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Abstract

In this paper, we consider numerical approximations for solving the nonlinear magnetohydro-
dynamical system, that couples the Navier—Stokes equations and Maxwell equations together.
By combining the projection method and some subtle implicit—explicit treatments for nonlin-
ear coupling terms, we develop a fully decoupled, linear and unconditionally energy stable
scheme for solving this system, where a new auxiliary velocity field is specifically intro-
duced in order to decouple the computations of the magnetic field from the velocity field.
We further prove that the fully discrete scheme with finite element approximations is uncon-
ditional energy stable. By deriving the L bound of the numerical solution and the relation
between the new auxiliary velocity field and the velocity field, and using negative norm
technique, we obtain the optimal error estimates rigorously. Various numerical experiments
are implemented to demonstrate the stability and the accuracy in simulating some bench-
mark problems, including the Kelvin—Helmholtz shear instability and the magnetic-frozen
phenomenon in the lid-driven cavity.
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1 Introduction

The hydrodynamical behaviors of conducting fluids (plasmas, liquid metals, and electrolytes,
etc.) under external electromagnetic field are usually modeled by the so-called magnetohydro-
dynamical (MHD) system, see [12,23,25]. The fundamental image behind the MHD system is
that magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes
the fluid and reciprocally changes the magnetic field itself. Thus the governing equations,
which describe the MHD system, couple the Navier—Stokes equations for hydrodynamics
and Maxwell’s equations for electromagnetism. Concerning the corresponding extensive
theoretical modeling/numerical analysis of the MHD system, we refer to [2—4,10,15,16,18—
22,24,28,29] and the references therein.

For solving the nonlinear coupled MHD system numerically, one challenging issue is to
design linear and decoupled schemes while preserving the energy stability, i,e., the energy
dissipation laws hold in the discrete level. The main associated difficulty is to decouple non-
linear couplings between the magnetic field and the velocity field appearing in the convection
and Lorentz forces. Simple discretizations, like fully explicit or implicit type schemes to han-
dle these terms can lead to considerable instabilities or suffer from costly time expense. We
recall there are many attempts that have been made in this direction recently. For examples, in
[18], the authors developed two implicit—explicit type methods where the first order method is
shown to be unconditionally stable and the second order method is shown to be conditionally
stable. However, the model considered in [18] is the reduced version, namely, the magnetic
field is assumed to be a fixed function. In [32,33], the authors developed a decoupled type
scheme for the full MHD system, but it is conditionally energy stable with a time step con-
straint. In [7], the authors developed some unconditionally energy stable schemes based on
the projection type methods for the Navier—Stokes equations. However, the velocity field and
the magnetic field are coupled together. In [31], the authors presented optimal error estimates
for the first order energy stable projection scheme where the velocity field and the magnetic
field are still coupled together (partially decoupled scheme). In [21], the authors developed
a totally decoupled scheme where the computations of Navier—Stokes equations are based
on the commutator of Laplacian and Leray projection, and all nonlinear and coupling terms
are treated explicitly. However, the scheme is still conditionally stable. In [26], the author
had developed a fully decoupled scheme by treating the coupled terms explicitly, however
the scheme does not allow the discrete energy stability. Furthermore, the error estimate for
pressure is suboptimal.

In this paper, we develop a fully decoupled, linear, and unconditionally energy stable
scheme for solving the MHD system, and carry out the corresponding rigorous stability and
error analysis for the fully discrete scheme in the context of finite element approximations.
We adopt the first order projection method to solve the Navier—Stokes equation and introduce
an auxiliary intermediate velocity variable to decouple the computation of the magnetic field
from velocity. Meanwhile, we make some subtle implicit—explicit treatments for nonlinear
coupling terms to linearize the system and ensure the energy stability, that is proved rigor-
ously. Our decoupled idea is somewhat similar to matrix splitting algorithms in [4]. The key
ingredient are all the introduction of an auxiliary velocity variable to decouple the compu-
tations of velocity from the magnetic field. Furthermore, the error estimates and numerical
studies of unconditional stabilities are not presented in [4].

It is remarkable that the error analysis for the fully discrete finite element scheme we
propose is rather challenging while its energy stability is quite straightforward once the
scheme is appropriately designed. In [31], the error bound is derived directly by using the
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standard energy approach since the scheme is skew-symmetric hence many challenging
terms are cancelled. However, there are some essential difficulties to derive the error bound
in the developed scheme in this paper. More precisely, the introduction of the auxiliary
velocity variable actually leads to some essential hurdles in establishing the L°° bound of the
numerical solutions that is the key ingredient to derive error estimates, and obtaining optimal
error estimates for the pressure. To this end, the quantitative relations between the auxiliary
velocity and velocity field is needed to be verified. By using the mathematical induction
method combined with the convergence analysis, we further prove the L™ stabilities of
the numerical solution, and obtain the optimal error estimate for the pressure by means of
the negative norm estimate method. It is shown that the velocity and magnetic field are of
optimal error orders when §¢| log 2| < 1, and the pressure can attain the optimal convergence
order when §¢| log | > < h.Finally, several benchmark numerical experiments, including the
Kelvin—Helmholtz shear instability and the magnetic-frozen phenomenon in the lid-driven
cavity, are implemented to confirm the stability and the accuracy of the scheme.

The rest of paper is organized as follows. In Sect. 2, we present the model and derive
the associated energy dissipation law. In Sect. 3, we develop the fully discrete finite element
scheme. We prove the associated energy dissipation law in the fully discrete level. In Sect. 4,
we derive the error estimates of the fully discrete scheme. In Sect. 5, various numerical exper-
iments are presented to demonstrate the stability and effectiveness of the scheme. Finally,
some concluding remarks are given in Sect. 6.

2 The MHD Model and Energy Law

The incompressible MHD equations reads as follows,

u; —vAu+ (u -V u+Vp+sB xV x B =0, 2.1
B, +n"VxVxB—-—Vx(uxB)=0, 2.2)
V-u=0, 2.3)
V-B=0, 2.4)

for (x,1) € @ x [0, T) with @ C RY, d = 2, 3, where u denotes the velocity field, p is the
pressure, and B is the magnetic field. For the physical parameters, v=! = R, (fluid Reynolds
number), n~! = R,, (magnetic Reynolds number), and s is the coupling coefficient, which
are given by
UL B?
Re=—, Ry =pnoUL, s= —
wr PimU

where U is the characteristic velocity, L is the characteristic length, u s is the kinematic
viscosity, i, is the magnetic permeability, o is the electric conductivity, B is the characteristic
magnetic field, and p is the fluid density. The system is equipped with the following boundary
conditions

ulyo =0, B xnlyo =0, (2.5)
and initial conditions

ulg=0) = uo(x), Bly=0) = Bo(x), (2.6)

with V - ug =0, V- By = 0, where n denotes the outward unit normal of 9€2.
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We fix some notations here. In this paper, we focus on the numerical analysis of the MHD
system in two dimensional case (d = 2). The corresponding results in three dimensional
case (d = 3) are listed in subsequent remarks. Here and after, for two vector functions x, y,
we denote the L2 inner product as (x, y) = fQ x - ydx and L? norm ||x]|?2 = (x, x). Let
Wk () stands for the standard Sobolev spaces equipped with the standard Sobolev norms
I lk.r. Forr =2, we write H*(Q) for W&2(Q) and its corresponding norm is || - ||x. We let
L"(R2) denote the usual Lebesgue space on 2 with the norm || - || .

For appropriate function setting of the MHD equations, we define

H} () ={¢p € H(Q) : plsa =0}, V={ueH (V- -u=0)

L3(9)={¢6L2(Q):/¢dx=o}, HY Q) ={we H(2)?: w x nlyg =0}.
Q

The following Poincaré type inequalities are well-known, see [11], which will be frequently
used in our proof,

lwl < CollVwll, w e H} ()%, 2.7)
lwli < Ca(IV x wl| + IV - w]), we HL(Q), (2.8)
gl < CallVoll, ¢ e H'(2)NLIQ). 2.9)

The model (2.1)—(2.6) follows the energy dissipation law. By taking the L? inner product
of (2.1) with u, and of (2.2) with s B, using (2.3)—(2.4) and ((u# - V)u, u) = 0 and integration
by parts, we have

(ug,u) +v|Vull> +s(B x V x B,u) =0, (2.10)
s(B;,B) +sn||V x B|>+sn|V-B||*>—s(u x B,V x B)=0. (2.11)

By taking the summation of the two equalities, we obtain
d _ 2 _ 2 _ 2
7 B B) = —v[Vu|" = sn|V x B|I” = sn[|V - B, (2.12)

where E(u, B) = %||u||2 + %||B||2 is the total energy of the MHD system (2.1)—(2.6).

3 Numerical Scheme and Energy Stability

In this section, we develop a fully decoupled, linearized, and unconditionally energy stable
scheme in the fully discrete forms for solving the system (2.1)—(2.6), and show the uncon-
ditional energy stability in the fully discrete form with finite element discretizations for the
spatial direction.

