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Abstract
Recently, the method called tensor completion by parallel matrix factorization via tensor
train (TMac-TT) has achieved promising performance on estimating the missing informa-
tion. TMac-TT, which borrows ket augmentation to transform a lower-order tensor into a
higher-order tensor, suffers from serious block-artifacts. To tackle this issue, we build an opti-
mization model combining low-rank matrix factorization based on tensor train (TT) rank and
the total variation to retain the strength of TT rank and alleviate block-artifacts. We develop
a block successive upper-bound minimization algorithm to solve the proposed model. Under
some mild conditions, we theoretically prove that the proposed algorithm converges to the
coordinatewise minimizers. Extensive numerical experiments illustrate the superiority of the
proposed method over several existing state-of-the-art methods qualitatively and quantita-
tively.
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1 Introduction

Tensors, treated as high-dimensional generalizations of matrices and vectors, are powerful
to express more complex interactions related to higher-order data. Recent years, the tensor
analysis plays an important role in a wide range of real-world applications [3,10–12,14,
34]. Among them, one important problem is the tensor completion problem, which aims
to estimate the missing values from the observed tensor data, e.g., color image or video
inpainting [2,4,8,19], hyperspectral images recovery [5,15,21], magnetic resonance image
(MRI) recovery [6,32], and higher-order web link analysis [18].

The low-rank constraint has become a powerful tool to recover the higher-order tensor
with missing entries. Mathematically, the low-rank tensor completion (LRTC) problem can
be formulated as

min
M

rank(M)

s.t . P�(M) = T ,
(1)

where M ∈ R
n1×···×n j is the underlying tensor, T ∈ R

n1×···×n j is the observed tensor,
� is the index of observed entries, and P�(·) is the projection operator that keeps entries
in � and zeros out others. However, the definition for the rank of tensors is not unique,
such as CANDECOMP/PARAFAC rank and Tucker rank [17]. Both of the corresponding
minimization problems are generally NP-hard [9,26]. To tackle this problem, Liu et al. [22]
firstly defined the nuclear norm of a tensor based on the mode-k unfolding [17]

min
M

‖M‖∗ =
j∑

k=1

αk‖M(k)‖∗

s.t . P�(M) = T ,

(2)

where M(k) ∈ R
nk×∏

d �=k nd is the mode-k unfolding of M and αks are positive constants

satisfying
∑ j

k=1 αk = 1. The nuclear norm minimization methods for solving problem (2)
have to calculate the singular value decomposition (SVD) for all matrices in every iteration,
which suffer from high computational cost. To improve the capacity of solving large-scale
problems, Xu et al. [35] performed the low-rank matrix factorization to all-mode unfolded
matrices, i.e., factorize eachmodematricizationM(k) into the product of two smallermatrices
Xk and Yk , and proposed the following model:

min
Xk ,Yk ,M

j∑

k=1

αk‖XkYk − M(k)‖2F

s.t . P�(M) = T ,

(3)

where Xk ∈ R
nk×rk , Yk ∈ R

rk×∏
d �=k nd , and rk is the estimated rank of the matrixM(k).

As the matrix M(k) is constructed based on an unbalanced matricization scheme (one
mode versus the rest) [7,22], the rank(M(k)) only captures the correlation between a simple
mode (not a few modes) and rest modes of the tensor. Therefore, the existing methods based
on Tucker rank maybe not suitable for completing higher-order tensors ( j > 3) [16,28].

Recently, the tensor train (TT) rank, which considers the global correlation of tensors
thanks to a well-balanced matricization scheme, is proposed [27,29] as

rankt t (M) = (
rank(M[1]), . . . , rank(M[ j−1])

)
, (4)
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whereM[k] ∈ R
(
∏k

d=1 nd )×(
∏ j

d=k+1 nd ) is the mode-k canonical matricization of the tensorM.
Bengua et al. [1] applied TT rank to the color image and video completion. They proposed
two methods based on TT rank for LRTC. The first one, simple low-rank tensor completion
via tensor train (SiLRTC-TT), minimizes the TT nuclear norm, i.e.,

min
M

j−1∑

k=1

αk‖M[k]‖∗

s.t . P�(M) = T ,

(5)

where αk is the constant satisfying αk ≥ 0 and
∑ j−1

k=1 αk = 1. Another one, tensor completion
by parallel matrix factorization via tensor train (TMac-TT), uses matrix factorization to
approximate the TT rank of a tensor, i.e.,

min
Xk ,Yk ,M

j−1∑

k=1

αk

2
‖XkYk − M[k]‖2F

s.t . P�(M) = T ,

(6)

where Xk ∈ R
(
∏k

d=1 nd )×rk , Yk ∈ R
rk×(

∏ j
d=k+1 nd ), and rk is the rank of the matrix M[k].

TT rank is more suitable for higher-order tensors due to the ability of capturing the global
correlation of a tensor. In order to handle the third-order tensor data, SiLRTC-TT and TMac-
TT use a tensor augmented scheme known as ket augmentation (KA), but they cause
block-artifacts [24] on restored images.

KA uses an appropriate block structured addressing scheme to cast a lower-order tensor
into a higher-order tensor. However, this scheme does not consider the local smoothness
between blocks and blocks, so the block-artifacts are caused on restored images. The block-
artifacts can be seen in the results for completion of the Lena image with 90% missing
entries in Fig. 1b, c. To reduce the block-artifacts, we need to smooth the edges between each
block. Total variation (TV), one of the most famous functions to characterize the piecewise
smoothness prior, has been shown to preserve edges well in image processing [13,25,31,33,
36,37]. Motivated by former works, we introduce TV into LRTC (6),

min
Xk ,Yk ,M

j−1∑

k=1

αk

2
‖XkYk − M[k]‖2F + λTV(M)

s.t . P�(M) = T ,

(7)

where αk satisfies αk ≥ 0 and
∑ j−1

k=1 αk = 1, λ is a regularization parameter, and TV(M)

is the total variation of M in spatial dimensions (see details in Sect. 3.1). The proposed
model is named tensor completion via matrix factorization based on tensor train rank and
total variation (MF-TTTV). From Fig. 1, it is clear that our method can effectively alleviate
block-artifacts compared with SiLRTC-TT and TMac-TT.

