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Abstract
We develop dissipative, energy-stable difference methods for linear first-order hyperbolic
systems by applying an upwind, discontinuous Galerkin construction of derivative matrices
to a space of discontinuous piecewise polynomials on a structuredmesh. The space is spanned
by translates of a function spanning multiple cells, yielding a class of implicit difference
formulas of arbitrary order. We examine the properties of the method, including the scaling
of the derivative operator with method order, and demonstrate its accuracy for problems in
one and two space dimensions.
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1 Introduction

Prominent among Saul Abarbanel’s many contributions to computational and applied mathe-
matics is his important work on the strict stability of difference approximations to hyperbolic
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initial-boundary value problems, including the often-neglected development of high-order
implicit (or compact) methods [1,2,10], as well as their accuracy when used in a method-of-
lines context [4,11]. In this work we continue our development of a class of arbitrary-order
implicit difference methods which are automatically energy-stable for symmetric hyperbolic
systems. Themethods, which we call Galerkin difference (GD)methods, are based on the use
of the standard discontinuous Galerkin technology with nonstandard, tensor-product basis
functions which span multiple elements. As the interior basis functions are translates of a
single, compactly-supported Lagrange function, the mass and derivative or stiffness matri-
ces are also banded and translation-invariant; that is they have the structure of a compact
difference method. Using the Galerkin analysis, one can directly prove energy stability and
convergence for any sufficiently accurate boundary closure, so the only potential problem is
artificial stiffness associated with one-sided approximations at boundaries. In [8] we intro-
duced continuous GD methods for both first and second order hyerbolic equations. Among
our findings were that there was no appreciable artificial stiffness for a range of methods
including free and extrapolated values at ghost nodes. (The meaning of these terms will be
made clear in Sect. 2.) Precisely, for first order problems in one space dimension the spectral
radii of the derivative matrices were almost independent of order, while for second order
derivatives they showed linear growth. As we argue below, linear growth poses no practical
problem if one matches the temporal order with the spatial order, which is natural in the
hyperbolic case. In addition, we identified a superconvergence phenomenon; the truncation
error of the interior methods is roughly twice the design order, and for problems with long
range propagation this results in superconvergence of the solution at practically important
accuracy levels. In [9] we apply the continuous GD method to second order problems in
two space dimensions, including applications to elastic waves with free surface boundary
conditions, and show one way to maintain their efficiency on mapped coordinate boxes. In
[21] we consider the practically important case of multiple mapped grid components. Due
to the Galerkin construction, there is no difficulty in handling the interface conditions via
appropriate flux definitions. Moreover, we show that we can directly treat hybrid structured-
unstructured grids in a provably stable and accuratemanner. However, for first order problems
some artificial stiffness associatedwith cornermodeswas observed, leading to a linear growth
in the norm of the derivative matrices with order.

Although boundary and interface treatments in the works above introduce some dissipa-
tion, the bulk schemes are energy-conserving. For nonlinear problems or nonsmooth media,
it is likely that methods which are dissipative rather than dispersive will perform better. The
goal of this paper is to introduce a dissipative GD method for first order hyperbolic systems.
Precisely, by using a basis of translated discontinuous Lagrange functions, we develop dissi-
pative discontinuousGalerkin difference (DGD)methods for symmetric hyperbolic systems:

T
∂w
∂t

+
d∑

j=1

A j
∂w
∂x j

= 0, (1)

with A j = AT
j , T = T T > 0.

The obvious comparison for GD (continuous or discontinuous) methods is to difference
methods with the summation-by-parts property (SBP) [22,25,26]. SBP methods provide
stability in a discrete rather than continuous energy norm. Advantages of the GD approach
are:
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(i) The derivation of SBP methods is algebraically complex and as a result that have not
been constructed at very high order, while GD methods can easily be constructed at
any order.

(ii) Stable coupling between nonconforming grids, some of which can be unstructured to
treat very complex geometry, is automatic.

(iii) Dissipation for SBP methods is typically achieved via the the addition of ad hoc
parametrized dissipation operators (e.g., [23]), while we show here how we can add it
via upwinding.

The relative disadvantage is that, when an SBP method of the same order is available, the
absence of a mass matrix inversion means that the difference operators can be applied at
roughly half the cost.

The remainder of the paper is as follows. In Sect. 2 we describe the basis functions and
boundary closures, show how the upwind derivative operator is constructed, and examine
its spectral properties. In Sect. 3 we carry out numerical experiments in one and two space
dimensions, observing high-order convergence in general and superconvergence at up to
double the design order in some circumstances. This includes a first-order reformulation
of the sine-Gordon equation with smooth soliton solutions. Lastly we apply the method
in a slightly more complicated setting: the elastic wave equation with variable material
properties and a free surface boundary conditions combined with perfectly matched layers
to approximate radiation boundary conditions.

2 Discontinuous Galerkin Difference Approximations to d/dx

The construction of the discontinuous Galerkin difference approximations to d/dx follows
directly from:

(i) Specification of the approximation space;
(ii) Application of the standard discontinuous Galerkin methodology (e.g., [20]).

Here we will focus on dissipative methods which result from the imposition of upwind
fluxes. We note that nondissipative approximations could also be constructed using central
fluxes. However, as the Galerkin difference methods used in earlier works are also nondis-
sipative (except for boundary/interface treatments), we wish to explore this distinct feature
enabled by the discontinuous approximation space.

