximation error u−u p is one order higher at all Gauss–Lobatto
points Z0:

Theorem 3.2

‖u − u p‖2,Z0 = O(hk+2)‖u‖k+2, ∀u ∈ Hk+2(�).

‖u − u p‖∞,Z0 = O(hk+2)‖u‖k+2,∞, ∀u ∈ Wk+2,∞(�).
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Proof Consider any e with cell center (xe, ye), define û(s, t) = u(xe + sh, ye + th). Since
the (k + 1) Gauss–Lobatto points are roots of Mk+1(t), R̂k+1,k+1[û] − R̂k,k[û] vanishes at
(k+1)× (k+1)Gauss–Lobatto points on K̂ . By Lemma 3.2, we have |R̂k+1,k+1[û](s, t)| ≤
C[û]k+2,K̂ .

Mapping back to the cell e, with (2.1), at the (k + 1) × (k + 1) Gauss–Lobatto points on
e, |u − u p| ≤ Chk+2− n

2 [u]k+2,e. Summing over all elements e, we get

‖u − u p‖2,Z0 ≤ C

[

hn
∑

e

h2k+4−n[u]2k+2,e

] 1
2

= O(hk+2)[u]k+2,�.

If further assuming u ∈ Wk+2,∞(�), then at the (k + 1) × (k + 1) Gauss–Lobatto points
on e, |u−u p| ≤ Chk+2− n

2 [u]k+2,e ≤ Chk+2[u]k+2,∞,�, which implies the second estimate.
��

3.4 Superconvergence of Bilinear Forms

For convenience, in this subsection, we drop the subscript h in a test function vh ∈ V h . When
there is no confusion, we may also drop dxdy or dsdt in a double integral.

Lemma 3.4 Assume a(x, y) ∈ W 2,∞(�). For k ≥ 2,
∫∫

�

a(u − u p)xvx dxdy = O(hk+2)‖u‖k+2‖v‖2, ∀v ∈ V h .

Proof For each cell e, we consider
∫∫

e a(u − u p)xvx dxdy. Let R[u]k,k = u − u p denote
the M-type projection remainder on e. Then R[u]k,k can be splitted into lower order part
R[u]k,k − R[u]k+1,k+1 and high order part R[u]k+1,k+1.
∫∫

e
a(u − u p)xvx dxdy =

∫∫

e
a(R[u]k+1,k+1)xvx +

∫∫

e
a(R[u]k,k − R[u]k+1,k+1)xvx .

We first consider the high order part. Mapping everything to the reference cell K̂ and let âv̂s
denote the average of âv̂s on K̂ . By the last property in Lemma 3.2, we get

h2−n
∣
∣
∣
∣

∫∫

e
a(R[u]k+1,k+1)xvx dxdy

∣
∣
∣
∣ =

∣
∣
∣
∣

∫∫

K̂
∂s(R̂[û]k+1,k+1)âv̂sdsdt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫∫

K̂
∂s(R̂[û]k+1,k+1)(âv̂s − âv̂s)dsdt

∣
∣
∣
∣ ≤ |∂s(R̂[û]k+1,k+1)|0,2,K̂ |âv̂s − âv̂s |0,2,K̂ .

By Poincaré inequality and Cauchy–Schwarz inequality, we have

|âv̂s − âv̂s |0,2,K̂ ≤ C |∇(âv̂s)|0,2,K̂ ≤ C |â|1,∞,K̂ |v̂|1,2,K̂ + C |â|0,∞,K̂ |v̂|2,2,K̂ .

Mapping back to the cell e, with (2.1), by Lemma 3.2, the higher order part is bounded by
Chk+2[u]k+2,2,e(|a|1,∞,e|v|1,2,e + |a|0,∞,e|v|2,2,e) thus

∑

e

∫∫

e
a(R[u]k+1,k+1)xvx dxdy = O(hk+2)‖a‖1,∞,�

∑

e

‖u‖k+2,e‖v‖2,e

= O(hk+2)‖a‖1,∞,�‖u‖k+2,�‖v‖2,�.
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Now we only need to discuss the lower order part of the remainder. Let R[u]k,k −
R[u]k+1,k+1 = R1 + R2 which is defined similarly as in (3.1). For R1, by the first two
results in Lemma 3.3, we have

∫∫

K̂
(∂s R̂1)âv̂s =

∫∫

K̂
(∂s R̂1)(âv̂s − âv̂s) ≤ |∂s R̂1|0,2,K̂ |âv̂s − âv̂s |0,2,K̂

≤ C |û|k+2,2,K̂ |âv̂s − âv̂s |0,2,K̂ .

By similar discussions above, we get

∑

e

∫∫

e
a(R1)xvx dxdy = O(hk+2)‖a‖1,∞,�‖u‖k+2,�‖v‖2,�.

For R2, let N (s) be the antiderivative of Mk+1(s) then N (±1) = 0. Let ¯̂a be the aver-
age of ¯̂a on K̂ then |â − ¯̂a|0,∞,K̂ ≤ C |â|1,∞,K̂ . Since Mk+1(s) ⊥ Pk−2(s), we have
∫∫

K̂ b̂k+1(t)Mk+1(s)v̂ss = 0. After integration by parts, by Lemma 3.3 we have
∫∫

K̂
(∂s R̂2)âv̂s = −

∫∫

K̂
b̂k+1(t)Mk+1(s)(âs v̂s + âv̂ss)

=
∫∫

K̂
b̂k+1(t)N (s)(âss v̂s + âs v̂ss) −

∫∫

K̂
b̂k+1(t)Mk+1(s)(â − ¯̂a)v̂ss

≤ C |û|k+1,K̂ (|â|2,∞,K̂ |v̂|1,2,K̂ + |â|1,∞,K̂ |v̂|2,2,K̂ ).

