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Abstract
Recently, a class of eigensolvers based on contour integrals has been developed for computing
the eigenvalues inside a given region in the complex plane. The CIRR method (a Rayleigh–
Ritz type method with contour integrals) is a classic example among this kind of methods. It
first constructs a subspace to contain the eigenspace of interest via a set of contour integrals,
and then uses the standard Rayleigh–Ritz procedure to extract desired eigenpairs. However, it
was shown that the CIRRmethod may fail to find the desired eigenpairs when the considered
eigenproblem is non-Hermitian. This factmotivates us to develop a non-Hermitian scheme for
the CIRR method. To this end, we formulate a Schur–Rayleigh–Ritz procedure to extract the
desired eigenpairs. The theoretical analysis shows that our new extraction scheme can make
the CIRR method also applicable for the non-Hermitian problems. Some implementation
issues arising in practical applications are also studied. Numerical experiments are reported
to illustrate the numerical performance of our new method.

Keywords Generalized eigenvalue problems · Contour integral · QZ method · Generalized
Schur decomposition

Mathematics Subject Classification 15A18 · 58C40 · 65F15

1 Introduction

Let A and B be large n×n matrices. Assume that we have a generalized eigenvalue problem

Ax = λBx, (1)

and want to compute the eigenvalues λi , along with their eigenvectors xi , of (1) inside a given
region in the complex plane. This problem arises in various areas of scientific and engineering
applications, for example in the model reduction of a linear dynamical system, one needs to
know the response over a range of frequencies, see [4,12,21]. Computing a number of interior
eigenvalues of a large problem remains one of the most difficult problems in computational
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linear algebra today [10]. In practice, the methods of choice are based on subspace projection
techniques, the key to the success of which is to construct an approximate invariant subspace
containing the eigenspace of interest. Krylov subspace methods in conjunction with spectral
transformation techniques, for example the shift-and-invert technique, are often used [22,27].

Recently, eigensolvers based on contour integration were developed to compute the eigen-
values inside a prescribed domain in the complex plane. The best-knownmethods of this kind
are the Sakurai–Sugiura method [24] and the FEAST algorithm [20]. A major computational
advantage of these contour-integral based methods is that they can be easily implemented
in modern distributed parallel computers [3,16,18]. The FEAST algorithm works under the
conditions that matrices A and B are Hermitian and B is positive definite, i.e., (1) is a
Hermitian problem [4]. The rigorous convergence analysis was studied in [28]. In [33], the
authors adapted the FEAST algorithm to non-Hermitian problems. Recently, Güttel et al. in
[14] improved the convergence robustness of the FEAST algorithm based on the Zolotarev
quadrature rules. In the Sakurai–Sugiura method, the original eigenproblem (1) is reduced to
a small one with Hankel matrices, if the number of sought-after eigenvalues is small. How-
ever, since Hankel matrices are ill-conditioned [5], the Sakurai–Sugiura method suffers from
numerical instability in practical applications [3,25]. By noticing this fact, in [25], Sakurai
et al. later used the Rayleigh–Ritz procedure to replace the Hankel matrix approach to get a
more stable algorithm called CIRR. In [6,29,30], the contour-integral based techniques were
developed to solve the nonlinear eigenproblems.

The CIRR method is accurate and powerful and attracts great interest recently [3,15,
17,26]. It first constructs a subspace containing the eigenspace of interest through a set
of specially defined contour integrals. Then the orthogonal projection technique is used to
extract desired eigenpairs from the constructed subspace. Originally, as with the FEAST
algorithm, the CIRR method was formulated under the assumptions that matrices A and
B are Hermitian and B is positive definite. Moreover, the CIRR method requires that the
sought-after eigenvalues are distinct. In [15], the authors presented a block version for CIRR
to make it also applicable for the degenerate system, that is, the considered eigenproblem
has repeated eigenvalues. However, it was shown in [33] that the CIRR method (including
its block version) as well as the FEAST algorithm may fail to find the desired eigenpairs for
some non-Hermitian problems, due to using the orthogonal projection technique to extract
sought-after eigenvalues. An example was also given in [33] to illustrate this fact. The authors
in [33] presented a non-Hermitian scheme for the FEAST algorithm. In this work, we want to
formulate a non-Hermitian scheme for the CIRR method. We resort to an oblique projection
technique. The most important task is to seek an appropriate left subspace. To this end,
we borrow ideas of the JDQZ method [11], and finally formulate a Schur–Rayleigh–Ritz
procedure [27, Chapter 6] for extracting the desired eigenvalues, which is different from the
extraction approach used in the non-Hermitian FEAST algorithm [33]. Theoretical analysis
shows that our new method can deal with non-Hermitian problems. The only requirement
is that the matrix pencil zB − A, z ∈ C, is regular, which means our method can deal with
the most common generalized eigenvalue problems [4]. The key difference between our new
method and the CIRRmethod is the extraction procedure. Our method only slightly increases
the computational work comparing to that required in the original CIRR method. Numerical
experiments show that our method is more stable than the CIRR method when applied to the
non-Hermitian problems that the CIRR method can solve.

The way to construct a subspace to contain the desired eigenspace in our method is the
same with the one developed in CIRR [15,25]. As a result, our method also faces some
implementation issues that arise in the CIRR method. For example, we have to know the
number of desired eigenvalues in advance. This is because we need this knowledge (i) to
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select an appropriate size for the starting vectors such that the constructed subspace contains
the desired eigenspace, and (ii) to guarantee that all desired eigenvalues are found when the
method stops. However, we generally do not have this knowledge in practical situations. For
our method to work, we combine the ideas developed in [26,33] for choosing suitable starting
vectors, and use the stopping criteria given in [33] to guarantee all sought-after eigenvalues
are found. Similar to other contour-integral based eigensolvers, the contour integrals involved
in our method have to be computed approximately by some numerical integration. In [25],
the authors used the trapezoidal rule to compute the contour integrals involved in the CIRR
method. Polizzi chose the Gauß–Legendre quadrature for the FEAST algorithm [20]. In our
experiment, we also use Gauß–Legendre quadrature to compute the related contour integrals.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the CIRR
method [25]. To adapt the CIRR method to non-Hermitian cases, in Sect. 3 we formulate a
Schur–Rayleigh–Ritz procedure for extracting the desired eigenpairs. After that we discuss
some implementation issues and present the complete algorithm. Numerical experiments are
reported in Sect. 4 to illustrate the numerical performance of our new method.