For! > 1, r > 1, we define the conforming finite element spaces V) C HO1 (Q)z, U, C
H'(Q)? with V, C Uy, which consist of continuous piecewise polynomials of degree /, and
C, C Hi ), M, c H'(Q)n L%(Q), which consist of continuous piecewise polynomials
of degree r, and [ — 1, respectively. Moreover, the Vj, and M), satisfy the inf-sup condition:

V.- vy,
Bllanl < sup 2 g ey, 3.1)
v eV ||Vl)h||
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A well known mixed finite element pair for V;, and M}, satisfying (3.1) is the Taylor-Hood
element [11]. For wy € Uy, or Cj, the following inverse inequalities hold

(G—p2
lwille < ch s P llwpllr, p<q.
1
lwpllzee < cllogh|? w1, (3.2)
-1
lwnlly = ch™ [lw]l.

In order to derive the error estimates in spatial discretization, we recall the well-known
Stokes projection and Maxwell projection, see [11,32], i.e., givenu € V, p € L%(Q), find
Rau,py € Vi and Q. p) € My, such that

V(VR@,py, Vi) = (Qu,p), V - vu) = v(Vu, Voy) — (p, V- vp), Yoy € Vi,
{ (V- Ru.py,qn) = (V-u,qn), Vqn € My;

and given B € HL(Q), find Jg € C}, such that
(VxJp,VXCp)+(V-Jg,V-Cp)=(VXB,VXCp)+(V-B,V-Cp).

It is obvious that R, p), O, p), Jp are stable in the sense that

IVR@pll + 1 Qu.pll = cUVull +1lplh. 178l < cllBl1. (33)

Besides, if assuming (u, p, B) € H'T1(Q)? x H'(Q) x H't1(Q)?, then the following
approximations hold

e = Reu pyl + IV @ = R )l + 17 = Qe pp 1) < b el + o),
IB — Jgll +hilB — Jglli < Coh™||Bl|,+1. (3.4)

Since Qu,p) isin H 1 (2), we can derive its H 1 stability as follows, which will be used in
our analysis.

Theorem 3.1 The Stokes projection Qu,py is H ! stable in the sense that
1Qw,pllt = cllullz + lipliD)-
Proof We define H' projection Pj : HY(Q)N L%(Q) — M), by
(Vp=VPip,Vgn) =0, Vg, € My,
and it is easy to find
lp— Pipl+hllp — Piply < chlplh.
Using the above property, (3.4) and inverse inequality ||g; |1 < ch™! llgn|l, we derive

1Qu.mli <1l = Qu.plli +llpli < llp = Piplli + I1Pip — Qu.plli + 2l
<clplli +ch  Pip — Qu.pll
<cllpli+ch ' IPip = pll+ch™ Ip = Qupll
<clpli +ch™ " h(llulz + Ip1) < cllulz + 1)

The proof is finished. O
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We assume the solution to (2.1)—(2.6) has the following regularity conditions

(A0):u € L®(0, T; HT'(Q)?), peL®0,T; H(Q), BeL>®0,T; H+(Q)?),

(3.5)
such that the following approximate properties hold
lw(tn) — Ry, paeanll + AUV @) — Ry, paea)|l
+1pt) = Q. pan ) < ch'™, (3.6)
IB(t2) = JB || + hIIB(t) — Jpa |l < ek’ (3.7

Now, we develop the fully discrete scheme based on the finite element discretization. It
reads as follows.

Given the initial data BY) = Jgo, @), p9) = (Riug, po)» Qwo, po))> Where py is obtained
by uo, By and (2.1) following the method in [14], we compute B} ™', @} ™, prtt u)t! by
the following steps.

Step 1 Find B} *! € Cj,, ul, € U}, such that

1
g(B;;“ — B, cp) +n(V x BTV xep) + (V- BT,V -ep)
— (up, x Bj,Vxep) =0, ¢y eCy, (3.8)
1
57 Wi — W5 wn) + 5 (Bj x V B wy) =0, w, €Uy (3.9)
Step 2 Find ﬁZ'H € Vy, such that
1

8t
— (Pl V- v) =0, vy eV (3.10)

@t —up, o) +oVaptt Voy) + bl @t vp)

Step 3 Find p}*' € My such that
n+1 1 ~n+1 n
Vp, " Vap) = —g(V ", qn) + (Vpy, Van), qn € M. 3.11
Step 4 Update uzﬂ € Vy + VMj, from

wpth =@t — s (pitt — pihy. (3.12)

Remark 3.2 To avoid some technical difficulties in the error estimates at the initial time, here
we set the initial data u2, p2 by the Stokes projection of #(0) and p(0). The difficulties at
the initial time can be also overcome by making some approximation assumptions as (5.18)
in [13]. In the numerical implementations, we can obtain the initial data through solving two
equations at # = 0 like (3.7) and (3.8) in [1].

Remark 3.3 For the convective term in (3.10), we use the trilinear form as follows (cf. [30]),
b(u,v,w) .= %((u Vv, w) — %((u -Vw, v). (3.13)

Note when u € H'(Q)?, v, w € HO1 ()2, by using the integration by parts, we derive
b(u,v,w) = ((u-V)v,w) + %((V -u)v, w). (3.14)

Therefore, when V - u = 0, we have b(u, v, w) = ((u - V)v, w).
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Remark 3.4 For the fully discrete scheme (3.8), the exact divergence free for the magnetic
field BZH is not valid any more. Therefore a common practice is to add a penalty term
(V- B’,;J’l , V-¢p) in the momentum equation in order to verify the coercivity of the magnetic
equation, and approximate the divergence free condition of the magnetic field for the spatial
discrete case, cf. [15].

Remark 3.5 The final velocity field u” +1 satisfies the discrete divergence free condition. This
can be deduced by taking the L? inner product of (3.12) with Vg, we obtain

@t V) = —(V-apt gn) — stV (pptt = b, Van).
After combining with (3.11), we arrive at

@}, Var) =0, Vap € My. (3.15)

There are two advantages in the scheme (3.8)—(3.12): linear and decoupled, where the mag-
netic field B, pressure p and velocity u can be solved linearly and independently at each
time step. In addition, the unconditional energy stability holds, which is shown as follows.

Theorem 3.6 The scheme (3.8)—(3.12) is unconditionally energy stable in the sense that
sIBG P+ ey TP+ 82V
281 (sn||V x B2 4 sy V - B2 4 o) Vit 2 ) (3.16)
< s|ByI* + llupl* + 8621V py 1>
Proof By takingcp = sB”+1 in (3.8) and w;, = uj_in (3.9), and using the following identity
2a(a — b) = a* — b* + (a — b)?, (3.17)
we obtain

S5 (1B = B + 1B 12 = UBRIZ)  +snllV x By + o)V - By

(3.18)
+s(BI xul,,V x Bl =0,
and
o1 (e, — w1 + luf 1 — lufl?) — s(V x Bj™ < B ul ) =0.  (3.19)
By taking v, = u;’lH in (3.10) and using the skew-symmetric property:
b(u,v,v) =0,u € L*(Q)*,v e H(Q)?, (3.20)
we derive
2o (U P 11— W 17) + vV () = 0.
(3.21)

We rewrite (3.12) as

1 1
+1 +1 _ +1
5;"2 +Vp, T = 5;"2 +Vp;.
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By taking the L? inner product of the above with itself on both sides, and using (3.15), we
obtain

- ot
1 w2 — n ) t? + nvfﬂ*iu — = IVppII* = @ V). (3.22)

268t 2

Finally, by taking the summations (3.18), (3.19), (3.21) and (3.22), we obtain
S
AAXHB"+WI — B} + 1B+ — ﬂﬂ)+snMV><B”“n2+anV-Bz+WF
o (g ——nuzn2+—nuz*——uzn2) Sl P (3.23)
- St

+ww%“w MVM“H—Ewwmﬂza

After multiplying with 2§¢ and dropping some positive terms, we obtain (3.16). m}

4 Error Estimates

In this section, we provide the convergence analysis for the fully discrete scheme (3.8)—
(3.12). We first develop the error estimates for velocity and magnetic field in Sect. 4.1, then
improve the error estimate for pressure in Sect. 4.2. Without loss of generality, we denote by
C a generic constant that is independent of ¢ and & but possibly depends on the data and the
solution, and use f < g to denote that there is a generic constant C such that f < Cg.

4.1 Error Estimates for the Velocity and Magnetic Field

For convenience, we denote d;¢" = ¢n " ,dip(ty) = w for any variable
¢, ¢ (t). The model system (2.1)—(2.2) at tn+1 can be written as the truncatlon forms:

(diB(tn11). €) + n(V X B(ty41), V x €) +0(V - B(tn41), V - €)

— ((ty) x B(ta), V x ¢) = (RI*!,¢). Ve e HL(Q), .1
(du(tns1), ©) + V(Y (tn11), VO) + b@tn), wltni1), ©) — (p(i), V - v)

+5(Bty) x V x B(ty11),v) = (RITv), Vv e H (@), 4.2)
w + V(p(ln-H) - P(ln)) = RZ-H’ (43)

where RZH, R R;*l are the truncation terms.
We denote the error functions as

0y = JB(,) — B}, oy = B(ta) — JB(1y),

01 = Raut) p(t) — Wh» P = U(tn) = Rautun) ptu)> O = Rt pan)) — i

05 = Q). pt) = P Pp = Ptn) = Quity). p(ta))» (4.4)
e} = B(ty) — B} =0} + p}. &} = u(ty) — ) =0 + p].,

ey =ulty) —uy =6, +p,, e, = pltn) — p, =0, + p),.

