
Journal of Scientific Computing (2019) 81:1210–1239
https://doi.org/10.1007/s10915-019-00976-5

Certified Offline-Free Reduced Basis (COFRB) Methods
for Stochastic Differential Equations Driven by Arbitrary
Types of Noise

Yong Liu1 · Tianheng Chen2 · Yanlai Chen3 · Chi-Wang Shu2

Received: 2 April 2019 / Revised: 2 May 2019 / Accepted: 10 May 2019 / Published online: 16 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, we propose, analyze, and implement a new reduced basis method (RBM)
tailored for the linear (ordinary and partial) differential equations driven by arbitrary (i.e. not
necessarily Gaussian) types of noise. There are four main ingredients of our algorithm. First,
we propose a new space-time-like treatment of time in the numerical schemes for ODEs
and PDEs. The second ingredient is an accurate yet efficient compression technique for the
spatial component of the space-time snapshots that the RBM is adopting as bases. The third
ingredient is a non-conventional “parameterization” of a non-parametric problem. The last
is a RBM that is free of any dedicated offline procedure yet is still efficient online. The
numerical experiments verify the effectiveness and robustness of our algorithms for both
types of differential equations.

Keywords Reduced basis method · Stochastic PDE · Least squares · Greedy algorithms ·
Offline-free

Y. Liu: Research supported by the China Scholarship Council.
T. Chen: Research supported by ARO Grant W911NF-16-1-0103.
Y. Chen: Research supported by NSF Grant DMS-1719698 and AFOSR Grant FA9550-18-1-0383. This
project was conceived when YC visited Brown University on sabbatical in 2017–2018.
C. Shu: Research supported by ARO Grant W911NF-16-1-0103 and NSF Grant DMS-1719410.

B Yanlai Chen
yanlai.chen@umassd.edu

Yong Liu
yong123@mail.ustc.edu.cn

Tianheng Chen
tianheng_chen@brown.edu

Chi-Wang Shu
shu@dam.brown.edu

1 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026,
Anhui, People’s Republic of China

2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

3 Department of Mathematics, University of Massachusetts Dartmouth, 285 Old Westport Road,
North Dartmouth, MA 02747, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-00976-5&domain=pdf
http://orcid.org/0000-0002-7460-8313

Journal of Scientific Computing (2019) 81:1210–1239 1211

1 Introduction

Polynomial chaos expansion is a deterministic approach to solving stochastic partial differ-
ential equations (SPDEs). The main idea is to construct a complete set of L2 orthogonal basis
functions of the underlying probability space. Then the expansion coefficients will satisfy
a deterministic system of PDEs, called the propagator in [22]. It is usually recognized as
the stochastic Galerkin method [33] due to its evident resemblance with the classic spec-
tral Galerkin method. Traditionally, the polynomial chaos expansion approach is well suited
for SPDEs driven by Gaussian white noise or Lévy noise [12,19]. One can check [22,23]
for theoretical analysis and [20,36,37] for numerical studies. Recently, a distribution-free
stochastic Malliavin calculus framework was developed in [25], giving rise to a new class
of SPDEs driven by arbitrary type of noise. The numerical aspects of these distribution-free
SPDEs were then investigated in [10]. For linear SPDEs, the propagator system has lower
triangular and sparse structure, and is independent of the type of noise involved. However,
for nonlinear problems, the propagator system is fully coupled, and varies from one kind of
noise to another. The Wick–Malliavin approximation was proposed in [24] as a decoupling
technique. The authors in [10] also derived an error estimate for the truncation of the prop-
agator system, showing that the mean square truncation error converges at an exponential
rate with respect to the polynomial order, and at a cubic rate with respect to the number of
random variables included.

In many test cases, solving the deterministic propagator is much faster than Monte Carlo
simulation for a desired accuracy level, in that it is free of repeated sampling and the curse of
half order convergence. However, the size of the propagator system grows exponentially with
respect to both truncation parameters, and the (cubic) convergence rate is not fast enough to
compensate for it. We often need to evolve thousands of expansion coefficients sequentially
to obtain a high-fidelity approximation. This can be prohibitively expensive, especially for
problems with long time integration and/or high space dimensions. It is therefore imperative
to design fast algorithms with guaranteed accuracy and practically observable speedup.

Fast algorithms such as the proper orthogonal decomposition (POD) algorithm [3,32] have
been an active research area for parametrized partial differential equations (PPDEs) which
are ubiquitous in science and engineering. In the “many-query” (when simulations of the
PPDE are necessary for many different realizations of the parameter) or “real-time” (when
simulation result is sought in negligible time) contexts, the reduced basis method (RBM)
[5,9,26,29] is by now a well-known approach. It only queries the PPDE emulator, that is the
“truth” solver, for a rather small number of times at some strategically determined locations in
the parameter domain in the so-called offline phase to build up a reduced solution space. The
online phase seeks a surrogate solution for any parameter value as the energy projection of the
solution corresponding to that parameter into the reduced solution space. What differentiates
RBM from other model reduction approaches is perhaps its explicit error certification which
also guides the building of the low-dimensional solution space.

This paper considers the adaptation of RBM for our distribution-free SODEs and SPDEs.
Classic RBM usually deals with problems with an explicit parameter dependence [18,27].
Our setting is based on differential equations that are notably free of parameters. It is therefore
not immediately clear how to apply RBM directly since, first of all, there is no parameter-
induced solution manifold thanks to the lack of a parameter. The second challenge originates
from the fact that the propagator system must be solved sequentially. This sequential nature
means that, even if we find a way to parametrize the propagator system, the parametric
problems are inter-connected, a phenomenon that is notably missing from any PPDE.

123

1212 Journal of Scientific Computing (2019) 81:1210–1239

To address these challenges, we first construct a non-conventional “parameterization” of
the propagator system which exploits the multi-index of the polynomial chaos expansion.
We then design a RBM that is free of any dedicated offline procedure to accommodate the
sequential nature of the problem since the usual offline procedure would have demanded
queries of the “truth” solver at any parameter values independent of those at the others. The
resulting reduced solver is still online efficient, meaning that its complexity is independent
of the size of the “truth” solver. The resulting solver for the stochastic differential equations
is a hybrid of “truth” and reduced solvers which is orders of magnitude faster than using the
“truth” solver alone. To facilitate the handling of time, we propose a new space-time-like
treatment of time in the numerical schemes for ODEs and PDEs. Unlike existing approaches,
it is based on time-stepping, thus is free of the hassle of forming the space-time variational
formulation, but obtains approximations of the solution in a space-time fashion. When the
spatial domain has high dimensions, it is infeasible to handle the full space-time solutions
and construct the resulting reduced solver, we design an accurate yet efficient compression
technique for the spatial component of the space-time snapshots that RBM is adopting as
bases. Obviously this compression procedure is not necessary for ODES. Therefore, we have
two versions of the certified offline-free reduced basis (COFRB) methods, COFRB_ODE
and COFRB_PDE.