2.1 The DGD Approximation Space

Consider the interval x ∈ [a, b] with uniform cell-centered nodes

x j−1/2 = a + ( j − 1/2)h, j = 1, . . . n, h = b − a

n
,

and a partition into subintervals

I j−1/2 = (x j−1, x j ), x j = jh, j = 1, . . . , n.

Choosing an even degree, p = 2q , the DGD space consists of functions, P(x), whose
restriction Pj−1/2(x) to I j−1/2 is a degree-p polynomial satisfying

Pj−1/2(xk−1/2) = P(xk−1/2), |k − j | ≤ q. (2)
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Note that (2) completely specifies Pj−1/2(x) in terms of the nodal data in the interior, q <

j < n + 1 − q . To complete the specification it is convenient to introduce nodal values at
ghost nodes, x j−1/2, j = 1−q, . . . , 0 and j = n+1, . . . , n+q . One can simply view these
as convenient degrees-of-freedom or, viewing them as extensions of the function beyond the
domain, reduce the dimensionality of the space by replacing them by extrapolated values. In
general we choose to extrapolate r values for r ranging from 0 (no extrapolation) to q − 1
with, for r > 0 and k = 1, . . . , r

P(xk−q−1/2) =
p+1∑

�=1

α�,(k,r ,p)P(xr+�−q−1/2),

P(xn+q−k+1/2) =
p+1∑

�=1

α�,(k,r ,p)P(xn+q−r−�+1/2),

with α�,(k,r ,p) uniquely determined by the condition that polynomials of degree p are con-
tained in the space. The linear space Vn,p,r thus defined has the following properties:

(i) Vn,p,r contains the polynomials of degree p;
(ii) Vn,p,r has dimension n + 2q − 2r ;
(iii) Vn,p,r contains functions which have discontinuities at the interior cell boundaries, x j ,

j = 1, . . . , n − 1.

Interior nodal basis functions for Vn,p,r associated with a node xk−1/2, which we denote
by φk−1/2,p, are simply the amalgamation of the Lagrange functions for the given node
restricted to the cells. Since the polynomial in cell j − 1/2 is the interpolant of the data at
nodes � satisfying | j − �| ≤ q , the support of φk−1/2,p will be restricted to (xk−1−q , xk+q).
Obviously these are translates of a single function ψp which can be written in the standard
form assuming cell widths h. In particular, for z ∈ ((k−1/2)h, (k+1/2)h), k = −q, . . . , q ,

ψp(z) =
�=q∏

�=−q, � �=−k

(
1 − z

(k + �)h

)
, (3)

with ψp(z) = 0 for |z| > (q + 1/2)h. We plot ψp for p = 4, 8 in Fig. 1. For ghost nodes
which are not determined by extrapolation (which we will call free ghost nodes), the basis
functions are simply the restriction of ψp to the cells within the domain. On the other hand,
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Fig. 1 DGD basis functions ψp for p = 4, 8
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if k is a node whose value is used in an extrapolation formula, its associated basis function
is a linear combination of φk−1/2,p with all the φ�−1/2,p of extrapolated ghost values. For
example, for r > 0 and at the left boundary, k = r − q + 1, . . . , q + r + 1:

φk−1/2,p(x) = ψp(x − xk−1/2) +
r−q∑

�=1−q

αk+q−r ,(�+q,r ,p)ψp(x − x�−1/2). (4)

In summary, a function P(x) ∈ Vn,p,r is given by

P(x) =
n+q−r∑

k=1−q+r

yk−1/2φk−1/2,p(x), (5)

where φk−1/2,p(x) = ψp(x − xk−1/2) if r = 0 or, for r > 0, q + r + 1 < k < n − q − r ,
and φk−1/2,p given by (4) and its analogue on the right for k ≤ q + r + 1 or k ≥ n − q − r .
Note that

P(xk−1/2) = yk−1/2,

but P is discontinuous at the cell boundaries x j .

2.2 Upwind Derivative Operator

To construct an upwind derivative operator we consider the transport equation

∂u

∂t
+ ∂u

∂x
= 0, u(a, t) = 0.

Denoting by uh(x, t) the approximate solution

uh(x, t) =
n+q−r∑

k=r−q+1

uh(xk−1/2, t)φk−1/2(x), (6)

we impose, for all r − q + 1 ≤ � ≤ n + q − r , the standard upwind formula on each interval
I j−1/2, rewritten to expose skew-symmetric and symmetric forms:

∫ x j

x j−1

(
φ�−1/2(x)

∂uh

∂t
(x, t) + 1

2
φ�−1/2(x)

∂uh

∂x
(x, t) − 1

2

∂φ�−1/2

∂x
(x)uh(x, t)

)
dx

+ 1

2
φ�−1/2(x

−
j )uh(x−

j , t) + 1

2
φ�−1/2(x

+
j−1)

(
uh(x+

j−1, t) − 2u∗(x j−1, t)
)

= 0, (7)

where

u∗(x j , t) =
{
uh(x−

j , t)), j > 0,
0, j = 0.

with

uh(x±
j , t) = lim

x→x±
j

uh(x, t).