Throughout the paper, we use the following notation and terminology. The subspace
spanned by the columns of matrix X is denoted by span{X}. The rank of matrix A is denoted
by rank(A). For any matrix S, we denote the submatrix that lies in the first i rows and the first
j columns of S by S(1:i,1: j), the submatrix consisting of the first j columns of S by S(:,1: j),
and the submatrix consisting of the first i rows of S by S(1:i,:). We denote by S∗ the conjugate
transpose of the matrix S. The imaginary unit is denoted by ı . The algorithms are presented
in Matlab style.

2 The CIRRMethod

In [24], Sakurai and Sugiura used a moment-based technique to formulate a contour-integral
based method, i.e., the Sakurai–Sugiura method, for finding the eigenvalues of (1) inside a
given region. In order to improve the numerical stability of the Sakurai–Sugiura method, a
variant of it used the Rayleigh–Ritz procedure to extract the desired eigenpairs. This leads to
the so-called CIRR method [15,25]. Originally the CIRR method was derived in [25] under
the assumptions that (i) matrices A and B are Hermitian with B being positive definite, and
(ii) the eigenvalues inside the given region are distinct. In [15], the authors proposed a block
version for the CIRR method such that it is able to deal with degenerate problems. In this
section we briefly review the block CIRR method. Below, unless otherwise explicitly stated,
the CIRR method refers to its block version.

The matrix pencil zB − A is regular if det(zB − A) is not identically zero for all z ∈ C

[2,9]. TheWeierstrass canonical form of a regular matrix pencil zB− A is defined as follows.

Theorem 1 ([19,33]) Let zB − A be a regular matrix pencil of order n. Then there exist
nonsingular matrices S and T ∈ C

n×n such that

T AS =
[
Jd 0
0 In−d

]
and T BS =

[
Id 0
0 Nn−d

]
, (2)

where Jd is a d ×d matrix in Jordan canonical form with its diagonal entries corresponding
to the eigenvalues of zB − A, Nn−d is an (n − d) × (n − d) nilpotent matrix also in Jordan
canonical form, and Id denotes the identity matrix of order d.
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Let Jd in (2) be of the form

Jd =

⎡
⎢⎢⎢⎣
Jd1(λ1)

Jd2(λ2)
. . .

Jdm (λm)

⎤
⎥⎥⎥⎦ , (3)

where
∑m

i=1 di = d , 1 ≤ di ≤ d for i = 1, . . .m and Jdi (λi ) are di × di matrices of the
form

Jdi (λi ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λi 1
λi 1

. . .
. . .

. . . 1
λi

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, . . . ,m

with λi being the eigenvalues. Here the λi are not necessarily distinct and can be repeated
according to their multiplicities.

Let us partition S into block form

S = [S1, S2, . . . , Sm, Sm+1], (4)

where Si ∈ C
n×di , 1 ≤ i ≤ m, and Sm+1 ∈ C

n×(n−d). Then the first column in each Si is an
eigenvector associated with eigenvalue λi for i = 1, . . . ,m [4,15,16,33].

Let Γ be a given positively oriented simple closed curve in the complex plane. Below
we show how to use the CIRR method to compute the eigenvalues of (1) inside Γ , along
with their associated eigenvectors. Without loss of generality, let the set of eigenvalues of (1)
enclosed by Γ be {λ1, . . . , λl}, and s := d1 + d2 + · · · + dl be the number of eigenvalues
inside Γ with multiplicity taken into account.

Define the contour integrals

Fk := 1

2π ı

∮
Γ

zk(zB − A)−1Bdz, k = 0, 1, . . . . (5)

With the help of the residue theorem in complex analysis [1], it was shown in [16] that

Fk = S(:,1:s)(J(1:s,1:s))k(S−1)(1:s,:), k = 0, 1, . . . . (6)

Let h and g be two positive integers satisfying hg � s, and Y be an n × h random matrix,
whose entries are independent and identically distributed (i.i.d.). Define

U := [U0,U1, . . . ,Ug−1], where Uk := FkY , k = 0, . . . , g − 1. (7)

We have the following result for the CIRR method. It is a slightly modified version of
Theorem 1 in [17], where eigenproblem (1) is assumed to be diagonalizable.

Theorem 2 Let the eigenvalues inside Γ be λ1, . . . , λl , then the number of eigenvalues of
(1) inside Γ is s, counting multiplicity. If rank(U ) = s, then we have

span{U } = span{S(:,1:s)}. (8)

Proof By (6) and (7), we know that

U = S(:,1:s)E, (9)
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where

E = [
(S−1)(1:s,:)Y , J(1:s,1:s)(S−1)(1:s,:)Y , . . . , (J(1:s,1:s))g−1(S−1)(1:s,:)Y

]
. (10)

Since the rank of U is s, we have that rank(E) = s, following from which (8) holds. ��
The assumption rank(U ) = s is also required during the formulation of the CIRR method

[17]. It should be pointed out that rank(E) = s may not be satisfied for s ≤ hg [17]. If
rank(E) < s, then we have rank(U ) < s. It was shown in [33, Lemma 1] the rank of
(S−1)(1:s,:)Y is equal to s with probability 1 if Y is an n× h random matrix with i.i.d. entries
and h ≥ s. In this case rank(U ) = s holds almost surely. Note that (S−1)(1:s,:)Y is the first
block column of E , thus it enables us to choose a value for h such that (8) holds. An idea
was given in [26] to determine a suitable parameter h for starting the CIRR method.