Thus we can get

∑

e

∫∫

e
(∂x R2)av̂xdxdy = O(hk+2)‖a‖2,∞,�‖u‖k+1,�‖v‖2,�.

So we have
∫∫

�
a(u − u p)xvx dxdy = O(hk+2)‖a‖2,∞,�‖u‖k+2‖v‖2, ∀v ∈ V h . ��

Lemma 3.5 Assume c(x, y) ∈ W 1,∞(�). For k ≥ 2,
∫∫

�

c(u − u p)v dxdy = O(hk+2)‖u‖k+1‖v‖1, ∀v ∈ V h .

Proof Let ĉv̂ be the average of ĉv̂ on K̂ . Following similar arguments as in the proof
Lemma 3.4,
∣
∣
∣
∣

∫∫

K̂
R̂[û]k,k ĉv̂

∣
∣
∣
∣ =

∣
∣
∣
∣

∫∫

K̂
R̂[û]k,k(ĉv̂ − ĉv̂)

∣
∣
∣
∣ ≤ |R̂[û]k,k |0,2,K̂ |ĉv̂ − ĉv̂|0,2,K̂

≤ C[u]k+1,2,K̂ [ĉv̂]1,2,K̂ ≤ C[u]k+1,2,K̂ (|ĉ|0,∞,K̂ |v̂|1,2,K̂ + |ĉ|1,∞,K̂ |v̂|0,2,K̂ ).

So with (2.1) we have
∫∫

e
cR[u]k,kvdxdy = hn

∫∫

K̂
(R[û]k,k)ĉv̂dsdt = O(hk+2)‖c‖1,∞,�‖u‖k+1,e‖v‖1,e,

which implies the estimate. ��
Lemma 3.6 Assume b(x, y) ∈ W 2,∞(�). For k ≥ 2,

∫∫

�

b(u − u p)xv dxdy = O(hk+2)‖u‖k+2‖v‖2, ∀v ∈ V h .
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Proof Let b̂v̂ be the average of b̂v̂ on K̂ . Following similar arguments as in the proof
Lemma 3.4, we have

∣
∣
∣
∣

∫∫

K̂
∂s(R̂[û]k+1,k+1)b̂v̂

∣
∣
∣
∣ =

∣
∣
∣
∣

∫∫

K̂
∂s(R̂[û]k+1,k+1)(b̂v̂ − b̂v̂)

∣
∣
∣
∣

≤ |∂s(R̂[û]k+1,k+1)|0,2,K̂ |b̂v̂ − b̂v̂|0,2,K̂ ≤ C[û]k+2,2,K̂ (|b̂|1,∞,K̂ |v̂|0,2,K̂ + |b̂|0,∞,K̂ |v̂|1,2,K̂ ).
∫∫

K̂
(∂s R̂1)b̂v̂ =

∫∫

K̂
(∂s R̂1)(b̂v̂ − b̂v̂) ≤ |∂s R̂1|0,2,K̂ |b̂v̂ − b̂v̂|0,2,K̂

≤ C |û|k+2,2,K̂ (|b̂|1,∞,K̂ |v̂|0,2,K̂ + |b̂|0,∞,K̂ |v̂|1,2,K̂ ).

Let N (s) be the antiderivative of Mk+1(s). After integration by parts, we have
∫∫

K̂
(∂s R̂2)b̂v̂ = −

∫∫

K̂
b̂k+1(t)Mk+1(s)(b̂s v̂ + b̂v̂s)

=
∫∫

K̂
b̂k+1(t)N (s)(b̂ss v̂ + b̂s v̂s + b̂v̂ss)

≤ C |û|k+1,2,K̂ (|b̂|2,∞,K̂ |v̂|0,2,K̂ + |b̂|1,∞,K̂ |v̂|1,2,K̂ + |b̂|0,∞,K̂ |v̂|2,2,K̂ ).

After combining all the estimates, with (2.1), we have
∫∫

e
b(u − u p)xv = hn−1

∫∫

K̂
b̂(R[û]k,k)s v̂ = O(hk+2)‖b‖2,∞,�‖u‖k+2,e‖v‖2,e.

��

Lemma 3.7 Assume a(x, y) ∈ W 2,∞(�). For k ≥ 2,
∫∫

�

a(u − u p)xvy dxdy = O(hk+2− 1
2 )‖u‖k+2‖v‖2, ∀v ∈ V h, (3.2)

∫∫

�

a(u − u p)xvy dxdy = O(hk+2)‖u‖k+2‖v‖2, ∀v ∈ V h
0 . (3.3)

Proof Similar to the proof of Lemma 3.4, we have
∣
∣
∣
∣

∫∫

e
a(R[u]k+1,k+1)xvy dxdy

∣
∣
∣
∣ = hn−2

∣
∣
∣
∣

∫∫

K̂
∂s(R̂[û]k+1,k+1)âv̂t dsdt

∣
∣
∣
∣

= hn−2
∣
∣
∣
∣

∫∫

K̂
∂s(R̂[û]k+1,k+1)(âv̂t − âv̂t )dsdt

∣
∣
∣
∣

≤ hn−2|∂s(R̂[û]k+1,k+1)|0,2,K̂ |âv̂t − âv̂t |0,2,K̂
≤ Chk+2‖a‖1,∞,�‖u‖k+2,e‖v‖2,e,

and
∫∫

K̂
(∂s R̂1)âv̂t =

∫∫

K̂
(∂s R̂1)(âv̂t − âv̂t ) ≤ |∂s R̂1|0,2,K̂ |âv̂t − âv̂t |0,2,K̂ .