The contributions of this paper are mainly two folds: (1) we propose a new tensor com-
pletion model combining low-rank matrix factorization based on TT rank with the TV
regularization, which simultaneously exploit the low-rankness and the piecewise smoothness
prior of the underlying tensor; (2) we develop a block successive upper-bound minimization
(BSUM) algorithm to solve the proposed model. Experiments demonstrate that our method
performs better than the comparedmethods and effectively reduces the block-artifacts caused
by using KA.
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MF-TTTVTMac-TTSiLRTC-TTOriginal

Fig. 1 The results of Lena with 90% missing entries by different methods. From left to right: the original
image, the result by SiLRTC-TT, TMac-TT, and MF-TTTV, respectively

The outline of this paper is as follows. Section 2 reviews some preliminary knowledge
about the tensor, the tensor train rank, the proximal operator, and KA. Section 3 describes
the model formulation and an efficient BSUM-based algorithm with convergence analysis.
Section 4demonstrates the effectiveness of the proposedmethodbased on abundant numerical
experiments. Section 5 summarizes this paper.

2 Preliminary

2.1 Tensor Basics

A tensor is a high-dimensional array and its order (or mode) is the number of its dimensions.
We denote scalars as lowercase letters, e.g., z, vectors as boldface lowercase letters, e.g., z,
matrices as capital letters, e.g., Z, and tensors as calligraphic letters, e.g., Z. A j th-order
tensor is defined as Z ∈ R

n1×···×n j whose (i1, . . . , i j )-th component is denoted as zi1,...,i j .
The inner product of two tensors X and Y with same size is defined as

〈X ,Y〉 =
∑

i1,...,i j

xi1,...,i j · yi1,...,i j .

The Frobenius norm of a j th-order tensor Z is ‖Z‖F = √〈Z,Z〉.
The mode-k unfolding of a tensor Z is denoted as Z(k) ∈ R

nk×∏
d �=k nd , where the tensor

element (i1, . . . , i j ) maps to the element (ik, b) of matrix Z(k) satisfying

b = 1 +
j∑

d=1,d �=k

(id − 1) jd with jd =
d−1∏

t=1,t �=k

nt . (8)

We denote the mode-k unfolding of a tensor Z as Z(k) = unfold(k)(Z). The inverse operator
of unfolding is denoted as “fold”, i.e., Z = fold(k)(Z(k)).

The mode-k canonical matricization of a tensor Z is defined as Z[k] ∈
R

(
∏k

d=1 nd )×(
∏ j

d=k+1 nd ), where the tensor element (i1, . . . , i j ) maps to the element (a, b)
of matrix Z[k] satisfying

a = 1 +
k∑

d=1

(
(id − 1)

d−1∏

t=1

nt

)
and b = 1 +

j∑

d=k+1

(
(id − 1)

d−1∏

t=k+1

nt

)
. (9)
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Table 1 Tensor notations

Notations Explanations

Z , Z, z, z Tensor, matrix, vector, scalar

〈X ,Y〉 Inner product of two same-sized tensors X
and Y

‖Z‖F Frobenius norm of tensor Z
Z(k), unfold(k)(Z) Mode-k unfolding of a tensor

Z ∈ R
n1×···×n j denoted as

Z(k) ∈ R
nk×

∏
d �=k nd

fold(k)(Z(k)) The inverse operator of unfolding denoted as
Z = fold(k)(Z(k))

Z[k], reshape[k](Z) Mode-k canonical matricization of a tensor
Z ∈ R

n1×···×n j defined as

Z[k] ∈ R
(
∏k

d=1 nd )×(
∏ j

d=k+1 nd )

unreshape[k](Z[k]) The inverse operator of reshape denoted as
Z = unreshape[k](Z[k])(

rank(Z[1]), . . . , rank(Z[ j−1])
)

Tensor train rank

In MATLAB, it can be implemented by the reshape function

Z[k] = reshape[k]
(
Z,�k

d=1nd ,�
j
d=k+1nd

)
.

We denote the mode-k canonical matricization of a tensor Z as Z[k] = reshape[k](Z). The
inverse operator of reshape is denoted as “unreshape”, i.e., Z = unreshape[k](Z[k]).

The TT rank is defined as the vector

rankt t (Z) = (
rank(Z[1]), . . . , rank(Z[ j−1])

)
.

The tensor Z is low-rank, if Z[k] is low-rank for all k .
The notations are listed in Table 1.

2.2 Operators

Let � be an index set, then the projection operator P�(Z) denotes the tensor copying the
entries from Z in the set � and letting the remaining entries be zeros, i.e.,

(P�(Z))i1,...,i j =
⎧
⎨

⎩

zi1,...,i j , (i1, . . . , i j ) ∈ �,

0, otherwise.

The proximal operator of a given convex function f (x) is defined as

prox f (y) = argmin
x

f (x) + ρ

2
‖x − y‖2, (10)

where ρ is a positive proximal constant. The problem minx { f (x)} is equivalent to
minx,y{ f (x) + ρ

2 ‖x − y‖2}. Thus one can obtain the minimization of f (x) by iteratively
solving prox f (x

l), where xl is the latest update of x . The proximal operator is very attractive
in that the objective function (10) is strongly convex with respect to x so long as f (x) is
convex.
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2.3 Ket Augmentation

In this subsection, we introduce ket augmentation (KA) to represent a lower-order tensor by a
higher-order one without changing the number of entries in the tensor. The TT decomposition
can effectively exploit the local structure of the data by considering the low-rankness of the
augmented tensor. Even though the tensor is slightly correlated, its augmented tensor has low
TT rank [20].