The remainder of the paper is organized as follows. In Sect. 2, we review the stochastic
analysis to derive the propagator system for SPDEmodel problems and the classical reduced
basis method. The COFRB methods and the details of their implementation are presented
in Sect. 3. Complexity discussions are in Sect. 4. Section 5 is devoted to numerical results.
Finally, some concluding remarks and discussions on future work are given in Sect. 6.

2 Background

In this section, we present the necessary background materials for our algorithm, namely
the distribution-free stochastic analysis and the classical reduced basis method. To ease
readability, Table 1 lists the notations that are most often used in this section and beyond.

2.1 Distribution-Free Stochastic Analysis

Let (�,F,P) be a probability space, and � = {ξk}∞k=1 is a sequence of independent identi-
cally distributed randomvariableswithE[ξk] = 0 andE[ξ2k] = 1 for each k ≥ 1. Suppose that
there exists an orthogonal set of polynomials {ϕn(ξ)}∞n=0 such thatE[ϕn(ξ)ϕm(ξ)] = δmnn!.
For instance, if {ξk}∞k=1 are standardGaussian variables, then {ϕn}∞n=0 is the set of probabilists’
Hermite polynomials. Orthogonal polynomials for a wide class of random distributions are
listed in [33]. In particular, it is clear that ϕ0(ξ) = 1 and ϕ1(ξ) = ξ .

Then we construct the polynomial chaos basis functions under the notation of multi-
indices. Denote by J the set of multi-indices α = (αk)

∞
k=1 of finite length |α| = ∑∞

k=1 αk :

J = {
α = (αk)

∞
k=1 : αk ≥ 0, |α| < ∞}

.

Let ε0 be the multi-index whose entries are all zero, and εk be the multi-index such that its
k-th entry is 1 and all other entries are zero. We also define polynomials and factorials of
multi-indices:

123

Journal of Scientific Computing (2019) 81:1210–1239 1213

Table 1 Selected notation used throughout this article

ξk i.i.d. random variables k = 1, . . . , ∞
� The sequence of these i.i.d. random variables {ξk }∞k=1 for the SODE and SPDE

J The set of multi-indices α = (αk)∞k=1 of finite length

ε0 The multi-index whose entries are all zero

εk The multi-index such that its k-th entry is 1 and all other entries are zero

	α The multi-variate basis functions 	α := ∏∞
k=1 ϕαk (ξk)

d The dimension of the spatial domain D ⊂ Rd

M f The degrees of the spatial discretization freedom

K The number of random variables is no more than K

M Polynomial order is no more than M

JM,K The truncated multi-index set

N The size of JM,K

N The number of multi-indices selected by RBM

uNM,K The “truth approximation”

uN
M,K The RBM solution

eN (µ) Reduced basis solution error

N (µ) Error estimate (upper bound) for ‖eN (µ)‖
c j (α) The coefficient of the RBM solutions

Nc The number of collocation points, degrees of freedom in the PDE “truth” solver

Nx The number of collocation points for each dimension

n Time steps

εtol The tolerance error

ξα :=
∞∏

k=1

ξ
αk
k , α! :=

∞∏

k=1

αk !.

The generalized polynomial chaos (gPC) basis functions [34] are taken to be the tensor
products of {ϕn}∞n=0:

	α :=
∞∏

k=1

ϕαk (ξk), for each α ∈ J. (2.1)

Then	ε0 = 1,	εk = ξk , andE[α	β] = α!δαβ . It is demonstrated in [25] that {	α, α ∈ J}
is indeed a complete Cameron-Martin type basis [7].

Proposition 2.1 We assume that the moment generating function E[exp(θξk)] exists for all
θ in some neighborhood of 0. Then {	α, α ∈ J} forms a complete orthogonal basis of
L2(�, σ (�),P), and for any η ∈ L2(�, σ (�),P), we have its stochastic polynomial chaos
expansion

η =
∑

α∈J
ηα	α, ηα = E[η	α]

α! .

123

1214 Journal of Scientific Computing (2019) 81:1210–1239

The Wick product [31] serves as a convolution type binary operator on polynomial chaos
basis functions:

	α � 	β = 	α+β,

so that for two random variables u and v,

u � v =
∑

α∈J

∑

β∈J
uαvβ	α+β where u =

∑

α∈J
uα	α and v =

∑

β∈J
vβ	β.

Now we take the time variable into account. Let [0, T] be some time interval and {mk(t)}∞k=1
be a complete orthonormal basis of L2([0, T]). We define the following driving noise Ṅ(t):

Ṅ(t) =
∞∑

k=1

mk(t)ξk =
∞∑

k=1

mk(t)	εk , (2.2)

and the stochastic process

N(t) =
∫ t

0
Ṅ(s) ds =

∞∑

k=1

(∫ t

0
mk(s) ds

)

ξk . (2.3)

We take the linear parabolic SPDE as our model problem. The general form is

∂t u(t, x) = Lu(t, x) + Mu(t, x) � Ṅ(t), (t, x) ∈ (0, T] × D,

u(0, x) = u0(x), x ∈ D. (2.4)

Here D ⊂ Rd is some spatial domain, and

Lu(t, x) =
d∑

i=1

d∑

j=1

ai j (x)∂i∂ j u(t, x) +
d∑

i=1

bi (x)∂i u(t, x) + c(x)u(t, x), (2.5)

Mu(t, x) =
d∑

i=1

αi (x)∂i u(t, x) + β(x)u(t, x), (2.6)

where ∂i is the i-th spatial partial derivative. We expand u(t, x) into {	α, α ∈ J}:
u(t, x) =

∑

α∈J
uα(t, x)	α.

By the definition of Wick product,

Mu(t, x) � Ṅ(t) =
∑

α∈J

∞∑

k=1

Muα(t, x)mk(t)	α+εk .

We come up with the deterministic propagator system by comparing the expansion coeffi-
cients on both sides of (2.4):

∂t uα(t, x) = Luα(t, x) +
∑

εk≤α

Muα−εk (t, x)mk(t), (t, x) ∈ (0, T] × D,

uα(0, x) = u0(x)1{α=ε0}, x ∈ D. (2.7)

It is a system of linear parabolic deterministic PDEs, with a lower-triangular and sparse
structure, i.e. a multi-index with order n only talks to itself and multi-indices with order
n − 1. As a result, we can solve the system sequentially, and coefficients with the same

123

Journal of Scientific Computing (2019) 81:1210–1239 1215

order can be updated in parallel. Additionally, the system does not depend on the type of
randomness involved, which implies the computational overhead from changes of noise is
almost negligible. That is, the propagator is solved once for all types of randomness.

Remark 2.1 The i.i.d. assumption of the sequence of random variables can be relaxed. In
[25] the authors only assumed that {ξk}∞k=1 contains uncorrelated random variables with zero
mean and unit variance. Here we restrict ourselves to i.i.d. sequences for technical simplicity.

Remark 2.2 In the special case of i.i.d standard Gaussian variables, Ṅ(t) is the Gaussian
white noise Ẇ (t), andN(t) is the Wiener process W (t). Moreover, (2.4) is equivalent to the
Itô type SPDE

du(t, x) = Lu(t, x)dt + Mu(t, x)dW (t). (2.8)

More details can be found in [12].