According to Theorem 2, we know that span{U } contains the eigenspace corresponding to
the desired eigenvalues, if rank(U ) = s. The CIRR method uses the well-known orthogonal
projection technique to extract the eigenpairs inside Γ from span{U }, i.e., imposing the
Ritz–Galerkin condition:

Ax − λBx ⊥ span{U }, (11)

where λ ∈ C and x ∈ span{U }.
The main task of the CIRR method is to evaluate Uk [cf. (7)]. In practice, the contour

integrals Uk have to be computed approximately by numerical integration:

Uk ≈ Ũk = 1

2π ı

q∑
j=1

ω j z
k
j (z j B − A)−1BY , k = 0, 1, . . . , g − 1, (12)

where z j are the integration points and ω j are the corresponding weights. From (12), we see
that q generalized shifted linear systems

(z j B − A)X j = BY , j = 1, 2, . . . , q, (13)

are needed to be solved. Solving these linear systems is the dominant work of the CIRR
method. Noticing that the integration points z j and the columns of right-hand sides in (13)
are independent, theCIRRmethod can be easily implemented on amodern distributed parallel
computer.

The complete CIRR method is summarized as follows [15].

Algorithm 1: The CIRR method

Input: The number of integration points q , the starting matrix Y ∈ C
n×h , and an integer g

satisfying hg � s.
Output: Approximate eigenpairs (λ̂i , x̂i ), λ̂i inside Γ .
1. Compute Ũk, k = 0, 1, . . . , g − 1, approximately by (12).
2. Compute the QR decomposition of Ũ = [Ũ0, . . . , Ũg−1] : Ũ = Û R̂.
3. Set Â = Û∗AÛ and B̂ = Û∗BÛ .
4. Solve the generalized eigenproblem of size hg: Ây = λ̂B̂y, to obtain the

eigenpairs {(λ̂i , yi )}hgi=1.
5. Compute x̂i = Ûyi , and select s approximate eigenpairs (λ̂i , x̂i ).

The larger the value of h is, the faster the convergence rate will be. Especially, when we
take g = 1 and h � s, the CIRRmethod becomes the FEAST algorithm [20]. It is shown that
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to achieve the same accuracy the FEAST algorithm needs less iteration number comparing
with the CIRR method [33], but the FEAST algorithm requires more computational cost
than CIRR in each iteration because more linear systems need to be solved in the FEAST
algorithm.

3 A Contour-Integral Based Eigensolver with a Schur–Rayleigh–Ritz
Procedure

The contour-integral based methods are recent efforts for computing the interior eigenvalues
of a generalized eigenproblem. The CIRR method is a typical example among the methods
of this kind. According to the brief description in the previous section, the basic idea of
the CIRR method can be summarized as follows: (i) constructing a subspace that contains
the desired eigenspace by means of a set of contour integrals [cf. (7)], and (ii) using the
orthogonal projection technique, with respect to the subspace span{U }, to extract the desired
eigenpairs. However, the authors in [33] observed that the CIRR method may fail to find the
desired eigenvalues when the eigenproblem under consideration is non-Hermitian, owing
to using the orthogonal projection technique to extract the sought-after eigenvalues. They
provided an example (Example 3.1 in [33]) for illustrating this fact.

In this section, we formulate a new extraction approach for adapting the CIRR method to
the non-Hermitian cases. The idea stems from the motivation of using the oblique projection
technique, instead of the orthogonal projection technique, to extract the desired eigenvalues
for the CIRR method. To this end, we borrow the idea behind formulating the well-known
JDQZ method [11], and finally develop a Schur–Rayleigh–Ritz extraction procedure. Some
implementation issues that the new non-Hermitian CIRR scheme may encounter in practical
applications will be discussed. After that, we will give the complete algorithm.

3.1 The Derivation of Our New Contour-Integral Based Eigensolver

The CIRRmethod uses the orthogonal projection technique to extract the sought-after eigen-
pairs from span{U }, whichmay result in failurewhen it comes to the non-Hermitian problems.
Here we consider using the oblique projection technique [4,22], another class of projection
method, to extract the desired eigenpairs.

Since span{U } contains the eigenspace of interest [cf. (8)], as with the CIRR method, it is
natural to choose span{U } as the right subspace (or search subspace). The oblique projection
technique extracts the desired eigenpairs from span{U } by imposing the Petrov–Galerkin
condition, which requires the residual of approximate eigenpair is orthogonal to some left
subspace (or test subspace), say, span{W }:

Ax − λBx ⊥ span{W }, (14)

where λ is located inside Γ , x ∈ span{U }, and W is an n × s orthogonal matrix. Let V be
an n × s matrix whose columns form an orthonormal basis of span{U }. The orthogonality
condition (14) leads to the projected eigenproblem

(W ∗AV )y = λ(W ∗BV )y, (15)

where y ∈ C
s satisfies x = V y. As a result, computing the eigenvalues of (1) inside Γ now

is transformed to solving the projected eigenproblem (15).
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If the left subspace is taken to be the right subspace span{U }, the same as the right subspace,
then the method described above is the orthogonal projection technique. The authors in [33]
observed that the projected matrices V ∗AV and V ∗BV become zero matrices when using
the orthogonal projection technique, consequently, it fails to find the desired eigenpairs. Now
our task is to seek an appropriate left subspace span{W }, which is different from the right
subspace. We start with a partial generalized Schur form for the matrix pair (A, B).

Definition 1 ([11]) A partial generalized Schur form of dimension s for a matrix pair (A, B)

is the decomposition
AQs = Zs Hs, BQs = ZsGs, (16)

where Qs and Zs are orthogonal n × s matrices, and Hs and Gs are upper triangular s × s
matrices. A column (Qs)(:,i) is referred to as a right generalized Schur vector, and we refer
to a pair ((Hs)(i,i)/(Gs)(i,i), (Qs)(:,i)) as a generalized Schur pair.

The formulation (16) is equivalent to

(Zs)
∗AQs = Hs, (Zs)

∗BQs = Gs, (17)

from which we know that (Hs)(i,i)/(Gs)(i,i) are the eigenvalues of (Hs,Gs). Let yi be the
eigenvectors of pair (Hs,Gs) associated with eigenvalues (Hs)(i,i)/(Gs)(i,i), then we have
that ((Hs)(i,i)/(Gs)(i,i), Qsyi ) are the eigenpairs of (A, B) [11,19].

