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Abstract
It is speculated that some discontinuous weak solutions of boundary-value problems for
nonlinear systems of conservation laws are computed, however routinely, with prescribed
boundary data insufficient to uniquely determine such a solution. Stationary, transonic fluid
flow exemplifies applications of present concern. A supplemental, a posteriori computation
is described, which can potentially resolve this issue in any specific case.
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1 Introduction

Absence of an established underlying well-posed problem exposes numerically obtained
solutions of a mathematical model to a source of uncertainty. The form of input data, required
a priori for a numerical investigation to proceed, is necessarily determined ad hoc, choice
thereof arguably justified by subsequently obtained results. Such resultsmaywell be accepted
as proof beyond reasonable doubt of existence of an acceptable solution corresponding to
prescribed data, and of continuous dependence of obtained solutions on the data.

Such does not imply that sufficient input to uniquely determine an acceptable solution
has been prescribed. Indeed, such input may not be available a priori. Some of the input
data needed to distinguish an obtained solution may be generated artificially, by the adopted
approximation scheme. If so, an alternative schememight produce equally convincing results
with materially different solutions for the same prescribed data.

In this context, we address the solution of boundary-value problems (including Cauchy
problems and initial boundary-value problems) for first order systems of conservation laws,

m∑

i=1

vi j (z)xi = 0, j = 1, . . . , n. (1.1)

In (1.1), the dependent variable x assumes values in an open, connected set � ⊂ R
m ,

and on the boundary ∂�, where a piecewise continuous, exterior unit normal ν is almost
everywhere defined. The dependent variable z, depending on x , assumes values in “phase
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space”, a designated open set D ⊆ R
n . The system-specific “flux functions” vi j are smooth

functions on D.
Numerical investigation of such a system typically derives from identification of a qual-

itatively specified solution set S, of interest in a specific application. Stationary, transonic
fluid flow problems in a specific domain � illustrate the examples of concern here.

Adoption of a boundary-value problem for (1.1) is based on the assumption that the
elements z ∈ S are uniquely distinguished by partial specification of the corresponding
boundary flux vν(z),

vν(z) j (x)
de f=

m∑

i=1

νi (x)vi j (z(x)), j = 1, . . . , n, (1.2)

for almost all x ∈ ∂�. Subscript ν is defined analogously throughout.
Specifically, we assume the existence of a 1 − 1 mapping

B : S → D (1.3)

relating elements z ∈ S to elements b ∈ D by

b = (I − P)vν(z |
∂�

). (1.4)

In (1.4), P is a projection map on the space of n-vector functions on ∂�, designating the
form of the boundary conditions for (1.1) associated with S. In particular, P is independent
of z ∈ S. Without loss of generality, we take P symmetric with respect to the L2(∂�)n inner
product. For simplicity, here we assume P specified pointwise, so that for x ∈ ∂�, P(x) is a
given, symmetric, idempotent n × n matrix. Typically P is continuous in x , if not constant,
within segments of ∂� where ν is continuous. Throughout I is the identity operator on
whatever spaces.

From (1.3), (1.4), it follows that D is the projection of vν(S) onto the subspace ker P (of
the space of n-vector functions on ∂�). Here we assume

D = D1 ⊕ D2, (1.5)

corresponding to
ker P = (ker P)1 ⊕ (ker P)2, (1.6)

with
(ker P)1 ∩ (ker P)2 = {0}. (1.7)

In (1.5), D1 is assumed an open subset of a Banach space D′, tacitly assuming that in
practice, elements ofD1 can be approximated with respect to the norm ‖ · ‖D′ . The elements
ofD2 are assumed isolated and known precisely; typicallyD2 is trivial. ThusD′ is identified
as the tangent space of D, at any point b ∈ D.

Limits for S are understood as determined implicitly, from (1.3), (1.4) and whatever
adopted limits for D.

In a fluidflowproblemwe anticipate identification ofD1, (ker P)1 with an inflowboundary
segment, and D2, (ker P)2 with the remainder of the boundary ∂�.

We seek to recover elements of S as images of a mapping A : D → S satisfying

A ∈ C(D → G) (1.8)

with respect to the norms ‖·‖D′ , ‖·‖G . Here and throughout, G is a Banach space containing
S as a subset, such that approximation of elements of S in the norm ‖ ·‖G suffices in practice.
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Anticipating discontinuous, weak solutions, the mappingA is based on the weak form of
(1.1), (1.4) ∫

∂�

b · θ =
∫∫

�

m∑

i=1

n∑

j=1

vi j (z)θ j,xi (1.9)

for all θ ∈ X ,

X
def=

{
θ ∈ (C∞(�) ∩ C(�̄))n |Pθ |

∂�

= 0

}
. (1.10)

In (1.9) and throughout, single intervals are over (m − 1)-manifolds and double integrals
over m-manifolds. Dots denote either the �2(R

m) or �2(R
n) inner product.

Given a system (1.1) and a qualitatively described solution set S, we seek to recover a
mappingA as the limit of a sequence of approximations. The mapping P corresponding to S
is typically determined, using (1.4), (1.6), on “physical grounds”, so that each element of D
contains all of the boundary data available a priori to the anticipated corresponding element
of S.

With δ > 0 designating whatever discretization parameters, δ assuming a sequence of
value decreasing to zero, we construct an approximation scheme, a sequence of mappings

Aδ ∈ C(D → G), δ > 0, (1.11)

such that the images
zδ(b) = Aδ(b), δ > 0, b ∈ D (1.12)

satisfy ∫∫

�

m∑

i=1

n∑

j=1

vi j (zδ)θ j,xi
δ↓0−→

∫

∂�

b · θ (1.13)

for any θ ∈ X , b ∈ D independent of δ.
We seek {Aδ} such that (1.11) holds uniformly with respect to δ, and such that for any

b ∈ D
zδ(b)

δ↓0−→ z0(b) (1.14)

strongly in G, with
z0(b) ∈ S. (1.15)

Examples of schemes with such results supported by strong empirical evidence have been
well-known for some time, in a wide variety of applications [5,7,10,13].

Assuming such, we tacitly identify A as the weak limit of {Aδ} as δ ↓ 0, implicitly by

A(b) = z0(b), b ∈ D. (1.16)

From (1.11) (uniformly with respect to δ) and (1.14), we have A satisfying (1.8).
From (1.13), (1.14), (1.15), with B given in (1.3), (1.4), we have

B ◦ A = I (1.17)

on D.
Remaining unanswered is whether B is 1 − 1, equivalently whether

A ◦ B = I (1.18)

on S.
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Indeed, establishment of (1.8), (1.18) is veritable determination of a well-posed boundary-
value problem for the system (1.1), with S,D, P related by (1.4). Unsurprisingly, the
conditions (1.8), (1.18) severely restrict the choice of P , with (1.8) requiring ker P suffi-
ciently small and (1.18) requiring ker P sufficiently large. For example, if ker P ′ is a proper
subspace of ker P , then (1.18) holding for P precludes such for P ′, while if (1.8) holds for
P ′, such cannot be expected for P . There is no assurance of either existence or uniqueness
of P such that (1.8), (1.18) hold.

Below we obtain partial results for the question of whether (1.18) holds for some A
obtained from (1.11), (1.12), (1.13), (1.14), (1.15), (1.16).Our discussion is directed by results
gleaned from two very special cases. Making indicated restrictions, we obtain conditions
approximating (1.18) locally which can be investigated numerically, given a sequence {zδ(b)}
for some b ∈ D. With the usual qualifications, such investigation will either materially
increase our confidence that (1.18) holds or else provide information on where ker P is too
small.

2 Basic Assumptions: The Liner Case

Even for one space-dimensional Cauchy problems for hyperbolic systems (1.1), existence
theorems remain restricted by the assumption of “small data” [1,2,6], or to very special con-
ditions [12,15]. In this context, we address here a linear approximation of (1.8), (1.18), tacitly
assuming that a mappingA satisfying (1.8), (1.17), (1.18) is pointwise Frechet differentiable.
With D of the form (1.5), we consider the existence of a linear map at each z ∈ S

dA(z) : D′ → S ′(z) (2.1)

with D′,S ′(z) respectively the tangent spaces of D,S at z.
The condition (1.8) is associated with boundedness of dA(z), suitable norms for D′ and

S ′(z) to be determined. With A satisfying (1.17) by convention, the condition (1.18) is
associated with uniqueness of the images dA(z)b

·
, within S ′(z), for arbitrary b· ∈ D′. Thus

z for which such dA(z) hold can be made admissible in the sense of [14].
Here we avoid the assumption that the system (1.1) is everywhere hyperbolic for several

reasons. Such is not the case in typical applications of present concern. Investigation of
whether P is such that (1.11), (1.12), (1.13), (1.14), (1.15), (1.16) all hold, with (1.18)
failing, is inappropriate for hyperbolic systems, for which P is largely if not entirely known a
priori. Finally, the treatment in [14] suggest that in higher dimensions (m ≥ 3) , hyperbolicity
is a disadvantage in establishing (2.1).