Following the proof of Lemma 3.4, with (2.1), we get

∑

e

∫∫

e
a(R1)xvy dxdy = O(hk+2)‖a‖1,∞,�‖u‖k+2,�‖v‖2,�.
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Let N (s) be the antiderivative of Mk+1(s). After integration by parts, we have
∫∫

K̂
(∂s R̂2)âv̂t = −

∫∫

K̂
b̂k+1(t)Mk+1(s)(âs v̂t + âv̂st )

=
∫∫

K̂
b̂k+1(t)N (s)(âss v̂t + 2âs v̂st ) +

∫∫

K̂
b̂k+1(t)N (s)âv̂sst .

After integration by parts on the t-variable,

−
∫∫

K̂
b̂k+1(t)N (s)âv̂sst =

∫∫

K̂
∂t [b̂k+1(t)N (s)â]v̂ss −

∫ 1

−1
b̂k+1(t)N (s)âv̂ssds

∣
∣
∣
∣

t=1

t=−1
,

∫∫

K̂
∂t [b̂k+1(t)N (s)â]v̂ss =

∫∫

K̂
[b̂′

k+1(t)N (s)â + b̂k+1(t)N (s)ât ]v̂ss .

By Lemma 3.3, we have the estimate for the two double integral terms
∣
∣
∣
∣

∫∫

K̂
b̂k+1(t)N (s)(âss v̂t + 2âs v̂st )

∣
∣
∣
∣ ≤ C |û|k+1,2,K̂ (|â|2,∞,K̂ |v̂|1,2,K̂ + |â|1,∞,K̂ |v̂|2,2,K̂ ),

∣
∣
∣
∣

∫∫

K̂
[b̂′

k+1(t)N (s)â + b̂k+1(t)N (s)ât ]v̂ss
∣
∣
∣
∣

≤ C(|û|k+2,2,K̂ |â|0,∞,K̂ |v̂|2,2,K̂ + |û|k+1,2,K̂ |â|1,∞,K̂ |v̂|2,2,K̂ ),

which gives the estimate Chk+2‖a‖2,∞,�‖u‖k+2,e‖v‖k+2,e after mapping back to e.
So we only need to discuss the line integral term now. After mapping back to e, we have

∫ 1

−1
b̂k+1(t)Mk+1(s)âv̂ssds

∣
∣
∣
∣

t=1

t=−1
= h

∫ xe+h

xe−h
bk+1(y)Mk+1

(
x − xe

h

)

avxxdx

∣
∣
∣
∣

y=ye+h

y=ye−h

.

Notice that we have

bk+1(ye + h) = b̂k+1(1) =
k+1∑

j=0

b̂k+1, j M j (1) = b̂k+1,0 + b̂k+1,1

=
(

k + 1

2

) ∫ 1

−1
∂s û(s, 1)lk(s)ds =

(

k + 1

2

) ∫ xe+h

xe−h
∂xu(x, ye + h)lk

(
x − xe

h

)

dx,

and similarly we get bk+1(ye − h) = b̂k+1(−1) = (k + 1
2 )

∫ xe+h
xe−h ∂xu(x, ye − h)lk(

x−xe
h )dx .

Thus the term bk+1(y)Mk+1(
x−xe
h )avxx is continuous across the top/bottom edge of cells.

Therefore, if summing over all elements e, the line integral on the inner edges are cancelled
out. Let L1 and L3 denote the top and bottom boundary of �. Then the line integral after
summing over e consists of two line integrals along L1 and L3. We only need to discuss one
of them.

Let l1 and l3 denote the top and bottom edge of e. First, after integration by parts k times,
we get

b̂k+1(1) =
(

k + 1

2

) ∫ 1

−1
∂s û(s, 1)lk(s)ds = (−1)k

(

k + 1

2

) ∫ 1

−1

∂k+1

∂sk+1 û(s, 1)
1

2kk! (s
2 − 1)kds,

thus by Cauchy–Schwarz inequality we get

|b̂k+1(1)| ≤ Ck

√
∫ 1

−1

[
∂k+1

∂sk+1 û(s, 1)

]2
ds ≤ Ckh

k+ 1
2 |u|k+1,2,l1 .
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Second, since v2xx is a polynomial of degree 2k w.r.t. y variable, by using (k + 2)-point
Gauss–Lobatto quadrature for integration w.r.t. y-variable in

∫∫
e v2xxdxdy, we get

∫ xe+h

xe−h
v2xx (x, ye + h)dx ≤ Ch−1

∫∫

e
v2xx (x, y)dxdy.

So by Cauchy–Schwarz inequality, we have

∫ xe+h

xe−h
|vxx (x, ye + h)|dx ≤ √

2h

√∫ xe+h

xe−h
v2xx (x, ye + h)dx ≤ C |v|2,2,e.

Thus the line integral along L1 can be estimated by considering each e adjacent to L1 in
the reference cell:

∑

e∩L1 �=∅

∣
∣
∣
∣

∫ 1

−1
b̂k+1(1)Mk+1(s)â(s, 1)v̂ss(s, 1)ds

∣
∣
∣
∣

≤
∑

e∩L1 �=∅
C |â|0,∞,K̂ |b̂k+1(1)|

∫ 1

−1
|v̂ss(s, 1)|ds

= O(hk+
3
2 )

∑

e∩L1 �=∅
|u|k+1,2,l1

∫ xe+h

xe−h
|vxx (x, ye + h)|dx

= O(hk+
3
2 )

∑

e∩L1 �=∅
|u|k+1,2,l1 |v|2,2,e

= O(hk+
3
2 )‖u‖k+1,L1‖v‖2,� = O(hk+

3
2 )‖u‖k+2,�‖v‖2,�,

where the trace inequality ‖u‖k+1,∂� ≤ C‖u‖k+2,� is used.
Combine all the estimates above, we get (3.2). Since the 1

2 order loss is only due to the
line integral along L1 and L3, on which vxx = 0 if v ∈ V h

0 , we get (3.3). ��

4 TheMain Result

4.1 Superconvergence of Bilinear Forms with Approximated Coefficients

Even though standard interpolation error is a − aI = O(hk+1), as shown in the following
discussion, the error in the bilinear forms is related to