KA is firstly introduced in [20] to cast a grayscale image into real ket state of a Hilbert
space by using an appropriate block structured addressing. In [1], the authors successfully
extended KA to third-order tensors. Next, we introduce the details about how KA works
on the color image. We define the third-order tensor M ∈ R

n1×n2×n3 that represents the
color image, where n1 × n2 = 2n × 2n is the number of pixels in the image and n3 = 3 is
the number of colors. Let us start with an initial block, labeled as i1 and containing 2 × 2
pixels corresponding to a single color j ( j = 1, 2, 3 denotes red, green and blue colors,
respectively). This block can be represented as

M̃ =
4∑

i1=1

ci1 jei1 ,

where ci1 j is the pixel value corresponding to color j and ei1 is the orthonormal base e1 =
(1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1). For all three color
channels, the three blocks is represented as

M̃ =
4∑

i1=1

3∑

j=1

ci1 jei1 ⊗ u j ,

where u j is the orthonormal base u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), and ⊗
denotes a tensor product [17]. Let us consider a larger block (labeled as i2) which consists
of four inner sub-blocks for each color j as shown in Fig. 2b. So we have the new block

Z̃ =
4∑

i2=1

4∑

i1=1

3∑

j=1

ci2i1 jei2 ⊗ ei1 ⊗ u j .

i2 = 1

i1 = 1 i1 = 2 i1 =1 i1 = 2

i1 = 3 i1 = 4

i2 = 2

i1 = 3 i1 = 4

i2 = 3

i1 = 1 i1 = 2 i1 =1 i1 = 2

i1 = 3 i1 = 4

i2 = 4

i1 = 3 i1 = 4
j = 1
j = 2
j = 3

j = 1
j = 2
j = 3

i1 = 1 i1 = 2

i1 = 3 i1 = 4

(b)(a)

Fig. 2 Graphical illustration of a structured block addressing procedure. a Example addressing for a 2×2×3
color image. b Example addressing for a 22 × 22 × 3 color image (Color figure online)
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The color image can be cast into an (n + 1)th-order tensor as follows:

M̃ =
4∑

i1,...,in=1

3∑

j=1

cin ,...,i1 jein ⊗ · · · ⊗ ei1 ⊗ u j . (11)

Based on the KAmethod, TT-based methods can effectively exploit the local structure infor-
mation of visual data and have a better low-rank representation. After the augmented data is
processed by the completion method, the reverse operation of KA is performed to obtain the
original image form.

3 The ProposedModel and Algorithm

3.1 The ProposedModel

The objective function of our model is:

f (X,Y,M) = min
M,X,Y

j−1∑

k=1

αk

2
‖XkYk − M[k]‖2F + λTV(M), (12)

where X = (X1, . . . ,X j−1), Y = (Y1, . . . ,Y j−1), and λ is the regularization parameter. In
the proposed model, the first term is the fidelity term, the second term is the regularization
term.

In the fidelity term, matrices M[k], obtained by a well-balanced matricization scheme,
capture the global information of the underlying tensor M. This fidelity term enhances the
low-rankness of the underlying tensor M.

In the regularization term, TV(M) denotes the isotropic TV in spatial dimensions. This
term aims at enhancing the piecewise smoothness in spatial dimensions. According to the
rules of unfolding a tensor (8), we find that the mode-1 unfolding matrix M(1) has a good
structure:

M(1) = [M(1), . . . ,M(ŝ)] ∈ R
n1×s, (13)

where ŝ = ∏ j
k=3 nk , s = n2 × ŝ, andM(i) ∈ R

n1×n2 is a matrix in spatial dimensions of the
tensor M.

In our works, the isotropic TV is defined as follows:

TV(M) =
ŝ∑

i=1

n1∑

m=1

n2∑

n=1

√
[D1

m,nM
(i)]2 + [D2

m,nM
(i)]2, (14)

where D1
m,nM

(i) and D2
m,nM

(i) are the horizontal and vertical gradient values at the (m, n)-th
pixel of matrixM(i), respectively, and D1

m,n and D2
m,n are the discrete horizontal and vertical

gradient operators, respectively.

3.2 The Proposed Algorithm

It is clear that the objective function (12) is not jointly convex for (X,Y,M), but is con-
vex with respect to X, Y, and M independently. In order to solve the nonconvex problem
effectively, we develop the BSUM-based algorithm.
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Let Z = (X,Y,M) and Zl = (Xl ,Yl ,Ml), by utilizing the proximal operator, (7) can
be updated through the following:

Zl+1 = argmin
Z

h(Z,Zl) = argmin
Z

f (Z) + ρ

2
‖Z − Zl‖2F , (15)

where ρ is the positive proximal parameter. Note that (15) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xl+1 = argmin
X

h1(X,Zl
1) = argmin

X
f (X,Yl ,Ml) + ρ

2
‖X − Xl‖2F ,

Yl+1 = argmin
Y

h2(Y,Zl
2) = argmin

Y
f (Xl+1,Y,Ml) + ρ

2
‖Y − Yl‖2F ,

Ml+1 = argmin
P�(M)=T

h3(M,Zl
3) = argmin

P�(M)=T
f (Xl+1,Yl+1,M) + ρ

2
‖M − Ml‖2F ,

(16)
where Zl

1 = (Xl ,Yl ,Ml), Zl
2 = (Xl+1,Yl ,Ml), Zl

3 = (Xl+1,Yl+1,Ml). It is easy to see
that the X- and Y-subproblem can be decomposed into j − 1 independent problems. Then,
the (16) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xl+1
k = argmin

Xk

αk

2
‖XkYl

k − Ml
[k]‖2F + ρ

2
‖Xk − Xl

k‖2F
= (αkMl

[k](Y
l
k)

T + ρXl
k)(αkYl

k(Y
l
k)

T + ρI)−1,

Yl+1
k = argmin

Yk

αk

2
‖Xl+1

k Yk − Ml
[k]‖2F + ρ

2
‖Yk − Yl

k‖2F
= (αk(X

l+1
k )TXl+1

k + ρI)−1(αk(X
l+1
k )TMl

[k] + ρYl
k),

Ml+1 = argmin
P�(M)=T

j−1∑

k=1

αk

2
‖Xl+1

k Yl+1
k − M[k]‖2F + λTV(M) + ρ

2
‖M − Ml‖2F ,

(17)
where I ∈ R

rk×rk is an identify matrix.
The cost of computing Xk is O(rk

∏ j
d=1 nd) and the cost of computing Yk is

O(rk
∏ j

d=1 nd).
Since the M-subproblem does not admit a close-form solution, we solve the M-

subproblem using the alternating direction method of multipliers (ADMM). By introducing
auxiliary variables, we rewrite it as the following equivalent constrained problem:

min λ

n1∑

m=1

s∑

n=1

‖Em,n‖2 +
j−1∑

k=1

αk

2
‖Xl+1

k Yl+1
k − Ak[k]‖2F + ρ

2
‖M − Ml‖2F ,

s.t . P�(M) = T , M = Ak, M = Z, D1Z(1) = E1, D2Z(1) = E2,

(18)

where Em,n = [(E1)m,n, (E2)m,n] ∈ R
1×2, (E1)m,n and (E2)m,n are the (m,n)-th entries of