Nonetheless we assume here systems (1.1), admitting an entropy extension [9], an m-
vector entropy flux

q ∈ C3(D → R
n) (2.2)

satisfying
qi (z) = q̃i (vi1(z), . . . , vin(z)), i = 1, . . . ,m (2.3)

with
∂ q̃i
∂vi j

(z) = z j (2.4)

for all i = 1, . . . ,m, j = 1, . . . , n such that vi j is not identically constant (zero by conven-
tion).
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From (2.1), (2.4), the Lagrange dual

ψ ∈ C3(D → R
m) (2.5)

obtained from

ψi (z) =
n∑

j=1

z jvi j (z) − qi (z), i = 1, . . . ,m (2.6)

satisfies [8,11]
∂ψi

∂z j
(z) = vi j (z), i = 1, . . . ,m, j = 1, . . . , n j , (2.7)

emphasizing that a convexity assumption is not made [4]. From (2.7), continuous solutions
of (1.1) satisfy

m∑

i=1

n∑

k=1

ψi,z j zk (z)zk,xi = 0, j = 1, . . . , n (2.8)

illustrating a resemblance to symmetric linear systems (1.1), of the form

m∑

i=1

Vi zxi = 0 (2.9)

with each Vi a symmetric n×n matrix. Indeed, (2.9) is a special case of (1.1), corresponding
to

vi j (z) = (Vi z) j , i = 1, . . . ,m, j = 1, . . . , n. (2.10)

Existence and uniqueness results for hyperbolic systems (2.9) are well-known [3]. The
following discussion of boundary-value problems for nonhyperbolic systems (2.9) displays
several features extending to nonlinear systems equipped with an entropy extension, and
appearing in subsequent discussion of (2.1). We postulate a strong correlation between suit-
able P for linear systems and for nonlinear systems, for example by replacing Vν byψν,zz(z)
in (2.25), (2.36) below.Whether such can be done in practice, with z ∈ S unavailable a priori,
is unclear.

Even in the linear system case, the obtained uniqueness results are incomplete. In this
generality, we cannot preclude the existence of nontrivial solutions corresponding to zero
boundary data, making it impossible to recover uniqueness simply by suitable choice of P .

Using (2.10), (1.4) assumes the form

b = (I − P)Vνz (2.11)

on ∂�, and (1.9) the form
∫

∂�

b · θ =
∫∫

�

m∑

i=1

(Vi z) · θxi

=
∫∫

�

z ·
m∑

i=1

Viθxi (2.12)

We denote

‖θ‖V de f=
∥∥∥∥∥

m∑

i=1

Viθxi

∥∥∥∥∥
L2(�)

(2.13)

and Z the completion of X in the norm ‖ · ‖V .
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Theorem 2.1 Assume ker P sufficiently small that there exists a constant c such that for all
θ ∈ X,

‖θ‖L2(∂�) ≤ c‖θ‖V . (2.14)

Then for any b ∈ L2(∂�)n of the form (2.11), there exists z ∈ L2(�)n satisfying (2.12).

Remarks Uniqueness is not claimed.

Hereafter c is a (sufficiently large positive) generic constant, relevant dependences thereof
denoted by subscripts.

Proof Using (2.14), Z |
∂�

is complete with respect to the norm ‖θ‖L2(∂�). For any fixed b,

the functional on Z given by

Jb(θ) = −
∫

∂�

bθ + 1
2‖θ‖2V

is bounded below from (2.14), and achieves a (local)minimumat somepoint ξ ∈ Z , satisfying

∫

∂�

b · θ =
∫∫

�

(
m∑

i=1

Viξxi

)
·
⎛

⎝
m∑

j=1

Vjθx j

⎞

⎠ (2.15)

for all θ ∈ Z . Thus

z =
m∑

i=1

Viξxi (2.16)

satisfies (2.12). ��
Solutions of (2.9) conserve energy; this is where the symmetry of the Vi is essential. The

m-vector energy flux E , determined from

Ei (z) = 1
2 z · Vi z, i = 1, . . . ,m (2.17)

satisfies
∇ · E(z) = 0 (2.18)

weakly within �. For linear systems (1.1), the functions q, ψ, E coincide.
Without loss of generality, we have

E(z) = ∇
(z) + �(z) (2.19)

with a scalar function 
 and m-vector � satisfying

∇ · �(z) = 0 (2.20)

weakly within � and
ν · �(z) = 0 (2.21)

almost everywhere on ∂�.
From (2.18), (2.19), (2.20), (2.21), we have

�
(z) = 0 (2.22)

weakly within �, and ∫

∂�

Eν(z)� =
∫∫

�

∇� · ∇
(z) (2.23)
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for any smooth scalar function �. (In subsequent sections, �,
,� are used generically, not
necessarily the same in any two places.)

From (2.19), (2.21), almost everywhere on ∂�,

Eν(z) = ν · ∇
(z). (2.24)

Almost everywhere on ∂�, we denote by V−1
ν the inverse of Vν on range Vν , and the

identity map on ker Vν .

Lemma 2.2 Assume P such that almost everywhere on ∂�,

PVν P ≥ 0. (2.25)

Then for any z, b satisfying (2.11), almost everywhere on ∂�,

Eν(z) ≥ −c|b|2. (2.26)

Proof From (2.25), for any a ∈ R
n

Pa · V−1
ν Pa ≥ 1

c |Pa|2. (2.27)

From (2.6), using (2.11)

Eν = 1
2 z · Vνz

= 1
2Vνz · V−1

ν Vνz

= 1
2 (b + PVνz) · V−1

ν (b + PVνz)

= 1
2b · V−1

ν b + b · V−1
ν PVνz + 1

2 PVνz · V−1
ν PVνz (2.28)

and (2.26) follows from (2.27), (2.28). ��
Choosing ∇� = −∇
 in (2.23) and adding a constant to � as necessary, we obtain an

estimate for z.

Corollary 2.3 Assume (2.25); then

‖∇
(z)‖L2(�) ≤ c‖|b|2‖L2(∂�). (2.29)

The condition (2.25) also implies a partial uniqueness result.

Theorem 2.4 Assume (2.25); then Vνz (on ∂�) and
 (up to an additive constant) are unique
for a given b.

Proof Denote by z, z′ two solutions of (2.9), (2.12), (2.11). Then z− z′ satisfies (2.9), (2.12),
(2.11) with b vanishing identically, so from (2.26)

Eν(z − z′) ≥ 0. (2.30)

From (2.24), almost everywhere on ∂�

ν · ∇
(z − z′) ≥ 0 (2.31)

and as 
(z − z′) satisfies (2.22), (2.31) must hold with equality.
Thus from (2.17), (2.11)

0 = Eν(z − z′)
= 1

2 (z − z′) · Vν(z − z′)
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= 1
2Vν(z − z′) · V−1

ν Vν(z − z′)
= 1

2 PVν(z − z′) · V−1
ν PVν(z − z′) (2.32)

so using (2.27)
PVνz = PVνz

′ (2.33)

and from (2.11), (2.33)
Vνz = Vνz

′. (2.34)

From (2.6), (2.34), using (2.24)

Eν(z) = Eν(z
′)

= ν · ∇
(z)

= ν · ∇
(z′) (2.35)

and as 
(z),
(z′) both satisfy (2.22), they must coincide. ��
The mapping P is uniquely determined by (2.25) simultaneously with a condition

(I − P)a · Vν(I − P)a ≤ − 1
c |(I − P)a|2 (2.36)

almost everywhere on ∂�, for all a ∈ R
n . Use of (2.36), (1.10), obtaining

−
∫∫

�

θ ·
m∑

i=1

Viθxi = − 1
2

∫

∂�

θ · Vνθ

≥ 1
c ‖θ‖2L2(∂�), (2.37)

reduces verification of (2.14) to verification of an apparently simpler condition

‖θ‖L2(�) ≤ c

⎛

⎝
∥∥∥∥∥

m∑

i=1

Viθxi

∥∥∥∥∥
L2(�)

+ ‖θ‖L2(∂�)

⎞

⎠ . (2.38)

Theorem 2.5 If m = 2, the condition (2.38) necessarily holds.

Proof We consider the mixed eigenvalue problem

V1a j = λ j V2a j , (2.39)

notwithstanding that neither V1 nor V2 is positive definite (in the absence of hyperbolicity).
Without loss of generality, the integers 1, . . . , n may be divided into values of j where

(2.39) holds with a j ∈ R
n , |a j | = 1 and λ j real; values of j where

V1a j = 0 (2.40)

with a j ∈ R
n , |a j | = 1; and pairs j, j + 1, such that

V1a j = λ j V2a j − λ j+1V2a j+1, (2.41)

V1a j+1 = λ j V2a j+1 + λ j+1V2a j , (2.42)

with a j , a j+1 ∈ R
n , |a j+1| = 1, λ j , λ j+1 ∈ R, λ j+1 �= 0.