∫∫
e(a−aI ) dxdy on each cell e, which

is the quadrature error thus the order is higher. We have the following estimate on the bilinear
forms with approximated coefficients:

Lemma 4.1 Assume a(x, y) ∈ Wk+2,∞(�) and u(x, y) ∈ H2(�), then ∀v ∈ V h or ∀v ∈
H2(�),

∫∫

�

auxvx dxdy −
∫∫

�

aI uxvx dxdy = O(hk+2)‖a‖k+2,∞,�‖u‖2‖v‖2,
∫∫

�

auxvy dxdy −
∫∫

�

aI uxvy dxdy = O(hk+2)‖a‖k+2,∞,�‖u‖2‖v‖2,
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∫∫

�

auxv dxdy −
∫∫

�

aI uxv dxdy = O(hk+2)‖a‖k+2,∞,�‖u‖2‖v‖1,
∫∫

�

auv dxdy −
∫∫

�

aI uv dxdy = O(hk+2)‖a‖k+2,∞,�‖u‖1‖v‖1.

Proof For every cell e in the mesh�h , let uxvx be the cell average of uxvx . By Theorems 2.2
and 2.3, we have

∫∫

e
(aI − a)uxvx

=
∫∫

e
(aI − a)uxvx +

∫∫

e
(aI − a)(uxvx − uxvx )

= 1

4h2

∫∫

e
(aI − a)

∫∫

e
uxvx +

∫∫

e
(aI − a)(uxvx − uxvx )

= O(hk+2)‖a‖k+2,∞,�‖u‖1,e‖v‖1,e + O(hk+1)‖a‖k+1,∞,�

∫∫

e
|uxvx − uxvx |.

By Poincaré inequality and Cauchy–Schwarz inequality, we have
∫∫

e
|uxvx − uxvx | = O(h)‖∇(uxvx )‖0,1,e = O(h)‖u‖2,e‖v‖2,e

thus
∫∫

e(aI − a)uxvx = O(hk+2)‖a‖k+2,∞,�‖u‖2,e‖v‖2,e. Summing over all elements e,
we have

∫∫
�
(aI − a)uxvx = O(hk+2)‖a‖k+2,∞,�‖u‖2‖v‖2. Similarly we can establish the

other three estimates. ��
Lemma 4.1 implies that the difference in the solutions to (1.6) and (1.1) is O(hk+2) in the
L2(�)-norm:

Theorem 4.1 Assume a(x, y) ∈ Wk+2,∞(�) and aI (x, y) ≥ C > 0. Let u, ũ ∈ H1
0 (�) be

the solutions to

A(u, v) :=
∫∫

a∇u · ∇v dxdy = ( f , v), ∀v ∈ H1
0 (�)

and

AI (ũ, v) :=
∫∫

aI∇ũ · ∇v dxdy = ( f , v), ∀v ∈ H1
0 (�)

respectively, where f ∈ L2(�). Then ‖u − ũ‖0 = O(hk+2)‖a‖k+2,∞,�‖ f ‖0.
Proof By Lemma 4.1, for any v ∈ H2(�) we have

AI (u − ũ, v) = AI (u, v) − AI (ũ, v) = [AI (u, v) − A(u, v)] + [A(u, v) − AI (ũ, v)]
= AI (u, v) − A(u, v) = O(hk+2)‖a‖k+2,∞,�‖u‖2‖v‖2.

Let w ∈ H1
0 (�) be the solution to the dual problem

AI (v,w) = (u − ũ, v) ∀v ∈ H1
0 (�).

SinceaI ≥ C > 0 and |aI (x, y)| ≤ C |a(x, y)|, the coercivity andboundedness of the bilinear
form AI hold [8].Moreover, aI is Lipschitz continuous because a(x, y) ∈ Wk+2,∞(�). Thus
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the solutionw exists and the elliptic regularity ‖w‖2 ≤ C‖u− ũ‖0 holds on a convex domain,
e.g., a rectangular domain �, see [14]. Thus,

‖u − ũ‖20 = (u − ũ, u − ũ) = AI (u − ũ, w) = O(hk+2)‖a‖k+2,∞,�‖u‖2‖w‖2.
With elliptic regularity ‖w‖2 ≤ C‖u − ũ‖0 and ‖u‖2 ≤ C‖ f ‖0, we get

‖u − ũ‖0 = O(hk+2)‖a‖k+2,∞,�‖ f ‖0.
��

Remark 1 For even number k ≥ 4, (k+1)-point Newton-Cotes quadrature rule has the same
error order as the (k+1)-point Gauss–Lobatto quadrature rule. Thus Theorem 4.1 still holds
if we redefine aI (x, y) as the Qk interpolant of a(x, y) at the uniform (k + 1) × (k + 1)
Newton-Cotes points in each cell if k ≥ 4 is even.

4.2 TheVariable Coefficient Poisson Equation

Let u(x, y) ∈ H1
0 (�) be the exact solution to

A(u, v) :=
∫∫

�

a∇u · ∇v dxdy = ( f , v), ∀v ∈ H1
0 (�).

Let ũh ∈ V h
0 (�) be the solution to

AI (ũh, vh) :=
∫∫

�

aI∇ũh · ∇vh dxdy = 〈 f , vh〉h, ∀vh ∈ V h
0 (�).

Theorem 4.2 For k ≥ 2, let u p be the piecewise Qk M-type projection of u(x, y) on each
cell e in the mesh �h. Assume a ∈ Wk+2,∞(�) and u, f ∈ Hk+2(�), then

AI (ũh − u p, vh) = O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖ f ‖k+2)‖vh‖2, ∀vh ∈ V h
0 .