2.2 Reduced Basis Methods: A Brief Overview

In this section, we present a brief overview of the main ingredients of the reduced basis
method while referring to the recent surveys and monographs [16,18,27] for more details.
Let µ be a p-dimensional parameter, and X be a Hilbert space of functions on D. Given
any parameter value µ in a prescribed parameter domain, the goal is to compute u(µ) ∈ X
satisfying a PPDE written in a weak form

a(u(µ), v;µ) = f (v;µ), v ∈ X . (2.9)

We denote by (·, ·)X the inner product associated with the space X , whose induced norm
is || · ||X = √

(·, ·)X . As is common in the RBM literature [29], we assume that a(·, ·;µ)

and f (·;µ) are “affine”1 with respect to the parameter µ. There are strategies for situations
when the affine assumption is not satisfied, e.g., empirical interpolation [1]. We assume there
exists a spatial discretization having Nh
 1 degrees of freedom to compute an approximate
solution of (2.9), uNh (µ) ∈ X Nh with dim(X Nh) = Nh called truth solution, within an
acceptable accuracy for every µ. RBM attempts to, after a once-for-all preparation stage,
provide a surrogate to uNh with comparable accuracy, but with orders-of-magnitude less
computational cost than the truth solver. The essential idea is to compress the collection of
discrete solutions uNh (µ) for enough μ into a low-dimensional space, and then to efficiently
compute a projected approximation for any µ.

Indeed, anRBMalgorithmapproximates the solution space by an N -dimensional subspace
of X Nh , denoted by X Nh

N , with N � Nh . X Nh
N is formed through a greedy algorithm in a

hierarchical manner as the span of the so-called “snapshots”, by hierarchically constructing
a sample set SN = {µ1, . . . ,µN } from the training set discretizing the parameter domain
and obtaining the truth solution for SN . The surrogate RB solution uNh

N (µ) is computed as an

energy projection into X Nh
N . In addition to the size of the system decreasing from Nh to N ,

further saving is realized through pre-computation and storing of the parameter-independent
components of the RB “stiffness” matrix which is decomposed via the affine assumption.

1 There exist µ-dependent coefficient functions �
q
a : D → R for q = 1, . . . Qa , and �

q
f : D → R for

q = 1, . . . , Q f , and corresponding continuous µ-independent bilinear forms aq (·, ·) : X × X → R and

linear forms f q (·) : X → R, respectively, such that a(w, v;µ) = ∑Qa
q=1 �

q
a (µ)aq (w, v), and f (w;µ) =

∑Q f
q=1 �

q
f (µ) f q (w).

123

1216 Journal of Scientific Computing (2019) 81:1210–1239

Moreover, these components can be computed by adding onemore row and onemore column
each time a new sample location µi is selected and the new snapshot resolved, thanks to the
nested structure of X Nh

N .
Selecting snapshots through the a posteriori error estimate: The key question left is
how to select the representative parameters µ1, . . . ,µN for the critically important sample
set SN . RBM adopts a greedy scheme to iteratively construct SN leaning on an efficiently-
computable error estimate that quantifies the discrepancy between the dimension-i RBM

surrogate solution uNh
i (µ) and the truth solution uNh (µ),
i (µ) ≥

∥
∥
∥uNh

i (µ) − uNh (µ)

∥
∥
∥

X Nh
.

Assuming the existence of this error estimate, the greedy procedure for constructing SN is
summarized in Algorithm 1.

Algorithm 1 Greedy algorithm for constructing SN and X Nh
N .

1: Input: training set �train, an accuracy tolerance εtol, maximum RB dimension Nmax.
2: Randomly select the first sample µ1 ∈ �train, and set i = 1 and ε = 2εtol.

3: Obtain truth solution uNh (µ1), and set X
Nh
1 = span

{
uN(µ1)

}
.

4: while (ε > εtol and i < Nmax) do

5: for each µ ∈ �train do

6: Obtain RBM solution u
Nh
i (µ) ∈ X

Nh
i and error estimate
i (µ)

7: end for

8: µi+1 = argmax
µ∈�train

i (µ), ε =
i (µ
i+1).

9: Augment the sample set Si+1 = Si ⋃{µi+1} and the RB space X
Nh
i+1 = X

Nh
i ⊕ {uNh (µi+1)}.

10: Set i ← i + 1.

11: end while

Dealing with time: There are two standard approaches to deal with time within reduced
basis methods [14]. The first (and more standard one) is based on a time-stepping scheme in
the offline phase. The reduced basis is built by the so called POD-Greedy method [4,15,17].
It combines the standard greedy algorithm for exploring the parameter dependence as in
Algorithm 1, and a proper orthogonal decomposition (POD) in time to determine the time
steps that contains the most information of the temporal trajectory for the chosen parameter
that can not be well approximated by the current RB space. During the online phase, the
algorithm amounts to a time-stepping system that is reduced in size but with the same time
step as the “truth” solver.

The second is based on the space-time variational formulation of the original problem
[30,35] which considers time as an additional variable. This results in a Petrov-Galerkin
problem in d +1 dimensions with d being the spatial dimension of the problem. The reduced
basis is then formed following the standard greedy approach as outlined in this section.

3 COFRB Algorithms

Numerical discretization of (2.7), which provides the basis for the solution of the SPDE (2.4)
via the spectral expansion, usually follows the method of lines technique, in which we start
with standard spatial discretization schemes, transforming the propagator system into a larger

123

Journal of Scientific Computing (2019) 81:1210–1239 1217

system of ODEs. Suppose that the spatial discretization has M f degrees of freedom, and Ã
and B̃ are M f × M f discretized version of L and M. The ODE system is

u′
α(t) = Ãuα(t) +

∑

εk≤α

mk(t)B̃uα−εk (t), t ∈ (0, T] (3.1a)

uα(0) = u01{α=ε0} (3.1b)

where uα(t) ∈ RM f is the vector uα(x, t) evaluated at those degrees of freedom. Then
suitable ODE solvers such as Runge-Kutta methods can be directly adopted .

Since there are infinitely many i.i.d. random variables in �, it is impossible to handle the
infinite system (2.7) or (3.1) as is. A finite truncation is always necessary. Toward that end,
for positive integers K , M ≥ 0, we define the truncated multi-index set

JM,K := {α ∈ J : |α| ≤ M, d(α) ≤ K }, N = #(JM,K) =
(

M + K
M

)

. (3.2)

That is, JM,K contains multi-indices whose corresponding polynomial order is no more
than M , and number of random variables no more than K . The size of JM,K grows rapidly
with respect to both M and K . Given this truncation, the truth solution uNh

M,K approximately
solving the SPDE (2.4) is

uNh
M,K (t) :=

∑

α∈JM,K

uα(t)	α, (3.3)

with uα(t) solving (3.1) for all α ∈ JM,K . This procedure gives highly accurate approxi-
mations. However, it is prohibitively expensive to solve whenN is large as the ODE system
(3.1) has to be resolved N times. This challenge can be mitigated by the COFRB method,
described below for ODE and PDE separately.