As the set {V2a j } spansRn , it will suffice to verify (2.38) for each scalar function a j ·V2θ .
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In the “hyperbolic” case where (2.39) holds with nonzero real λ j , we have

a j ·
n∑

i=1

Viθxi = a j (V1θx1 + V2θx2)

= a j · (λ j V2θx1 + V2θx2)

= λ j (a j · V2θ)x1 + (a j V2θ)x2 , (2.43)

an ordinary differential equation for a j · V2θ , from which an estimate analogous to (2.38),

‖a j · V2θ‖L2(�) ≤ c(‖a j (V1θx1 + V2θx2)‖L2(�) + ‖a j · V2θ‖L2(∂�)) (2.44)

is immediate.
In the “degenerate” case (2.40), a j ·V2θ vanishes identically and there is nothing to prove.
In the “elliptic” case (2.41), (2.42), we obtain

a j · (V1θx1 + V2θx2) = λ j (a j · V2θ)x1 − λ j+1(a j+1 · V2θ)x1 + (a j · V2θ)x2 ,

(2.45)

a j+1 · (V1θx1 + V2θx2) = λ j (a j+1 · V2θ)x1 + λ j+1(a j · V2θ)x1 + (a j+1 · V2θ)x2 .

(2.46)

Application of the standard “cross differentiation” technique to (2.45), (2.46) gives
((

λ j
∂

∂x1
+ ∂

∂x2

)2

+ λ2j+1
∂2

∂x21

)
(a j · V2θ) =

(
λ j

∂

∂x1
+ ∂

∂x2

)
a j · (V1θx1 + V2θx2)

+ λ j+1
∂

∂x1
a j+1 · (V1θx1 + V2θx2);

(2.47)
((

λ j
∂

∂x1
+ ∂

∂x2

)2

+ λ2j+1
∂2

∂x21

)
(a j+1 · V2θ) =

(
λ j

∂

∂x1
+ ∂

∂x2

)
a j+1 · (V1θx1 + V2θx2)

− λ j+1
∂

∂x1
a j · (V1θx1 + V2θx2);

(2.48)

holding weakly, in H−1(�).
The operator in the left side of (2.47), (2.48) is uniformly elliptic, and we obtain

‖a j · V2θ‖L2(�) + ‖a j+1 · V2θ‖L2(�) ≤ c(‖a j · (V1θx1 + V2θx2)‖L2(�)

+ ‖a j+1 · (V1θx1 + V2θx2)‖L2(�) + ‖a j · V2θ‖L2(∂�) + ‖a j+1 · V2θ‖L2(∂�)). (2.49)

��
Lemma 2.2 and the a priori estimate Corollary 2.3 extend to nonlinear systems satisfying

(2.7), albeit in weakened form.
For fixed b at each x ∈ ∂� where ν(x) is defined, we denote

Dx
def= {a ∈ D | (I − P(x))ψ†

ν(x),z(a) = b(x)}. (2.50)

For any a ∈ Dx , the tangent space D′
x (a) to Dx at a satisfies

D′
x (a) ⊆ ker

(
(I − P(x))ψν(x),zz(a)

)
. (2.51)

123



Journal of Scientific Computing (2019) 81:1266–1296 1275

However, for any x such that for all a ∈ Dx

kerψν(x),zz(a) ⊆ rangeP(x), (2.52)

as anticipated,
D′
x (a) = rangeP(x), (2.53)

independent of a ∈ Dx .
The following result is pointwise with respect to x ∈ ∂�. For simplicity of notation, we

drop (x) from ν, P, b, a0, ā as no ambiguity arises.

Theorem 2.6 At a point x ∈ ∂� where ν, P are defined, assume the existence of a0 ∈ Dx

such that for all a ∈ Dx , there exists a trajectory

ā ∈ H1((0, 1) → Dx
)
, ā(0) = a0, ā(1) = a, (2.54)

such that for all t ∈ (0, 1)

Pψ†
ν,z(ā(t)) = (1 − t)Pψ†

ν,z(a0) + t Pψ†
ν,z(a). (2.55)

Assume in addition that
a′ · ψν,zz(a

′′
)a′ ≥ 0 (2.56)

for all a′ ∈ D′
x (a

′′), a′′ ∈ Dx .
Then for any a ∈ Dx ,

qν(a) ≥ a0 · P(ψ†
ν,z(a) − ψ†

ν,z(a0)) + qν(a0). (2.57)

Remarks In general, from (2.50) the point a0 depends on b. But for any x such that Pψ
†
ν,z(Dx )

is a convex subset of Rn , we can satisfy (2.55) with a0 satisfying

Pψ†
ν,z(a0) = 0 (2.58)

independent of b, and independent of x within any segment of ∂� where ν, P are constant.
But (2.58) does not generally determine a0 uniquely, (2.57) notwithstanding.

The condition (1.18) is understood as requiring ker P sufficiently large, using (2.51).
Indeed, (2.56) holds trivially at a point x where P vanishes. At a point x where (2.53) holds,
(2.56) simplifies to

Pψν,zz(a
′′)P ≥ 0 (2.59)

for all a′′ ∈ Dx , analogous to (2.25) for linear systems.
The conclusion (2.57) provides a lower bound on qν(Dx ) at any point where

a0 ∈ ker P (2.60)

or at any point where

a0 · Pψ†
ν,z(a) ≥ −cb + 1

c′ qν(a), c′ > 1, (2.61)

for all a ∈ Dx .

Proof For any fixed a ∈ Dx , from (2.54), (2.55)

d

dt
Pψ†

ν,z(ā(t)) = P(ψ†
ν,z(a) − ψ†

ν,z(a0)), (2.62)

123



1276 Journal of Scientific Computing (2019) 81:1266–1296

and
d

dt
Pψ†

ν,z(ā(t)) = Pψν,zz(ā(t))āt (t), (2.63)

with

ā(t) ∈ Dx , (2.64)

āt (t) ∈ D′
x (ā(t)), (2.65)

for all t ∈ (0, 1), and
āt ∈ L2(0, 1)

n . (2.66)

Successively using (2.3), (2.7), (1.4), (2.54), (2.4), (2.62)

qν(a) − qv(a0) = q̃ν(ψ
†
ν,z(a)) − q̃ν(ψ

†
ν,z(a0))

= q̃ν(b + Pψ†
ν,z(a)) − q̃ν(b + Pψ†

ν,z(a0))

=
1∫

0

d

dt
q̃ν(b + Pψ†

ν,z(ā(t)))dt

=
1∫

0

ā(t) · d

dt
Pψ†

ν,z(ā(t))dt

= P(ψ†
ν,z(a) − ψ†

ν,z(a0)) ·
1∫

0

ā(t)dt . (2.67)

Partial integration in (2.67), subsequently using (2.62), (2.63), gives

qν(a) − qν(a0) = P(ψ†
ν,z(a) − ψ†

ν,z(a0)) · (a0 +
1∫

0

(1 − t)āt (t)dt)

= a0 · P(ψ†
ν,z(a) − ψ†

ν,z(a0)) +
1∫

0

(1 − t)āt (t) · d

dt
Pψ†

ν,z(ā(t))dt

= a0 · P(ψ†
ν,z(a) − ψ†

ν,z(a0)) +
1∫

0

(1 − t)āt (t) · Pψν,zz(ā(t))āt (t)dt

(2.68)

which is defined in view of (2.66).
Using (2.64), (2.65), (2.51), for any 0 < t < 1,

(I − P)ψν,zz(ā(t))āt (t) = 0 (2.69)

and the integral in (2.68) is

1∫

0

(1 − t)āt (t) · ψν,zz(ā(t))āt (t)dt ≥ 0 (2.70)

using (2.56) with a′ = āt (t), a′′ = ā(t) at each t .
The conclusion (2.57) is immediate from (2.68), (2.70). ��
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An analog of Corollary 2.3 is obtained as follows. Assume, presumably using Theorem
2.5, that there exists ∂�I ≤ ∂� such that almost everywhere in ∂�I , for all z ∈ S

qν(z) ≥ −cb. (2.71)

Assume that the familiar entropy inequality [9]

∇ · q(z) ≤ 0 (2.72)

is part of the specification of S.
Then for smooth nonnegative scalar � satisfying

supp� ∩ ∂� ⊆ ∂�I , (2.73)

the moment of (2.72) with �, after partial integration, gives

−
∫∫

�

∇� · q(z) ≤ −
∫

∂�

qν(z)�

= −
∫

∂�i

qν(z)�

≤ cb‖�‖L1(∂�I ) (2.74)

for all z ∈ S, using (2.73), (2.71).

3 The Existence and Boundedness Conditions

We now address solution of (2.1).
Using (2.7), the relation (1.9) becomes

∫

∂�

b · θ =
∫∫

�

m∑

i=1

n∑

v=1

ψi,z j (z)θ j,xi (3.1)

for all θ ∈ X given in (1.10).
Linearization of (3.1), to obtain expression of S ′(z) and dA(z), requires assumption of

the form of z ∈ S and the sense in which (1.1) is satisfied.
Here we assume

z ∈ C(�̄\�)n (3.2)

satisfying (1.1) in the sense of n-vector measures on �.
In (3.2) and throughout, the discontinuity locus �, which depends on z ∈ S, is assumed a

finite union of (m−1)-manifolds,with unit normal μ̂ defined continuously almost everywhere
on �. (The manifolds comprising � may intersect.) We assume one-sided limiting values of
z almost everywhere on �, and denote by [·] jumps on � in the direction μ̂.