Using (6) and summing (7) over the partition we obtain

dUh

dt
+ DpU

h = 0,
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where Uh = (
uh(xr−q+1/2), . . . , uh(xn+q−r−1/2)

)T
. To express Dp we introduce the usual

mass, derivative and lift matrices, Mp , Sp , and L p , and note that the finite support of the
basis functions leads to a band structure for all of them. To succinctly express the lift matrix
we introduce the usual notation for the average and jump of the basis functions:

{
φk−1/2(x j )

} = 1

2

(
φk−1/2(x

+
j ) + φk−1/2(x

−
j )

)
,

[
φk−1/2(x j )

] =
(
φk−1/2(x

+
j ) − φk−1/2(x

−
j )

)
.

We then have

M�k,p =
n∑

j=1

∫ x j

x j−1

φ�−1/2(x)φk−1/2(x)dx, (8)

S�k,p =
n∑

j=1

1

2

∫ x j

x j−1

φ�−1/2(x)φ
′
k−1/2(x) − φ′

�−1/2(x)φk−1/2(x)dx, (9)

L�k,p =
(
1

2
φ�−1/2(x

+
0 )φk−1/2(x

+
0 ) +

n−1∑

j=1

[
φ�−1/2(x j )

] · [
φk−1/2(x j )

]

+ 1

2
φ�−1/2(x

+
n )φk−1/2(x

+
n )

)

+ 1

2

n−1∑

j=1

({
φ�−1/2(x j )

} [
φk−1/2(x j )

] − [
φ�−1/2(x j )

] {
φk−1/2(x j )

})
. (10)

Then

Dp = M−1
p

(
Sp + L p

)
. (11)

Away from boundaries (or with periodic boundary conditions) this clearly produces a
compact difference method. As for an internal interval the nonzero basis functions are asso-
ciated with p + 1 nodes, the support of a given basis function will intersect with the support
of 2p others. Thus M and S will have upper and lower bandwidths of p, with M symmetric
and S skew-symmetric. At a cell boundary x j there is an additional interaction so that L
will have upper and lower bandwidths of p + 1. The first group of terms in (10) form its
symmetric part which accounts for the dissipation.

We note that the generalization of the method to a constant coefficient symmetric system
(1) in one space dimension follows directly from considering its diagonal form:

∂u
∂t

+ ΛR
∂u
∂x

= 0,
∂v
∂t

− ΛL
∂v
∂x

= 0, (12)

u(a, t) + Rav(a, t) = 0, v(b, t) + Rbu(b, t) = 0,

where ΛR,L are positive matrices. Only the flux terms change in the construction of the
derivative operators. In particular

v∗(x j , t) = vh(x+
j , t)

and to be consistent with the boundary conditions

u∗(x0, t) = −Ravh(x
+
0 , t), v∗(xn, t) = −Rbuh(x−

n , t).
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Thus if the problem is written in noncharacteristic variables we see that while the operator
M−1

p Sp is applied directly to each variable, the lift terms, which provide the artificial dis-
sipation, couple variables in a way which accounts for the characteristic structure and the
boundary conditions.

In more complex situations an upwind flux can be constructed without looking at the
characteristic variables. For example we can choose for τ > 0

w∗ = 1

2

(
wh(x+, t) + wh(x−, t)

)

− τ

⎛

⎝
∑

j

n j A j

⎞

⎠
(
wh(x+, t) − wh(x−, t)

)
,

where n j are the components of the normal vector in the + direction.

2.3 Dispersion and Dissipation

As Vn,p,r contains the polynomials of degree p, the standard error analysis for upwind
DG methods [20] implies that D is dissipative and has accuracy at least p + 1 including the
boundary treatment. Focusing only on the interior operator (or periodic boundary conditions),
we can use Fourier analysis (e.g., [17]) to directly study the properties of D. A symbolic
computation yields the following results, which we list for p = 2, 4, . . . , 10. Note that we
define λp by

Dpe
ikx = λpe

ikx ,

setting h = 1. We then find

λ2 = ik + 1

128
k6 − i

169

40320
k7 + O(k8),

λ4 = ik + 9

32768
k10 − i

102197

613122048
k11 + O(k12),

λ6 = ik + 25

2097152
k14 − i

41854909

5465545113600
k15 + O(k16), (13)

λ8 = ik + 1225

2147483648
k18 − i

17609039251200347

46504110918960414720000
k19 + O(k20),

λ10 = ik + 3969

137438953472
k22 − i

49354947289377308699

2520353705949767349043200000
k23 + O(k24).

We see, then, that the interior scheme is dissipative to leading order and accurate of order
2p + 1. In our numerical experiments this superconvergence is sometimes realized.