By subtracting (3.8) from (4.1), (3.10) from (4.2) and applying (3.9), and (3.12) from (4.3),
we obtain the following error equations,

(d,e"Jrl cn) +n(V xe, UV % ep) + (V- e”Jrl V-ep)
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+ (B(ty) x u(ty), V x ¢p) — (Bf x u},,V x ep) = (R ep), eneCpy,  (45)
1 _ -
g(ez“ — el vy) + v(VErT Vo) + b(u(ty), u(tyi1), vi)

—b(uy, @yt ) — (€. V- vp)

+5(B(ta) x V x B(tat1). vp) — (B x V x Byt vy) = (R vp), vy € Vi,

4.6)
eZ-H n+1 53“ n n+l
T-ﬁ-Vep = 57 +V€p+RP . 4.7

We assume the exact solution (u, B, p) to the system (2.1)—(2.6) possesses the following
regularity conditions,

(A1): u;, B, € L0, T; H(Q)?), p, e L0, T; H (Q)),
uy, By € L0, T; L*(2)%).

One can easily establish the following estimates for the truncation errors, provided that the
exact solutions are sufficiently smooth or satisfy the assumptions (A0), (A1).

Lemma 4.1 Under the assumptions (A0) and (A1), the truncation errors satisfy
T
IR+ IR+ IR S8, 0<n< [g].

Proof Due to the page limit, we omit the proof since it is rather standard. O

There are two essential challenges in deriving the error analysis for velocity and magnetic
field. One is from the auxiliary intermediate function uj, since there is no error equation
corresponding to it. The other is how to obtain the L°° bound of the numerical solution B,
directly from the Eq. (3.8). To this end, we first build the relation between uj, and uj in
Lemma 4.2. Then, by using the mathematical induction method, we establish the L°° bound
for B in Lemma 4.3. The final error estimates are derived in Theorem 4.4.

Lemma4.2 Under the assumption (A0), the following estimate holds
= wi > S 16717 + 82 By 10 + 827 BRI 1V x 657117

Proof By taking w, = uj;, — Ru(,), p(,) in (3.9) and using (3.17), we get

1
557 (1 — 12+ lluf, — Reugo), paan I* — 16217

= (B'f, XV x By up, R(u(z,n,p(tn») “8)
< sIB LIV x B, — Ra, pay

1 2 2 12
< 557 e = Rty pan I” + 011 B 1< IV x By,

which implies
M, — w2 <0012 + 82| B 2V x BIHY |2
S0P+ 82 BRI (IV X Bltas DI + 1V x pp TP+ 1V x 07112
4.9)
SN2 + 821 B2 + 822 B 3 [V x 64112,

where we use (3.7). ]
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In order to demonstrate the L°° stability of B}, we first show the L bound of Jp(,).
We denote TT : H'1(Q)> N HL(Q) — C} the interpolation operator, then we have the
approximation properties (cf. [11])

IB—TB|r~ SA|Blly1. |B—TB| < B (4.10)

Suppose the assumption (A0) holds, from (4.10), (3.7) and the inverse inequality (3.2),
we derive
ITB) L < N1B(tn) — JB ) lLoe + 1B (t) Lo
< 1B(tn) — OB )L + ITIB(th) — JB(1,) o0 + 1B (1) [l Lo
< Coh" | B(tp)lr+1 + Coh ' ITIB(ty) — Jpa | + [ B(tn)ll
< Cah"|B(tn)lr11 + Coh ™ (IMB(ta) — B(t)| @.10)
+ 1B(#n) — JB@,) D) + | B(@)l Lo

T
< Col IB)llrs1 + 1B~ < Co, 0<n < [g] |

Furthermore, (4.11) also implies that the 12(L°°) bound of Jp(;,) satisfies
(%]

8ty 1By llie < TC. (4.12)
n=0

Letkp = 2TC§ + 1, and assume the following regularity conditions hold
(A2) :u, € L*(0,T; H'(@)?), pr € L*(0, T; H'(Q)), B, € L*(0, T; H'™(2)%).

For the error estimates of velocity and magnetic field, we need the /2(L>) bound of Bj.
Meanwhile for the error estimate of pressure, we further need the /°°(L°°) bound of Bj.
Now, we state the [2(L°) stability of Bj, in the following lemma.

Lemma 4.3 Assuming that the solution to (2.1)—(2.6) satisfies the regularity assumptions
(A0)-(A2), then there exist two positive constants 8ty and hg such that, when §t < 8ty, h < hg
and §t|logh| < 1, the solution BZ of scheme (3.8)—(3.12) satisfies
(5]
8t ) Byt <o, max St Bjllze < w18t 4 woh? ML (4.13)

n=0 OS”S[E]

where k| = 2C8+CQC(K0), kr» = CqC(kg), and the constants §ty, ho, C (ko) will be verified
in the proof.

Proof We use the mathematical induction method here.
Whenn = 0, we have 8t(| B} || = 8t[|JB, |7~ < C§t < ko,and 81| B)||7~ < C3ét <
K18t + koh> ™I (e > ).
Assuming that
N
ne o~ n o 2min{/,r}+1
8t X(:) IBill7o < ko, max StBj I < 10t + koh (4.14)
n=

are valid, we will show

N+1
St B2 <Ko, max O8t|| B3 < k18t + kph?min{bri+l 4.15
Zon Wi <Ko, | max Ot Bjlijx < k1t + k2 (4.15)
n=
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are also valid via the following two steps. In Step i, we use the induction assumptions to
derive the convergence analysis. In Step ii, using the convergence results obtained in Step i
and inverse inequalities, we get the /2(L°°) bounds of B ;llv +

(Step i). By taking ¢;, = 9,;'“ in (4.5), we obtain

1

2—(”(”9,;**‘ 12 = 16217 + 1107 — 621 + n(IV x 6712 + 1V - 6777
+ o™ 00T + (B(ty) x u(ty) — B x ull,, V x 07y = (RPT, 7).

(4.16)
By taking v, = 6/'*! in (4.6), we derive
1 ~ - -
2—5t(||9:7“||2 — 16217 + 162 — 6211 + v varth 2
1 An+1 1 An+1
+ vVl Vot + @ pl 61 4.17)
+b@tn). w(tar). 05 — by, iy ™ G0 + (Von, 65 4+ (Ve it

+5(B(ty) X V x B(ty11), 07 — s(B} x V x BT gy = (RiH1 grt),
We rewrite (4.7) to obtain
1

1 -
&93“ +Vortl = —git 4+ ven 4 p (4.18)

St

where p"t! = RZ“ - StVd,pZH. By taking the L? inner product of (4.18) with itself on
both sides, we obtain

- 1 ~ &t
+1 _ +12 _ pgn+ly2y o 0 +12 2
@ Vop) = S0P = 16 1) + ZAVe I — 196517)

Y (4.19)
= @ o™ = 81(Vep, " = "R,
We combine (4.16), (4.17) and (4.19) to obtain
1
ﬁuw;;“ — 0812+ 1671 = 167 1%)
UV x P+ IV -0 + vl Va1
8t 1 ~
+ S VORI = IVORI%) + S (U6 = 1 + 16312 — 16 1%)
= (u(ty) x B(ty) —uj, x B}, V x 91;’“) (: term A)
— b(u(ty), u(tyr1), 6171 + bl )yt anth (:termB) (4 5
—$(B(ty) x V x B(ty+1) — B} x V x B}, g1t (: term C)
+ @ ot sr(ven, (: term D)
+ (o — PV 0 — iyt o — (el 0T (: term E)
+ (RETY oY+ (RET G (: term F)
St
b I1%.