Such determines the form of an assumed Frechet derivative of each term in (3.1). With P
assumed independent of z ∈ S, almost everywhere on ∂�, from (1.4), (2.7), we have

db(z) = (I − P)ψν,zz(z)ż|∂�

de f= ḃ (3.3)

with some ż |∂�(x) ∈ R
n , for almost all x ∈ ∂�.
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The corresponding Frechet derivative of ψi,z j (z) includes a regular part (with respect to
Lebesgue measure in �)

dψi,z j (z)|�\� = ψi,z j z ż (3.4)

with ż(x) ∈ R
n , x ∈ �\�, and a singular part with support on �,

dψi,z j (z) |
�

= −[ψi,z j (z)]μ̂ · ẋ |� (3.5)

almost everywhere on � with ẋ |
�

(x) ∈ R
m for almost all x ∈ �.

From (1.10), the test space X is independent of z ∈ S, so the linearization of (3.1) is

|
∂�

ḃ · θ =
∫∫

�\�

m∑

i=1

n∑

j,k=1

ψi,z j zk (z)żkθ j,xi −
∫

�

μ̂ · ẋ |
�

m∑

i=1

n∑

j=1

[ψi,z j (z)]θ j,xi

de f=
∫∫

�\�
ż · Rθ +

∫

�

σ Sθ (3.6)

with

(Rθ)k
de f=

m∑

i=1

n∑

j=1

ψi,z j zk (z)θ j,ki , k = 1, . . . , n, (3.7)

in �\�;

σ
de f= −μ̂ · ẋ |

�

, (3.8)

Sθ
de f=

m∑

i=1

n∑

j=1

[ψi,z j (z)]θ j,xi , (3.9)

almost everywhere on �. Here and throughout, we adapt the notation employed in [14] as
much as possible for consistency. For simplicity of notation, the dependence of Rθ, Sθ on z
is suppressed throughout.

Identifying
ḃ ∈ D′, (ż, σ ) ∈ S ′(z), (3.10)

we have an explicit statement of (2.1) in (3.6).
In a neighborhood of �, we use orthogonal coordinates μ̂, α1, . . . , αm−1, with the unit

vectors α̂i tangential to �. Almost everywhere on �, elements z ∈ S satisfy the Rankine-
Hugoniot condition.

[ψμ,z(z)] = 0. (3.11)

The expression (3.9) is invariant under rotation of the space coordinates, so using (3.11)
we have

Sθ =
m−1∑

i=1

n∑

j=1

[ψαi ,z j (z)]θ j,αi (3.12)

depending only on the tangential derivatives of θ on �.
Norms for D′, S ′(z) induce seminorms on X ,

‖θ‖∂�
de f= lub

ḃ∈D′\{0}

∫

∂�

ḃ · θ

‖ḃ‖D′
, (3.13)
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‖θ‖de f= lub
(ż,σ )∈S ′\{0}

∫∫

∂\�
ż · Rθ + ∫

�

σ Sθ

‖(ż, σ )‖S ′(z)
. (3.14)

Using (3.13), (3.14), the boundedness condition for dA(z).

‖(ż, σ )‖S ′(z) ≤ cz‖ḃ‖D′ (3.15)

is equivalent to a condition on X analogous to (2.14)

‖θ‖∂� ≤ cz‖θ‖. (3.16)

We note that ‖θ‖∂� is independent of z ∈ S, whereas ‖θ‖ depends only on Rθ, Sθ , and
not explicitly on P . The condition (3.16) depends on z, P , and we recover (as expected) the
condition that if (3.16) is satisfied for all z ∈ S with some P , it is satisfied with any P ′ such
that ker P ′ ⊂ ker P . Using (3.7), (3.14), we observe that (3.16) is impossible unless (2.52)
holds.

For a fixed z ∈ S, denote by Z the completion of X in the norm ‖θ‖. Unlike X , the space
Z depends on z. If (3.16) holds, then Pθ |

∂�

= 0 for all θ ∈ Z .

An easy extension of Theorem 2.1 applies to (3.6). Throughout we denote by
(Z |

∂�

)∗, (RZ)∗, (SZ)∗ the dual spaces of Z |
∂�

, RZ , SZ determined by integrability of prod-

ucts over ∂�,�\�,� respectively.

Theorem 3.1 Assume that (3.16) holds, that

D′ ⊆ (Z |
∂�

)∗ (3.17)

and that the norm ‖θ‖ given in (3.14) is Frechet differentiable (with respect to θ ∈ Z).
Then for any ḃ ∈ D′, there exists ż ∈ (RZ)∗, σ ∈ (SZ)∗ satisfying (3.6), (3.15).

Remarks Uniqueness is not claimed.

Proof For any fixed ḃ ∈ D′, using (3.16) the functional on Z determined by

Jḃ(θ)
de f= −

∫

∂�

ḃ · θ + 1

2
‖θ‖2 (3.18)

is bounded below. At any stationary point ξ ∈ Z of Jḃ (for example the global minimum),
by hypothesis of Frechet differentiability of ‖θ‖, for any θ ∈ Z , necessarily

∫

∂�

ḃ · θ = ‖ξ‖d‖ξ‖(θ)

= ‖ξ‖
( ∫∫

�\�
ζ(ξ) · Rθ +

∫

�

ζ�(ξ)Sθ
)

(3.19)

with ζ(ξ) ∈ (RZ)∗, ζ�(ξ) ∈ (SZ)∗, as R, S are given respectively in disjoint regions�\�,�.
Then

ż = ‖ξ‖ζ(ξ), σ = ‖ξ‖ζ�(ξ) (3.20)

satisfy (3.6), (3.15). ��

123



1280 Journal of Scientific Computing (2019) 81:1266–1296

We note that the condition (3.16), equivalent to the existence of a lower bound for the
functional

J (θ) = −‖θ‖∂� + 1

2
‖θ‖2

≥ −1

2
c2z (3.21)

for all θ ∈ Z , cz the constant in (3.16).

4 The Uniqueness Condition

From (3.6), uniqueness of (ż, σ )withinS ′(z) is equivalent to the statement that ( f , g) ∈ S ′(z)
satisfying ∫∫

�\�
f · Rθ +

∫

�

gSθ = 0 (4.1)

for all θ ∈ Z implies
f = g = 0. (4.2)

For a fixed ḃ ∈ S ′, such requires that Jḃ given in (3.18) has only the global minimum as
a stationary point, and that equivalent norms ‖θ‖, ‖θ‖′, determining the same space Z but
different functionals Jḃ determine the same (ż, σ ) from (3.20).

Furthermore the space S ′(z) remains ambiguous, restricted so far only by D′ and (3.3).
We denote

� = span {(ż, σ )|ḃ ∈ D′} (4.3)

ḃ, ż, σ satisfying (3.20). From (3.6), necessarily

� ⊆ S ′(z) (4.4)

and
S ′(z) ⊆ (RZ)∗ × (SZ)∗. (4.5)

From (4.5), we note that for z continuous and � nonexistent in (3.2), Sθ vanishing iden-
tically, the condition (4.1), (4.2) is trivially satisfied.

The selection of (4.5) holding with equality, made in [14], avoids precise specification of
D′. Such makes (4.1), (4.2) equivalent to a representation for Z of the form

Z = Z�\� ⊕ Z�, (4.6)

with
SZ�\� = 0 (4.7)

on �, and
RZ� = 0 (4.8)

in �\�. We note that in general, using (3.12) Z�\� contains all elements of Z vanishing
identically on �, whereas Z� may be trivial. Holding for a specific Z , the representation
(4.6), (4.7), (4.8) necessarily holds for X and thus for any Z obtained with some norm ‖θ‖.

The statement (4.6), (4.7), (4.8) is a statement of ker P sufficiently large.

Theorem 4.1 Assume (4.6), (4.7), (4.8) for some P. The such holds for any P ′ with ker P ⊂
ker P ′.
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Proof Denote by Z ′ the completion of X ′ in the norm ‖θ‖, X ′ obtained from (1.10) with P ′
replacing P . By hypothesis

Z ⊂ Z ′ (4.9)

implying
(RZ ′)∗ × (SZ ′)∗ ⊂ (RZ)∗ × (SZ)∗. (4.10)

If (4.6), (4.7), (4.8) fails for Z ′, then there exists nontrivial

( f , g) ∈ (RZ ′)∗ × (SZ ′)∗ (4.11)

so (4.6), (4.7), (4.8) would fail for Z . ��
Amore precise statement of the required size of ker P is possible. Denote by X0 the space

X determined from (1.10) with P = 0, satisfying no boundary conditions on ∂�, and Z0 the
completion of X0 in the norm ‖θ‖. (We observe that (3.16) cannot hold for X0, Z0; constant
θ is a counterexample.)

We assume, however, that (4.6), (4.7), (4.8) holds for X0, Z0, and denote

Z0,∩ = Z0,�\� ∩ Z0,�, (4.12)

the functions θ0,∩ satisfying
Rθ0,∩ = 0, Sθ0,∩ = 0 (4.13)

with no boundary conditions on ∂�.

Theorem 4.2 Assume (4.6),(4.7), (4.8) for Z0. Then such holds for any Z, with P such that

{PZ0,�} = {PZ0,∩}. (4.14)

Remarks Failure of (4.6), (4.7), (4.8) for Z0 implies nontrivial ( f , g) satisfying (4.1) for all
θ ∈ Z0. Such is regarded as highly unlikely for z obtained as z0 from (1.14), (1.15).