We can also study the spectrum of λp numerically when boundaries are present. Here we
consider the interval (0, 1), fix n = 100, and calculate the eigenvalues of Dp as p and r vary.
To limit the number of results shown we focus on the extreme cases of the maximum and
minimum number of ghost nodes: r = q − 1 and r = 0. In Table 1 we list the spectral radius
of hDp , p = 2, . . . , 16 with r = q − 1 and r = 0. We see that for r = q − 1 the spectral
radius grows slowly with p and for p tested remains well below π/h. With r = 0, on the
other hand, although the growth is slow the spectral radius is much larger. We note that for
other values of r > 0 the radius is not much greater than for r = q − 1, and there are some
gains in accuracy if r is chosen slightly smaller. We have no theoretical explanation for this
observation, but note that it matches what was observed for continuous basis functions in [8].
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Table 1 Spectral radius of hDp with r = q − 1 and r = 0 for (0, 1) and n = 100

r p = 2 p = 4 p = 6 p = 8 p = 10 p = 12 p = 14 p = 16

q − 1 1.95 2.10 2.21 2.28 2.34 2.39 2.43

0 1.66 5.06 3.63 4.11 5.59 7.23 7.48 7.98

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
h

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

h

Upwind DGD spectrum for the transport equation

p=4
p=8
p=12
p=16

-2.5 -2 -1.5 -1 -0.5 0 0.5
h

-2.5

-2
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-1

-0.5

0

0.5

1

1.5

2

2.5

h

Upwind DGD spectrum for a conservative system

p=4
p=8
p=12
p=16

Fig. 2 Spectra scaled by h of DGD derivative operators for p = 4, 8, 12, 16

We do note that at high order the expected ill-conditioning in the boundary treatment does
have an effect on accuracy for large p and fine grids.

Now fixing r = q − 1, in Fig. 2 we plot the spectra of −Dp for p = 4, p = 8,
p = 12 and p = 16 as well as the matrix arising in the approximation to the system
(14)–(15) solved in Sect. 3. We note that −Dp itself approximates a differential operator
with no spectrum, while in the second case the system has purely imaginary eigenvalues
±i(k + 1/2)π , k = 0, 1, . . .. We again note the dissipative nature of the approximations and
the slow growth of the spectrum with order. The spectral radii for the system are comparable
to those for the transport equation.

3 Numerical Experiments

We finish with a series of numerical experiments to illustrate the performance of the method
for problems in one and two space dimensions.1 For linear problems we use a Taylor time
stepping scheme. Precisely, if the semidiscretized system is of the form:

dUh

dt
= LhU

h,

then the method simply is

Uh(t + Δt) =
s∑

j=0

(Δt) j

j ! L j
hU

h(t).

1 The codes used to produce these results will be provided by the first author on request.
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In order to observe any possible superconvergencewe take s = 2p. For the nonlinear example
in Sect. 3.2 we use the standard fourth order Runge–Kutta method, again with time steps
taken small to focus on the behavior of the spatial difference approximations.

3.1 Linear System in 1+ 1 Dimensions

We consider

∂u

∂t
+ ∂u

∂x
= 0,

∂v

∂t
− ∂v

∂x
= 0, (14)

u(0, t) + v(0, t) = 0, u(1, t) − v(1, t) = 0. (15)

Aswe havewritten the system in terms of characteristic variable, theDGDmethod is obtained
as in the discussion around (12). In particular u∗(x j , t) = uh(x−

j , t), v∗(x j , t) = vh(x+
j , t)

and the boundary fluxes are made consistent with the boundary conditions:

u∗(0, t) = −vh(0+, t), v∗(0, t) = vh(0+, t),

u∗(1, t) = uh(1−, t), v∗(1, t) = uh(1−, t).

We approximate the solution

u(x, t) = sin (20.5πx) · cos (20.5π t) − cos (20.5πx) · sin (20.5π t), (16)

v(x, t) = sin (20.5πx) · cos (20.5π t) + cos (20.5πx) · sin (20.5π t),

up to t = 100, more than 1000 periods. We consider various meshes (depending on p) and
observe the convergence rate as determined by the relative l2 error in the interior at the final
time. In Table 2 we only display results for p = 4, p = 8, p = 10 and p = 12.We choose the
number of free ghost nodes to be p

4 , which we found to be a good balance of small spectral
radius and high accuracy. For larger values of p we obtain good results at low resolution, but
convergence stagnates due to the ill-conditioning of the boundary treatments; for example
with p = 16 we obtain an error less than 0.5% at 4.4PPW, but cannot reduce the relative error
below 10−7 The table displays the errors and rates as a function of points-per-wavelength.
This can be translated to n by noting that the domain contains 10.25 wavelengths. In all cases
we chose Δt = 2

3h.

Table 2 Accuracy of approximations to the solution (16) to (14)–(15) at t = 100 (1025 periods)

p = 4 p = 8 p = 10 p = 12

PPW Error Rate PPW Error Rate PPW Error Rate PPW Error Rate

7.80 1.9 (−1) 5.37 2.3 (−2) 4.39 7.5 (−2) 3.90 1.2(−1)