We estimate the terms (A—F) one by one as follows.
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For term A, using the Lemma 4.2, (3.6), (3.7) and regularity assumptions, we derive
(term A) < |(u(t,) X B(t,) —uj, X Bj,V x 6’;’+1)|
= |(u(ty) x €} + (u(ty) —uj,) x By, V x 61|
(leplu)lize + I Bl luttn) — up ) IV x 05+

n
S gV x Oy I+ 162117 + 112

IA

+ BN (lu(t) — up > + Nl — ufp 1)
< gnv < O+ 10011 + B¥ T2+ BRI 7o (R + 1167 11%) + 822 B ]
+ 812 BRI IV x 0712,
For term B, by using (3.20), regularity assumptions, the inverse inequalities (3.2) and (3.6),
we derive
(term B) < [b(u(tn)., u(ty41). 00T — bl af ™, a1t
= |b(e}. ulty1). 0T — b(lt, 6071, pi )]
= |b(e}, uty1), 00T + belk, 00, oy — bu(en), 61, pi )
S epl IVaE T s D2 + gl IVEET IV o+ et 100 1 oo IV
+ )l Lo VO e
S N IV + e IVET A3 Al 4 vttt
< %nvé;}“nz + 1081 + 10012 + 1ep T2 < %nvé{,’“nz + 1100117 + h22
For term C, from the equality of V x (@ x b) = bVa —aVb+aV -b— bV - a, the inverse
inequality (3.2), regularity conditions and (3.7), we derive
(term C) < s|(B(ty) x V X B(ty41) — B} x V x BZH, 5;‘+1)|
=5](ell X V X B(tyt1), 6171) + (B x V x p 1, gnth)
< sl(e} x V x B(ty41), 02| +5|(B x V x g7t gnth
+5|(B x V x pptt g0t
< sl(e} x V x B(ty41), 00|+ s|(Bf x V x g7+ gnth —om|
+5|(B) x V x 67t om)]
+s|(ef x V x pZH, é,:'“)l +s|(B(t,) x V x pZH, é;’“)l
< sl(e} x V x B(ty41), 00| + s|(Bf x V x g7+ gnth —gm|
+5|(B} x V x 67 0M)| +5](ef x V x ppt, gt
+3|(Bt) VI — 00TV B(1) — B(t)V - 051 pp |
SV x Bltag )l 3105 s + 1BRL= IV x 6, 1165+ — 67
+ B L= IV x G 61 + leg IV > op 116, 1
1B IVE T oy ™ 1+ 162 s IV B @) s o+
S e IIVa I+ 1B IV x 6T 116, — o]

L= =
+IBL LIV x OO + lleplh” =3 | VEr | + Vot n !
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VoA n
< Enve;’“n% SV X O 2+ 1681 + 1B 160 — 6
+ I BRI 161 11* + h* 2.
For term D, term E and term F, using (2.7), (2.8), and Lemma 4.1, we derive

~ v ~
(term D) < 165 10" 1l + 8t VOR 0" IS 15 V8T + 1™ 1% + 862V 612

||ve"“|| + 817 + 87| Vd, pp 1P + 812 VO |17,

and
(term B) < otlld, o3 T IV + oy IV x 07F|
V0D + Mo VO
S —nw:}*‘n - f(nv <P+ V-0
+ 86 dy oI +||dtp”“|| + i o 12,
and

(term F) < [[RZTHI167 ) 4+ I RET 162!

< —||vé"+1||2 (||v X O FZ V-0 D) + IR 4+ IR

hS —uve"*‘u + g(nv X< ORIV 0P + 8%,
Combining the above estimates with (4.20), we obtain
16517 = 10517 + 16112 = 1621 + 16,7 — 6517 + 82 (Ivep 1> — Vo, 1%
+ 81V x 02+ 1V -0 + Sev ) Va2
S Sell6f 112 + 810112 + St BT 16 112 + 8631 VOr |

4.21)
+ St B 10T — 0111 + 823 | B[]
+ 88| BRI T IV x 0571 + 862 1d, o P IT + St Uiy T + N TP
+ 83 +8t(h21+2 R+ 4 B! ”Lmhzwz)'
2 min{l,r}+

We choose any two positive constants §¢; and h; that satisfy 1871 + «2h)

min(1, \/; Z)' Then when §¢ < §t; and h < hy, from the induction assumptions (4.14) for
n < N, we have

StIBY I 627! — 61117 < (18t + ok ™ 0+ — o2 < ||é”+1 A
SENBIG < IV x 67712 < (1811 + 1eah ™28V 5 071 < 8t||V x On 2.

Besides, from the inverse inequality (3.2), (4.14), and the assumption §¢|log h| < 1,8t < 8t
and h < hy, we get

SN B oo = S IIBH N I B0 S 8 NBRF o (167 1750 + 1B (1) 1700
S S3B e loghI(IV X 6] 17 4+ IV - 6]17) + 823 | B |13 o
< k18t + k> ™D S 1V s 0812+ 1V - 6012 + 823 | BT I3

< Z5;(||v X 0P N2+ IV - 0817 + 823 | B |13 oo
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Therefore, (4.21) becomes
16 1 = 1165 12 + eg 1> — 1o 1% + s> IVt — [ ver|?)
+6rﬁ(||v < OPH2 4 v ptT ) — ﬁaz(W < M2 + IV - 61112) + stvl| Va1 |2
< 811107 12 + 81107112 + St By 162117 + 8.2 VO I + 863 By 12 oo + 82 1dp 02 1}
+ 8t(lld pp T 4 Ml p2 TP 4 827 + 8t (W2 4+ BT 4 | B2 02T,

Summing up the above inequality from n = 0 to N, and using the induction assumptions
(4.14) and 6)) = 62 = 69 = 0, we obtain

16,11 + 16N T + 822 ve 2

N
n n 5
80 ) (F19 < o2+ D0V -0 v )
n=0

N 4.22)

<8t2(||9,,|| 1071+ UBY I3~ 16712 + 520VORIR) + 565 3 oy 1
n=0 n=0

45t Z(”dtpn+l ” 4 ”dter-l ” ) 4 5t2 + h21+2 4 h27’+2 4 Ko(atz + h21+2).
n=0

In addition, using (3.6), (3.7), Theorem 3.1 and regularity condition (A2), we obtain

N

5t Z lde oy M1 + dep TIPS R 288 Y ldi Bt )17y
n=0

N
250 g )+ e p(i)11)
n=0
< R 4 242,

and

N N

81 Z ldi ol 1T S 82 Y lldip(tar DIT + 82 Y 1 Qi di paniin 17
n=0 n=0

N N
S8 i p(tas )T + 88 > (ldutar D)3 + lldi p(tas )T S 82
n=0 n=0

Then, (4.22) becomes

16,11 + 1o + s Ve 2

N
+ 60 3 (nlIV x 5 12 4 0V - g P + v VO )

=0 (4.23)

<8r2(||9,,|| AR AT AR
n=0

+ (ko + 1812 + (ko + DAHT? 4 p2+2,
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By applying the Gronwall’s inequality to (4.23), we obtain
1672 + 16N T2 + 82 Ve T2

N
80 (nIV x IR+ 0l V- 62 4+ v VAL )
n=0

< Clko) (8> + 2 + ¥ +2), (4.24)
where C (k) is a constant depending on .

(Step ii). We assume that the condition §¢| log 4| < 1 holds. By using the inverse inequality
(3.2),(2.8), (4.11), (4.12) and (4.24), we derive

N+1 N+1 N+1
8ty Bl <26t Y I1TBay 17w +268 > 167117
n=0 n=0 n=0
N+1
< 2TCF + Calloghlst Y (IV x 671> + |V - 0 11%)
n=0

< 2T C3 + CqC(ko)|log h|(81> + h?'+2 4 p¥+2)
< 2TC} + CaC(ko)(8t + | log h|p>minll-ri+2)
<2TC}+ 1 = «o,

where weassume 8t < 812, h < hy and 8ty and hy satisfy Cq C (k) (St2+| log ho|h3 ™™ (H71F2)

< 1.
By setting k' = 2C2 + CqC(ko), k2 = CoC(ko), we derive
StIBY T T < 280081yl 700 + 26210 (17
< 2035t + Calloghlst(IV x o) 12 + 1V -0 1%
< 2C38t + CoC(ko)| log h| (81 + W +2 4+ p2+2)
2C38t + CaC (ko) (8t 4 h* ™It
= K18t + K2h2min{l,r}+l’

IA

The proof is completed if we simply let §t < &to(:= min(8t1, 8t)) and h < ho(:=

min(hy, hy)). m]

Based on the above Lemma, now it is ready to obtain the error estimates for the velocity
field and magnetic field, as follows.

Theorem 4.4 Under the conditions of Lemma 4.3, the following estimates hold

max (eIl + e | +8tVey ) S 8+ hmnitri,

0=m<[5]
4.25)
8t Z (’7|IV X en+l||2 +n(V- (B"HII2 + v||vert! ||2> < §¢2 4 p2min{lr)
n=0
Proof By Lemma 4.3, we already obtained
%]
SZZ”BZH%W =< K0, max 5t||B ||L°° <K131+K2h2m1n1r}+1 (4.26)
n=0 0<n<[5t]
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By following the same procedures of Step i of the proof in Lemma 4.3, for m < [;7], we
obtain

16 1% 4 102 + s Vet

m
48t Z (n”V % 9£l+l||2 +|V - 9;14»1”2 + V||vé,:l+1”2) 5 5t2 +h2[+2 + h21’+2.
n=0
4.27)

By using the triangle inequality, (3.6) and (3.7), the desired results (4.25) are concluded. O

Remark 4.5 The convergence results in Theorem 4.4 are still valid for the three dimensional
case (d = 3), but the condition between the time step and grid size becomes more restrictive.
More precisely, the condition is 8¢ < h for d = 3 instead of §t|logh| < 1 for d = 2. This is
because a different inverse inequality will be used for d = 3 [11], namely

1 _1
IBuliLee S A7 211Billps < B 211Bhlli- (4.28)

We omit the details due to the page limit and leave this to the interested readers.