Proof As Z ⊂ Z0, for any θ ∈ Z by assumption there exist θ0,�\� ∈ Z0,�\�, θ0,� ∈ Z0,�

such that
θ = θ0,�\� + θ0,�. (4.15)

Using (4.14), there exists θ0,∩ ∈ Z0,∩ such that almost everywhere on ∂�,

Pθ0,∩ = Pθ0,�. (4.16)

From (1.10), Pθ vanishes almost everywhere on ∂�, so from (4.15), (4.16)

Pθ0,�\� = −Pθ0,� = −Pθ0,∩. (4.17)

Now using (4.15), (4.13)

θ = (θ0,�\� + θ0,∩) + (θ0,� − θ0,∩) (4.18)

is the required expression for θ satisfying (4.6), (4.7), (4.8). ��
Investigation of (4.6), (4.7), (4.8) for a given z, P is made by judiciary choice of equivalent

norms

‖θ‖2λ =
∫∫

�\�
w|Rθ |2 + λ

∫

�

w�(Sθ)2, λ = 1, 2. (4.19)
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In (4.19), w,w� are scalar functions of x in �\�,�, respectively, generally depending
on z and unbounded above, satisfying

w(x), w�(x) ≥ 1. (4.20)

Such corresponds to

‖(ż, σ )‖2S ′(z),λ =
∫∫

�\�

1

w
|ż|2 + 1

λ

∫

�

1

w�

σ 2 (4.21)

in (3.14);

ζλ(ξ) = 1

‖ξ‖λ

wRξ, ζ�,λ(ξ) = λ

‖ξ‖λ

w�Sξ (4.22)

in (3.19);
żλ = wRξλ, σλ = λw�Sξλ (4.23)

in (3.20), with ξλ ∈ Z satisfying
∫

∂λ

ḃ · θ =
∫∫

ω\�
wRξλ · Rθ + λ

∫

�

w�(Sξλ)(Sθ) (4.24)

for all θ ∈ Z ; and
(RZ)∗ = wRZ , (SZ)∗ = w�SZ (4.25)

throughout.
For any given ḃ ∈ D, we solve (3.6) for (żλ, σλ), λ = 1, 2. (Nothing is gained by use of

additional values of λ.) If
(ż1, σ1) �= (ż2, σ2) (4.26)

then
f = ż1 − ż2, g = σ1 − σ2 (4.27)

is a nontrivial solution of (4.1) and (4.6), (4.7), (4.8) fails.
As against this:

Theorem 4.3 Assume that for each ḃ ∈ D′, that either

ż1 = ż2 (4.28)

almost everywhere in �\�, or else
σ1 = σ2 (4.29)

almost everywhere on �.
Then the subspaces Z�\�, Z� satisfying (4.7), (4.8), respectively, are sufficiently large

that
� ⊆ wRZ�\� × w�SZ�. (4.30)

Remarks The conclusion (4.30) implies that (4.1),(4.2) holds with S ′(z) obtained from (4.4)
with equality.

This result is independent of the choice of w,w� , subject to (4.2) and that w,w� are
sufficiently large that (3.16) holds and (3.6) is solvable.
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Proof Either of (4.28) or (4.29) implies the other, as ḃ, ż (respectively ḃ, σ ) uniquely deter-
mine σ ∈ w�SZ (respectively ż ∈ wRZ ) satisfying (3.6).

For an arbitrary ḃ ∈ D′, assume (4.28), (4.29) hold.
From (4.28), (4.23)

żλ = ż1 = ż2

= wRξ1

= wRξ2, (4.31)

so from (4.31), (4.8)
ξ1 − ξ2 ∈ Z�. (4.32)

Similarly from (4.29), (4.23)

σλ = σ1 = σ2

= w�Sξ1

= 2w�Sξ2, (4.33)

so from (4.7)
ξ1 − 2ξ2 ∈ Z�\�. (4.34)

Using (4.23), (4.29)

w�S(ξ1 − ξ2) = w�Sξ1 − 1

2
w�S(2ξ2)

= σ1 − 1

2
σ2

= 1

2
σλ (4.35)

so using (4.32), (4.35)
σλ ∈ w�SZ�. (4.36)

Similarly using (4.23), (4.28)

wR(ξ1 − 2ξ2) = wRξ1 − 2wRξ2

= ż1 − 2ż2
= −ż1, (4.37)

so from (4.34), (4.37)
żλ ∈ wRZ�\�. (4.38)

The conclusion (4.30) is immediate from (4.3), (4.36), (4.38). ��

5 A Posteriori Investigation

For δ assuming a sequence of values decreasing to zero, we are given a sequence {zδ} arguably
satisfying (1.12), (1.13), (1.14), (1.15) for some given b ∈ D. We seek corroboration that
a mapping A determined from (1.16) satisfies (1.8), (1.17), (1.18) at least locally. Such has
been tacitly associated with the conditions (3.16) and (4.28), (4.29) for whatever ḃ ∈ D′.
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A specific P is necessarily associated with {zδ} through (1.13), (1.10). We assume ker P
sufficiently small that (2.52) holds almost everywhere on ∂� for the limit z0. Specifically,
for any x ∈ ∂�, ex ∈ R

n such that

ψν(x),zz(z0(x))ex = 0, (5.1)

necessarily
ex ∈ rangeP(x). (5.2)

Then it appears very unlikely that convergence (1.14)would be obtainedwith overspecified
boundary data.We anticipate ker P sufficiently small that (3.16) can be satisfied,with suitable
w,w�, ‖ · ‖∂� to be determined empirically.

Our principal concern is that (4.28), (4.29)will fail for some ḃ ∈ D′, determining nontrivial
( f , g) from (4.27) satisfying (4.1). Hereafter we understand R, S, Z , � associated with the
specific limit z0, replacing z by z0 in (3.2), (3.7), (3.9), (3.12).

Choosing θ with support in �̄\�̄, partial integration in (4.1) determines f satisfying

R† f = 0 (5.3)

in �\�, R† the transpose operator of R, and using (1.10)

(I − P)ψν,zz(z0) f = 0 (5.4)

almost everywhere on ∂�, rewritten

ψν,zz(z0) f |∂� ∈ rangeP. (5.5)

The condition (5.5) is symptomatic of insufficient prescribed boundary data, ker P too small
in (1.4).

We may investigate the conditions (3.16), (4.28), (4.29), by solving (4.24), empirically
through discrete, unconstrained minimization of the functionals J , Jḃ given in (3.21), (3.18),
over a nested sequence of finite-dimensional test spaces {Xδ}. We assume each

Xδ ⊂ (W 1,∞(�) ∩ C(�̄))n, (5.6)

satisfying (1.10), becoming dense in X as δ ↓ 0 in W 1,∞(�)n and with respect to the norm
‖ · ‖∂� on ∂�.

For simplicity, we shall assume below that each

zδ ∈ (W 1,∞(�) ∩ C(�̄))n, (5.7)

noting that analogous results are obtained using point-values and partial summations.
From (3.21), (3.18), it will suffice to find suitable discretizations of four terms

∫∫

�\�
w|Rθ |2,

∫

�

w�(Sθ)2,

∫

∂�

ḃ · θ, ‖θ‖∂�. (5.8)

The two boundary terms in (5.8) are regarded as straightforward.
We assume a pointwise bound

‖z0‖L∞(�) ≤ c (5.9)

uniformly with respect to δ, and (1.14) strongly in L p(�) for any finite p.
For the first term in (5.8), we approximate the operator R in (3.7) by

(Rδθ)k
de f=

m∑

i=1

n∑

j=1

ψi,z j zk (zδ)θ j,xi , k = 1, . . . , n. (5.10)
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Considerable freedom exists in the choice of the weight functions w,w� . The condition
(3.16) is unaltered by multiplication of w,w� by positive functions of x bounded uniformly
above and below. The condition (4.6) (as applied to X , equivalent to that for Z ) is independent
of w,w�; we tacitly anticipate the same for the closely related condition (4.30).

Here w,w� are determined indirectly, as limits of approximations.
Empirically we seek to find a sequence {wδ} satisfying

‖wδ‖L p′(�)
≤ c (5.11)

for some p′ > 1, uniformly with respect to δ, and

wδ
δ↓0−→w (5.12)

strongly in L1(�). Then from (5.9), (5.10), (5.11), (5.12),

‖w
1
2
δ Rδθ − w

1
2 Rθ‖L2(�)

δ↓0−→ 0 (5.13)

for any θ ∈ (W 1,∞(�))n .