9.76 2.9 (−2) 8.4 6.83 7.7 (−4) 14.1 5.37 3.3 (−3) 15.5 4.88 3.7 (−3) 15.7

11.7 6.0 (−3) 8.7 8.29 1.1 (−4) 10.1 6.34 1.5 (−4) 18.6 5.85 2.9 (−4) 14.1

13.7 1.5 (−3) 8.8 9.76 2.4 (−5) 9.3 7.32 3.7 (−5) 9.8 6.83 2.3 (−5) 16.4

15.6 4.8 (−4) 8.8 11.2 6.4 (−6) 9.5 8.29 2.0 (−5) 5.0 7.80 2.6 (−6) 16.3

17.6 1.7 (−4) 8.8 12.7 2.0 (−6) 9.8 9.27 7.7 (−6) 8.4 8.78 7.2 (−7) 10.9

19.5 6.7 (−5) 8.8 14.2 6.6 (−7) 9.9 10.24 2.9 (−6) 9.7 9.76 2.4 (−7) 10.3

21.5 2.9 (−5) 8.7 15.6 2.5 (−7) 10.0 11.2 1.1 (−6) 10.4 10.7 8.4 (−8) 11.2

Here PPW denotes the number of interior points-per-wavelength—multiply by 10.25 to obtain n
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We see that for p = 4 we observe superconvergence at an order near that of the interior
scheme, 2p + 1, for all resolutions tested. For larger values of p it is only observed at the
coarsest resolutions, though it is worth noting that at these coarse resolutions the accuracy is
excellent; convergence at a rate greater than the design accuracy seems to hold until 4 or 5
digits of accuracy are attained.

3.2 A Nonlinear Problem in 1+ 1 Dimensions

We have not as yet considered the use of DGD methods for problems with shocks. However,
it can be used for nonlinear problems with smooth solutions. As an example we consider the
system

∂u

∂t
+ ∂u

∂x
= − sinw√

2
,

∂v

∂t
− ∂v

∂x
= − sinw√

2
,

∂w

∂t
= u + v√

2
. (17)

The system is satisfied if w satisfies the sine-Gordon equation, ∂2w
∂t2

= ∂2w
∂x2

− sinw,
√
2u =

∂w
∂t − ∂w

∂x ,
√
2v = ∂w

∂t + ∂w
∂x . Here we approximate the Perring-Skyrme solution involving

the interaction of two solitary waves [28, Ch. 17]:

w = 4 arctan

(
c
sinh r x

cosh crt

)
, c = 1

2
, r = (1 − c2)−1/2.

We solve in the domain x ∈ (−20, 20), t ∈ (−30, 30); the solitary waves meet at the origin
at t = 0. The spatial derivatives in this case are approximated in exactly the same way as
in the previous example. The Galerkin approximation to the nonlinear right-hand side, on
the other hand, is approximated by a quadrature rule with nQ nodes x j+1/2,k and positive
weights γk on each interval. Precisely, on the interval (x j−1, x j ) this leads to terms on the
right-hand side of the approximations to (17) of the form:

nQ∑

k=1

γkφ�−1/2(x j+1/2,k) sin
(
w j+1/2,k(t)

)
,

with a pointwise approximation to the third equation:

dw j+1/2,k

dt
= uh(x j+1/2,k, t) + vh(x j+1/2,k, t)√

2
.

With upwind fluxes one can prove this scheme dissipates the energy

1

2

∫ (
uh

)2 +
(
vh

)2 +
∑

j

∑

k

γk
(
1 − cos

(
w j+1/2,k(t)

))
.

In our experiments we consider p = 4, p = 6, p = 8 and p = 10 with time steps scaled
withΔt ∝ h p/2 to observe any superconvergence, measuring relative L2 errors at all integral
times. Here we use Gaussian quadrature rules with 4p points in each interval. The results,
shown in Table 3, demonstrate superconvergence for some range of resolutions tested for all
cases.

3.3 Extensions to Higher Dimensions

Extensions to higher space dimensions, as discussed for the continuous Galerkin difference
basis in [9,21], is straightforward.We assume a Cartesian domain,

⊗d
k=1(ak, bk), and regular
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Table 3 Maximum (in time) relative L2 errors in u and v for approximations to the interacting solitary wave
solutions to (17)

p = 4 p = 6 p = 8 p = 10

h Error Rate h Error Rate h Error Rate h Error Rate

5.0 (−1) 1.3 (−1) 5.3 (−1) 6.1 (−2) 5.7 (−1) 7.4 (−2) 4.7 (−1) 2.2 (−2)

4.0 (−1) 2.2 (−2) 7.8 4.4 (−1) 1.0 (−2) 9.9 4.7 (−1) 1.1 (−2) 9.8 4.2 (−1) 1.3 (−2) 4.4

3.3 (−1) 5.4 (−3) 7.6 3.8 (−1) 2.1 (−3) 10.1 4.0 (−1) 4.0 (−3) 6.2 3.8 (−1) 4.4 (−3) 11.2

2.9 (−1) 1.6 (−3) 7.8 3.3 (−1) 5.5 (−4) 10.1 3.5 (−1) 1.1 (−3) 9.4 3.5 (−1) 1.5 (−3) 11.8

2.5 (−1) 5.6 (−4) 8.0 3.0 (−1) 1.7 (−4) 10.2 3.1 (−1) 2.8 (−4) 11.1 3.2 (−1) 5.8 (−4) 11.4

2.2 (−1) 2.3 (−4) 7.5 2.7 (−1) 5.8 (−5) 10.1 2.8 (−1) 5.5 (−5) 14.9 3.0 (−1) 2.7 (−4) 9.9

2.0 (−1) 1.0 (−4) 8.0 2.4 (−1) 2.3 (−5) 9.8 2.5 (−1) 1.0 (−5) 16.9 2.8 (−1) 9.3 (−5) 14.8