3.1 SODE Problem

In this subsection, we consider the following simple linear SODE problem.

u′(t) = u(t) + 1 + u(t) � Ṅ(t), t ∈ [0, T] (3.4a)

u(0) = 1. (3.4b)

The corresponding propagator system amounts to

d

dt
uα(t) = uα(t) + 1{α=ε0} +

∑

εk≤α

uα−εk (t)mk(t). (3.5)

For simplicity, we use the forward Euler and Crank–Nicolson time discretization schemes
to describe our space-time treatment which is the foundation of the resulting COFRBmethod.
Toward that end, we partition the time domain (0, T] uniformly by a grid 0 = t0 < t1 <

. . . < tn = T with time step size
t = t j − t j−1. The forward Euler and Crank–Nicolson
schemes read

u j
ε0

= u j−1
ε0

+
t(u j−1
ε0

+ 1), j = 1, . . . , n (3.6a)

u j
α = u j−1

α +
t

(

u j−1
α +

∑

εk≤α

u j−1
α−εk

m j−1
k

)

for α �= ε0, j = 1, . . . , n (3.6b)

123

1218 Journal of Scientific Computing (2019) 81:1210–1239

u j
ε0

= u j−1
ε0

+ 1

2

t

(
u j−1

ε0
+ 1

)
+ 1

2

t

(
u j

ε0
+ 1

)
, j = 1, . . . , n (3.7a)

u j
α = u j−1

α + 1

2

t

(

u j−1
α +

∑

εk≤α

u j−1
α−εk

m j−1
k

)

+ 1

2

t

(

u j
α +

∑

εk≤α

u j
α−εk

m j
k

)

,

for α �= ε0, j = 1, . . . , n. (3.7b)

Here u j
α is an approximation of uα(t) at time t = t j . Our space-time treatment is to rewrite

the scheme as the following systemwith �Uα encoding the full time evolution except the initial
condition.

A �Uα = �f (u0
α, uα−εk)

�Uα = (
u1

α, u2
α, . . . , un

α

)T
. (3.8)

We therefore have a parametric problem in (3.8) with α being the parameter. The challenge
is that �Uα is coupled with �Uα−εk through the right hand side. This distinction from the usual
RBM setting (2.9) means that we can not inquire (3.8) for a single α. Instead, it must be done
sequentially starting from the lowest index ε0. As a consequence, unfortunately the usual
greedy Algorithm 1, thus the very existence of the offline procedure, does not apply. This
motivates our design of a“offline-free” algorithm. To present it, we slightly abuse the notation
to denote the right hand side simply by �fα hiding its dependence on uα−εk in the remainder
of the paper. The following definition of A and �fα for forward Euler and Crank–Nicolson
methods finishes our description of the “truth” approximation.

A =

⎛

⎜
⎜
⎜
⎝

1
−(1 +
t) 1

. . .
. . .

−(1 +
t) 1

⎞

⎟
⎟
⎟
⎠

, �fα =

⎛

⎜
⎜
⎜
⎝

u0
α +
tu0

α +
t
∑

εk≤α u0
α−εk

m0
k

t
∑

εk≤α u1
α−εk

m1
k

...

t
∑

εk≤α un−1
α−εk

mn−1
k

⎞

⎟
⎟
⎟
⎠

(3.9)

A =

⎛

⎜
⎜
⎜
⎝

1 − 1
2
t

−(1 + 1
2
t) 1 − 1

2
t
. . .

. . .

−(1 + 1
2
t) 1 − 1

2
t

⎞

⎟
⎟
⎟
⎠

; (3.10a)

�fα =

⎛

⎜
⎜
⎜
⎜
⎝

u0
α + 1

2
tu0
α + 1

2
t
∑

εk≤α u0
α−εk

m0
k + 1

2
t
∑

εk≤α u1
α−εk

m1
k

1
2
t

∑
εk≤α u1

α−εk
m1

k + 1
2
t

∑
εk≤α u2

α−εk
m2

k
...

1
2
t

∑
εk≤α un−1

α−εk
mn−1

k + 1
2
t

∑
εk≤α un

α−εk
mn

k

⎞

⎟
⎟
⎟
⎟
⎠

. (3.10b)

Proceeding similarly to the classical RBM, given that we already have a pre-selected
multi-indices set Si = {αk}i

k=1 and the corresponding “truth approximations” written in

a matrix form �U =
(�Uα1 , . . . ,

�Uαi

)
, the goal is to find, for each α, the RB coefficients

�cα = (c1(α), c2(α), . . . , ci (α))T such that the RB solution �Ui
α = �U �cα satisfies the equation

A �Ui
α = �fα in certain sense. In this paper, we solve the least squares problem as in [8]

�U T AT A �U �cα = �U T AT �fα (3.11)

123

Journal of Scientific Computing (2019) 81:1210–1239 1219

minimizing ‖A �U N
α − �fα‖l2 which is a Petrov-Galerkin formulation. We note that we can

also formulate the reduced problem as a Galerkin projection,

�U T A �U �cα = �U T �fα, (3.12)

which is less stable according to our numerical result (not reported in this paper). The remain-
ing key question of how to determine the reduced multi-indices set Si is answered by a
“keep-or-toss” approach guided by a quantity
i (α) bounding from the above the error
between the reduced solution �Ui

α and truth approximation �Uα for any multi-index α. This
upper bound resulting from a residual-based a posteriori error estimate,

i (α) = ‖A �Ui
α − �fα‖l2√
βL B

(3.13)

is standard for RBM [8,29]. Here βL B is the lower bound for the smallest eigenvalue of
AT A. The detailed algorithm is provided in Algorithm 2. We note that this “keep-or-toss”
approach was initially explored in a different setting in [13], and then extended to a more
general multi-layer enhanced greedy algorithm for the classical RBM setting in [21].

Algorithm 2 Certified Offline-Free Reduce Basis Method for ODE (COFRB_ODE)
1: Set error tolerance εtol and maximum number of selected multi-indices Nmax.
2: Solve α = ε0 to obtain �Uε0 .

3: Normalize �Uε to form basis matrix �U =
(�Uε0

)
, i = 1.

4: for α ∈ JM,K sequentially do
5: Solve �U T AT A �U �cα = �U T AT �fα to obtain �Ui

α = ∑i
j=1 c j (α) �Uα j .

6: Calculate
i (α).
7: if
i (α) > εtol & i < Nmax then
8: Solve A �Uα = �fα to obtain �Uα .

9: Update the basis matrix �U =
(�Uα1 ,

�Uα2 , . . . ,
�Uαi ,

�Uα

)
.

10: Apply a modified Gram–Schmidt transformation on �U and also set the �cα .
11: i ← i + 1.
12: else
13: �Uα = �Ui

α .
14: end if
15: end for

Remark 3.1 (Generality of time discretizations) This paper presents the method for two kinds
of time discretization schemes. In fact, any ODE solver that can be written in the form of
(3.8), such as Runge-Kutta, linear Adams multistep methods et al, can be handled.