Discretization of the second term in (5.8) if far more problematic, as � is unavailable and
the zδ do not satisfy (3.2). We introduce a second discretization parameter ε, also assuming
a sequence of values decreasing to zero, understanding δ sufficiently small depending on ε

throughout, lim ε, δ ↓ 0 understood with

δ = o(ε). (5.14)

For θ ∈ (W 1,∞(�))n , we “approximate” Sθ by an m-vector function on �, using a
mapping

Sεδ = Sε(zδ) ∈ C((W 1,∞(�))n → (L∞(�))m). (5.15)

We “approximate” w� by a nonnegative scalar function w�ε in �,

‖w�ε‖Lp′(�) ≤ c (5.16)

for some p′ > 1, uniformly with respect to ε.
We abbreviate L2-norms weighted using w,wδ,w�,w�ε

‖T ‖w
de f= ‖w 1

2 T ‖L2(�), ‖T ‖wδ

de f= ‖w
1
2
δ T ‖L2(�)

,

‖T ‖w�

de f= ‖w
1
2
� T ‖L2(�), ‖T ‖w�ε

de f= ‖w
1
2
�ε
T ‖L2(�)

with T generic.
Then for θδ ∈ Xδ , we discretize (3.21) by

Jεδ(θδ)
de f= − ‖θδ‖∂� + 1

2‖Rδθδ‖2wδ
+ 1

2‖Sεδθδ‖2w�ε
, (5.17)

and (3.18), (4.19) by

Jḃεδλ(θδ)
de f= −

∫

∂�

ḃ · θδ + 1
2‖Rδθδ‖2wδ

+ λ
2‖Sεδθδ‖2w�ε

, λ = 1, 2. (5.18)

For any bounded �, from (5.15), (5.16)

w

1
2
�ε
Sε0 ∈ C

(
(W 1,∞(�))n → L2(�)m

)
; (5.19)
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we assume also, for any fixed ε > 0, θ ∈ (W 1,∞(�))n

lim
δ↓0 ‖Sεδθ − Sε0θ‖w�ε = 0. (5.20)

Three conditions, discussed in detail in the following section, relate Sεδ, w�ε to S, w� :

lim sup
ε↓0

‖Sε0θ‖w�ε ≤ c+‖Sθ‖w� , for any θ ∈ X; (5.21)

lim inf
ε↓0 ‖Sε0θ‖w�ε ≥ 1

c−
‖Sθ‖w� , for any θ ∈ X; (5.22)

any sequence {θδ}, θδ ∈ Xδ , such that

‖Sεδθδ‖w�ε ≤ c, (5.23)

contains a subsequence with a weak limit θ0 ∈ Z satisfying
∫∫

�

w�ε Sεδθδ · Sε0θ
ε,δ↓0−→

∫

�

w�(Sθ0)(Sθ) (5.24)

for all θ ∈ X .
To establish (3.16), it will suffice to determine wδ,w�ε , ‖ · ‖∂� such that

glb
ε,δ↓0

{Jεδ(Xδ)} ≥ −c0 (5.25)

for some finite c0.

Theorem 5.1 Assume that (5.25), (5.21), (5.13), (5.19), (5.20) hold.
Then (3.16), (3.21) hold with constants satisfying

cz = c+(2c0)
1
2 . (5.26)

Proof For any θ ∈ X , from (3.21), using (5.21), (5.13), (5.19)

J (θ) = −‖θ‖∂� + 1
2‖Rθ‖2w + 1

2‖Sθ‖2w�

≥ −‖θ‖∂� + 1
2‖Rθ‖2w + 1

2c2+
‖Sε0θ‖2w�ε

− o(1)

≥ −‖θδ‖∂� + 1
2‖Rδθδ‖2wδ

+ 1

2c2+
‖Sε0θδ‖2w�ε

− o(1), (5.27)

for suitable θδ ∈ Xδ approximating θ . Here and throughout, o(1) is generic, understood as
ε, δ ↓ 0.

From (5.20), with δ′ > 0 sufficiently small, depending on θδ, ε,

‖Sεδ′θδ − Sε0θδ‖w�ε
= o(1). (5.28)

Use of (5.13), (5.28) in (5.27) gives

J (θ) ≥ −‖θδ‖∂� + 1
2‖Rδ′θδ‖2wδ′ + 1

2c2+
‖Sεδ′θδ‖2w�ε

− o(1). (5.29)

From the assumption of nested test spaces, θδ ∈ Xδ′ , so (5.29) implies

J (θ) ≥ c2+glb{Jε,δ′(Xδ′)} − o(1) (5.30)

and (3.16) (3.21), (5.26) follow from (5.25), (5.30). ��
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The converse statement is materially weaker; the conditions (3.21), (5.25) are not equiv-
alent.

Theorem 5.2 Assume that (3.16), (3.21), (5.22), (5.13), (5.20) hold.
Then for any θ ∈ X

lim inf
ε,δ↓0 Jεδ(θ) ≥ − 1

2c
2−c2z . (5.31)

Proof From (5.17), using (5.13), (5.20), (5.22)

Jεδ(θ) = −‖θ‖∂� + 1
2‖Rδθ‖2wδ

+ 1
2‖Sεδθ‖2w�ε

≥ −‖θ‖∂� + 1
2‖Rθ‖2w + 1

2‖Sεδθ‖2w�ε
− o(1), (5.32)

so

lim inf
ε,δ↓0 Jεδ(θ) ≥ −‖θ‖2∂� + 1

2‖Rθ‖2w + 1

2c2−
‖Sθ‖2w�

≥ c2− glb
θ∈X

J (θ), (5.33)

from which (5.31) follows using (3.21). ��
We now assume wδ,w�ε , ‖ · ‖∂� such that (5.25) holds, deterring discussion of this. For

ḃ ∈ D′, ε, δ > 0, λ = 1, 2, a point ξḃεδλ ∈ Xδ uniquely minimizes Jḃεδλ given in (5.18)
over Xδ . Thus for any θδ ∈ Xδ , the discretization of (4.24) is

∫

∂�

ḃ · θδ =
∫∫

�

wδRδξḃεδλ · Rδθδ + λ

∫∫

�

w�ε Sεδξḃεδλ · Sεδθδ. (5.34)

Analogously with (3.16), (3.21), from (5.25), (5.18)

‖ξḃεδλ‖∂� ≤ (2c0)
1
2 (‖Rδξḃεδλ‖2wδ

+ ‖Sεδξḃεδλ‖2w�ε
)
1
2 ; (5.35)

setting θδ = ξḃεδλ in (5.34) and using (5.35), (3.13),

‖Rδξḃεδλ‖wδ , ‖Sεδξḃεδλ‖w�ε ,
1

(2c0)
1
2

‖ξḃεδλ‖∂� ≤ (2c0)
1
2 ‖ḃ‖D′ . (5.36)

For arbitrary θ ∈ X , we take θδ approximating θ in (5.34). Using (5.13), (5.36), (5.20),
∫

∂�

ḃ · θ =
∫∫

�

w

1
2
δ Rδξḃεδλ · w

1
2 Rθ + λ

∫∫

�

w�ε Sεδξḃεδλ · Sε0θ + o(1). (5.37)

From (5.36), taking a subsequence as necessary,

w

1
2
δ Rδξḃεδλ

ε,δ↓0
⇁ w

1
2 Rξḃλ + �ḃλ (5.38)

weakly in L2(�)n , with

ξḃλ ∈ Z , (5.39)
∫∫

�

w
1
2 Rθ ′ · �ḃλ = 0 (5.40)

for all θ ′ ∈ Z .
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We use (5.36), (5.23), (5.24) in (5.37) to obtain, again taking a subsequence as necessary,
∫∫

�

w�ε Sεδξḃεδλ · Sε0θ
ε,δ↓0−→

∫

�

w�(Sξ ′̇
bλ

)(Sθ) (5.41)

with some ξ ′̇
bλ

∈ Z independent of θ .
From (5.37), (5.38), (5.39), (5.40), (5.41), for all θ ∈ X and ξḃλ, ξ

′̇
bλ

∈ Z so obtained, we
have ∫

∂�

ḃ · θ =
∫∫

�\�
wRξḃλ · Rθ + λ

∫

�

w�(Sξ ′̇
bλ

)(Sθ). (5.42)

Theorem 5.3 The pair of conditions (4.28), (4.29) is equivalent to the condition that

Rξḃ1 = Rξḃ2 (5.43)

is unique in (5.38).

Remarks No use of ξ ′̇
bλ

is required.

Proof Using (5.42), we satisfy (3.6) with

żλ = wRξḃλ, σλ = w�Sξ ′̇
bλ

(5.44)

for any such ξḃ,λ, ξ
′̇
bλ
.

If multiple Rξḃλ are obtained from different subsequences in (5.38), or if (5.43) fails,
we have multiple solutions of (3.6) for ḃ as selected. Then nontrivial ( f , g) satisfying (4.1)
follows from (4.27), and (4.28), (4.29) cannot hold.

As against this, we observe that ḃ, ż uniquely determine σ ∈ w�{SZ} satisfying (3.6).
Thus if ξḃλ is unique in (5.43), from (4.23), (5.44), necessarily

Sξ ′̇
bλ

= λSξḃλ, λ = 1, 2. (5.45)

Now (4.28) is immediate from (5.43), (5.44), and (4.29) follows from (5.44), (5.45) by
the same argument used to prove Theorem 4.3. ��

Using (5.38), (5.40), the condition (5.43) is implied by

w

1
2
δ Rδ(ξḃεδ1 − ξḃεδ2)

ε,δ↓0
⇁ 0 (5.46)

weakly in L2(�)n .

6 An Expression for S"ı

An expression for Sεδ is given here such that the conditions (5.19), (5.20), (5.21) and (5.23),
(5.24) can be satisfied with some w�ε satisfying (5.16). The m-vector form of Sεδ given in
(5.15) is convenient here but by no means necessary. Alternative expressions for Sεδ based
on expedience or experience with computation schemes Aδ are anticipated, particularly in
the case where (6.8) below fails.