1.8 (−1) 4.9 (−5) 7.5 2.2 (−1) 1.0 (−5) 9.5 2.3 (−1) 3.5 (−6) 12.2 2.6 (−1) 3.2 (−5) 16.2

grids with nodes xk, jk = ak + ( jk − 1/2)hk and cells
⊗d

k=1(xk, jk−1, xk, jk ). Our basis will
simply consist of tensor products of the one-dimensional basis functions:

Φ j1−1/2,..., jd−1/2(x1, . . . , xd) =
d∏

k=1

φk, jk−1/2(xk). (18)

Then, with approximations to ∂w
∂xk

denoted by DhkW
h constructed as above, and including

one-dimensional upwind flux definitions, the semidiscrete problem can be succinctly written
in tensor product form (for example if d = 2):

(I1 ⊗ I2 ⊗ T )
dWh

dt
+ (Dh1 ⊗ I2 ⊗ A1)W

h + (I1 ⊗ Dh2 ⊗ A2)W
h = 0. (19)

As each of the operators Dhk can be applied with linear cost (multiplication and back sub-

stitution by tightly banded matrices), the entire computation of dWh

dt is still linear. Moreover,
proofs of convergence at design order are immediate.

To provide geometric flexibility one can couple the method with standard DG approxi-
mations on hybrid structured-unstructured grids as in [21]. Here we note that the analysis
of stability and convergence in such cases follows automatically as we can view the DGD
component grids as nothing more than large elements. It is also possible to apply the DGD
method in mapped Cartesian grids. However, in this case the method must be altered to retain
linear complexity. In particular, using the tensor-product basis functions, integration in the
mapped domain will destroy the tensor-product structure of (19). For the derivative and lift
matrices this is not so important. They will still be sparse and so we can multiply by them
in linear time. However, losing the tensor product structure of the mass matrix is a serious
issue, as there will be fill-in of its Cholesky factors and linear complexity will be lost. We
propose two different solutions to this problem.

Curvilinear DGD Here, following [27], we scale the basis functions by the reciprocal
of the square root of the Jacobianof the coordinate transform, J (x):

Φ j1−1/2,..., jd−1/2(x1, . . . , xd)

= J−1/2(x1, . . . , xd)
d∏

k=1

φk, jk−1/2(xk).
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Now the mass matrix retains its tensor-product form
⊗d

k=1 Mk,p

which can be inverted in linear time.We demonstrate this approach
for continuous GDmethods in [9]. The results in [27] establish that
optimal convergence is retained, and the experiments in [9] show
superconvergence.

Weight-adjusted DGD Here, following [13], we keep the tensor-product basis functions
but approximate the mass matrix by the inverse of the mass matrix
computed with J−1:

M ≈
(

d⊗

k=1

Mk,p

)
M−1

J−1

(
d⊗

k=1

Mk,p

)
.

Then the application of M−1 has linear complexity as it only
involves the inversion of the tensor-product of the one-dimensional
mass matrices and multiplication by MJ−1 , a sparse matrix. We
demonstrate this approach for the continuous GD basis functions
in [21], and use a matrix version in the variable coefficient exam-
ple below. Again, optimal convergence follows from the results in
[13]; we did not test for superconvergence there.

3.4 Stability Constraints and Convergence

To study the time step stability constraints of the method in two space dimensions as well as
its accuracy we approximate the acoustic wave system:

∂ p

∂t
+ ∂u

∂x
+ ∂v

∂ y
= 0,

∂u

∂t
+ ∂ p

∂x
= 0,

∂v

∂t
+ ∂ p

∂ y
= 0, (20)

u(0, y, t) = u(1, y, t) = 0, v(x, 0, t) = v(x, 1, t) = 0, (21)

and in particular the solution up to t = 100

p = cos (kt) · cos (11πx) · cos (11π y), u = sin (kt) · sin (11πx) · cos (11π y),

v = sin (kt) · cos (11πx) · sin (11π y), k = 11
√
2π. (22)

Here flux terms are determined by the normal characteristic variables at interior interfaces:

p∗(x j , y, t) ± u∗(x j , y, t) = p(x∓
j , y, t) ± u(x∓

j , y, t),

p∗(x, yk, t) ± v∗(x, yk, t) = p(x, y∓
k , t) ± u(x, y∓

k , t),

with the starred states at the boundaries constrained to satisfy the boundary conditions and
the equations above involving the volume variables.

First, fixing the mesh width to be h1 = h2 ≡ h = 10−2, we determine the time step
stability constraints for a fixed temporal order of s = 8 and for temporal orders growing in
proportion to spatial order, s = p and s = 2p. Here again we display the results for the
number of ghost nodes equal to p/4, As seen in Table 4, when we fix s = 8 the stability
constraint, represented as Δt/h, decreases in rough proportion to p−1. However, increasing
s linearly, which we argue would be necessary to balance temporal and spatial accuracy,
it is roughly fixed. Although doubling the time step order does not quite allow us to dou-
ble the time step on the basis of stability, choosing s = 2p was often better in terms of
accuracy.
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Table 4 Experimentally determined maximum value of Δt/h when solving (20) with h = 10−2

s p = 4 p = 6 p = 8 p = 10 p = 12 p = 14 p = 16

8 .57 .45 .29 .26 .20 .18 .16

p .36 .37 .29 .31 .27 .28 .27

2p .57 .60 .50 .54 .48 .50 .49

Table 5 Accuracy of approximations to the solution (22) to (20) at t = 100 (approximately 778 periods)

p = 4 p = 8 p = 10 p = 12

PPW Error Rate PPW Error Rate PPW Error Rate PPW Error Rate

8.18 1.0 (−1) 6.36 1.9 (−3) 6.36 9.9 (−4) 5.45 1.5 (−3)