Applying the QZ factorization to the projected pair (W ∗AV ,W ∗BV ) to yield the gener-
alized Schur form [13]

(PL)∗(W ∗AV )PR = HA and (PL)∗(W ∗BV )PR = HB , (18)

where PR and PL are orthogonal s×smatrices, HA and HB are upper triangular s×smatrices.
Then the eigenvalues of the pair (W ∗AV ,W ∗BV ) are {(HA)(i,i)/(HB)(i,i)}si [13,19].

In view of (16), it was shown in [4,11] that

span{Zs} = span{AQs} = span{BQs}. (19)

Comparing (17)with (18), it can readily be seen that we have constructed a partial generalized
Schur form in (18) for the matrix pair (A, B): V PR constructs a right generalized Schur
vectors Qs andWPL constructs a left generalized Schur vectors Zs . It follows from (19) that

span{WPL } = span{AV PR} = span{BV PR}. (20)

Note that PL and PR are nonsingular, thus we have

span{W } = span{AV } = span{BV }. (21)

According to (21), it makes sense to take the left subspace span{W } to span{AV − σ BV },
where σ is a scalar and different from the desired eigenvalues. To justify this choice, we need
the following result.

Theorem 3 ([15]) Let L, D ∈ C
n×t , t ≥ s, be arbitrary matrices, and R = F0D. A projected

matrix pencil z B̂− Â is defined by B̂ = L∗BR and Â = L∗AR. If ranks of both L∗(T−1)(:,1:s)
and (S−1)(1:s,:)D are s, the non-singular part of the projected matrix pencil is equivalent to
z Is − (Jd)(1:s,1:s).
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Theorem 3 says that the desired eigenvalues {λi }li=1 can be obtained via computing the

eigenvalues of the projected eigenproblem z B̂ − Â, if the ranks of both (S−1)(1:s,:)D and
L∗(T−1)(:,1:s) are s. Note that F0U = U . Due to these, we want to show the following result.

Theorem 4 If the rank ofU is s, and the columns of V form an orthonormal basis of span{U },
then the ranks of (S−1)(1:s,:)V and (AV − σ BV )∗(T−1)(:,1:s) are s.

Proof We first show that the rank of (S−1)(1:s,:)V is s. Since rank(U ) = s, by Theorem 2
we know span{U } = span{S(:,1:s)}. Note that the columns of V form an orthonormal basis
of span{U }. Therefore, there exists an s × s nonsingular matrix Δ1 such that

V = S(:,1:s)Δ1. (22)

Now we have
(S−1)(1:s,:)V = (S−1)(1:s,:)S(:,1:s)Δ1 = Δ1, (23)

from which we see that the rank of (S−1)(1:s,:)V is s.
Next we show that the rank of (AV − σ BV )∗(T−1)(:,1:s) is s. For convenience, we

turn to show that the rank of ((T−1)(:,1:s))∗(AV − σ BV ), i.e., the conjugate transpose of
(AV − σ BV )∗(T−1)(:,1:s), is s.

Since span{AV } = span{BV } [cf. (21)], there exists an s × s nonsingular matrix Δ2 such
that

AV = BVΔ2. (24)

According to (2) and (22), one can easily verify

((T−1)(:,1:s))∗(AV − σ BV ) = (BS(:,1:s))∗BS(:,1:s)Δ1(Δ2 − σ Is). (25)

Now we are in a position to show Δ2 − σ Is is nonsingular. Let Δ2 = XΔ2ΛΔ2(XΔ2)
−1 be

the Jordan decomposition of Δ2. By (22) and (24) we have

A(S(:,1:s)Δ1XΔ2) = B(S(:,1:s)Δ1XΔ2)ΛΔ2 , (26)

from which we can conclude that the eigenvalues of Δ2 are exactly the eigenvalues of (1)
inside Γ . On the other hand, if Δ2 − σ Is is singular, then σ is an eigenvalue of Δ2, which
is in contradiction with the assumption that σ is not an eigenvalue inside Γ .

In view of (2), we know BS(:,1:s) is full-rank, which means (BS(:,1:s))∗BS(:,1:s) is
nonsingular. By (25), now we can conclude that the rank of (AV − σ BV )∗(T−1)(:,1:s)
is s. ��

Based on Theorems 3 and 4, we know that the eigenvalues of pair ((AV − σ BV )∗AV ,

(AV − σ BV )∗BV ) are the eigenvalues of (1) inside Γ , which justifies our choice of the left
subspace, that is, taking span{W } to span{AV − σ BV }. Let ((HA)(i,i)/(HB)(i,i), ỹi ) be the
eigenpairs of (HA, HB), note that V PR are the right generalized Schur vectors associated
with HA and HB , we have that ((HA)(i,i)/(HB)(i,i), V PR ỹi ) are exactly the eigenpairs of (1)
inside Γ . Now, we formulate a new contour-integral based eigensolver, which uses a Schur–
Rayleigh–Ritz procedure [27, Chapter 6] to extract the desired eigenpairs. We summarize
the new method as follows.
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Algorithm 2: A contour-integral based method with Schur-Rayleigh-Ritz procedure.

Input: The number of quadrature nodes q , the starting matrix Y ∈ C
n×h , and an integer g

satisfying hg � s, a scalar σ ∈ C.
Output: Approximate eigenpairs (λ̃i , x̃i ), i = 1, . . . , s, λ̃i inside Γ .
1. Compute Ũk, k = 0, 1, . . . , g − 1, by (12), and set Ũ = [Ũ0, Ũ1, . . . , Ũg−1].
2. Compute QR decompositions: Ũ = V R1 and AV − σ BV = WR2.
3. Compute Ã = W ∗AV and B̃ = W ∗BV .
4. Compute [HA, HB , PL , PR, VL , VR] = qz( Ã, B̃).
5. Compute λ̃i = (HA)(i,i)/(HB)(i,i) and x̃i = V PR(VR)(:,i).
6. Select the approximate eigenpairs (λ̃i , x̃i ).

Our goal of our work is adapting the CIRRmethod to non-Hermitian problems. Algorithm
2 can be viewed as a non-Hermitian scheme of the CIRRmethod. It chooses the left subspace
to span{AV − σ BV }, rather than span{U } used in the CIRR method [15]. There are three
typical types of choice for the parameter σ .