Remark 3.2 (Computational details) To ensure that the reduced system is well-conditioned,
we apply the modified Gram–Schmidt (MGS) transformation on the basis matrix �U . More-
over, special care must be taken to ensure efficiency and accuracy of the COFRB method
when it comes to calculating the RB matrices and vectors (�U T AT A �U and �U T AT �fα), and
the residual norm (as an example, a straightforward implementation may result in a nega-
tive norm). For these reasons, we provide the details of implementing steps 5, 6 and 10 of
Algorithm 2 in “Appendix A”.

123

1220 Journal of Scientific Computing (2019) 81:1210–1239

3.2 SPDE Problem

We devote this section to the stochastic PDE case using linear parabolic PDEs as an example.
For the truth approximation, we adopt a Fourier collocation approach with Nc collocation
points for the spatial discretization [6]. TheseNc collocation pointsCNc = {x j }Nc

j=1 are taken

as a tensor product ofNx collocation points for each dimension. Obviously, for D ⊂ Rd we
haveNc = Nd

x . We denote this spatial discretization degrees of freedom by M f and present
two ways to apply COFRB to this problem.

3.2.1 Method with No Spatial Compression Embedded

The first, a direct application of the Algorithm COFRB_ODE presented in the last section,
becomes obvious once we write the “truth” solver in the form of (3.8). It achieves the RB
reduction of the parameter-induced manifold by simply replacing numbers u j

α for ODE by
vectors u j

α for PDE which contains the spatial variation of the solution at the j th time step.
Toward that end, we also consider forward Euler and Crank–Nicolson time discretization
methods for (3.1) which read

FE :u j
α = u j−1

α +
t

(

Ãu j−1
α +

∑

εk≤α

m j−1
k B̃u j−1

α−εk

)

, j = 1, . . . , n (3.14)

CN :u j
α = u j−1

α +
t

2

(

Ãu j−1
α +

∑

εk≤α

m j−1
k B̃u j−1

α−εk

)

+
t

2

(

Ãu j
α +

∑

εk≤α

m j
k B̃u j

α−εk

)

,

j = 1, . . . , n. (3.15)

Here u j
α is now a vector containing the spatial variations, u j

α = [u(1)
α (t j), . . . , u(Nc)

α (t j)]T =
[uα(t j , x1), . . . , uα(t j , xNc)]T . Recall that Ã is the spatial differential operator discretized
by the spectral collocation method. We can now rewrite them in a matrix form:

A �Uα = �fα, �Uα =
(
(u1α)T , (u2α)T , . . . , (un

α)T
)T

, (3.16)

with A written block-wise for the FE and CN schemes as follows

A =

⎛

⎜
⎜
⎜
⎝

I
−(I +
t Ã) I

. . .
. . .

−(I +
t Ã) I

⎞

⎟
⎟
⎟
⎠

; A =

⎛

⎜
⎜
⎜
⎝

I −
t
2 Ã

−(I +
t
2 Ã) I −
t

2 Ã
. . .

. . .

−(I +
t
2 Ã) I −
t

2 Ã

⎞

⎟
⎟
⎟
⎠

.

(3.17)

Here I ∈ R
Nc×Nc is the identity matrix. To facilitate presentation of the detailed efficient

implementation of the algorithm (see “Appendix A”), we write �fα for the FE solver in the
following form

�fα =

⎛

⎜
⎜
⎜
⎜
⎝

u0α +
t Ãu0α +
t
∑

εk≤α m0
k B̃u0α−εk

t
∑

εk≤α m1
k B̃u1α−εk

...

t
∑

εk≤α mn−1
k B̃un−1

α−εk

⎞

⎟
⎟
⎟
⎟
⎠

(3.18)

123

Journal of Scientific Computing (2019) 81:1210–1239 1221

=

⎛

⎜
⎜
⎜
⎝

u0α +
t Ãu0α +
t
∑

εk≤α m0
k B̃u0α−εk

0
...

0

⎞

⎟
⎟
⎟
⎠

+
t
∑

εk≤α

⎛

⎜
⎜
⎜
⎝

0
m1

k B̃
. . .

mn−1
k B̃

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0
u1α−εk

...

un−1
α−εk

⎞

⎟
⎟
⎟
⎠

= �f 0α +
t
∑

εk≤α

M0
k

�U0�cα−εk (3.19)

where M0
k = diag{0, m1

k B̃, . . . , mn−1
k B̃} and �U 0 is the full spatial-temporal representation

of the RB basis matrix with the initial and final time step truncated.

�U 0 =

⎛

⎜
⎜
⎜
⎝

0 0 . . . 0
u1α1 u1α2 . . . u1αi
...

...
...

...

un−1
α1

un−1
α2

. . . un−1
αi

⎞

⎟
⎟
⎟
⎠

. (3.20)

This compact form can be achieved for CN scheme as well:

�fα =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u0α +
t Ãu0α +
t
2

∑
εk≤α m0

k B̃u0α−εk
+
t

2

∑
εk≤α m1

k B̃u1α−εk

t
2

∑
εk≤α

(
m1

k B̃u1α−εk
+ m2

k B̃u2α−εk

)

...

t
2

∑
εk≤α

(
mn−1

k B̃un−1
α−εk

+ mn
k B̃un

α−εk

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.21)

=

⎛

⎜
⎜
⎜
⎝

u0α +
t
2 u0α +
t

2

∑
εk≤α m0

k B̃u0α−εk

0
...

0

⎞

⎟
⎟
⎟
⎠

+
t

2

∑

εk≤α

⎛

⎜
⎜
⎜
⎝

0
m1

k B̃
. . .

mn−1
k B̃

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0
u1α−εk

...

un−1
α−εk

⎞

⎟
⎟
⎟
⎠

+
t

2

∑

εk≤α

⎛

⎜
⎜
⎜
⎝

m1
k B̃

m2
k B̃

. . .

mn
k B̃

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

u1α−εk

u2α−εk
...

un
α−εk

⎞

⎟
⎟
⎟
⎠

= �f 0α +
t

2

∑

εk≤α

(
M0

k
�U0 + Mk �U

)
�cα−εk (3.22)

where Mk = diag{m1
k B̃, m2

k B̃, . . . , mn
k B̃} and �U is the full spatial-temporal representation

of the RB basis matrix with the initial time step truncated.

�U =

⎛

⎜
⎜
⎜
⎝

u1α1 u1α2 . . . u1αi
...

...
...

...

un−1
α1

un−1
α2

. . . un−1
αi

un
α1

un
α2

. . . un
αi

⎞

⎟
⎟
⎟
⎠

. (3.23)

3.2.2 Method with Spatial Compression Embedded

The consequence of ignoring the spatial compressibility is two-fold. First is the largememory
the algorithm is consuming. For example, the “truth approximation” from (3.16), �Uα , is in

123

1222 Journal of Scientific Computing (2019) 81:1210–1239

R
nNd

x . So are the number of rows for �U 0 and �U and the resultingmatrices �U , A �U , AT A �U etc.
This proves challenging especially for the high spatial dimension (d ≥ 2) case. The second
negative consequence is the high operation counts thanks to the multiplication of matrices
of this size.