E1 andE2, respectively, andD1 andD2 are the first-order differencematrices in the horizontal
and vertical directions based on D1

m,n and D2
m,n , respectively.
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The augmented Lagrangian function of (18) is defined as

L(M,Ak,Z,Ei ,Bk,Qi ,Fi ) = λ

n1∑

m=1

s∑

n=1

‖Em,n‖2 +
j−1∑

k=1

αk

2
‖Xl+1

k Yl+1
k − Ak[k]‖2F

+ ρ

2
‖M − Ml‖2F

+
j−1∑

k=1

(
β1

2
‖M − Ak‖2F + 〈M − Ak,Bk〉

)

+ β2

2
‖M − Z‖2F + 〈M − Z,Q〉

+ β3

2
‖D1Z(1) − E1‖2F + 〈D1Z(1) − E1,F1〉

+ β3

2
‖D2Z(1) − E2‖2F + 〈D2Z(1) − E2,F2〉,

(19)

where Q, {Bk} j−1
k=1, and {Fi }2i=1 are Lagrangian multipliers of the linear constraint and

β1, β2, β3 > 0 are penalty parameters. The iterative scheme for solving (18) is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ml+1,p+1 = argmin
P�(M)=T

L(M,Ap
k ,Z p,B p

k ,Qp
i ),

Ap+1
k = argmin

Ak

L(Ml+1,p+1,Ak,B p+1
k ),

Z p+1 = argmin
Z

L(Ml+1,p+1,Z,Ep
i ,Qp,Fp

i ),

Ep+1
i = argmin

Ei

L(Z p+1,Ei ,F
p
i ),

B p+1
k = B p

k + β1(Ml+1,p+1 − Ap+1
k ),

Qp+1 = Qp + β2(Ml+1,p+1 − Z p+1),

Fp+1
i = Fp

i + β3(DiZ
p+1
(1) − Ep+1

i ).

(20)

We give the details for solving the first four subproblems in (20).

1. M-subproblem We fix all variables but M, the optimal M is obtained as

Ml+1,p+1 = argmin
P�(M)=T

j−1∑

k=1

(
β1

2
‖M − Ap

k ‖2F + 〈M − Ap
k ,B p

k 〉
)

+ β2

2
‖M − Z p‖2F + 〈M − Z p,Qp〉 + ρ

2
‖M − Ml‖2F

= argmin
P�(M)=T

j−1∑

k=1

β1

2

∥∥∥∥∥M − Ap
k + B p

k

β1

∥∥∥∥∥

2

F

+ β2

2

∥∥∥∥M − Z p + Qp

β2

∥∥∥∥
2

F

+ ρ

2
‖M − Ml‖2F .

(21)

The function is quadratic in terms of M. The optimal M is

Ml+1,p+1 = P�c

(∑ j−1
k=1(β1Ap

k − B p
k ) + β2Z p − Qp + ρMl

( j − 1)β1 + β2 + ρ

)
+ T . (22)
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2. {Ak}-subproblem We give the optimal Ak by

Ap+1
k = argmin

Ak

αk

2

∥∥∥Xl+1
k Yl+1

k − Ak[k]
∥∥∥
2

F

+ β1

2
‖Ml+1,p+1 − Ak‖2F + 〈Ml+1,p+1 − Ak,B p

k 〉

= argmin
Ak

αk

2

∥∥∥Xl+1
k Yl+1

k − Ak[k]
∥∥∥
2

F
+ β1

2

∥∥∥∥∥M
l+1,p+1 − Ak + B p

k

β1

∥∥∥∥∥

2

F

.

(23)

Utilizing the equation ‖M[k]‖F = ‖M‖F and the definition of unreshape[k](·) in
Sect. 2.1, we rewrite the optimization problem (23) as the following problem:

Ap+1
k = argmin

Ak

αk

2

∥∥∥unreshape[k](Xl+1
k Yl+1

k )−Ak

∥∥∥
2

F
+ β1

2

∥∥∥∥∥M
l+1,p+1−Ak + B p

k

β1

∥∥∥∥∥

2

F

.

(24)

The function is quadratic in terms of Ak . The optimal Ak is

Ap+1
k = αkunreshape[k](Xl+1

k Yl+1
k ) + β1Ml+1,p+1 + B p

k

αk + β1
. (25)

3. Z-subproblem The Z-subproblem is

Z p+1 = argmin
Z

β2

2

∥∥∥Ml+1,p+1−Z
∥∥∥
2

F
+〈Ml+1,p+1 − Z,Qp〉+β3

2

∥∥D1Z(1) − Ep
1

∥∥2
F

+ 〈D1Z(1) − Ep
1 ,Fp

1 〉 + β3

2

∥∥D2Z(1) − Ep
2

∥∥2
F + 〈D2Z(1) − Ep

2 ,Fp
2 〉

= argmin
Z

β2

2

∥∥∥∥M
l+1,p+1 − Z + Qp

β2

∥∥∥∥
2

F
+ β3

2

∥∥∥∥∥D1Z(1) − Ep
1 + Fp

1

β3

∥∥∥∥∥

2

F

+ β3

2
‖D2Z(1) − Ep

2 + Fp
2

β3
‖2F .

(26)
Using the equation ‖Z(1)‖F = ‖Z‖F , we solve its equivalent problem as

Zp+1
(1) = argmin

Z(1)

β2

2

∥∥∥∥∥M
l+1,p+1
(1) − Z(1) + Qp

(1)

β2

∥∥∥∥∥

2

F

+ β3

2

∥∥∥∥∥D1Z(1) − Ep
1 + Fp

1

β3

∥∥∥∥∥

2

F

+ β3

2

∥∥∥∥∥D2Z(1) − Ep
2 + Fp

2

β3

∥∥∥∥∥

2

F

.