1. In view of the relationship (21), we know span{AV } = span{BV } = span{AV −σ BV }.
However, in practical computations, we only can get the approximation, Ũ , of U (in
Step 1). Therefore, the first choice for σ is − 1, with the hope of the subspace span{W }
capturing the information of span{AŨ } and span{BŨ } simultaneouslywith equal weight.
Here, it is required that − 1 is not an eigenvalue inside the target region.

2. According to Theorem 4, for our method to work, the scalar σ must be different from
the desired eigenvalues, which motivates the second type of choice for σ , that is, a value
outside the target region.

3. The third type of choice is taking σ to a scalar that is located inside Γ , then our extraction
procedure becomes the so-called harmonic Schur–Rayleigh–Ritz procedure [32]. The
authors in [32] formulated a harmonic Schur–Rayleigh–Ritz procedure for computing
the eigenvalues near a user-specified target value. When it comes to our method, it makes
sense to choose the parameter σ to the center of the target region if the center is not an
eigenvalue inside the target region.

In Step 4, we use the Matlab built-in function qz to compute the QZ factorization
of ( Ã, B̃), which produces two unitary matrices PL , PR of the left and right general-
ized Schur vectors, along with the upper triangular matrices HA, HB , and matrices VL ,
VR , whose columns are the left and right generalized eigenvectors, along with eigenval-
ues (HA)(i,i)/(HB)(i,i), respectively. Specifically, the approximate eigenvectors are given by
V PR(VR)(:,i). We have shown that V PR and WPL are the right and left partial generalized
Schur vectors of pair (A, B) corresponding to upper triangular matrices HA and HB , the
ratios of whose diagonal entries are the eigenvalues inside Γ . Therefore, Algorithm 2 can
also be used to compute the partial generalized Schur factorization.

3.2 The Implementation Issues

If we apply Algorithm 2 to compute the eigenvalues inside Γ , we will encounter some issues
in a practical implementation, just like other contour-integral based eigensolvers [20,24,25].
In this section, we discuss the implementation issues of Algorithm 2, and then present the
complete algorithm.
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The first issue we have to treat is about selecting a suitable parameter h for the starting
matrix Y , with a prescribed parameter g. Since U (cf. 7) is expected to span a subspace that
contains the eigenspace of interest, we have to choose a parameter h, the number of columns
of Y , such that hg � s, the number of eigenvalues inside Γ . A strategy was proposed in [26]
for finding a suitable parameter h for the CIRR method. It starts with finding an estimation
to s. Giving a positive integer h0, by “Yh0 ∼ N(0, 1)”, we mean Yh0 is an n × h0 matrix with
i.i.d. entries drawn from the standard normal distribution N(0, 1). By (6) and (7), one can
easily verify that the mean

E[trace((Yh0)∗F0Yh0)] = h0 · trace(F0) = h0 · trace(S(:,1:s)(S−1)(1:s,:)) = h0 · s. (27)

Therefore,

s0 := 1

h0
· trace((Yh0)∗F0Yh0) (28)

is an unbiased estimator of s, and the variance is (trace(F∗
0 F0) + s)/h0 [33]. With this

information on hand, the strategy in [26] works as follows: (i) set h = � s0κ
g �, where κ > 1,

(ii) select the startingmatrix Y ∈ C
n×h and compute Ũk by (12), (iii) if the minimum singular

value σmin of Ũ = [Ũ0, . . . , Ũg−1] is small enough, we find a suitable h; otherwise, replace h
with κh and repeat (ii) and (iii). We observe that the formula (28) can give a good estimation
of s. However the computed s0 may be much larger than s in some cases, such as when the
matrices A and B are ill-conditioned. In these cases it is potentially expensive to compute the
singular value decomposition of Ũ . Due to this fact, we borrow some ideas proposed in [33].
The workingmechanism of our method is as follows: use the rank-revealing QR factorization
[7,13] to monitor the numerical rank of Ũ , if Ũ is numerically rank-deficient, then it means
that the subspace spanned by Ũ already contains the desired eigenspace sufficiently, as a
result, we find a suitable parameter h.

Another issue we have to address is designing the stopping criteria. The stopping crite-
ria here include two aspects: (i) all computed approximate eigenpairs attain the prescribed
accuracy, and (ii) all eigenpairs inside the given region are found.

As for the first aspect of the stopping criteria, since we can only computeU approximately
by some numerical integration [cf. (12)], the approximate eigenpairs computed by Algorithm
2may be unable to attain the prescribed accuracy in practice. A natural solution is to refine Ũ
(step 2 in Algorithm 2) iteratively. A refinement scheme was suggested in [17]. Let Ũ (0)

0 = Y

and l be a positive integer, the refinement scheme iteratively computes U (l)
k = FkŨ

(l−1)
0 by

a q-point numerical integration scheme:

U (l)
k ≈ Ũ (l)

k = 1

2π ı

q∑
j=1

ω j z
k
j (z j B − A)−1BŨ (l−1)

0 , k = 0, 1, . . . , g − 1, (29)

and then constructs
Ũ (l) =

[
Ũ (l)
0 , Ũ (l)

1 , . . . , Ũ (l)
g−1

]
. (30)

The refined Ũ (l) is used to form the projected eigenproblem (15). The accuracyof approximate
eigenpairs will be improved as the iterations proceed, see [26] for more details.

If all s approximate eigenpairs attain the prescribed accuracy after a certain iteration,
we could stop the iteration process. However, in general we do not know the number of
eigenvalues inside the target region in advance. This fact leads to the second aspect of the
stopping criteria: how to guarantee that all desired eigenpairs are found when the iteration
process stops. To fulfill this task, we take advantage of the idea proposed in [33]. The rationale
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of the idea is that, as the iteration process proceeds, the accuracy of desired eigenpairs will be
improvedwhile the spurious ones do not, as a result, therewill exist a gap of accuracy between
the desired eigenpairs and the spurious ones [33]. Based on this observation, a test tolerance η,
say 1.0×10−3, is introduced to discriminate between the desired eigenpairs and the spurious
ones. Specifically, for an approximate eigenpair (λ̃i , x̃i ), define the corresponding residual
norm as

ri = ‖Ax̃i − λ̃i Bx̃i‖
‖Ax̃i‖ + ‖Bx̃i‖ . (31)

If ri < η, then we view (λ̃i , x̃i ) as an approximation to a sought-after eigenpair and refer
to it as a filtered eigenpair by η. If the numbers of filtered eigenpairs are the same in two
consecutive iterations, then we set them to be the number of eigenvalues inside Γ , see [33]
for more details.