10.9 9.1 (−3) 8.5 9.09 7.0 (−5) 9.2 8.18 4.1 (−5) 12.7 7.27 3.7 (−5) 12.8

13.6 1.4 (−3) 8.5 11.8 6.3 (−6) 9.2 10.0 4.7 (−6) 10.8 9.09 1.0 (−6) 16.1

16.4 3.0 (−4) 8.2 14.5 9.3 (−7) 9.2 11.8 8.3 (−7) 10.4 10.9 1.0 (−7) 12.5

19.1 9.5 (−5) 7.6 17.3 1.8 (−7) 9.7 13.6 1.8 (−7) 10.7 12.7 1.8 (−8) 11.5

21.8 3.8 (−5) 6.8 20.0 4.3 (−8) 9.6 15.5 4.5 (−8) 11.0 14.5 3.4 (−9) 12.3

24.5 1.8 (−5) 6.3 22.7 1.3 (−8) 9.7 17.3 1.3 (−8) 11.2 16.4 7.6 (−10) 12.7

27.3 9.7 (−6) 6.0 25.5 4.2 (−9) 9.6 19.1 4.2 (−9) 11.3 18.2 2.0 (−10) 12.5

Here PPW denotes the number of interior points-per-wavelength—multiply by 5.5 to obtain n

Second, we test convergence. Again we see that the boundary stiffness has a serious effect
on the attainable accuracy when the degree is large. In particular, although at low resolutions
we do get excellent accuracy, for example a relative error at t = 100 of less than 1% at
4.5PPW when p = 14, convergence stalls at certain accuracies—10−8 for p = 14 and 10−7

for p = 16. We tabulate errors and convergence rates for p = 4, 8, 10, 12 in Table 5. We
generally observe convergence at design order, with superconvergence evident at the lower
resolutions for p = 4. Note that in these experiments we take Δt = h/3.

3.5 Application to the ElasticWave Equation

In our final example we solve the elastic wave equation in an isotropic two-dimensional
domain with smooth but variable material parameters. We use the Friedrichs-symmetrized
form of the stress-velocity system and use a perfectly matched layer or PML at three
boundaries. (The theory of PMLs is another field where Saul Abarbanel made important
contributions [3,5,6].) Outside the layers we solve:

T (x, y)
∂w
∂t

= A1
∂w
∂x

+ A2
∂w
∂ y

,

where

w = (
σxx σyy σxy vx vy

)T
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and in block form

T =
(
C−1 0
0 ρ I

)
, C =

⎛

⎝
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎞

⎠ ,

A1 =
(

0 E1

ET
1 0

)
, E1 =

⎛

⎝
1 0
0 0
0 1

⎞

⎠ , A2 =
(

0 E2

ET
2 0

)
, E2 =

⎛

⎝
0 0
0 1
1 0

⎞

⎠ .

Here λ and μ are the Lamé parameters, ρ is the density, and the characteristic velocities are

cS =
√

μ
ρ
and cL =

√
λ+2μ

ρ
.

Our experiment will treat the case of smooth but variable coefficients. Here we chose a
case with an inclusion with wave speeds higher than those in the surrounding domain:

λ = 1 + 9g, μ = 1 + 19g, ρ = 1 + g, g = e−(
x10+(y+7)10

)
.

We solve on the domain (−10, 10) × (−10, 0) and impose free surface boundary conditions
at y = 0:

σxx = σxy = 0. (23)

At the other three edges we introduce a PML to avoid reflections. Precisely we follow the
general form given in [7], enhancing the elastic system by:

T
∂w
∂t

= A1

(
∂w
∂x

+ νx (x)φx

)
+ A2

(
∂w
∂ y

+ νy(y)φy

)
,

∂φx

∂t
= − (α + νx (x)) φx − ∂w

∂x
, (24)

∂φy

∂t
= − (

α + νy(y)
)
φy − ∂w

∂ y
,

where the absorption parameters, νx,y , are 0 in the domain (−10, 10) × (−10, 0). For this
experiment we were not concerned with maximizing the efficiency of the layers and took
them to be rather thick, of width 4. Precisely, with p the method order,

νx = 20

(
1 − e

(
x−10
4

)p+1
)

x > 10,

νx = 20

(
1 − e

( −(x+10)
4

)p+1
)

x < −10,

νy = 20

(
1 − e

( −(y+10)
4

)p+1
)

y < −10.

Lastly, we chose the complex frequency shift α = .01 and terminated the layers with normal
characteristic boundary conditions. We note that there has been extensive work on elastic
PMLs, and long time stability can be lost without careful treatment [15,16]. In fact, for
sufficiently long time computations, we also observed instability originating at the layer
terminations; as our flux formulations are different the analyses in [15,16] do not apply.
However, up to the times used to compare the solutions on different grids, the solution within
the PML was well-behaved.
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A direct DG approximation to (24) would lead to a mass matrix which would not have
tensor product form. To avoid this we adopt the ideas presented in [12], a weight-adjusted
DG method with matrix-valued weights. Precisely we solve:

dWh

dt
= (M1 ⊗ M2 ⊗ I )−1MT−1

[(
Dh1 ⊗ I2 ⊗ A1 + I1 ⊗ Dh2 ⊗ A2

)
Wh

+ νx (I1 ⊗ I2 ⊗ A1)Φx + νy(I1 ⊗ I2 ⊗ A2)Φy
]
,

dΦx

dt
= −(α + νx )Φx − (Dx ⊗ I2 ⊗ I )Wh,

dΦy

dt
= −(α + νy)Φy − (I1 ⊗ Dy ⊗ I )Wh .