To mitigate these difficulties, we design the following algorithm to “compress” the basis
every time one is added to the reduced space while maintaining its accuracy. To achieve that,

we rewrite the vector �Uα as a matrix �̂Uα to which we apply singular value decomposition
(SVD).

�̂Uα = (
u1α,u2α, . . . ,un

α

) = η�ζ T =
min(Nc,n)∑

j=1

λ jη jζ
T
j (3.24)

where η is an Nc-by-Nc orthonormal matrix, and ζ is an n-by-n orthonormal matrix, and
� is anNc-by-n matrix whose entries are zero except for its min(Nc, n) diagonal elements.
They are denoted by λ j that is decreasing with j . η j and ζ j are the columns of matrices η

and ζ . Our algorithm truncates this SVD by storing only the first m(� min(Nc, n)) vectors

η j , ζ j and singular values of λ j to approximate �̂Uα as follows.

�̂Uα ≈
m∑

j=1

λ jη jζ
T
j =

⎛

⎜
⎜
⎜
⎝

η11 η12 . . . η1m
η21 η22 . . . η2m
...

...
...

...

η
Nc
1 η

Nc
2 . . . η

Nc
m

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

λ1ζ
1
1 λ1ζ

2
1 . . . λ1ζ

n
1

λ2ζ
1
2 λ2ζ

2
2 . . . λ2ζ

n
2

...
...

...
...

λmζ 1
m λmζ 2

m . . . λmζ n
m

⎞

⎟
⎟
⎟
⎠

(3.25)

= V m
α

(
w1

α w2
α . . . wn

α

)
(3.26)

where V m
α ∈ RNc×m , w j

α ∈ Rm, j = 1, . . . , n. We can then rewrite the truth approximation
back as a vector form

�Uα ≈
⎛

⎜
⎝

V m
α

. . .

V m
α

⎞

⎟
⎠

⎛

⎜
⎝

w1
α
...

wn
α

⎞

⎟
⎠ = �V m

α �wα. (3.27)

Now we only store mNc + mn elements instead of nNc for each truth approximation, a
m
n + m

Nc
reduction. The basis matrix �U can in turn be approximated as

�U ≈
⎛

⎜
⎝

V m
α1

V m
α2

V m
αi

. . .
. . .

. . .

V m
α1

V m
α2

V m
αi

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1
α1

0 . . . 0
...

...
...

wn
α1

0 . . . 0
0 w1

α2
. . . 0

...
...

...

0 wn
α2

. . . 0
...

...
...

...

0 0 . . . w1
αi

...
...

...

0 0 . . . wn
αi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(�V m

α1
�V m
α2

. . . �V m
αi

) (�Wα1
�Wα2 . . . �Wαi

)
= �V �W . (3.28)

123

Journal of Scientific Computing (2019) 81:1210–1239 1223

The other basis matrix �U 0 is approximated in the same fashion, simply with �W replaced by
�W 0 that contains w

j
αi for j = 0, . . . , n − 1 instead of j = 1, . . . , n with w0

αi
= 0,

�U 0 = �V �W 0.

Then the reduced solver (3.11) becomes

�W T �V T AT A �V �W �cα = �W T �V T AT �fα (3.29)

=
⎧
⎨

⎩

�W T �V T AT
(�f 0α +
t

∑
εk≤α M0

k
�V �W 0�cα−εk

)
for FE

�W T �V T AT
(�f 0α +
t

2

∑
εk≤α(M0

k
�V �W 0 + Mk �V �W)�cα−εk

)
for CN.

(3.30)

The detailed algorithm, calledCOFRB_PDE, is provided inAlgorithm3with implementation
details postponed to “Appendix B”.

Algorithm 3 Certified Offline-Free Reduced Basis Method for PDE (COFRB_PDE)
1: Set tolerance error εtol and maximum number of selected multi-indices Nmax.
2: Solve α = ε0 to obtain �Uε0 , set α1 = ε0.

3: Do SVD on �̂Uα1 to obtain V m
α1

and �wα1 .
4: Normalize �wα1 and set i = 1.
5: for α ∈ JM,K sequentially do
6: Solve �W T �V T AT A �V �W �cα = �W T �V T AT �fα to obtain �Ui

α = ∑i
j=1 c j (α) �V m

α j
�wα j .

7: Calculate
i (α).
8: if
i (α) > εtol & i < Nmax then
9: Solve A �Uα = �fα to obtain �Uα .
10: Do SVD on �Uα to obtain V m

α and �Wα .

11: Update the matrix �V =
(�V m

α1
, �V m

α2
, . . . , �V m

αi
, �V m

α

)
and �W =

(�W 0
0 �wα

)

.

12: Normalize �wα and set �cα = (0, . . . , 0, ‖ �wα‖)T .
13: i ← i + 1.
14: else
15: �Uα = �Ui

α , �cα = (c1(α), c2(α), . . . , ci (α)).
16: end if
17: end for

Remark 3.3 Note that the columns of the matrices �W and �W 0 are orthogonal. So we only
need to normalize them. The absence of MGS for the basis matrix �U improves efficiency of
the algorithm. Currently, we use the same m across the RB bases. This may lead to some
redundancy in �U resulting in a possibly non-invertible RB matrix ARB = �W T �V T AT A �V �W .
In this case, we adopt theMoore-Penrose pseudo-inversion [2], (�W T �V T AT A �V �W)†, to solve
the least square problem which amounts to identifying the RB coefficients �cα for (3.29) with
minimum norm. This redundancy can be removed, thus theMoore-Penrose pseudo-inversion
avoided, by using an adaptively chosen m which gets smaller as we build up the RB space.

4 Complexity Analysis of the COFRB Algorithms

As is well-known [28], the tremendous speedup of the reduced basis method originates from
the decomposition of the computation into an offline stage and an online stage. The essence
is that, whenever a new basis is added to the reduced space, components of the reduced solver

123

1224 Journal of Scientific Computing (2019) 81:1210–1239

and its error estimation that are dependent on this basis should be precomputed and stored. As
a consequence, the reduces solver and its error estimation are independent of the degrees of
freedom of the truth solver. Keeping this in mind, our COFRB algorithm can be implemented
in a similar fashion. The lack of clear offline-online decomposition is overcome by that, in
the sequential procedure of the problem resolution, there are overwhelmingly more multi-
indices whose solutions are provided by the reduced, as opposed to full, solver. The amount
of savings from these reduced solves being independent of the size of the full problem more
than compensates for the additional computation, after each full solve, to prepare for the
reduced solve. Thus, the total computational complexity is less than the original scheme. In
this section, we provide a detailed computational complexity count taking forward Euler time
discretization as an example. It makes evident the theoretical basis of the practical numerical
speedup we observe in the numerical results section below.

4.1 Computational Complexity for COFRB_ODE

Wefirst consider Algorithm 2 for the SODE problem. The complexity of the original scheme,
that is obtaining truth approximations �Uα from (3.8) for all α ∈ JM,K , is of the order

COFull = nNK .