4.2 Optimal Error Estimate for Pressure

Note the convergence order for the pressure term in Theorem 4.4 is not optimal. In this sub-
section, we aim at proving the optimal error estimate for the pressure. Due to the introduction
of the auxiliary velocity field uj}, there exist two specific difficulties to improve the order
for the pressure, including (i) how to derive the error between d;u(t,) and d;u}, since there
does not exist an error equation for d;uj; and (ii) how to derive the optimal error estimate
for ||d, 6 || which is needed for the estimate of the pressure.

For (i), we solve it by developing a relation between ||d;u}, —d;u}, || and other error func-
tions in Lemma4.7. For (ii), we build the error estimate for ||d,6;" *" |2 | +8¢ 0, lld,6; )|
by means of negative norm estimate technique in Lemmas 4.9 and 4.10. Based on these esti-
mates, by using the inf-sup condition, the optimal convergence order of the pressure is finally
obtained in Theorem 4.11.

For the error estimate of the pressure, we need the /°° (L) stability of Bj that is derived
in the following Lemma.

Lemma 4.6 Assuming that the solution to (2.1)—(2.6) satisfies assumptions (A0)—(A2), then
when 8t < h, the following estimates hold

max |[Bjlle <3, max Bl < ks,

0<n<[£] 0=n=(L]

where k3, k4 will be verified in the proof.
Proof From (4.27), if 8t|logh| < 1, we have

max_ (|67 < 8t + AT T
0=n=[3]

We further assume a more restrictive condition for the time step: 6¢ < h, then by the inverse
inequality (3.2), we derive
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B Lo < 1B Lo + 116] 2o < 1B Iz + Cah ™ 6]
< Co+Ch7 St + ' + "1y = k3:

and
I1Bylln < lleplli + 11BN < 105 11 + oy I + 1B @) 11
< Coh™ MO} + llop Il + I B 1y
< Ch7 'St + A + Y 4 C = .
The proof is finished. O

We assume the solution B(t) to (2.1)—(2.6) satisfies:
(A3): B, € L®(0, T; H' (%) N L¥(0, T; L®(Q)?%).

In the next Lemma, we find the L? relation between d, uZ and d; “Z* with other error functions
which will be used in the error estimate for pressure.

Lemma 4.7 Assuming that the solution to (2.1)—(2.6) satisfies assumptions (A0)—(A3), when
3t < h, the following estimate holds

n
Ideu} — dpult J1* < 862+ 10017 + 11V x (ef T — ey > + gndtean + lid: o112
Proof By applying d; to (3.9), we obtain

diull, — diul
(% wh> + (B} x V x d; B} wy) +s(d, B} x V x B}, w;) = 0.

By taking w;, = 28td;uj, — 28td; R(u(,), p(r,)) and using Lemma 4.6, regularity condition
(A3) and inverse inequality (3.2), we derive

lwi > + lldiu, — diuy | = |ld,6} |I*
—28ts(B} x V x di BT wy) — 26ts5(d; B x V x BY, wy)
SO + 8¢l Bl < IV x d By | |wall + 8tlld, Bl x V x Bj||[|lwy|
SO + Nlwal® + 8.2V x d BI > + 81%|di B x V x BY|)?
SN0 1 + llwal® + 821V x di Bty )1* + 882V x dyej ||
+ 81%||d; B(ty) x V x BI|> 4 8¢%||d;e} x V x BI||?
SO + lwi|? + 82 + |V x (e — e
+ 82| B(ta) |17 IV x B|I + 862 ||dsef |7 |V x BJl|7
SO + llwall® + 862 + |V x (ef T — e)II* + 86> | dre} 1P|V x Bj||?
S ORI + Nwall* + 882 + 1V x (ep ™ — eI* + %”51191’,1”2 + lldiop 117,

where we assume 872 < %hz. After eliminating || wy, |12, we arrive at the conclusion. ]

We apply d; to (4.5)—(4.7) to obtain the following error equations:
d[é{:+l — d,eﬁ
ot

— b(ujy, diity ™" vy) — b(d,uf, @, vy) + (Vdiely, vp)

: Uh) +v(Vd &y, Vo) +b@(ty), di(tng1), vp)+b(du(ty), ulty), vp)
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+ 5(B(tn) X V x d; B(tn41), vp) + s(di B(1y) X V X B(1y), vp)
—s(B! x V x d; B} vy) — s(d; B} x V x B, vy)
= @R vp). (4.29)

dteﬁ+1
ot

sn+1
1€y

d
+ Vdept! = ——+ Vde) +d, Ry (4.30)

dl€n+1 —d,e
%, en | +n(V x dief TV xep) + (V- dief TV - ep)

+ (d B(tn) x u(ty), V X ¢p) + (B(ty—1) X diu(tn), V X ¢p)
— (d;B}, x uy,,V xcp) — (3271 x diuj,, V X cp)
= @R ep). 4.31)
We assume the solution u, p, B to (2.1)—(2.6) also satisfy the following regularities:

(Ad) :u;, By € L*(0, T; H'(Q)),
pu € L*(0,T; H'(RQ)), wui, By € L*(0, T; L*(Q)%),
(A5) :u; € L0, T; H/(Q)? N HX(2)?),
p € L0, T; H'nH'™Y, B, € L0, T; H (2)?).

For the truncation errors in (4.29)—(4.31), we have the following Lemma.
Lemma 4.8 Under the assumptions (A0), (A1) and (A4), the truncation errors satisfy

[

8t (ldi RyI + lld RENP + lldi R 1) S 622 (4.32)
n=0
Proof Due to the page limit, we omit the proof since it is rather standard. O

We define a symmetric positive definite operator A;, : C;, — C}, through
(ApBp,cp) = (VX By, Vxep)+(V-By, V-cp).
Moreover, we denote
1Bull% ) = (A} Bi. By).

and it is easy to find ||A;lBh I < IBpll=1 S |IBall-

We will estimate the errors of ||d; Ob] |1 and ||d; Gul || at the initial time step in the following
Lemma, that are needed to estimate ||d;6;' || -1 and ||d;6; ||, both of which are crucial to derive
the optimal error estimate for pressure.

Lemma 4.9 Under the conditions of Lemma 4.3 and (AS), the following three estimates hold
@) IO} 1% + 8tlldiOL 12 S 12 + b + 862,

1 -
(ii) + 5 IVOI2 S R+ 4 60,

a1l
ht 3
ot

2 -
(i) [di0y |+ 827(1Vdi0, 1> S B + h + 81%
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Proof (i). By taking n = 0 in (4.5) and setting ¢;, = A; 81 , from 9[9 = 0, we obtain

K 1
b N a2 ~19
= — |16 dipy,
ar| Tl +(”Ob h 6t>
~1 (4.33)

9] 91 91
+ <Bo X ug, V x A;‘;;) —~ <32 x up,, V X A,;‘;;) = (Rg,A;‘Sbt ,

We estimate the inner product terms in (4.33) as follows.

1
dfpbs A_l 9
ot
61
R), AL 5 )| = <R} {A

From the Lemma 4.2 and (4.27), we have |ug — ug*H2 < 812 + hH+2 4 p2+2 Thus, we

obtain
6} L0}
B0><u0,V><A_1(S Bh><uh*,V><A_(S

0 10 0 10,
ebxuo,VxA m + || Bj, x (uo — uh*)VxA m

1

b
ot

1
Al O 2,

< |id
5 lld: pj |

|
=< lldipp I

—1

1

< Rl 2.
S + IRl

-1

91
S IRL a—b

1

b

8
~1

1
~17b
St

=<
0 l; 0 0 b1
< ledlluolizee |-2{  + 1Bz lluo — ull |l |-&
St 1)
1 1 1 1
Shed -2 + lluwo —ud, 11 || -2 5— DA s 22 22,
1) . ) 614 .