From (29)we can see that, in each iteration, the dominantwork is to compute q generalized
shifted linear systems of the form

(zi B − A)X (l−1)
i = BU (l−1)

0 , i = 1, 2, . . . , q. (32)

One can choose solvers to compute (32) based on the properties of matrices involved. In
practical situations, when the matrices A and B are large-scale and sparse, the Krylov sub-
space based methods, such as GMRES [23] and BiCGSTAB [31], are natural choices. Since
(32) are generalized shifted systems with multiple right-hand sides, the direct methods based
on the sparse Gaussian LU factorization are also highly recommended. Especially, once the
LU factors are obtained, they can be reused in the subsequent iterations. Since the quadra-
ture nodes z j , j = 1, . . . , q, are independent, and the columns of the right-hand sides are
also independent, like other contour-integral based eigensolvers, our new method has a good
potential to be parallelized.

Integrating the above strategies with Algorithm 2, we arrive at the resulting non-Hermitian
CIRRmethod developed in this work. Algorithm 2 is the main body of our newmethod. Note
that the key difference between Algorithm 2 and the CIRRmethod is the extraction approach.
The CIRR method uses the widely used orthogonal projection technique, which leads to
the potential failure when using the CIRR method to deal with non-Hermitian problems.
Algorithm 2 uses the Schur–Rayleigh–Ritz procedure to extract the desired eigenvalues.
Mathematical analysis shows that our method can deal with the non-Hermitian cases. Due
to this, we refer to the resulting method as CISRR for ease of representation.

Algorithm 3: The CISRR method

Input: Matrices A and B, the size of sample vectors h0, a positive integer g, the number of
integration points q , increasing factor κ , test tolerance η, convergence tolerance ε,
a scalar σ ∈ C, and maximum iteration number max_iter.

Output: Approximate eigenpairs (λ̃i , x̃i ), i = 1, . . . , s, λ̃i inside Γ .
1. Let Yh0 ∼ N(0, 1), compute Ũk, k = 0, . . . , g − 1, by (12).
2. Compute s0 = � 1

h0
trace((Yh0)

∗Ũ0)�, and set h = max{� s0κ
g �, h0}.

3. If h > h0
4. Pick Ŷh−h0 ∼ N(0, 1) and compute Ûk by by (12). Augment Ûk

to Ũk : Ũk =
[
Ũk, Ûk

]
∈ C

n×h and construct Ũ =
[
Ũ0, Ũ1, . . . , Ũg−1

]
.

5. Else

6. Set h = h0 and construct Ũ =
[
Ũ0, Ũ1, . . . , Ũg−1

]
.
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7. End
8. Compute the rank-revealing QR factorization: Ũ = V R1Π . Set s1 = rank(R1).

If s1 < hg, stop; otherwise, set h0 = h, h = κh and go to step 3.
9. Compute QR decomposition: AV − σ BV = WR2.
10. Set e(0) = 0 and c(0) = n.
11. For k = 1, 2, . . . ,max_iter
12. Compute Ã = W ∗AV and B̃ = W ∗BV . Set s1 = rank( Ã).
13. Compute [SA, SB ,UL ,UR, VL , VR] = qz( Ã, B̃).
14. Compute λ̃i = (SA)(i,i)/(SB)(i,i) and x̃i = VUR(VR)(:,i), i = 1, . . . , s1.
15. Set r = [ ],Λ(k) = [ ], X (k) = [ ], and c(k) = 0.
16. For i = 1 : s1
17. If λ̃i inside Γ , compute ri = ‖Ax̃i − λ̃i Bx̃i‖/(‖Ax̃i‖ + ‖Bx̃i‖).
18. If ri < η, set c(k) = c(k) + 1, r = [r , ri ], X (k) = [X (k), x̃i ],

Iand Λ(k) = [Λ(k), λ̃i ].
19. End
20. Set e(k) = max(r).
21. If c(k) = c(k − 1) and e(k) < ε, set λ̃i = (Λ(k))i , x̃i = (X (k))(:,i). Exit.
22. Set Y = Ũ0, and compute Ũk by (12). Construct Ũ =

[
Ũ0, Ũ1, . . . , Ũg−1

]
.

23. Compute QR decompositions: Ũ = V R1 and AV − σ BV = WR2.
24. End

Here we give some remarks on Algorithm 3.

1. Steps 1 to 8 are devoted to determining a suitable parameter h for the starting matrix
Y . Meanwhile, an orthonormal matrix V , the subspace spanned by which contains the
desired eigenspace approximately, is generated.

2. The for-loop, steps 16 to 19, is used to detect the spurious eigenvalues. Only the approx-
imate eigenpairs whose residual norms are less than the test tolerance η are retained.

3. Step 21 refers to the stopping criteria, which contain two aspects: (i) the number of filtered
eigenpairs is the same with the one in the previous iteration, and (ii) the residual norms
of all filtered eigenpairs are less than the prescribed tolerance ε.

4 Numerical Experiments

In this section, we use some numerical experiments to illustrate the performance of our
CISRR method (Algorithm 3). The test problems are from the Matrix Market collection.1

The first six test problems are generalized eigenproblems and the last two test problems are
standard ones. They are real-world problems from scientific and engineering applications.
The descriptions of the related matrices are presented in Table 1, where nnz denotes the
number of non-zero elements and cond denotes the condition numbers which are computed
by Matlab function condest. All computations are carried out inMatlab version R2014b
on a MacBook with an Intel Core i5 2.5 GHz processor and 8 GB RAM.