Recall N is the cardinality of JM,K . To compute the complexity for Algorithm 2, we note
that for each α ∈ JM,K , we need to form �fRB = �U T AT �fα , solve �cα , and calculate
i (α)

from (6.11). The operation count of this procedure is, at most, of the order

N

⎛

⎜
⎝

form �fRB and solve �cα

N 2K + N 3 +
(6.11)

N K 2

calculate
i (α)

⎞

⎟
⎠

This cost is, as expected, independent of the number of time step (in this case the size of the
truth approximation) n. During this procedure, if the solution corresponding to the current
multi-index is determined to be aworthy addition to theRB space, we encounter the following
additional cost which is aggregated for all the N chosen multi-indices.

N∑

i=1

⎛

⎜
⎝

(6.4) and (6.5)

ni K
update �U T AT A �U and �U T AT M0

k U0
+
MGS

ni +
(6.10)

ni K 2

QR prep

⎞

⎟
⎠

Therefore, the total complexity of Algorithm 2 for SODE problem is of the order

CORB = nN 2K 2 + N (N 2 + N K + K 2)N.

Remark 4.1 The amount of speedup, assuming N ≥ K , is in the order of

CORB
COFull

= N 2K

N + N 3

nK
.

123

Journal of Scientific Computing (2019) 81:1210–1239 1225

4.2 Computational Complexity for COFRB_PDE

One-dimensional case: The cost of the original scheme is of the order nN2
xNK . For Algo-

rithm 2, a similar analysis as above shows that the total cost is of the order

nNx N K (N K + Nx) + N (N 2 + N K + K 2)N.

For Algorithm 3, due to the spatial reduction, the size of the space-time snapshots
decreases from nNx to mNx + mn. For each multi-index, we need to form �W T �V T AT A �V �W
and �W T �V T AT M0

k
�V �W 0 (of size at most N , the number of reduced basis), calculate the

(�W T �V T AT A �V �W)†, and evaluate
i (α) through forming and decomposing BTB (see
“Appendix B”). All these operations add up to be, at most

N

⎛

⎜
⎜
⎝

form �W T �V T AT A �V �W and �W T �V T AT M0
k

�V �W 0

(NNx m(Nx + m) + Nnm2)(K + 1) +
(�W T �V T AT A �V �W)†

N 3 +
form BT B

N K 2nm2 + (N K)3

and orthor. decomp.

⎞

⎟
⎟
⎠

For the N chosen multi-indices, we have the following additional cost

N

⎛

⎜
⎜
⎝

obtain �Uα

nN2
x K +

SVD on �̂Uα

min(n,Nx)
3

⎞

⎟
⎟
⎠ .

Thus, the total cost is of the order

N (
NNx m(Nx + m)K + nN K 2m2 + N 3K 3) + nN2

x N K + N min(n,Nx)
3.

Two-dimensional case: In the 2D case, the differentiation matrices Ã and B̃ are sparse,
thus the complexity of matrix vector multiplication is of the orderN3

x . So the complexity of
obtaining �Uα from the original scheme is of the order nN3

xNK .
For Algorithm 2, the complexity is of order

nN2
x N K (N K + Nx) + N (N 2 + N K + K 2)N.

For Algorithm 3,

N (
NN2

x m(Nx + m)K + nN K 2m2 + N 3K 3) + nN3
x N K + N min(n,N2

x)
3.

Summary: We list here the complexities of the original scheme, direct extension of
COFRB_ODE, and then COFRB_PDE for the d-dimensional SPDE problems.

CPFull = nNd+1
x NK ,

CP,1
RB = nNd

x N K (N K + Nx) + N (N 2 + N K + K 2)N,

CP,2
RB = N

(
NNd

x m(Nx + m)K + nN K 2m2 + N 3K 3
)

+ nNd+1
x N K + N min(n,Nd

x)3.

After simple algebraic simplifications, the amount of speedup of the COFRB_PDE algorithm
is

CP,2
RB

CPFull
= N

N + Nm

n
+ N K

Nd+1
x

(

m2 + N 2K

n

)

+ N

NK
min

(
n2

Nd+1
x

,
N2d−1

x

n

)

.

123

1226 Journal of Scientific Computing (2019) 81:1210–1239

5 Numerical Results

In this section, we apply our algorithms to one SODE problem and two SPDE problems, and
compare the costs of the original scheme and the COFRB methods. In all the experiments,
we set the maximum number of reduced multi-indices Nmax to be 200. For the COFRB_PDE
algorithm, we set the number of columns of V m

α , m to be 6 in all experiments. Exact solutions
are obtained through solving the corresponding moment equations of (3.1).

Example 5.1 (Linear SODE). Suppose that u = u(t) satisfies the following linear SODE

u′(t) = u(t) + 1 + u(t) � Ṅ(t), t ∈ [0, T]
u(0) = 1. (5.1)

We evolve the propagator ODE system to the final time T = 1 with time step size

t = 10−4 i.e. time steps n = 10,000. In order to examine the error of reduced basis
solution in comparison to the truth approximation, we define the following square error

eR B M
2 = E[|uN

M,K (1) − uN
M,K (1)|2]. (5.2)

As a reference, we also compute the error of the truth approximation in comparison to the
exact solution

eO RI
2 = E[|uN

M,K (1) − u(1)|2]. (5.3)

We test both the forward Euler and Crank–Nicolson time discretization schemes for
(M, K) = (8, 8) and (9, 9) and plot the histories of convergence, number of chosen multi-
indices, and computation time, all with respect to εtol in Fig. 1. It is clear that the method is
highly effective in capturing the “important” multi-indices. With 35 (out of a total of more
than 12,000) of them, the COFRB solution reaches an accuracy of more than 8 digits. In

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-8

10-6

10-4

10-2

FE
CN
FE truth
CN truth

εtol

C
P

U
 T

im
e(

s)

10-310-210-1100101
0

5

10

15

20

25
FE
CN
FE truth
CN truth

εtol

N

10-310-210-1100101

10

15

20

25

30

35

FE
CN

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-8

10-6

10-4

10-2

FE
CN
FE truth
CN truth

εtol

C
P

U
 T

im
e(

s)

10-310-210-1100101
0

20

40

60

80

100

120

FE
CN
FE truth
CN truth

εtol

N

10-310-210-1100101

10

15

20

25

30

35

FE
CN

Fig. 1 SODE problem for (M, K) = (8, 8) (top) and (M, K) = (9, 9) (bottom). From left to right are histories
of convergence of eRB M

2 and eO RI
2 , CPU time of Algorithm 2 as a function of εtol, and number of chosen

multi-indices (out of 12,870 or 48,620) as a function of εtol

123

Journal of Scientific Computing (2019) 81:1210–1239 1227

Ta
bl
e
2

SO
D
E
pr
ob

le
m
:e
rr
or

an
d
co
m
pu

tin
g
co
st
s
fo
r
A
lg
or
ith

m
C
O
FR

B
_O

D
E

M
et
ho

d
(M

,
K

)
ε
to
l

N
N

eR
B

M
2

eO
R

I
2

C
PU

tim
e

C
O
FR

B
_O

D
E

Fu
ll

FE
(8

,
8)