Combining the above estimates with (4.33) and using Lemma 4.1 and (3.7), we deduce

ol
5—” +-LIOM P S o b P + 86 + H242 1+ h¥ 2 4 | RLZ S 062 + b2+ b,

!
2
(4.34)

which leads to the conclusion (i). ~
(ii). By setting n = 0 in (4.6) and taking v; = 30, since 67 = 69 = 0, we obtain

2 ~ ~

N1 1 1
diod, ) %) v b (o, uien, 2 ) = b (ul, @), B
st 5t u 8t 5t

6! 6)
+s(BoxVxB(t]), 8’;>_S<B xVth,8t> (4.35)

g1 1
— (V(p}, -0} 8‘;) = (Ri, 5‘;)
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The inner product terms in (4.35) can be estimated as follows. By using (3.6) and regularity

conditions, we get

él
(dt,OLl“ (;;)

By using (3.20) and (3.6), we get

2

1
+ lldepl 1 S o

2
+ %,

ol
u

5

bu

St

1

<
~ 10

< |ld;p}l

il
Zu
ot

s B St hs %hs St = u’ B st hs Pus 5t
0 O 0 0 1|6
S IVe @2 (S*L; + (lull oo + IV - a3 IV oul ﬁ
<1 (12 2
R 18 T LA e
~ 10 || 8¢ u w10 || St '

By using the integration by parts and (3.7), we obtain

gl
By xV x B(t)), %~ ] -
0 XV x B(t) 5

N

=5 <e2 x V x B(1), )
él
<e2 x V x B(t), “) +
) 51

él 1 0 él
= <e2 XV x B, 5 | + (Bgv(;; - (S‘;VBU,eg) - (1;2 x V x pp, 5

|
l*2]

1l
1 ~
S IV B2 | 55| + 5 1Byl + IV BRIV, 16,
0 1 )
+IBRIL= IV Xyl | -
14
e .
(3 Ve I2 - Va2 4+ 16 12 4 1V x ol |2
~ 10 || 8¢ +i eb” +25t” I +31‘” b” + |l Xpb”
e i
v ~
< |4 va 12 o % - p2r

From the Theorem 3.1 and (A5), we get

~ ~ ~ 12
61 1 1 1
st vdpl, 2 )| < stV el |22 < — || 812\ Vd, pl|I?
( Py 5;) < 8t[IVdip, |l el = 10 130 + 817V p,,
1|’ 1|’
< st2(|ld, p(tD 1> + Ildiut)]?) < — ||+ 5t
S 10 130 +8t°(d; pDIIT + Ndru () 113) S 10 |52 +
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From the Lemma 4.1, we have

gl
(R,i, 5[;) < IR}

Combining these estimates with (4.35) and using (4.34), we derive

- 9”1

ot

1
bu

5t
St +

1
SR+ —

<
10 ~

1
10

2

Ol
- 1
+ %nveg 12 S 02+ 02+ 617 + 6% S H 4+ h¥ 8%, (436)

u

ot

which is the conclusion (ii).
(iii) By setting n = 0 in (4.7), taking the L? inner product of the obtained equation with
itself on both sides, and using (4.36), we obtain

o) 12 él ~1 1| 12 2 2 2
Ju vol2 = | 2 , i ShY 4+ b+ 87,
‘5; + Vo, 5 o'+ 5 p! 7 +lo I Sh™ +h7 +
(4.37)
where p! = R}, — 81Vd;p}, and o' S 8tlldpplly + IRYI S 8t + 8t(ld, p(en)|h +
Id;u(ty)]2) § 81‘ by using Theorem 3.1 and Lemma 4.1. Since 93 =0, 92 = 0, we obtain
the conclusion (iii). ]

We assume the solution to (2.1)—(2.6) has the following regularity:

(A6) : By, € L*(0,T; H ()%, uy € L*(0,T; H*(2)> N H'(Q)?),
pi € L¥0, T; H1(Q)).

In the following Lemma, we will obtain the error estimate for ||d;6; |.

Lemma 4.10 Under assumptions (A0)—(A6), when 5t| loghl% < h, 8t < 8ty and h < hy,
the following estimate holds for 1 <m < [5—T,] -1,

m
IO P + 82V Aoy P + 8t Y vl VO S 882+ B 4 h
n=1

Proof In Step i, we first prove the error estimate of ||d;6;" ”L +8t Y py di6) |? using the
negative norm technique; and in Step ii, we establish the error estimate for ||d;6] || using the
result from Step i.
(Step i). By taking ¢, = A}, 'd,6] " in (4.31), we have
1
257 (10 12y = MO 12, + 14,65 — diO 112, + nlld, 012
= —(d:B(tn) x u(tn), V x A di0) ™) + (A Bj) x wj, .V x Aoy 59
— (B(ty—1) x diu(t), V x A, di6) ™) + (Bz xcdug,, Y x A 0T
— upp A O + @R A6,

We estimate the terms on the right hand side as follows.
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By using Lemmas 4.2 and 4.6 and Theorem 4.4, we obtain ||u(t,) — uj, 1> < 812 +
h?+2 4 h?r+2 Hence from the inverse inequality (3.2) and (3.7), we derive

I(d; B(ty) x u(ty), V x A, d0]") — (d, B} x ull,, V x A} di6p )]
= |(dre} x uty), V x A, d0p ) + (di B x (u(ty) —ull,), V x A, d,6pth|
=|(dief x u(t), V x Ay d0)") + ((dB(ty) — dye}) x (u(ty) —ull,), V x Ay d,0)"h)]
S e M)l oo def) =1+ lids Bt Nl oo () — ulp Illde 67—y

+ lldrefllluty) — uf NIV x A, d6) | oo

n —
S gldiey I+ 102+ () — w7+ () — w1012 B2
n
< glldiby I + I op 11> + IdeO 12 + 862 4 B2 2 4 g2 +2
< g”dz@g 2+ 1d 002 + 862 + 22

By using Lemmas 4.7, 4.6, Theorem 4.4, (3.6), and (3.7), we derive the following three
inequalities:
[(B(ty—1) X du(ty), V x A di0p ™) — (B x dyull,, V x A 00

= (e} " x du(ty), V x A d 07T + (BT x dy(u(ty) —ul ),V x A 08T
< llep " llldeuCen) | oo i) =1 + 1B} oo ldy (uitn) — w0 -1

S llep M 1P+ 10Ty + drelt ] + Ildy (ulf — e ) D1 -y

S ey P+ N0 IR 4 1O 1P + Nlde o 1 + 882 + |V

x (e = eI + 2 10f 12 + s f 1

S+ 1621+ IV

x (et = eI+ LNdOR I + 867 + ¥ + h¥,
R A d0p Y <l RETIIA, 00

< lld Ry I, S gudte;:*HF + Il R,
and
iy ™, AL 00D < Ndpp T INAL i) S ey I + gndte;;“nz.
Combining the above estimates with (4.38), we obtain

ey 1% = O 112, + ndtlld0p 1> + gar(ndte;:“ 1% = 167 11%)
<8682 4+ W2+ WY 4 |ldy pp )
+8(IV x TP+ IV x e 1)
+ 8tlld 0y + Stlldi0] 1> + Stlld Ry,
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Summing above inequality from n = 1 to m, using Theorem 4.4, Lemma 4.8, and (i) of
Lemma 4.9, we derive

m m
IO 12+ st Y N0y 1P S 80 Ndipp TP

n=1 n=1
m m
+or Y Nyt IRy + ey Idp
n=1 n=1
IO + stlldO I + 86% + B + n?

m m
Sty Ny TR 4 6t Y IO + 867 + B 4+ h7
n=1

n=1

Therefore, by Gronwall’s inequality, we obtain if §¢ < 81y,

m m
IOy M2y + st Y N0y 1> S 80 Y i) + 867 + ¥ + 1Y (4.39)

n=1 n=1

(Step ii). By taking v;, = d,0!"*! in (4.29), we have

1 ~ ~ - -
gawte:“ 12 = 100 1> + 1T — dib2 1) + VIV BT 1 + b(u(ty), diultyr1), diG2T)

— by i)™ d ) + b(diu (). w (), diBEY) — bdoul @ d )
+5(B(ty) X V X dyB(tyt1), d;0") — (B} x V x d, B}, d,61")

+5(d; B(ty) x V x B(t), d,0"™") — 5(d, B} x V x B, d,0""") + (dyp" 1, d, 61
+ (V07 di0) ) + (Vd,ply — Vdiph T di0) ) = (d, R d, 0.

(4.40)

From (4.30), we derive

d 0n+l d énJrl
—E o+ Vd ot = = S+ Vo + dip" 1, (4.41)

where d, p" ! = Vd, pt — Vd; pi™ + d; R
By taking the L? inner product of (4.41) with itself on both sides, we obtain

1 ~ &t -
557 W02 = NG + IV IP = IV 6517 — (0 dip™ )
(4.42)

ot ~
= 81(Vdi0, dip" ) = i " P = (Ot V6],
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Combining (4.40) and (4.42), we get
1 - -
@(nd,e:}“ 12 = 11021 + 1,00 — d,02 1) + v Vd 0|12

8t n+1,2 ny2
+5(||th9p I© = 1IVd:6,17)

+ b(u(ty), di(tyy1), diO) ) — b(ujy, dyity ™ d, O+ )

+ b(dyu(ty), u(ty), d0 Y — b(dyul, il di 61+ (I0)
+5(B(1) X V X dy Btny1), di6l ) — s(B} x V x d, B/, 67+ iy (443)
+5(diB(ty) x V x B(ty), &0 — 5(d, B} x V x B}, d,6"") (IV)

+ iyt a0 + (Vi oy — Vdiph T dio) T V)

= R, a0, + 81(Vd,0p, dip"t)
St -
+ EHdanHHZ + (d B, dp" . (VD)

We estimate the terms I-VI as follows.
For term I, by using (3.20), Theorem 4.4, and the inverse inequality (3.2), we derive
(D] = |b(ta), dutnr). d 0T — b, diiif ™, d, G|
= |b(e}, dultns1). diO) ") + b(u, dip) ™' d, 0] )|
= |b(e}, dultys1), didy ) — b(el, dipf ™, d, 00 ) + b(u(tn), dip) T, d, 0]
S eIV o, ity )l + Vit )l 3)
+ eIV ol i 6 oo (444)