The target region for each test problem is chosen to be a disk enclosed by circle Γ . In
Table 2, γ and ρ represent the center and the radius of the target circle Γ , respectively,
and s is the number of eigenvalues inside Γ . In our method, it is required to solve the

1 http://math.nist.gov/MatrixMarket/.
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Table 1 Test problems from Matrix Market that are used in our experiments

No. Problem Type Size Matrix nnz cond

1 BFW398 Generalized 398 A 3678 7.58 × 103

B 2910 3.64 × 101

2 BFW782 Generalized 782 A 7514 4.63 × 103

B 5982 3.05 × 101

3 DWG961 Generalized 961 A 3405 Inf

B 10591 3.21 × 107

4 MHD1280 Generalized 1280 A 47906 9.97 × 1024

B 22778 5.99 × 1012

5 MHD3200 Generalized 3200 A 68026 2.02 × 1044

B 18316 2.02 × 1013

6 MHD4800 Generalized 4800 A 102252 2.54 × 1057

B 27520 1.03 × 1014

7 DW8192 Standard 8192 A 41746 1.50 × 107

8 AF23560 Standard 23560 A 460598 3.50 × 105

Table 2 The target region and the
number of eigenvalues inside No. γ ρ min

λ,z j
{ |z j−λ|

ρ } s

1 − 5.0 × 105 1.0 × 105 2.17 × 10−2 58

2 − 6.0 × 105 2.0 × 105 5.48 × 10−2 141

3 − 5.0 × 105 3.0 × 105 2.08 × 10−2 143

4 − 1.0 × 101 8.0 2.21 × 10−2 72

5 − 5.0 × 101 3.0 × 101 2.32 × 10−2 137

6 − 5.0 2.0 2.17 × 10−2 130

7 − 5.0 0.5 9.41 × 10−3 154

8 − 1.0 × 102 1.5 × 101 3.44 × 10−2 78

linear systems of the form (zi B − A)Xi = Y in each iteration. If an eigenvalue is close
to the integration point zi , then zi B − A will be ill-conditioned. In Table 2, we present
minλ,z j {|z j − λ|/ρ}, which is used tomeasure theminimumdistance between the integration
points and the spectrum of the test problems. We use Gauß–Legendre quadrature [8] with
q = 16 integration points onΓ to compute the contour integrals (29). To solve the generalized
shifted linear systems of the form (32), we first use theMatlab function lu to compute the
LU decomposition of A−z j B, j = 1, 2, . . . , q , and then perform the triangular substitutions
to get the corresponding solutions. Define

max_r = max
1≤i≤s

ri , (33)

where ri are the residual norms given by ‖Ax̃i − λ̃i Bx̃i‖/(‖Ax̃i‖ + ‖Bx̃i‖) and (λ̃i , x̃i ) are
the filtered eigenpairs. In our method (CISRR), we use test tolerance η to detect the spurious
eigenvalues. In the experiments we take η = 1.0×10−3. In each iteration, only the solutions
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Fig. 1 The convergence behavior of Algorithm 2 corresponds to different σ s

whose residual norms are less than η are retained. The retained approximate eigenvalues are
referred to as filtered eigenvalues.

Experiment 4.1 In the present work, we want to develop a non-Hermitian scheme for
the CIRR method [25]. To this end, we formulate a Schur–Rayleigh–Ritz procedure for
extracting the desired eigenpairs, which leads to Algorithm 2, the main body of the resulting
method (CISRR). The theoretical analysis shows that with the help of our new extraction
approach, Algorithm 2 is applicable for non-Hermitian problems. There is an important
parameter needed to select in Algorithm 2, that is, the scalar σ . We have introduced three
types of choice for this parameter. This experiment is devoted to illustrating the numerical
performance of Algorithm 2 when the parameter σ is taken to different values.

In the previous section, we introduced three typical types of choice for the parameter σ .
In this experiment, we take σ to be − 1, γ , and γ + 1.2ρ, which correspond to the cases that
(i) the left subspace span{W } captures the information of span{AV } and span{BV } equally,
(ii) σ is located inside Γ , and (iii) σ is outside the target region, respectively.

In the experiment, we set g = 5 and h = �1.5s/5� such that hg > s, here we assume that
the number of desired eigenvalues, s, is already known. In Fig. 1, we display the accuracy
achieved by Algorithm 2 at the iterations that s filtered eigenvalues are found. It can be seen
that Algorithm 2 has similar convergence behavior for the three different values of σ . We can
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Table 3 Comparison of eig and
CISRR

No. eig CISRR

1 2.57 × 10−13 6.50 × 10−14

2 5.59 × 10−12 2.24 × 10−13

3 6.81 × 10−10 3.41 × 10−10

4 1.15 × 10−8 2.46 × 10−10

5 4.94 × 10−7 7.59 × 10−10

6 2.59 × 10−7 4.33 × 10−9

observe that Algorithm 2 achieves the highest accuracy when the scalar σ is chosen as the
center of the target region for the test problems 6 and 7, whose matrices are ill-conditioned.
We havementioned that in this case our extraction approach is actually the so-called harmonic
Schur–Rayleigh–Ritz procedure [32]. In the following experiments, the parameter σ is taken
to be the center of the target region for each test problem.

Experiment 4.2 The goal of this experiment is to compare our CISRRmethod (Algorithm
3) with the Matlab built-in function eig, as well as two typical contour-integral based
eigensolvers in terms of accuracy and computational time. We use max_r [see (33)] to
measure the accuracy achieved by the test methods. In this experiment, the size of sampling
vectors h0 and the parameter g are taken to 30 and 5, respectively.

First, we compare our CISRR method with the Matlab built-in function eig for the
first six test problems. Applying eig to compute the eigenvalues inside the target region, we
have to first compute all eigenvalues in dense format and then select the target eigenvalues
according to the coordinates of computed eigenvalues. However, the matrices listed in Table
1 are sparse. Therefore, for the sake of fairness, we compare the two test methods only in
terms of accuracy, measured by max_r , and will not show the amount of CPU time taken
by these two methods.

In Table 3, we display the max_rs computed by eig in the second column. The smallest
max_rs computed by the CISRR method within the first five iterations are presented in
the last column. It is shown that our CISRR method is more accurate than its counterpart.
Remarkably, for the test problems 4, 5 and 6, whose related matrices are ill-conditioned, the
Matlab built-in function eig cannot achieve high accuracy, we can see that our method
outperforms its counterpart by two or three digits for these three problems.