(27)

Optimizing this problem can be treated as solving the following linear system:

AZ(1) = B, (28)

whereA = β2+β3DT
1 D1+β3DT

2 D2 and B = β2M
l+1,p+1
(1) +Qp

(1)+β3DT
1 E

p
1 −DT

1 F
p
1 +

β3DT
2 E

p
2 − DT

2 F
p
2 .
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Assuming the periodic boundary condition, D1 and D2 have block circulant with circu-
lating block (BCCB) structure. After applying 2D FFTs, the optimalZ is formed directly

Z = fold(1)

(
F−1

(
F(B)

F(A)

))
. (29)

4. E-subproblem For the E-subproblem, we solve the following optimization problem:

Ep+1 = argmin
E

λ

n1∑

m=1

s∑

n=1

∥∥Em,n
∥∥
2 + β3

2

∥∥∥D1Z
p+1
(1) − E1

∥∥∥
2

F
+ 〈D1Z

p+1
(1) − E1,F

p
1 〉

+ β3

2

∥∥∥D2Z
p+1
(1) − E2

∥∥∥
2

F
+ 〈D2Z

p+1
(1) − E2,F

p
2 〉

= argmin
E

λ

n1∑

m=1

s∑

n=1

∥∥Em,n
∥∥
2 + β3

2

∥∥∥∥∥D1Z
p+1
(1) − E1 + Fp

1

β3

∥∥∥∥∥

2

F

+ β3

2

∥∥∥∥∥D2Z
p+1
(1) − E2 + Fp

2

β3

∥∥∥∥∥

2

F

.

(30)
Given fixed Z(1) and Fi , the optimal E consists of solving n1s independent two-variable
minimization problems

argmin
(E1,E2)m,n

λ

√[
(E1)m,n

]2 + [
(E2)m,n

]2+β3

2

[
(E1)m,n − (D1Z

p+1
(1) )m,n − 1

β3
(Fp

1 )m,n

]2

+ β3

2

[
(E2)m,n − (D2Z

p+1
(1) )m,n − 1

β3
(Fp

2 )m,n

]2
.

(31)
And (31) can be solved by using the 2-D shrinkage formula as follows:

[(E1)m,n, (E2)m,n] = max

{∥∥Wm,n
∥∥
2 − λ

β3
, 0

}
Wm,n∥∥Wm,n

∥∥
2

, 1 ≤ m ≤ n1, 1 ≤ n ≤ s,

(32)
where Wm,n = [(D1Z

p+1
(1) )m,n + 1

β3
(Fp

1 )m,n, (D2Z
p+1
(1) )m,n + 1

β3
(Fp

2 )m,n] for 1 ≤ m ≤
n1, 1 ≤ n ≤ s, and set 0 · (0/0) = 0.

Now we discuss the computational complexity of the M problem. The Ak-subproblem
(25) involves the product of Xk and Yk with sizes (

∏k
d=1 nd) × rk and rk × (

∏ j
d=k+1 nd),

whose complexity is O(rk
∏ j

d=1 nd). The main computation of the Zk-subproblem (29)

is the fast Fourier transforms on the matrix with size
∏ j

d=1 nd , whose complexity is

O(
∏ j

d=1 nd log
∏ j

d=1 nd). The complexity of [E1,E2] (32) is O(
∏ j

d=1 nd). The compu-
tational task of solving the M problem involves a few inner iterations and its complexity is
O(

∑ j−1
k=1 rk

∏ j
d=1 nd + ∏ j

d=1 nd log
∏ j

d=1 nd).
We summarize the proposed algorithm in Algorithm 1. In each iteration, the total cost of

computing Xk , Yk , and M in Algorithm 1 is

O

⎛

⎝

⎛

⎝
j−1∑

k=1

rk + log
j∏

d=1

nd

⎞

⎠
j∏

d=1

nd

⎞

⎠ .
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Algorithm 1 BSUM-based algorithm for tensor completion.
Input: The observed tensor Y , index set �.
1: Parameters: αk , rk , k = 1, . . . , j − 1, λ, β1, β2, β3, and ρ.
2: Initialize: X0, Y0, M0, out iteration lmax , inner iteration pmax .
3: Out loop: While not converged and l ≤ lmax
4: for k = 1 to j − 1 do
5: update Xk via (17);
6: update Yk via (17);
7: Inner loop: While not converged and p ≤ pmax do
8: update M via (22);
9: update Ak via (25);
10: update Z via (29);
11: update E via (32);
12: update Bk , Q, and F via (20), respectively.
13: end while
14: end while
Output: Recovered data M.

3.3 Convergence Analysis

In the subsection, we study the convergence of the proposed algorithm. Recently, Razaviyayn
et al. [30] proposed the BSUM algorithm for the non-smooth optimization problem. It is an
alternative inexact block coordinate descentmethod. Following,we reviewed the convergence
result in [30] for convenience.

Lemma 1 Given the problem min f (x), and subject to x ∈ X , where X is the feasible set.
Assume u(x, xl−1) is an approximation of f (x) at the (l − 1)-th iteration, which satisfied
the following conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui (yi , y) = f (y),∀y ∈ X ,∀i;
ui (xi , y) ≥ f (y1, . . . , yi−1, xi , yi+1, . . . , yn),∀xi ∈ Xi ,∀y ∈ X ,∀i;
u′
i (xi , y; di )|xi=yi = f ′(y; d),∀d = (0, . . . , di , . . . , 0), s.t .yi + di ∈ Xi ,∀i;

ui (xi , y) is continuous in (xi , y),∀i;
(33)

where ui (xi , y) is the sub-problem with respect to the i-th block and f ′(y; d) is the direction
derivative of f at the point y in direction d. Suppose ui (xi , y) is quasi-convex in xi for
i = 1, . . . , n. Furthermore, assume that each sub-problem argmin ui (xi , xl−1), s.t .x ∈ Xi

has a unique solution for any point xl−1 ∈ X . Then, the iterates generated by the BSUM
algorithm converge to the set of coordinatewise minimum of f . In addition, if f (·) is regular
at z, then z is a stationary point.

Next, we will show that the convergence of the proposed algorithm for the model (7) is
guaranteed, as it fits the framework of the BSUM method.

Theorem 1 The iterates generated by (16) converge to the set of coordinatewise minimizers.