+ IV BT 13) + ()l oo lide o NIV 62|

u

v ~ _2
< Enwte::*‘ I + et 1 drutar D3 + 3 et Nde o2 T + N o1

u u

% ~
N E”the,I;Jrl ||2 + 5t° + W2 + B2 + ”dtpn+l ”%

u
For term II, by applying the inverse inequality (3.2) and (3.6), we get
(D] = b(dpt(an). (i), dib ) = bldyay, @ dif; )]
= [b(dre, u(ty). dif; ") + bl &, dif; )

= |b(drel, u(ty), d,60 ") — b(dgel, &, di0I 1Y) + b(diu(ty), &, d,60 )|

u “u u’

= |b(diel, u(ty), d,0" Yy — b(dse", 0" + pl', d,0" 1) + b(du(ty), &, d,0" )]

< Nidee @) 121198 + sl (IO 1B+ | oo + 116211 oo 11 Vs 621
+ e 1AV o I B oo + o NIV G+ [ L)
+ ldim@) I VeIV,

~ l ~ ~
S el IV 01 | + | log h| 2 | dee 111V 11V d 62|

(4.45)

_1 ~ _ ~ ~ ~
+ e | (R 31162 o + R TN IVE G + IVER V6|

N

Vv ~ ~ ~
ﬁnwtes“ I + lld;e™ > + [log VAL | drel I* + VL |2

A

v A ~ ~ ~
Enwfe::*‘ I + 10217 + 1 + |VO2I* + [log hlIIVEI 12 N1d 02 11> + I VER .
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For term III, by using the integration by parts, the inverse inequality (3.2), Theorem 4.4
and (3.7), we derive

|(D| = s|(B(ta) X V X d; B(tyt1), di0) — (B} x V x d, B}, 4,61
= sl(ej x V x diB(tys1), dif} ") + (B} x V x dyey ™, d, 05+
=5](ell X V x diB(tyt1), 0 + (B(1y) — ) x V x dyep ™, d,617)]
S (e} x V x di B(tag1), di02T)| + |(B(tn)Vd, 00+ — di6I 'V B (1), dyef ™|
+ ) x V x oyt difnth + (e x V x dipp ! d, )|

S lepllilide Btus D111V + (1B (@)l + IV B @) IV 0l dpep ™|
+ 1PV x defy T A6 o + el llde o T Va6t (4.46)
~ ~ 1 ; ~
S Nep i IVa et + IV ldrel 1+ llef " Tog 712 1 07T 11V, 2

1 Gn+1
+ e lilideop V6, i

A

v ~ _
Enw,@::“ I+ Nef i3 + lidief 1% + [og hlh =2l ef 11> 1d 60y |1

A

v ~
Enw,e::“ I+ llef 13 + Ide0y T 1% + llde o T2

A

v A 7
IV e T + 18

where we also use ||d,,oZ+1 I < Ild; B(ty+1)]l1 and 8¢| 10gh|% < h.
For term IV, by using the integration by parts, the inverse inequality (3.2), Theorem 4.4
and (3.7), we derive

|(IV)| = s|(d; B(ty) x V x B(ty),d,6""") — (&, B} x V x B!}, d, ")

sl(diep x V x B(tn),dté,fﬂ) + (d;Bj, x V x e}, d,é,:‘+1)|

[(de} x V x B(ty), d,0" ™) + |(d; B(ty) x V x e}, d,0" )|

+1(dipf x V x e, d0" T+ 1(d, 0 x V x ell, d,6" )|

S I(drel x V x B(ty), di00 )| + |(d B(ty) x V x e}, d00T)]
+ |(drpf x V x e, d00)| + 1(d, 07V d, 0" — a,67Tvd,6), e

S Ndrep IV x B(ta) 1l 3110 s + llde B(a) | 211V x el 1l o
+ ldipp 31V x e ldi0 I o + (lldibf | L= 1V B | (4.47)
+ (1B oo V0] 1D e |

S Mdieg 1IVab; T+ 1V x ep NIV by + lldop NIV x ep 1V

A

- ~ 1 ~
+ (i 11V 0 + Nog 1A~ 1V, 6 11di67 1D e

A

v ~ _
Enwte::“ 17+ el > + IV x e I* + |log hlh = e} |12 [ld, 07 1I*

A

v ~
Enwte:z“nz + e o 12 4+ IV x el |1 + lld: 6711

A

V ~
Enwtezz“ I+ IV x efI* + di6) 1> + h*".
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For terms V and VI, by (2.7), we derive

|(term V)| < [(dip ™, di03 T + 8t1(di oV - diB) |

< e O ) + St s o TN - Y| (4.48)

v ~
S IV + i pi T2 + 80 i o I,

and

- St -
(VD) < 1@ Ry, diby D]+ 811(Vd,0], dip" D + - lldop™ 2+ 1@ dip™ )

< Nld RNV A2 + 51194, 02] |y o |
ot ntly2 jn+1 n+1 (4.49)
+ 3 ldep" I VA e "

Vv ~
S T IV P + 1 R + 82V, 0 12 + 2.
Combining (4.44)—(4.49) with (4.43), we obtain

105 1P = 1di0 1> + 810V, 6,1 + 86 (| Vd, 031> — [V, 011)
< 8t(1+ |1og hl[IVE] 1) [1d: 0] |1* + 82|V, 0721
+ 8t (I 0f 1* + 10+ 1) (4.50)
+ 8t (ld o3 + 802 4+ W2+ B 4 NldeepP 12 Nl ")

+ 80 i plp 1+ Stlld RYTP 4 St (VO + 1VELN + llep D).

By taking the summation of (4.50) from n = 1 to m, and using Lemma 4.8, Theorem 4.4,
Lemma 4.9, (4.39), and (3.6), (3.3), we obtain

m
lld 0% + 81 Z vIVd 082 + 5[2||th9;n+l 12

n=1

m m
S8ty (1 + [loghl[IVE; )10 1> + 82 > (V07

n=1 n=1

m
+8t Y (i 11> + l1di6y T 11%)

n=1

m
+6t Y (dioi ™ IT + e TP+ Nidep" 1)

n=1

m
+8 " NdupptIZ + 862 + B 4 B
n=1

m m
S8ty (14 [logh[[IVE; )10 1> + 82 > (V07

n=1 n=1

m
+8t Y Ndp" TP+ 8% + 1 + R

n=1
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In addition, by applying the Theorem 3.1 and Lemma 4.8,

m m m
503 Nldep" 1P < 6833 lldepli I + 803 I RE 2
n=l1 n=1

n=1

m
S8 (ldus pla DIT + ldultas)113) + 67

n=1

< 812,

Therefore, by using (4.27) and the Gronwall’s inequality, we obtain

m
Id 07117 + 862V 02 4 81y vV, B2

n=1

m
<S8ty (1+|loghl[IVO] %) Id:6; I

n=1

m (4.51)
+863 ) IVdion|* + 862 + h¥ + ¥
n=1
m

< 82 + h¥ + h* ) exp (5; > (1 +|loghl|VE} ||2)> <82+ h2 4 n?r,

n=1

that is the desired result. O
Finally, we are ready to obtain the optimal error estimate for pressure in the next Theorem.

Theorem 4.11 Under the assumptions of Lemma 4.10, the following estimate holds

; T
~n n min{/,r} o
Vel + llepbll < 8t +h ,lsns[&} (4.52)
Proof From the inequality ||V *!| — V67| < [[VE!*! — V& | and Lemma 4.10, we

derive

m
IVE = 1ve < > Vet — vy

n=1

1
m 2 m
< (Z |vertt — vé;||2> (Zl) St +nl+n"
n=1

n=1

Bl

By applying (ii) of Lemma 4.9, we derive
nom l r T
VO S8t +h' +h", for alll <m < 5l
From the triangle inequality, we have

_ T
IVE™ || < VO™ || + IVl < 8t +h' + k", for alll <m < [g] (4.53)
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By taking the summation of (4.6) and (4.7), we obtain the error equation with respective
to pressure p

O3,V cvp) = (dief ! o) + (Ve Vog) + ble), utng1), va) + b(uj, &, vy)
+s (ez x V x B(ty+1), vh) +5 ( h XV x e"Jrl vh) (4.54)
_(RZH +RZH ) — (pn+1 Vo).
For the four trilinear terms in (4.54), we estimate them one by one as follows.
b(el, u(tnrn), v) S lepllllettar DIV Rl < lepllliVonll. (4.55)
By applying the inverse inequality (3.2) and Theorem 4.4, we obtain
b(uy, &t ) = bu(t), & vp) — blej. et vp) S IV IIIVET Vol
+ lleg ||||V~"+1 IV oRllLs + llonllz) (4.56)
SIVE IV onll + A S el NIV IVonll S 1VET IV oall,
and
s (€} x V x B(tat1), 1) < sleplllV x Bltas D)l 3 lvallzs S leplIVoal. (4.57)

By using the integration by parts and the inverse inequality (3.2), (3.7) and Theorem 4.4, we
get