We employ orthogonal coordinates α1, . . . , αm−1, μ (introduced in Sect. 3) in an open
neighborhood of each segment of � within which μ̂ is continuously defined. For each such
segment of �, by convention

x(α, 0) ∈ �, (6.1)
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[z0](x(α, 0))
de f= z0(x(α, 0+)) − z0(x(α, 0−)), (6.2)

1

c
≤ ∂(α1, . . . , αm−1, μ)

∂(x1, . . . , xm)
≤ c, (6.3)

the last condition within an open neighborhood. We note that near intersection points in �,
where μ̂ is not continuous, the local coordinates α,μ for a given x relate to a specific segment
of �, and may not be unique.

From results in [14], we anticipate that unbounded w� , likely

w�(x) = O(|[z0]|(x)−2), x ∈ � (6.4)

will be needed to satisfy (3.16) and thus (5.25). Such makes (5.16) problematical, in view of
(5.22). In particular we need large values of w�ε confined to a small subset of �.

We choose ε sufficiently small, depending on a positive quantifier τ , denoting

�τ
de f= {x ∈ �

∣∣∣|[z0]|(x) ≥ τ }. (6.5)

The segments of�τ are known only approximately, but with δ sufficiently small depending
on ε, we can determine regions �τε ⊂ � satisfying

{
x(α, μ) ∈ �

∣∣∣x(α, 0) ∈ �τ , |μ| <
ε

2

}
⊆ �τε, (6.6)

and

�τε ⊆
{
x(α, μ) ∈ �

∣∣∣x(α, 0) ∈ �τ/2, |μ| < ε

}
. (6.7)

Making an obvious abuse of notation, throughout we use

∫∫

�τε

=
∫

�τ

dα

ε∫

−ε

dμ,

employing (6.3).
In the special case where

|[z0]| ≥ τ > 0 (6.8)

uniformly on �, the parameter τ is unnecessary; the condition (6.4) is vacuous, and we
understand �τ as all of �.

For x ∈ �\� we denote

ηε(x)
de f= lub

x ′∈�\�
|z0(x) − z0(x

′)| (6.9)

for x ′ connected to x by a trajectory of length not exceeding 3
2ε and not intersecting �2τ . For

x ∈ �,

ηε(x(α, 0))
de f= maximum

(
ηε(x(α, 0+)), ηε(x(α, 0−))

)
. (6.10)

Then from (6.9), (6.10), (3.2), (6.5)

ηε
τ,ε↓0−→ 0 (6.11)

uniformly in �.
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For a conveniently chosen open set

ω ⊆ {x ∈ R
m, |x | <

1

4
} (6.12)

with volume |ω|, i, l = 1, . . . ,m, j = 1, . . . , n, we denote

hεδ
i jl(x)

de f= 1

|ω|
∫∫

ω

(
ψi,z j (zδ(x + εy + ε

4
x̂l(x, y))) − ψi,z j (zδ(x + εy − ε

4
x̂l(x, y)))

)
dy

(6.13)
with the understood restriction

x + εy ± ε

4
x̂l(x, y) ∈ �̄

and with the convention that the unit vectors x̂l(x, y) satisfy

x̂l(x, y)
de f= x̂l(x(α, μ) + εy) (6.14)

x̂l(x(α, μ) + εy) · μ̂(x(α, 0)) ≥ 0 (6.15)

for x ∈ �τε, y ∈ ω.
From (6.13), (6.9), (6.12)

|hε0
i jl(x)| ≤ cηε(x), x ∈ �\�τε. (6.16)

Within �τε , by inspection of (6.13), h·δ
i j · is an approximation of [ψi,z j (zδ)]. Such is made

precise as follows.

Lemma 6.1 For x = x(α, μ) ∈ �τε, i, l = 1, . . . ,m, j = 1, . . . , n,

hε0
i jl(x(α, μ)) = [ψi,z j (z0)](x(α, 0)γεl(x(α, μ)) + γ ′

εl(x(α, μ)), (6.17)

with γεl satisfying

‖γεl‖L∞(�τε) ≤ 1, (6.18)

m∑

l=1

ε/2∫

−ε/2

γεl(x(α, μ′))2dμ′ ≥ ε

4
− o(ε), (6.19)

as ε ↓ 0, uniformly with respect to α; and γ ′
ε,l satisfying

‖γ ′
εl‖L∞({x(α,μ′)||μ′|<ε}) ≤ cηε(x(α, 0)). (6.20)

Proof For x ∈ �τε, y ∈ ω, l = 1, . . . ,m, x̂l satisfying (6.14), (6.15),

χεl(x, y) =
{

1, for x + εy ± ε
4 x̂l on opposite sides of �

0, otherwise
. (6.21)

From (6.13), with x = x(α, μ), x̂l satisfying (6.14), (6.15),

hε0
i jl (x) = 1

|ω|
∫∫

ω

χεl (x, y)[ψi,z j (z0)](x(α, 0))dy

+ 1

|ω|
∫∫

ω

χεl (x, y)

(
ψi,z j (z0(x + εy + ε

4
x̂l )) − ψi,z j (z0(x(α, 0+))
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+ ψi,z j (z0(x(α, 0−)) − ψi,z j (z0(x + εy − ε

4
x̂l ))

)
dy

+ 1

|ω|
∫∫

ω

(1 − χεl (x, y))
(
ψi,z j (z0(x + εy + ε

4
x̂l )) − ψi,z j (z0(x + εy − ε

4
x̂l ))

)
dy.

(6.22)

Using (6.21), (6.9), (6.10) the last two terms in (6.22) determine γ ′
εl satisfying (6.20).

Thus (6.17) holds with

γεl(x) = 1

|ω|
∫∫

ω

χεl(x, y)dy (6.23)

from which (6.18) follows immediately from (6.21).
For l = 1, . . . ,m, x̂l satisfying (6.14), (6.15), we denote

χ̃εl(x(α, μ), y)
de f=

{
1, |μ + εy · μ̂(x(α, 0)| < ε

4 μ̂(x(α, 0)) · x̂l(x(α, 0))

0, otherwise,
(6.24)

and

γ̃εl(x) = 1

|ω|
∫∫

ω

χ̃εl(x, y)dy. (6.25)

From (6.24), (6.25),
‖γ̃εl‖L∞(�τε) ≤ 1. (6.26)

Comparing (6.21), (6.24) and (6.23), (6.25), we observe that were μ̂(x(α, 0)) independent
of α, χ̃εl , γ̃εl would coincide with χεl , γεl . With μ̂(x(α, 0)) continuous with respect to α, we
have

‖γεl − γ̃εl‖L∞(�τε) = o(1) (6.27)

as ε ↓ 0, so using (6.18), (6.26), it will suffice to verify (6.19) with γεl replaced by γ̃εl .
From (6.25), (6.24)

ε/2∫

−ε/2

γ̃εl(x(α, μ′))dμ′ = 1

|ω|

ε/2∫

−ε/2

∫∫

ω

χ̃εl(x(αμ′), y)dydμ′

= 1

|ω|
∫∫

ω

ε/2∫

−ε/2

χ̃εl(x(α, μ′))dμ′dy

= 1

|ω|
∫∫

ω

ε

2
μ̂(x(α, 0)) · x̂l(x(α, 0))dy

= ε

2
μ̂(x(α, 0)) · x̂�(x(α, 0)). (6.28)

From (6.28)

m∑

l=1

⎛

⎜⎝
ε/2∫

−ε/2

γ̃ (x(α, μ′))dμ′

⎞

⎟⎠

2

= ε2

4
(6.29)
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so
m∑

l=1

ε/2∫

−ε/2

γ̃
(
x(α, μ′)

)2
dμ′ ≥ ε

4
. (6.30)

Now (6.19) follows from (6.30), (6.27). ��
An expression for Sεδθ is obtained analogously with (3.9), but using hεδ

... ,

(Sεδθ)l(x)
de f= ε

− 1
2

m∑

i=1

n∑

j=1

hεδ
i jl(x)θ j,xi (x), x ∈ �, l = 1, . . . ,m, θ ∈ (W 1,∞(�))n .

(6.31)
We assume τ (unless (6.8) holds), ε, δ each assuming a sequence of values decreasing to

zero, with �τ determined from (6.5), �τε satisfying (6.6), (6.7).

Theorem 6.2 For each x such that x(α, 0) ∈ �τ , assume w�ε ,w� related by

lim inf|μ|<ε

ε↓0
w�ε (x(α, μ)) ≥ 1

c
w�(x(α, 0)), (6.32)

and
lim sup
|μ|<ε

ε↓0

w�ε (x(α, μ)) ≤ cw�(x(α, 0)). (6.33)

Assume δ sufficiently small, depending on ε, that

‖hεδ
i jl − hε0

i jl‖w�ε = o(ε
1
2 ) (6.34)

for all i, l = 1, . . . ,m, j = 1, . . . , n.
Assume ε sufficiently small, depending on τ , that

∫

�τ

w�η2ε = o(1) (6.35)

with ηε|�τ
given in (6.10), and

ε1/p
′ ‖w�‖L p′ (�τ ) ≤ c (6.36)

for some p′ > 1.
Outside of �τε , assume ∫∫

�\�τε

w�εη
2
ε = o(ε) (6.37)

and
‖w�ε‖L p′ (�\�τε) ≤ c (6.38)

with the same p′ as in (6.36).
Then (5.16), (5.20), (5.21), (5.21), (5.22) and the conditions (5.23), (5.24) hold.