Proof For any vh ∈ V h , we have

AI (ũh, vh) − AI (u p, vh)

= ( f , vh) − AI (u p, vh) + 〈 f , vh〉h − ( f , vh)

= A(u, vh) − AI (u p, vh) + 〈 f , vh〉h − ( f , vh)

= [A(u, vh) − AI (u, vh)] + [AI (u − u p, vh) − A(u − u p, vh)]
+ A(u − u p, vh) + 〈 f , vh〉h − ( f , vh).

Lemma 4.1 implies A(u, vh) − AI (u, vh) = O(hk+2)‖a‖k+2,∞‖u‖2‖vh‖2. Theorem
2.4 gives 〈 f , vh〉h − ( f , vh) = O(hk+2)‖ f ‖k+2‖vh‖2. By Lemma 3.4, A(u − u p, vh) =
O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2.

For the second term AI (u − u p, vh) − A(u − u p, vh) = ∫∫
�
(a − aI )∇(u − u p)∇vh , by

Theorem 2.2 and Lemma 3.2, we have
∣
∣
∣
∣

∫∫

�

(a − aI )(u − u p)x∂xvh

∣
∣
∣
∣ ≤ |a − aI |0,∞,�

∑

e

∫∫

e
|(u − u p)x∂xvh |

≤ |a − aI |0,∞,�

∑

e

|(u − u p)x |0,2,e|vh |1,2,e
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= O(h2k+1)‖a‖k+1,∞,�

∑

e

‖u‖k+1,e‖vh‖1,e

= O(h2k+1)‖a‖k+1,∞,�‖u‖k+1‖vh‖1.
��

Theorem 4.3 Assume a(x, y) ∈ Wk+2,∞(�) is positive and u(x, y), f (x, y) ∈ Hk+2(�).
Assume the mesh is fine enough so that the piecewise Qk interpolant satisfies aI (x, y) ≥
C > 0. Then ũh is a (k + 2)th order accurate approximation to u in the discrete 2-norm over
all the (k + 1) × (k + 1) Gauss–Lobatto points:

‖ũh − u‖2,Z0 = O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖ f ‖k+2).

Proof Let θh = ũh − u p . By the definition of u p and Theorem 3.1, it is straightforward to
show θh = 0 on ∂�. By the Aubin–Nitsche duality method, let w ∈ H1

0 (�) be the solution
to the dual problem

AI (v,w) = (θh, v) ∀v ∈ H1
0 (�).

By the same discussion as in the proof of Theorem 4.1, the solutionw exists and the regularity
‖w‖2 ≤ C‖θh‖0 holds.

Let wh be the finite element projection of w, i.e., wh ∈ V h
0 satisfies

AI (vh, wh) = (θh, vh) ∀vh ∈ V h
0 .

Since wh ∈ V h
0 , by Theorem 4.2, we have

‖θh‖20 = (θh, θh) = AI (θh, wh) = O(h4)(‖a‖k+2,∞‖u‖k+2 + ‖ f ‖k+2)‖wh‖2. (4.1)

Let wI = �1w be the piecewise Q1 projection of w on �h as defined in (2.2). By the
Bramble–Hilbert Lemma, we get ‖w − wI ‖2,e ≤ C[w]2,e ≤ C‖w‖2,e thus

‖w − wI ‖2 ≤ C‖w‖2.
By the inverse estimate on the piecewise polynomial wh − wI , we have

‖wh‖2 ≤ ‖wh − wI ‖2 + ‖wI − w‖2 + ‖w‖2 ≤ Ch−1‖wh − wI ‖1 + C‖w‖2. (4.2)

With coercivity, Galerkin orthogonality and Cauchy–Schwarz inequality, we get

C‖wh − wI ‖21 ≤ AI (wh − wI , wh − wI ) = AI (wh − wI , w − wI ) ≤ C‖w − wI ‖1‖wh − wI ‖1,
which implies

‖wh − wI ‖1 ≤ C‖w − wI ‖1 ≤ Ch‖w‖2. (4.3)

With (4.2), (4.3) and the elliptic regularity ‖w‖2 ≤ C‖θh‖0, we get
‖wh‖2 ≤ C‖w‖2 ≤ C‖θh‖0. (4.4)

By (4.1) and (4.4) we have

‖θh‖20 ≤ O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖ f ‖k+2)‖θh‖0,
i.e.,

‖ũh − u p‖0 = ‖θh‖0 = O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖ f ‖k+2).
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Finally, by the equivalency between the discrete 2-norm on Z0 and the L2(�) norm in the
space V h , with Theorem 3.2, we obtain

‖ũh − u‖2,Z0 = O(hk+2)(‖a‖k+2,∞‖u‖k+2 + ‖ f ‖k+2).

��

Remark 2 To extend Theorem 4.3 to homogeneous Neumann boundary conditions or mixed
homogeneous Dirichlet and Neumann boundary conditions, dual problems with the same
homogeneous boundary conditions as in primal problems should be used. Then all the esti-
mates such as Theorem 4.2 hold not only for v ∈ V h

0 but also for any v in V h .

Remark 3 With Theorem 2.5, all the results hold for the scheme (1.5).

Remark 4 It is straightforward to verify that all results hold in three dimensions. Notice that
the in three dimensions the discrete 2-norm is

‖u‖2,Z0 =
⎡

⎣h3
∑

x∈Z0

|u(x)|2
⎤

⎦

1
2

.

Remark 5 For discussing superconvergence of the scheme (1.7), we have to consider the dual
problem of the bilinear form A instead and the exact Galerkin orthogonality in (1.7) no longer
holds. In order for the proof above holds, we need to show the Galerkin orthogonality in (1.7)
holds up toO(hk+2)‖vh‖2 for a test function vh ∈ Vh , which is very difficult to establish. This
is the main difficulty to extend the proof of Theorem 4.3 to the Gauss–Lobatto quadrature
scheme (1.7), which will be analyzed in [18] by different techniques.