Proof It is easy to verify that h(Z,Zk) is an approximation and a global upper bound of
f (Z) at the k-th iteration, which satisfies the following conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hi (Zi ,Z) = f (Z), ∀Z, i = 1, 2, 3;
hi (Z̄i ,Z) ≥ f (Z1, . . . , Z̄i , . . . ,Z3),∀Z̄i ,∀Z, i = 1, 2, 3;
h′
i (Z̄i ,Z; di )|Z̄i=Zi

= f ′(Z; d),∀d = (0, . . . , di , . . . , 0), i = 1, 2, 3;
hi (Z̄i ,Z) is continuous in (Z̄i ,Z), i = 1, 2, 3;

(34)
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whereZ = (X, Y, M), andZi is equal toX,Y,M, for i = 1, 2, 3 , respectively. In addition,
the sub-problem hi (i = 1, 2, 3) is strictly convex with respect to X, Y and M respectively
and thus each sub-problem has a unique solution. Therefore, all assumptions in Lemma 1 are
satisfied. ��

4 Numerical Experiments

In this section, we evaluate the performance of the proposed method for the reconstruction of
color images, multispectral images (MSIs), MRI, and color videos. We compare the results
with five well-known tensor completion methods, including SiLRTC [22], TMac [35], the
method based on the tensor nuclear norm in [23] (“TNN” for short), SiLRTC-TT, and TMac-
TT [1]. All test tensors are rescaled between [0, 255] to allow a fair quantitative evaluation.
In color videos tests, as TNN is only applicable to third-order tensors, we perform it on each
frame separately.

The quality of recovered images is measured by the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM), which are defined as

PSNR = 10 log10
Max2M,M∗

‖M − M∗‖2F
and

SSIM = (2μMμM∗)(2σMM∗ + c2)

(μ2
M + μ2

M∗ + c1)(σ 2
M + σ 2

M∗ + c2)
,

whereM∗ is the true image,M is the recovered image, MaxM,M∗ is the maximum pixel value
of the images M and M∗, μM and μM∗ are the mean values of images M and M∗, σM and
σM∗ are the standard variances ofM andM∗, respectively, σMM∗ is the covariance ofM and
M∗, and c1 and c2 > 0 are constants. By calculating average PSNR and SSIM values for
all bands, we obtain the PSNR and SSIM values of a higher-order tensor. Higher PSNR and
SSIM values imply better image quality.

The convergence criterion of our proposed algorithm is defined by computing the relative
error of the tensor M between two successive iterations as follows:

‖Ml+1 − Ml‖F
‖Ml‖F ≤ 10−4. (35)

In the experiments, there are two parameters that should be initialized: the weighting
parameters α and the initial ranks for TMac, TMac-TT, and MF-TTTV. Firstly, the weights
αk for TMac-TT and MF-TTTV are defined as

αk = δk
∑ j−1

k=1 δk
with δk = min(�k

d=1nd ,�
j
d=k+1nd), (36)

where k = 1, . . . , j − 1. In this way, we assign the large weights to the more balanced
matrices. Similarly, for TMac, the weights αk are defined as

αk = nk
∑ j

k=1 nk
, (37)

where k = 1, . . . , j . Secondly, to obtain the initial ranks for TMac, TMac-TT, and MF-
TTTV, each rank rk is approximated by the numbers of the singular values that satisfies the
following inequality:
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Original Observed SiLRTC TMac TNN SiLRTC-TT TMac-TT MF-TTTV

Fig. 3 The results of testing color images with SR = 0.1 recovered by different methods. From left to right:
the original data, the observed data, the reconstructed results by SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT,
and MF-TTTV, respectively (Color figure online)

σ
[k]
q

σ
[k]
1

> th, (38)

where q = 1, . . . , rk , th is the threshold, and σ
[k]
q is assumed to be in descending order. This

condition is chosen such that the matricizations with lower-rank will have more singular
values truncated. Parameters in competing methods SiLRTC, TNN, and SiLRTC-TT are
automatically optimized according to the author’s suggestion.

In ourmethod,we set the proximal parameterρ = 10−3, penalty parametersβ1 = 5∗10−3,
and β2 = 0.1 for all experiments. And we empirically select the regularization parameter λ

and the penalty parameter β3 from the candidate set: {0.01, 0.03, 0.05, 0.1, 0.3}, to attain the
highest PSNR value.

All numerical experiments are performed on Windows 10 64-bit and MATLAB R2012a
running on a desktop equipped with an Intel(R) Core(TM) i7-6700M CPU with 3.40 GHz
and 8 GB of RAM.

4.1 Color Images

In this subsection, we evaluate the performance of the proposed method on color images.
The size of the testing image is 256× 256× 3. By applying KA, we cast a third-order tensor
M ∈ R

256×256×3 into a ninth-order tensor M̃ ∈ R
4×4×4×4×4×4×4×4×3 and then apply the

proposed method to restore color images. The sampling rate (SR) is tested from 0.05 to 0.5.
Figure 3 shows the visual results of color images with SR = 0.1 recovered by SiLRTC,

TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV, respectively. Obviously, there are sev-
eral vertical thorns in the recovered images by SiLRTC and TMac, the results by TNN appear
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Table 2 The PSNR and SSIM values obtained by compared methods and the proposed method for color
images with different sampling rates (SRs)

Image SR 0.1 0.2 0.3 0.4

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena SiLRTC 20.66 0.5416 23.74 0.7099 26.04 0.8103 27.99 0.8708