Here MT−1 is the sparse matrix given in block form by

MT−1 =

⎛

⎜⎜⎜⎜⎝

λh + 2μh λh 0 0 0
λh λh + 2μh 0 0 0
0 0 μh 0 0
0 0 0 υh 0
0 0 0 0 υh

⎞

⎟⎟⎟⎟⎠
,

where, for example,

λhj1, j2,k1,k2 =
∑

�1,�2

λ(x�1−1/2, y�2−1/2)m̃1, j1,k1,�1m̃2, j2,k2,�2 ,

m̃1, j1,k1,�1 =
∫

φ j1−1/2(x)φk1−1/2(x)φ�1−1/2(x)dx,

m̃2, j2,k2,�2 =
∫

φ j2−1/2(y)φk2−1/2(y)φ�2−1/2(y)dy,

with the analogous definitions of the matrix entries of μh based on the values of μ and υh

on the values of ρ−1 on the nodes. Note that as these matrices explicitly depend on the nodal
values of the material parameters there is negligible cost in updating them should the values
change as part of an iterative inversion process. The operators Dh j again involve the upwind
derivative operators computed using the constant coefficient mass matrices Mj . Thus the
evaluation of the time derivatives now involves two multiplications by sparse matrices and
two applications of M−1

1 ⊗ M−1
2 , retaining linear complexity.

In the upwind derivative operators we determine flux terms by:

w∗(x j , y, t) = 1

2

(
w(x+

j , y, t) + w(x−
j , y, t)

)
+ A1

(
w(x+

j , y, t) − w(x−
j , y, t)

)
,

w∗(x, yk, t) = 1

2

(
w(x, y+

k , t) + w(x, y−
k , t)

) + A2
(
w(x, y+

k , t) − w(x, y−
k , t)

)
.

This choice can be shown to be dissipative, but may affect the time step stability constraints.
Note that the auxiliary variables in the PMLs are not differentiated and thus do not appear
in the fluxes, and that the full DGD derivative operators, including the flux corrections, were
used in the equations for evolving the auxiliary variables. Fluxes are modified at the free
surface to be consistent with (23) and at the PML terminations by insisting that the outer
states satisfy the boundary conditions.

Here we take as an initial condition a Gaussian disturbance in vx centered at y = −3:

w4(x, y, 0) = 10e−5(x2+(y+3)2), w j (x, y, 0) = 0, j �= 4.

123



1524 Journal of Scientific Computing (2019) 81:1509–1526

0 2 4 6 8 10 12 14
t

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1 Estimated Relative Error

h=1/10
h=1/15

-2
0

-1

10

0

xx  t=4

5

1

-5

2

0
-5

-10 -10

-1
0

-0.5

10

0

xx  t=8

5

0.5

-5

1

0
-5

-10 -10

-1
0

-0.5

10

0

xx  t=12

5

0.5

-5

1

0
-5

-10 -10

Fig. 3 Upper left: error estimates for the variable coefficient elastic wave problem. Counterclockwise from
the upper right: evolution of σxx

We solve up to t = 14 on three grids, h1 = h2 ≡ h = 1
10 , h = 1

15 and h = 1
20 , with p = 10

and two free ghost nodes. As above we march in time with a Taylor method of order 2p and,
to safely accommodate the faster waves in the inclusion, a time step of Δt = h

30 .
Here we estimate the error and the convergence rate by extrapolation; that is we fit the

data obtained with the three values of h to the model at points (xi , y j , tk)

w(xi , y j , tk) = Wh(xi , y j , tk) + A(xi , y j , tk)h
r .

As the meshes do not overlap we used degree 12 interpolation of the finer grid solutions onto
the coarse mesh. Simply using the DGD basis to evaluate (which would be equivalent to
degree 10 interpolation) yielded essentially the same errors. The estimated errors are plotted
in Fig. 3. For most of the times tk > 5 where data was recorded the estimated convergence
rate was between 9.5 and 10.3, consistent with the design order. we plot snapshots of σxx
computed with h = 1

20 as the waves progress and interact with the inclusion and the free
surface.

4 Conclusion

In conclusion, we have developed and applied dissipative discontinuous Galerkin difference
operators for first order linear hyperbolic systems. We demonstrate that high accuracy can
be obtained and that the time step stability constraints depend mildly on the method order.
Besides testing the method in more complex geometries as in [21], there are two avenues for
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improvement which we plan to consider in future work. First, it may be possible to reduce the
accuracy limitations and growth of the spectrum of the derivative matrices at high order by
incorporating the grid stabilization techniques introduced for standard difference operators
in [18,19]. Second, it should be possible to increase the accuracy using the post-processing
techniques proposed in [14,24].
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