4.3 General Elliptic Problems

In this section, we discuss extensions to more general elliptic problems. Consider an elliptic
variational problem of finding u ∈ H1

0 (�) to satisfy

A(u, v) :=
∫∫

�

(∇vT a∇u + b∇uv + cuv) dxdy = ( f , v),∀v ∈ H1
0 (�),

where a(x, y) =
(
a11 a12
a21 a22

)

is positive definite and b = [b1 b2]. Assume the coefficients

a, b and c are smooth, and A(u, v) satisfies coercivity A(v, v) ≥ C‖v‖1 and boundedness
|A(u, v)| ≤ C‖u‖1‖v‖1 for any u, v ∈ H1

0 (�).
By the estimates in Sect. 3.4, we first have the following estimate on the Qk M-type

projection u p:

Lemma 4.2 Assume ai j (x, y), bi (x, y) ∈ W 2,∞(�) and bi (x, y) ∈ W 2,∞(�), then

A(u − u p, vh) =
{O(hk+2)‖u‖k+2‖vh‖2, ∀vh ∈ V h

0 ,

O(hk+1.5)‖u‖k+2‖vh‖2, ∀vh ∈ V h .

If a12 = a21 ≡ 0, then

A(u − u p, vh) = O(hk+2)‖u‖k+2‖vh‖2, ∀vh ∈ V h .
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Table 1 The errors of C0-Q2 for
a Poisson equation with Dirichlet
boundary conditions at Lobatto
points

FEM with approximated coefficients (1.4)

Mesh l2 error Order l∞ error Order

2 × 4 2.22E−1 – 3.96E−1 –

4 × 8 4.83E−2 2.20 1.51E−1 1.39

8 × 16 2.54E−3 4.25 1.16E−2 3.71

16 × 32 1.49E−4 4.09 7.52E−4 3.95

32 × 64 9.22E−6 4.01 5.14E−5 3.87

FEM using Gauss–Lobatto quadrature (1.7)

2 × 4 2.24E−1 – 4.30E−1 –

4 × 8 4.43E−2 2.34 1.37E−1 1.65

8 × 16 2.27E−3 4.29 8.61E−3 4.00

16 × 32 1.32E−4 4.11 4.87E−4 4.14

32 × 64 8.13E−6 4.02 3.09E−5 3.97

FEM with approximated coefficients (1.5)

2 × 4 2.78E−1 – 6.31E−1 –

4 × 8 2.76E−2 3.33 8.69E−2 2.86

8 × 16 1.28E−3 4.43 3.77E−3 4.53

16 × 32 8.96E−5 3.83 3.36E−4 3.49

32 × 64 5.79E−6 3.95 2.41E−5 3.80

Full FEM Scheme

2 × 4 1.48E−2 – 3.79E−2 –

4 × 8 1.05E−2 0.50 3.76E−2 0.01

8 × 16 7.32E−4 3.84 4.04E−3 3.22

16 × 32 4.54E−5 4.01 2.83E−4 3.83

32 × 64 2.85E−6 3.99 1.75E−5 4.02

Let aI , bI and cI denote the corresponding piecewise Qk Lagrange interpolation at Gauss–
Lobatto points. We are interested in the solution ũh ∈ V h

0 to

AI (ũh, vh) :=
∫∫

�

(∇vTh aI∇ũh + bI∇ũhvh + cI ũhvh) dxdy = 〈 f , vh〉h,∀vh ∈ V h
0 .

We need to assume that AI still satisfies coercivity AI (v, v) ≥ C‖v‖1 and boundedness
|AI (u, v)| ≤ C‖u‖1‖v‖1 for any u, v ∈ H1

0 (�), so that the solution u ∈ H1
0 (�) of the

following problem exists and is unique:

AI (u, v) = ( f , v), ∀v ∈ H1
0 (�).

We also need the elliptic regularity to hold for the dual problem:

AI (v,w) = ( f , v), ∀v ∈ H1
0 (�).

For instance, if b ≡ 0, it suffices to require that eigenvalues of aI + cI

(
1 0
0 1

)

has

a uniform positive lower bound on �, which is achievable on fine enough meshes if a +
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Table 2 The errors of C0-Q2 for
a Poisson equation with
Neumann boundary conditions at
Lobatto points

FEM with approximated coefficients (1.4)

Mesh l2 error Order l∞ error Order

2 × 4 3.44E0 – 5.39E0 –

4 × 8 1.83E−1 4.23 3.51E−1 3.93

8 × 16 1.38E−2 3.73 3.43E−2 3.36

16 × 32 8.37E−4 4.04 2.21E−3 3.96

32 × 64 5.13E−5 4.03 1.41E−4 3.96

FEM using Gauss–Lobatto quadrature (1.7)

2 × 4 3.43E0 – 4.95E0 –

4 × 8 1.81E−1 4.25 3.11E−1 3.99

8 × 16 1.37E−2 3.72 2.81E−2 3.47

16 × 32 8.33E−4 4.04 1.76E−3 4.00

32 × 64 5.11E−5 4.03 1.12E−4 3.97

FEM with approximated coefficients (1.5)

2 × 4 3.64E0 – 5.06E0 –

4 × 8 1.60E−1 4.51 2.54E−1 4.32

8 × 16 1.26E−2 3.67 2.39E−2 3.41

16 × 32 7.67E−4 4.03 1.67E−3 3.84

32 × 64 4.71E−5 4.03 1.09E−4 3.94

Full FEM scheme

2 × 4 8.45E−2 – 2.13E−1 –

4 × 8 1.56E−2 2.43 5.66E−2 1.91

8 × 16 9.12E−4 4.10 5.14E−3 3.46

16 × 32 5.47E−5 4.06 3.24E−4 3.99

32 × 64 3.37E−6 4.02 2.22E−5 3.87

c

(
1 0
0 1

)

are positive definite. This implies the coercivity of AI . The boundedness of AI

follows from the smoothness of coefficients. Since aI and cI are Lipschitz continuous, the
elliptic regularity for AI holds on a convex domain [14].