TMac 20.20 0.3601 23.79 0.6007 25.82 0.7107 28.31 0.7917

TNN 19.88 0.4667 23.25 0.6765 25.81 0.7942 28.30 0.8695

SiLRTC-TT 21.83 0.6318 24.69 0.7626 26.78 0.8402 28.72 0.8905

TMac-TT 24.11 0.6848 27.12 0.7992 28.47 0.8522 29.75 0.8845

MF-TTTV 25.91 0.8005 27.96 0.8649 29.41 0.8993 30.78 0.9245

Peppers SiLRTC 18.01 0.4485 21.62 0.6516 24.27 0.7330 26.65 0.8205

TMac 18.17 0.3031 22.56 0.5555 25.22 0.6866 28.10 0.7781

TNN 18.57 0.4232 21.82 0.6126 24.41 0.7401 26.54 0.8210

SiLRTC-TT 19.19 0.5469 22.50 0.7014 24.79 0.7948 26.81 0.8569

TMac-TT 22.17 0.6111 24.78 0.7370 27.66 0.8210 29.08 0.8675

MF-TTTV 24.35 0.8205 27.44 0.8855 29.22 0.9147 30.59 0.9342

House SiLRTC 20.79 0.5090 24.12 0.6780 26.85 0.7856 29.16 0.8511

TMac 21.25 0.4442 25.36 0.6681 27.99 0.7675 30.05 0.8352

TNN 21.75 0.5634 25.48 0.7442 28.34 0.8368 30.62 0.8904

SiLRTC-TT 21.69 0.6121 24.56 0.7258 26.95 0.8082 29.09 0.8681

TMac-TT 24.93 0.6709 28.11 0.7806 29.88 0.8297 31.01 0.8643

MF-TTTV 27.70 0.7912 29.64 0.8410 31.19 0.8727 32.33 0.8999

Tulips SiLRTC 15.51 0.3032 18.95 0.5273 21.63 0.6579 23.97 0.7710

TMac 15.12 0.2387 19.53 0.4718 22.64 0.6346 25.02 0.7471

TNN 16.09 0.3656 19.34 0.5759 21.88 0.7139 24.36 0.8154

SiLRTC-TT 16.77 0.4194 19.96 0.6121 22.30 0.7312 24.56 0.8196

TMac-TT 19.89 0.5438 22.71 0.6946 24.46 0.7684 27.21 0.8505

MF-TTTV 22.24 0.7161 25.55 0.8493 27.94 0.9003 29.63 0.9297

Barbara SiLRTC 19.18 0.4498 22.46 0.6512 24.95 0.7531 27.15 0.8299

TMac 18.94 0.3412 23.48 0.6093 25.77 0.7371 28.03 0.8072

TNN 19.34 0.4511 22.43 0.6470 25.01 0.7740 27.48 0.8529

SiLRTC-TT 20.41 0.5481 23.29 0.7065 25.43 0.8005 27.45 0.8634

TMac-TT 22.95 0.6391 25.05 0.7461 27.65 0.8371 29.43 0.8782

MF-TTTV 24.44 0.7666 26.89 0.8466 28.44 0.8832 30.12 0.9131

Monarch SiLRTC 17.29 0.4622 19.51 0.6226 21.63 0.7455 23.90 0.8313

TMac 16.63 0.3761 18.41 0.4850 22.15 0.6796 24.94 0.7841

TNN 18.43 0.5530 21.28 0.7190 23.76 0.8245 26.38 0.8913

SiLRTC-TT 17.97 0.6044 20.04 0.7330 22.04 0.8198 24.05 0.8794

TMac-TT 18.70 0.6283 22.77 0.7917 24.94 0.8518 27.49 0.9054

MF-TTTV 21.47 0.8170 24.85 0.8966 27.86 0.9493 30.28 0.9681
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Fig. 4 The PSNR and SSIM values of the reconstructed color image results with different sampling rates by
SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV, respectively (Color figure online)

Original Observed SiLRTC TMac TNN SiLRTC-TT TMac-TT MF-TTTV

Fig. 5 The results of images House and Lena with structural missing entries described by the black letters by
SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV, respectively

dark and have horizontal thorns, and block-artifacts can be easily observed on the restored
images by SiLRTC-TT and TMac-TT. While the recovered results by the proposed method
are visually better than compared methods and keep the smoothness best. From the zoom-
in regions of recovered images, the proposed method can effectively reduce block-artifacts
compared with SiLRTC-TT and TMac-TT. Table 2 lists the numerical results by different
methods, where the best PSNR and SSIM values are emphasized in bold font. Figure 4 shows
the recovery PSNR and SSIM curves by different methods when applied to images Lena,
Peppers, and House. We can see that for different SRs, the method performs better than the
compared methods in terms of the PSNR and SSIM.

In Fig. 5, we show the results by applying different methods on images House and Lena
with structural missing entries. Themissing entries are selected as the black text. The outlines
of the text can still be clearly seen on the recovered images by the compared methods, while
the text is almost removed using MF-TTTV.

In Table 3, we show the PSNR, SSIM, and Time (in seconds) values of the restored images
by different methods. We test the color images Lena and Barbara with SR = 0.1 and 0.3.
It can be seen that our method outperforms the compared ones in terms of both PSNR and
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Table 3 The PSNR (dB), SSIM, andTime (in seconds) values obtained by comparedmethods and the proposed
method for images Lena and Barbara with different SRs

Image SR 0.1 0.3

Method PSNR SSIM Time PSNR SSIM Time

Lena SiLRTC 20.66 0.5416 30.91 26.04 0.8103 19.34

TMac 20.20 0.3601 2.92 25.82 0.7107 1.01

TNN 19.88 0.4667 4.85 25.81 0.7942 4.33

SiLRTC-TT 21.83 0.6318 77.95 26.78 0.8402 43.21

TMac-TT 24.11 0.6848 46.68 28.47 0.8522 22.05

MF-TTTV 25.91 0.8005 388.28 29.41 0.8993 153.57

Barbara SiLRTC 19.18 0.4498 48.44 24.95 0.7531 19.27

TMac 18.94 0.3412 2.11 25.77 0.7371 1.76

TNN 19.34 0.4511 4.79 25.01 0.7740 4.31

SiLRTC-TT 20.41 0.5481 107.41 25.43 0.8005 53.81

TMac-TT 22.95 0.6391 79.19 27.65 0.8371 58.98

MF-TTTV 24.44 0.7666 353.66 28.44 0.8832 201.25

Original Observed SiLRTC TMac TNN SiLRTC-TT TMac-TT MF-TTTV

Fig. 6 The results of one band of testing MSIs recovered by different methods. The first (third) and second
(fourth) rows: the results of observed MSIsWashington DC (Flowers) with SR = 0.05 and 0.1, respectively.
From left to right: the original data, the observed data, the reconstructed results by SiLRTC, TMac, TNN,
SiLRTC-TT, TMac-TT, and MF-TTTV, respectively

SSIM, although the proposedmethod requiresmore time than comparedmethods. The reason
is that for better recovery results, we introduce the TV regularization and several variables
when solving the proposed model, which lead to a more complex numerical algorithm.