Proof The bound (5.16) follows from (6.38), (6.36), (6.33), (6.7).
The bound (5.20) follows from (6.31), (6.34).
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Within �τε , for arbitrary fixed θ ∈ (W 1,∞(�))n, l = 1, . . . ,m, from (6.31), (6.17)

(Sε0θ)l(x(α, μ))

= ε
− 1
2

m∑

i=1

n∑

j=1

(
[ψi,z j (z0)](x(α, 0))γεl(x(α, μ)) + γ ′

εl(x(α, μ))
)
θ j,xi (x(α, μ)).

(6.39)

From (6.20), (6.33), (6.35)

1

ε

∫∫

�τε

m∑

l=1

γ ′2
εl w�ε ≤ c

∫

�τ

w�η2ε

= o(1), (6.40)

so from (6.39), (6.40)

∫∫

�τε

w�ε |Sε0θ |2 = (1 + o(1))
∫

�τ

⎛

⎝
m∑

i=1

n∑

j=1

[ψi,z j (z0)]θ j,xi

⎞

⎠
2
1

ε

ε∫

−ε

m∑

l=1

w�εγ
2
εl + o(1)

= (1 + o(1))
∫

�τ

(Sθ)2
1

ε

ε∫

−ε

m∑

l=1

w�εγ
2
εl + o(1) (6.41)

using (3.9).
Now (5.21) follows from (6.41) using (6.33), (6.18), and (5.22) follows from (6.41) using

(6.32), (6.19).
From (6.31), (6.13), (6.9), (6.37)

‖w
1
2
�ε
Sε0θ‖L2(�\�τε) = o(1). (6.42)

For a sequence {θδ} satisfying (5.23), using (6.42), (5.19), then (6.39), (6.40), (3.9)
∫∫

�

w�ε Sεδθδ · Sε0θ =
∫∫

�τε

w�ε Sεδθδ · Sε0θ + o(1)

=
∫∫

�τε

w�ε

m∑

l=1

(Sεδθδ)lε
− 1
2 γεl(Sθ) + o(1)

=
∫

�τ

w

1
2
� (Sθ)

ε∫

−ε

w�ε

w

1
2
�

m∑

l=1

ε
− 1
2 γεl(Sεδθδ)l + o(1)

de f=
∫

�

w

1
2
� (Sθ)βεδ + o(1), (6.43)

with
‖βεδ‖L2(�τ ) ≤ c (6.44)

obtained from (6.33), (6.18), (5.23), βεδ vanishing in �\�τ by convention.
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Using (6.44), taking a subsequence as necessary, we have

βεδ

ε,δ↓0
⇁ w

1
2 Sθ0 + β ′ (6.45)

with some θ0 ∈ Z and β ′ satisfying
∫

�

w

1
2
� (Sθ ′)β ′ = 0 (6.46)

for all θ ′ ∈ Z .
Now (5.24) follows from (6.43), (6.45), (6.46). ��

7 Application, Limitations and Open Issues

Convergence of a sequence of approximations (1.14) is regarded here as compelling evidence
that the boundary data (1.4) is not over-specified. In present language, such implies ker P
not too large and (3.16) holding for some suitable ‖ · ‖∂�,w,w�, cz .

A subsequent computation presumably seeks to either corroborate (1.8), (1.18), using
(4.30) if not (4.6), (4.7), (4.8), or else determine where ker P is too small, where the boundary
date is under-specified, using (5.5).

In this context, an empirical conclusion of whether (5.46) holds, obtained by solution of
(5.34) with various ḃ ∈ D′, will suffice. Using (5.38), (5.44), if (5.46) holds then (4.28)
holds and (4.30) follows from Theorem 4.3. Alternatively, if (5.46) fails for some ḃ we have
nontrivial ( f , g) satisfying (4.1) from (4.27). It is unnecessary to consider the weak limit in
(5.46). With (5.36) holding, (5.46) follows, for example, from

‖(1 − �)−1w

1
2
δ Rδ(ξḃεδ1 − ξḃεδ2)‖L2(�)

ε,δ↓0−→ 0. (7.1)

Expedient simplification of the procedure is anticipated. For example, the averages over
ω in (6.13) are needed only to obtain (5.20), as uniform convergence in �\� cannot be
realistically assumed in (1.14). In particular, Lemma 6.1 survives disregarding this issue and
replacing hεδ

i jl by

h̃εδ
i jl(x)

de f= ψi,z j

(
zδ

(
x + ε

4
x̂l

))
− ψi,z j

(
zδ

(
x − ε

4
x̂l

))
(7.2)

in (6.31). The convention (6.14), (6.15) is unnecessary computationally.
In practice, we have available only a finite sequence {zδ} of approximations with

δ ≥ δ > 0, (7.3)

for some δ. The conditions (1.14), (1.15), (5.9) are necessarily subjective conclusions, as
must be (5.46) or (7.1).

Failing to satisfy (3.2), the approximations zδ are not elements of S. Interpolating as
necessary, we may recover (5.7), but not uniformly with respect to δ.

For each zδ , the discontinuity locus � is approximated by a “transition region”. For any
τ , identification of �τε satisfying (6.5), (6.6), (6.7) requires ε sufficiently large, depending
on zδ and possibly τ . In particular, from (7.3) we are necessarily restricted to values

ε ≥ ε > 0 (7.4)

for some ε.
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If (3.16) requires w� unbounded, as anticipated in (6.4), the conditions (6.35), (7.4) are
problematic. In contrast, if (6.8) holds, identifying �τττ with �, we expect [S] to satisfy (3.16)
with

w� = 1, (7.5)

and (6.32), (6.33) with

w�ε (x) =
{
1, x ∈ �τττε

0, otherwise.
(7.6)

In any event, the essential open issue is the condition (5.25), needed to assure solvability
of (5.34), obtaining the bounds (5.36), and to determine the spaceD′ from (3.13) fromwhich
ḃ will be selected. Theorem 5.2 may not suffice here; the condition (5.22) used to obtain
(5.33) from (5.32), requires test functions θ of class C1 in a neighborhood of �. In principle,
such permits θε,δ ∈ X satisfying (3.16) with

‖θεδ‖∂� = 1, (7.7)

‖Sθεδ‖w� ≥ cz, (7.8)

but
‖Rδθεδ‖wδ,‖Sεδθεδ‖w�ε

ε,δ↓0−→ 0. (7.9)

Then θ̃ε,δ ∈ Xδ approximating a constant multiple of θεδ contradicts (5.25).
It is unclear when or whether such will occur, and we have potential means to suppress

such. First, the spaces Xδ need not correspond to the text spaces implicitly or explicitly
associated with zδ , and may be suitably restricted; the condition (5.6) suffices. Second,
dissipation terms may be included in (5.17), (5.18). Third, we may choose ‖ · ‖∂�,wδ and
perhaps w�ε conveniently, subject to (5.11), (5.12).

Having chosen space Xδ and whatever (if any) dissipation is to be added to (5.17), a
trial-and-error procedure with regard to ‖ · ‖∂�,wδ (assuming (6.8), (7.6) for simplicity) is
anticipated to establish (5.25). Previous results suggest an initial choice

w
(0)
δ = 1, ‖ · ‖(0)

∂� = ‖ · ‖L2(∂�), ‖ · ‖(0)
D′ = ‖ · ‖L2(∂�) (7.10)

using (3.13).
For l = 0, 1, . . . , we seek a minimum of Jεδ over Xδ , using w

(l)
δ , ‖ · ‖(l)

∂� in (5.17). Such
may fail, implying existence of a sequence θεδ ∈ Xδ satisfying

Jεδ(θ
′
εδ)

ε,δ↓0−→ −∞. (7.11)

Then

θεδ = θ ′
εδ

‖θ ′
εδ‖(l)

∂�

(7.12)

satisfying(7.7), (7.9) (and (7.8) if (3.16) holds with this w
(l)
δ , ‖ · ‖(l)

∂�).
We choose a bounded, invertible mapping Ql on the space Xδ |

∂�

such that the sequence

{Qlθεδ} converges in the norm ‖·‖(l)
∂�. Typically such Ql is a smoothing orweighting operator.

Then we set
‖θ‖(l+1)

∂� = ‖Qlθ‖(l)
∂�, ‖ḃ‖(l+1)

D′ = ‖Q−1
l ḃ‖(l)

D′ , (7.13)

and choose w
(l+1)
δ satisfying (5.11), (5.12), and such that

‖Qlθεδ‖(l)
∂� ≤ c‖Rδθεδ‖wδ(l+1). (7.14)
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We attempt to minimize Jεδ over Xδ using w
(l+1)
δ , ‖ · ‖(l+1)

∂� , expecting success for some
finite value of l. Failure to achieve such suggests that (3.16) cannot be satisfied for z0.
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