By Lemmas 4.1 and 4.2, it is straightforward to extend Theorem 4.2 to the general elliptic
case:

Theorem 4.4 For k ≥ 2, assume ai j , bi , c ∈ Wk+2,∞(�) and u, f ∈ Hk+2(�), then

AI (ũh − u p, vh) =
{O(hk+2)(‖u‖k+2 + ‖ f ‖k+2)‖vh‖2, ∀vh ∈ V h

0 ,

O(hk+1.5)(‖u‖k+2 + ‖ f ‖k+2)‖vh‖2, ∀vh ∈ V h,
.

And if a12 = a21 ≡ 0, then

AI (ũh − u p, vh) = O(hk+2)(‖u‖k+2 + ‖ f ‖k+2)‖vh‖2, ∀vh ∈ V h .

With suitable assumptions, it is straightforward to extend the proof of Theorem 4.3 to the
general case:
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Table 3 An elliptic equation with
mixed second order derivatives
and Neumann boundary
conditions

FEM with approximated coefficients (1.4)

Mesh l2 error Order l∞ error Order

2 × 4 1.92E0 – 3.47E0 –

4 × 8 2.16E−1 3.15 6.05E−1 2.52

8 × 16 1.45E−2 3.90 6.12E−2 3.30

16 × 32 9.08E−4 4.00 4.05E−3 3.92

32 × 64 5.66E−5 4.00 2.76E−4 3.88

FEM using Gauss–Lobatto quadrature (1.7)

2 × 4 1.38E0 – 2.27E0 –

4 × 8 1.46E−1 3.24 2.52E−1 3.17

8 × 16 7.49E−3 4.28 1.64E−2 3.94

16 × 32 4.31E−4 4.12 1.02E−3 4.01

32 × 64 2.61E−5 4.04 7.47E−5 3.78

FEM with approximated coefficients (1.5)

2 × 4 1.89E0 – 2.84E0 –

4 × 8 1.04E−1 4.18 1.45E−1 4.30

8 × 16 5.62E−3 4.21 1.86E−2 2.96

16 × 32 3.24E−4 4.12 1.67E−3 3.48

32 × 64 1.95E−5 4.05 1.32E−4 3.66

Full FEM scheme

2 × 4 1.46E−1 – 4.31E−1 –

4 × 8 1.64E−2 3.16 6.55E−2 2.71

8 × 16 7.08E−4 4.53 3.42E−3 4.26

16 × 32 4.44E−5 4.06 4.84E−4 2.82

32 × 64 2.95E−6 3.85 7.96E−5 2.60

Theorem 4.5 For k ≥ 2, assume ai j , bi , c ∈ Wk+2,∞(�) and u, f ∈ Hk+2(�), Assume the
approximated bilinear form AI satisfies coercivity andboundedness and the elliptic regularity
still holds for the dual problem of AI . Then ũh is a (k + 2)th order accurate approximation
to u in the discrete 2-norm over all the (k + 1) × (k + 1) Gauss–Lobatto points:

‖ũh − u‖2,Z0 = O(hk+2)(‖u‖k+2 + ‖ f ‖k+2).

Remark 6 With Neumann type boundary conditions, due to Lemma 3.7, we can only prove
(k + 1.5)th order accuracy

‖ũh − u‖2,Z0 = O(hk+1.5)(‖u‖k+2 + ‖ f ‖k+2),

unless there are nomixed second order derivatives in the elliptic equation, i.e., a12 = a21 ≡ 0.
We emphasize that even for the full finite element scheme (1.3), only (k + 1.5)-th order
accuracy at all Lobatto points can be proven for a general elliptic equation with Neumann
type boundary conditions.
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Table 4 An elliptic equation with
mixed second order derivatives
and Dirichlet boundary
conditions

FEM with approximated coefficients (1.4)

Mesh l2 error Order l∞ error Order

2 × 4 2.64E−2 – 7.01E−2 –

4 × 8 4.68E−3 2.50 1.92E−2 1.87

8 × 16 4.78E−4 3.29 2.70E−3 2.83

16 × 32 3.69E−5 3.69 2.43E−4 3.47

32 × 64 2.53E−6 3.87 1.82E−5 3.74

64 × 128 1.65E−7 3.94 1.25E−6 3.87

FEM using Gauss–Lobatto quadrature (1.7)

2 × 4 3.94E−2 – 7.15E−2 –

4 × 8 1.23E−2 1.67 3.28E−2 1.12

8 × 16 1.46E−3 3.08 5.42E−3 2.60

16 × 32 1.14E−4 3.68 3.96E−4 3.78

32 × 64 7.75E−6 3.88 2.62E−5 3.92

FEM with approximated coefficients (1.5)

2 × 4 4.08E−2 – 7.67E−2 –

4 × 8 1.01E−2 2.02 3.39E−2 1.18

8 × 16 5.22E−4 4.27 1.72E−3 4.30

16 × 32 3.14E−5 4.05 9.57E−5 4.17

32 × 64 1.99E−6 3.98 5.71E−6 4.07

Full FEM scheme

2 × 4 7.35E−2 – 1.99E−1 –

4 × 8 5.94E−3 3.63 2.43E−2 3.03

8 × 16 4.31E−4 3.79 2.01E−3 3.60

16 × 32 2.83E−5 3.93 1.76E−4 3.93

32 × 64 1.68E−6 4.07 8.41E−6 4.07

5 Numerical Results

In this section we show some numerical tests of C0-Q2 finite element method on an uniform
rectangular mesh and verify the order of accuracy at Z0, i.e., all Gauss–Lobatto points. The
following four schemes will be considered:

1. Full Q2 finite element scheme (1.3) where integrals in the bilinear form are approximated
by 5×5Gauss quadrature rule,which is exact for Q9 polynomials thus exact for A(uh, vh)
if the variable coefficient is a Q5 polynomial.