We also compare our CISRR method with the FEAST algorithm and the CIRR method.
These three methods are contour-integral based eigensolvers. The FEAST algorithm orig-
inally was formulated for the Hermitian eigenproblems. The authors in [33] adapted it for
non-Hermitian problems. Since our test problems are non-Hermitian, in the experiment we
choose the non-HermitianFEASTdeveloped in [33] for comparison.As for theCIRRmethod,
in [26] the authors addressed some of its implementation problems, including how to select
suitable starting vectors. In our work, we propose another way to choose an appropriate start-
ing vectors. We find that our method is less costly, thus we use the method proposed in our
work to determine the starting vectors for the CIRR method in the tests. As a result, the main
difference between our method and the CIRR method used here is the extraction procedure.

Table 4 shows the accuracy achieved, as well as the CPU time required, by FEAST, CIRR,
and our CISRR method after four iterations. Firstly, we can see that the FEAST algorithm
can obtain more accurate solutions comparing with the other two contour-integral based
eigensolvers for the first three test problems and the last two standard eigenproblems; while
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Table 4 Comparison of FEAST, CIRR, and CISRR

No. FEAST CIRR CISRR

max_r Time (s) max_r Time (s) max_r Time (s)

1 2.11 × 10−14 1.14 2.52 × 10−13 0.63 6.50 × 10−14 0.67

2 2.29 × 10−14 5.76 8.08 × 10−12 3.54 4.49 × 10−13 4.18

3 1.35 × 10−10 8.35 5.50 × 10−10 4.46 5.82 × 10−10 5.43

4 2.29 × 10−9 15.5 5.79 × 10−7 8.91 2.46 × 10−10 10.9

5 8.39 × 10−9 27.7 6.93 × 10−7 17.9 7.59 × 10−10 19.4

6 1.08 × 10−8 59.0 3.49 × 10−6 20.6 4.33 × 10−9 21.4

7 1.59 × 10−14 105 8.70 × 10−12 64.8 8.28 × 10−12 67.2

8 6.71 × 10−14 745 2.50 × 10−12 372 2.18 × 10−12 390

our method is most accurate in the other three problems, whose matrices are ill-conditioned.
As for the CPU time, one can see that the FEAST algorithm is most costly of all three test
methods. In each iteration, the dominant work of all three methods is solving q = 16 linear
systems of the form (32). But the number of right-hand side vectors of the linear systems
involved in the FEAST algorithm must be larger than the number, s, of eigenvalues inside
Γ . But the numbers of right-hand side vectors in CIRR and CISRR are the parameter h,
which is much smaller than the value of s. On the other hand, it is shown in Table 4 that the
computational cost of our CISRR method is slightly larger than that of the CIRR method. As
wasmentioned, the difference between the version of CIRR used here and our CISRRmethod
is just the way of extracting the desired eigenvalues. In both CIRR and CISRR, we need to
compute the orthonormal basis V for the right subspace. In our method, the left subspace is
different from the right subspace. Comparing to the CIRR method, the extra work required
by our method is computing the orthonormal basis of the left subspace span{AV − σ BV }.

Experiment 4.3. Our work is motivated by the fact that the CIRR method [15] may fail
to solve the desired eigenpairs when the problem under consideration is non-Hermitian. The
key to the success of our CISRR method is formulating a (harmonic) Schur–Rayleigh–Ritz
procedure, instead of the Rayleigh–Ritz procedure used in the CIRR method, to extract the
eigenvalues of interest. This experiment is devoted to comparing our CISRR method with
the CIRR method by their convergence behavior.

For all test problems, beginning with the second iteration, the number of filtered eigenval-
ues equals the number of eigenvalues inside Γ . Therefore, in Fig 2, we plot the max_rs
[cf. (33)] from the second iteration to the 10th for each test problem. For comparison,
we also plot the max_rs computed by the CIRR method in Fig 2. Here, the version of
CIRR used is the same as the one described in the previous experiment, it can deal with
all eight test problems we selected. We can see that the convergence behaviour of the two
methods is quite similar for all test problems, except for the problems whose matrices are
ill-conditioned. The max_rs decreases monotonically and dramatically in the first few iter-
ations, and then maintain at almost the same level in the subsequent iterations. Remarkably,
there exist obvious accuracy gaps between our method and the CIRR method for test prob-
lems 4, 5 and 6. The difference between the two test methods is only the way of extracting the
desired eigenvalues, the projected matrix pairs in CIRR and our CISRR are (V ∗AV , V ∗BV )

and ((AV )∗AV − σ(BV )∗AV , (AV )∗BV − σ(BV )∗BV ), respectively. Note that both
(AV )∗AV and (BV )∗BV are positive definite matrices, it can be expected that the con-
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Fig. 2 The convergence behavior of CISRR and CIRR

dition numbers of the projected matrices in CISRR are smaller than those in CIRR. This
may explain why our new extraction procedure generates more accurate solutions especially
when the matrices involved are ill-conditioned, as is shown in the experiment.

5 Conclusions

In this paper, we presented a contour-integral method with Schur–Rayleigh–Ritz procedure
for computing the eigenpairs inside a given region. The goal of our work is to make the CIRR
method also applicable for non-Hermitian problems. Our method is based on the CIRR
method. The main difference between the original CIRR method and our CISRR method is
the way of extracting the desired eigenpairs. The theoretical analysis justified that our new
method can deal with non-Hermitian eigenvalue problems. The CIRR method extracts the
desired eigenpairs from the subspace spannedby the corresponding eigenbasis. In ourmethod,
the desired eigenpairs are extracted from the subspace spanned by the corresponding right
generalized Schur vectors. Our extraction approach can circumvent the difficulties related to
ill-conditioning or deficiency of the eigenbasis. The numerical experiments showed that our
method was more reliable and accurate than the CIRR method. In the present work, some
implementation issues arising in practical applications were also studied. The numerical
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experiments showed that our method performs better if the parameter σ in our method is
chosen as a value inside the target region, in which case, the extraction approach formulated
in this work becomes the harmonic Schur–Rayleigh–Ritz procedure. It is easy to see that
our method can be used to retrieve the partial generalized Schur vectors. The convergence
analysis of the new method will be studied in our further work. The Matlab code is available
on request.
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