4.2 MSIs Data

In this subsection,we compare the performance of differentmethods onMSIsFaces,Flowers,
and Washington DC data. The testing images of size 256 × 256 × 11 are selected from the
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Fig. 7 The PSNR and SSIM values of all bands of the reconstructed MSIs with SR = 0.1 recovered by
different methods for Washington DC and Faces

original MSIs. The third-order tensor is converted to the ninth-order tensor of size 4 × 4 ×
4×4×4×4×4×4×11 by using KA. The SRs are set to be 0.05, 0.1, and 0.15, respectively.
In Fig. 6, we display the recovered results by different compared methods. From the zoom-in
regions of recovered images, it is clear that the proposed method performs best in preserving
the edges and details of recovered images. The PSNR and SSIM values of each band of the
reconstructed MSIs Washington DC and Faces with SR = 0.1 are shown in Fig. 7. From
this figure, we can see that the PSNR and SSIM values in all bands obtained by the proposed
method are better than those obtained by the compared methods. In addition, Table 4 shows
the average PSNR and SSIM values of the reconstructed tensors by different methods. We
can note that our proposed method obtains the highest quality results for different MSIs with
different sampling rates.

4.3 MRI Data

In this subsection, we use the MRI data of size 256× 256× 11 to compare the performance
of SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV. The SRs are set to be 0.05,
0.1, and 0.2, respectively. Table 5 lists the average PSNR and SSIM of the recovered MRI
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Table 4 The average PSNR and SSIM values obtained by compared methods and the proposed method for
MSIs with different SRs

Image SR 0.05 0.1 0.15

Method PSNR SSIM PSNR SSIM PSNR SSIM

Washington DC SiLRTC 19.12 0.4344 20.72 0.5597 22.07 0.6569

TMac 22.39 0.6349 25.37 0.7881 27.45 0.8770

TNN 22.56 0.6957 26.93 0.8807 30.54 0.9475

SiLRTC-TT 21.06 0.5450 23.80 0.7428 26.30 0.8556

TMac-TT 25.14 0.7641 28.77 0.8866 30.65 0.9424

MF-TTTV 25.67 0.8243 30.35 0.9349 31.98 0.9576

Flowers SiLRTC 20.70 0.5881 23.98 0.7051 26.12 0.7792

TMac 24.12 0.6483 29.47 0.8173 31.91 0.8754

TNN 26.19 0.7428 31.03 0.8857 34.78 0.9460

SiLRTC-TT 23.20 0.6974 26.79 0.8268 29.20 0.8889

TMac-TT 28.85 0.8273 33.43 0.9286 35.82 0.9538

MF-TTTV 30.28 0.8748 34.66 0.9488 36.79 0.9634

Faces SiLRTC 25.31 0.7778 29.74 0.8915 32.48 0.9310

TMac 31.43 0.8774 35.35 0.9307 38.46 0.9649

TNN 30.06 0.8815 34.95 0.9525 38.11 0.9759

SiLRTC-TT 26.82 0.8680 30.77 0.9337 33.24 0.9596

TMac-TT 33.60 0.9370 37.72 0.9717 38.94 0.9786

MF-TTTV 34.62 0.9613 38.70 0.9796 39.73 0.9838

Table 5 The average PSNR and SSIM values obtained by compared methods and the proposed method for
MRI data with different SRs

SR 0.05 0.1 0.2

Method PSNR SSIM PSNR SSIM PSNR SSIM

SiLRTC 18.39 0.4372 21.74 0.5836 26.57 0.7700

TMac 23.10 0.5480 27.74 0.7566 33.10 0.9028

TNN 22.71 0.5689 25.92 0.7291 30.26 0.8759

SiLRTC-TT 21.68 0.6283 25.08 0.7723 29.40 0.8901

TMac-TT 26.20 0.7626 30.04 0.8741 32.44 0.9184

MF-TTTV 28.93 0.8806 31.44 0.9209 33.81 0.9517

data using different methods. Figure 8 shows the PSNR and SSIM values of every band
with SR = 0.1 and 0.2. From Table 5, we see that the proposed method achieves higher
quality results for different sampling rates. The better visual performance of the recovered
image by our method are shown in Fig. 9. Compared the results recovered by TMac-TT,
the block-artifacts produced by using KA are obviously reduced in the restored images by
MF-TTTV.
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Fig. 8 The PSNR and SSIM values of all bands of the reconstructed MRI recovered by different methods

Original Observed SiLRTC TMac TNN SiLRTC-TT TMac-TT MF-TTTV

Fig. 9 The results of one band of testing MRI recovered by different methods. From top to bottom: the results
of observed MRI with SR = 0.05, 0.1, and 0.2, respectively. From left to right: the original data, the observed
data, the reconstructed results by SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV, respectively
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Original Observed SiLRTC TMac TNN SiLRTC-TT TMac-TT MF-TTTV

Fig. 10 The results of two frames of testing color videos recovered by different methods. The first (third) and
second (fourth) rows: the results of color videosBus (Mobile), respectively. From left to right: the original data,
the observed data, the reconstructed results by SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV,
respectively (Color figure online)

4.4 Color Videos

In this subsection, we test the proposed method on two color videos Bus and Mobile. The
size of testing videos is 243 × 256 × 3 × 27. We reshape the tensor to a ninth-order tensor
of size 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 3. The ninth-order data is used for the proposed
tensor completion algorithm. The SR is set as 0.1 in this task.

Results of using different methods are shown in Fig. 10. It is obvious that our method
visually outperforms SiLRTC, TMac, TNN, SiLRTC-TT, and TMac-TT in keeping smooth-
ness and details of recovered images. The PSNR and SSIM values of each frame of two
reconstructed color videos are plotted in Fig. 11. We note that the PSNR and SSIM values of
each frame recovered by the proposed method are higher than all compared methods.

5 Conclusion

In this paper, we propose a new model combining low-rank matrix factorization based on TT
rank with the TV regularization for LRTC. An effective BSUM-based algorithm is developed
to solve the proposed model with guaranteed convergence. Moreover, a tensor augmentation
tool is introduced to improve the performance of ourmethod. Numerical experiments demon-
strate that the proposed method can effectively keep the piecewise smoothness of tensor data
in spatial dimensions and distinctly reduce the block-artifacts comparedwith TMac-TT using
KA. In the future work, we will try to speed up the proposedmethod or develop the numerical
algorithm with a faster convergence rate.
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Fig. 11 The PSNR and SSIM values of all frames of color videos recovered by different methods for Bus and
Mobile (Color figure online)
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