2. The Gauss–Lobatto quadrature scheme (1.7): all integrals are approximated by 3 × 3
Gauss–Lobatto quadrature.

3. The schemes (1.4) and (1.5).

The last three schemes are finite difference type since only grid point values of the coeffi-
cients are needed. In (1.4) and (1.5), AI (uh, vh) can be exactly computed by 4 × 4 Gauss
quadrature rule since coefficients are Q2 polynomials. An alternative finite difference type
implementation of (1.4) and (1.5) is to precompute integrals of Lagrange basis functions and
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Table 5 A Poisson equation with
coefficient min

(x,y)
a(x, y) ≈ 0.001

FEM with approximated coefficients (1.4)

Mesh l2 error Order l∞ error Order

2 × 4 2.78E−1 – 4.52E−1 –

4 × 8 6.22E−2 2.16 2.08E−1 1.12

8 × 16 1.09E−2 2.51 8.44E−2 1.30

16 × 32 1.31E−3 3.05 1.81E−2 2.22

32 × 64 1.08E−4 3.60 1.75E−3 3.38

64 × 128 7.24E−6 3.90 1.52E−4 3.53

FEM using Gauss–Lobatto quadrature (1.7)

2 × 4 2.81E−1 – 4.59E−1 –

4 × 8 4.69E−2 2.58 1.37E−1 1.74

8 × 16 5.06E−3 3.21 3.75E−2 1.87

16 × 32 7.04E−4 2.85 7.86E−3 2.25

32 × 64 6.74E−5 3.39 1.21E−3 2.70

64 × 128 4.94E−6 3.77 1.17E−4 3.37

FEM with approximated coefficients (1.5)

2 × 4 2.68E−1 – 5.48E−1 –

4 × 8 2.91E−1 3.21 1.59E−1 1.78

8 × 16 3.51E−3 3.05 4.02E−2 1.98

16 × 32 2.86E−4 3.62 3.60E−3 3.48

32 × 64 1.86E−5 3.94 2.31E−4 3.96

64 × 128 1.17E−6 4.00 1.53E−5 3.91

their derivatives to form a sparse tensor, then multiply the tensor to the vector consisting
of point values of the coefficient to form the stiffness matrix. With either implementation,
computational cost to assemble stiffness matrices in schemes (1.4) and (1.5) is higher than
the stiffness matrix assembling in the simpler scheme (1.7) since the Lagrangian Qk basis
are delta functions at Gauss–Lobatto points.

5.1 Accuracy

We consider the following example with either purely Dirichlet or purely Neumann boundary
conditions:

∇ · (a∇u) = f on [0, 1] × [0, 2]

where a(x, y) = 1+ 0.1x3y5 + cos(x3y2 + 1) and u(x, y) = 0.1(sin(πx)+ x3)(sin(π y)+
y3)+ cos(x4 + y3). The nonhomogeneous boundary condition should be computed in a way
consistent with the computation of integrals in the bilinear form. The errors at Z0 are shown
in Tables 1 and 2. We can see that the four schemes are all fourth order in the discrete 2-norm
on Z0. Even though we did not discuss the max norm error on Z0 in this paper, we should
expect a | ln h| factor in the order of l∞ error over Z0 due to (1.9), which was proven upon
the discrete Green’s function.
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Next we consider an elliptic equation with purely Dirichlet or purely Neumann boundary
conditions:

∇ · (a∇u) + cu = f on [0, 1] × [0, 2]

where a =
(
a11 a12
a21 a22

)

, a11 = 10 + 30y5 + x cos y + y, a12 = a21 = 2 + 0.5(sin(πx) +
x3)(sin(π y)+ y3)+cos(x4+ y3), a22 = 10+x5, c = 1+x4y3 and u(x, y) = 0.1(sin(πx)+
x3)(sin(π y) + y3) + cos(x4 + y3). The errors at Z0 are listed in Tables 3 and 4. Recall that
only O(h3.5) can be proven due to the mixed second order derivatives for the Neumann
boundary conditions as discussed in Remark 6, we observe around fourth order accuracy for
(1.4) and (1.5) for Neumann boundary conditions in this particular example.

5.2 Robustness

In Tables 1 and 2, the errors of approximated coefficient schemes (1.4), (1.5) and the Gauss–
Lobatto quadrature scheme (1.7) are close to one another. We observe that the scheme (1.5)
tends to be more accurate than (1.4) and (1.7) when the coefficient a(x, y) is closer to zero
in the Poisson equation. See Table 5 for errors of solving ∇ · (a∇u) = f on [0, 1] × [0, 2]
with Dirichlet boundary conditions, a(x, y) = 1 + εx3y5 + cos(x3y2 + 1) and u(x, y) =
0.1(sin(πx) + x3)(sin(π y) + y3) + cos(x4 + y3) where ε = 0.001. Here the smallest value
of a(x, y) is around ε = 0.001. We remark that the difference among three schemes is much
smaller for larger ε such as ε = 0.1 as in Table 1.

6 Concluding Remarks

We have shown that the classical superconvergence of functions values at Gauss–Lobatto
points in C0-Qk finite element method for an elliptic problem still holds if replacing the
coefficients by their piecewise Qk Lagrange interpolants at the Gauss–Lobatto points. Such
a superconvergence result can be used for constructing a fourth order accurate finite difference
type scheme by using Q2 approximated variable coefficients. Numerical tests suggest that this
is an efficient and robust implementation of C0-Q2 finite element method without affecting
the superconvergence of function values.

Acknowledgements Research is supported by the NSFGrant DMS-1522593. The authors are grateful to Prof.
Johnny Guzmán for discussions on Theorem 4.1.
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