(Bh x V x el v;,) (B(tn) x V x et vh) — (eh x V x et vh)
=g (B(t,,)Vvh —v,VB(t,), eZ“) -5 (e xV><,o”Jrl vh) — 5 (ez xVx@,ﬁ”’l, vh)
S UB@E) e + IVB @) L) Vo, ||||€n+] I+ llep iV x ,On+] [HvnllLee (4.58)
+ eIV x 9"+1||||vh [l Lo
_ 1
SV, ||||€"+1|| + llep IV x p”+1|||logh|2 Vil + lle) ||||9"H||h Ylogh|2 (| Vv,
SAIVonllle™ 1 + llepllVonll.
Combining (4.55)—(4.58) with (4.54), we obtain
O3V v < Ndie VRl + [VET Vo |

+ e IVl + leplIVorll + IV orlllle)
+ IR NVorll + IR IV oRl + o5t Vsl

By applying the inf—sup condition (3.1), Lemma 4.10, (4.53), Theorem 4.4, Lemma 4.1 and
(3.6), we obtain

BIONT S Idiep T+ IVET ] + llepll + llep | + llep
F IR+ IR+ 1 on T S 8t +h! 40

The proof is completed by triangle inequality and (3.6). O

Remark 4.12 For the three dimensional case (d = 3), since the inverse inequalities are more
- _3 _1 _1 .
restrictive: | wy|lre S AT 2 |wpl, lwallze S A2 lwpllps S A7 2 ||lwpll1, Theorem 4.11 is
3
still valid but provided that 81 < h2.
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5 Numerical Examples

We now implement various 2D numerical experiments to validate the stability and accuracy
of the scheme. We use the inf—sup stable P2/P1 element [6] for the velocity and pressure,
and linear element for the magnetic field.

5.1 Accuracy Test

We first perform numerical simulations to test the convergence rates of the proposed scheme.
The computational domain is €2 = [0, 1] x [0, 1]. We assume the following functions

u= > +12,x°+12), p=102x — D2y — D(1 + %), B = (sin(y) + 12, sin(x) + 12)

to be the exact solution, and impose some suitable force fields such that the given solution can
satisfy the system. Choose v = 1 = s = 1. In Table 1, we list the numerical errors between
the numerical solution and the exact solution at 7 = 1 with different time step sizes. Since
the relation between the spatial grid size # and temporal step size 8¢ to be §t = h?, we
observe the second order accuracy asymptotically for [le, |l 2, [lexll g1, llepll 2, llepll 2 and
the first order accuracy for |le,|| 51, as predicted theoretically.

5.2 Stability Test

We show the evolution of the total free energy in this example. We set the computed domain
to be 2 = [0, 1]2, and the initial conditions for u, p, B are

u’ = (2 - Dl - DRy — 1, =y (= Dix(x — DRx — 1)), p* =0

0_ o . T (5.1)
B~ = (sin(;rx) cos(my), —sin(mwy)cos(mwx)).

We test the energy stability over matching time of the proposed scheme under varing physical
parameters of R, = R,, = 10, 50. The coupling parameter is fixed as s = 1, and mesh size
ish = 1/64.InFig. 1, we present the time evolution of the total free energy for four different
time steps of §¢ = 0.05,0.01, 0.001, 0.0001 until 7 = 5. We observe that all four energy
curves decay monotonically for all time step sizes, which numerically confirms that our
algorithm is unconditionally energy stable.

5.3 Hydromagnetic Kelvin—-Helmholtz instability

The Kelvin—Helmbholtz (K-H) instability in sheared flow configurations is an efficient mech-
anism to initiate mixing of fluids, transport of momentum and energy, and the development of
turbulence. This phenomenon is of interest in investigating a variety of space, astrophysical,
and geophysical situations involving sheared plasma flows. Configurations where it is rele-
vant include the interface between the solar wind and the magnetosphere, coronal streamers
moving through the solar wind, etc. Since most astrophysical environments are electrically
conducting and relevant fluids are likely to be magnetized, it is thus of prime importance
to understand the role of magnetic fields in the K—H instability. About the theoretical and
numerical study of Hydromagnetic K—H instability, we refer to [5,8,9,12,17,24,27] and the
references therein.

We study the occurring of the K-H instability in a single shear flow configuration that
is embedded in a uniform flow-aligned magnetic field. The simulation is performed in the
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(a) Re = Rm = 10. (b) Re = Rm = 50.

Fig. 1 Time evolution of the free energy functional till 7 = 5 for four different time steps and two sets of
order parameters a R, = R;; = 10 and b R, = R, = 50. The energy curves show the decays for all time
steps 8¢ = 0.05,0.01, 0.001, 0.0001

(a) t=0.l.

(e) t: 2.5. f)e=s3 (g)t=35 (h)t=4

Fig.2 The dynamical behaviors of the magnetic field together with the velocity field that shows the hydromag-
netic K—H instability. Snapshots of the numerical approximation are taken at r = 0.1, 1,2,2.2,2.5,3,3.5,4

computed domain of [0, 2] x [0, 1]. The initial velocity field is ug = (1.5, 0) in the top half
domain, and ug = (—1.5, 0) in the bottom half domain. The sheared initial magnetic field is
By = (tanh(y/¢€), 0) where € = 0.07957747154595 (cf. [9]). The velocity u, magnetic field
B and pressure p are periodic boundary conditions on left and right boundaries. On the top
and bottom boundary, the second component v of the velocity field u = (u, v) is imposed.
The boundary conditions for B are B x n = B x n for the top boundary and — B¢ x n for
the bottom. We let R, = R, = 1000, s = 0.09, and use the time step 6 = 0.01, grid size
h = 4% to compute it.

In Fig.2, we show snapshots of the magnitude of B that is the first component of B =
(B1, By) together with the velocity field u at r = 0.1, 1,2,2.2,2.5,3,3.5,4. When time
evolves, we can observe the vortexes start to form around ¢ = 2. After + = 2.5, the profiles
of vortexes and the magnetic field show the typical structure of K-H instability, and soon it
deforms and rotates along with the flow. The obtained numerical results coincide well with
the numerical/experimental results discussed in [5,8,17,27], qualitatively.
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(a) No magnetic field. (b) H-Magnetic. (¢) V-Magnetic.

Fig. 3 The steady state of the streamlines for the velocity field for three cases, where a No magnetic field, b
H-magnetic, and ¢ V-magnetic

(a) R. = 1000, Ry, = 10, H, = 10. (b) R, = 1000, Ry = 100, Ho = 10.  (€) Re = 1000, Ry, = 200, H, = 10.

——-

(d) r. = 1000, R,, = 400, H, =10. (&) R, = 1000, R, = 1000, H, = 10.

Fig.4 The steady state of the velocity field # and the magnetic field B for five set of order parameters, shown
in the caption of each subfigure, in which, the left one is the velocity field and the right one is the magnetic
field

5.4 Lid Driven Cavity

Finally we perform the lid driven cavity flow simulation of a conducting fluid. The computed
domain is (x,y) € @ = [0, 1] x [0, 1]. The boundary condition of the magnetic field is
either horizontal case B[y = (1, 0) (denoted by H-magnetic) or vertical case B|yq = (0, 1)
(denoted by V-magnetic). The no-slip boundary conditions are imposed on the bottom, left,
and right sides of the cavity and the lid moves from left to right with the constant speed
uly—1 = (1,0).

First, we set R, = 400, R,, = 40 and Hartmann number H,(:= +/sR.R,) = 100.
In Fig.3, we show the steady state for three cases: no magnetic field, H-magnetic and V-
magnetic, respectively. For the case of no magnetic field, this situation is actually a pure
hydrodynamic problem, in which we observe the cavity is dominated by one large primary
eddy in the center, together with a smaller secondary eddy in the right corner. For the H-
magnetic case, two large eddies appear in the upper and lower part. For the V-magnetic case,
two large eddies are located in the upper left and upper right. Similar features had been
observed in [3] as well.

Second, we perform the so-called “magnetic frozen” simulations by varying the magnetic
Reynolds number R,,. We set the fluid Reynolds number and Hartmann number to be R, =
1000, H, = 10, and five different values of R,, = 10, 100, 200, 400, 1000 in Fig.4. We
observe that the magnetic field bends gradually as R, grows, which means the convection of
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magnetic field yields more and more notable influences. When the magnetic field is strong
enough, for instance when R, = 100, 200, 400, 1000, the magnetic field form a big eddy at
the center of the cavity which is quite similar to the corresponding fluid flow. This feature is
called as the magnetic field is frozen inside the velocity field. Similar phenomenon had been
reported in [28] as well.

6 Concluding Remarks

In this paper, we develop a fully decoupled, linear and unconditionally energy stable scheme
for solving the incompressible MHD system, and prove the unconditional energy stability for
the fully discrete scheme with the finite element approximations. We further rigorously estab-
lish the optimal error estimates for this scheme, and implement ample benchmark numerical
experiments to demonstrate the stability and the accuracy in simulating some benchmark
problems, including the Kelvin—Helmholtz shear instability and the magnetic-frozen phe-
nomenon in the lid-driven cavity.
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