30
.0
0E

+
00

10
12

87
0

4.
00

E
−0

3
1.
50

E
−0

2
1.
12

E
−0

1
1

(9
,
9)

30
.0
0E

+
00

11
48

62
0

3.
30

E
−0

3
1.
50

E
−0

2
3.
43

E
−0

2
1

C
N

(8
,
8)

10
.0
0E

+
00

14
12

87
0

2.
86

E
−0

5
7.
71

E
−0

5
3.
41

E
−0

1
1

(9
,
9)

10
.0
0E

+
00

14
48

62
0

2.
98

E
−0

5
3.
67

E
−0

5
1.
85

E
−0

2
1

123

1228 Journal of Scientific Computing (2019) 81:1210–1239

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101
10-6

10-4

10-2

FE
CN
FE truth
CN truth

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101

0.0E+00

1.0E+03

2.0E+03
FE
CN
FE truth
CN truth

εtol

N

10-310-210-11001010

20

40

60

80

100

120

FE
CN

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101
10-6

10-4

10-2

100

FE
CN
FE truth
CN truth

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101
0.0E+00

4.5E+03

9.0E+03

1.4E+04

FE
CN
FE truth
CN truth

εtol

N

10-310-210-11001010

20

40

60

80

100

120

FE
CN

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101
10-6

10-4

10-2

FE
CN
FE truth
CN truth

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101

0.0E+00

7.5E+03

1.5E+04

FE
CN
FE truth
CN truth

εtol

N

10-310-210-11001010

20

40

60

80

100

120

FE
CN

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101
10-6

10-4

10-2

100

FE
CN
FE truth
CN truth

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101
0.0E+00

2.0E+04

4.0E+04

FE
CN
FE truth
CN truth

εtol

N

10-310-210-1100101

20

40

60

80

100

120

140

FE
CN

Fig. 2 1D SPDE problem for (M, K ,Nc) = (9, 9, 32) (Row 1), (9, 9, 64) (Row 2), (10, 10, 32) (Row 3),
and (10, 10, 64) (Row 4). From left to right are histories of convergence of eRB M

2 and eO RI
2 , CPU time of

Algorithm 3 as a function of εtol, and number of chosen multi-indices (out of 48,620) as a function of εtol

Table 2, we observe that when eR B M
2 and eO RI

2 reach the same level, our algorithm achieves
savings of two orders of magnitude.

Example 5.2 (Linear 1D parabolic PDE). We solve the linear parabolic PDE in Sect. 2.1.
Consider the one-dimensional space region D = [0, 2π] with periodic boundary condition.
The initial data is u0(x) = cos x . Differential operators L and M are set to be

Lu = 0.145∂2x u + 0.1 sin x∂x u, Mu = 0.5∂x u. (5.4)

Fourier collocation method with Nc collocation points is used for spatial discretization.
Let {xi }Nc

i=1 be the set of equidistant collocation points such that x j = 2π(j−1)
Nc

. We test our

123

Journal of Scientific Computing (2019) 81:1210–1239 1229

Ta
bl
e
3

1D
SP

D
E
pr
ob

le
m
:e
rr
or

an
d
co
m
pu

tin
g
co
st
s
of

ou
r
A
lg
or
ith

m
s
C
O
FR

B
_O

D
E
an
d
C
O
FR

B
_P

D
E

N c
(M

,
K

)
ε

to
l

N
/
N

eR
B

M
2

eO
R

I
2

C
PU

T
im

e
C
O
FR

B
_O

D
E

C
O
FR

B
_P

D
E

C
O
FR

B
_O

D
E

C
O
FR

B
_P

D
E

C
O
FR

B
_O

D
E

C
O
FR

B
_P

D
E

Fu
ll

Fo
rw

ar
d

E
ul

er
ti

m
e

di
sc

re
ti

za
ti

on

32
(9

,
9)

1.
00

E
−0

2
74

/4
86

20
74

/4
86

20
1.
52

E
−0

4
2.
57

E
−0

4
4.
98

E
−0

4
2.
82

E
−0

1
1.
40

E
−0

1
1

(1
0,

10
)

1.
00

E
−0

2
81

/1
84

75
6

81
/1
84

75
6

4.
16

E
−0

4
5.
07

E
−0

4
3.
01

E
−0

4
2.
14

E
−0

1
1.
21

E
−0

1
1

64
(9

,
9)

1.
00

E
−0

2
82

/4
86

20
82

/4
86

20
1.
98

E
−0

4
1.
04

E
−0

4
4.
98

E
−0

4
4.
08

E
−0

1
8.
75

E
−0

2
1

(1
0,

10
)

1.
00

E
−0

2
88

/1
84

75
6

88
/1
84

75
6

5.
20

E
−0

4
3.
10

E
−0

4
3.
01

E
−0

4
1.
21

E
−0

1
5.
10

E
−0

2
1

C
ra

nk
–N

ic
ol

so
n

ti
m

e
di

sc
re

ti
za

ti
on

32
(9

,
9)

1.
00

E
−0

2
74

/4
86

20
74

/4
86

20
1.
53

E
−0

4
2.
61

E
−0

4
3.
67

E
−0

4
1.
56

E
−0

1
6.
20

E
−0

2
1

(1
0,

10
)

1.
00

E
−0

2
81

/1
84

75
6

81
/1
84

75
6

4.
18

E
−0

4
5.
14

E
−0

4
1.
70

E
−0

4
5.
10

E
−0

2
2.
55

E
−0

2
1

64
(9

,
9)

1.
00

E
−0

2
82

/4
86

20
82

/4
86

20
1.
43

E
−0

4
1.
07

E
−0

4
3.
67

E
−0

4
6.
13

E
−0

2
1.
64

E
−0

2
1

(1
0,

10
)

1.
00

E
−0

2
88

/1
84

75
6

88
/1
84

75
6

5.
00

E
−0

4
1.
42

E
−0

4
1.
70

E
−0

4
3.
00

E
−0

2
1.
13

E
−0

2
1

123

1230 Journal of Scientific Computing (2019) 81:1210–1239

Table 4 1DSPDE problem: error and computing costs of our AlgorithmCOFRB_PDE for varying polynomial
degree M

Nc (M, K) εtol N/N eRB M
2 eO RI

2 CPU Time
COFRB_PDE Full

Forward Euler time discretization

32 (6, 9) 9.84E−02 38/5005 3.62E−03 4.48E−03 8.23E−01 1

(7, 9) 7.18E−02 46/11440 1.62E−03 1.97E−03 4.98E−01 1

(8, 9) 3.43E−02 51/24310 4.96E−04 9.41E−04 2.92E−01 1

(9, 9) 2.02E−02 57/48620 3.96E−04 4.98E−04 1.64E−01 1

(10, 9) 7.06E−03 82/92378 2.37E−04 3.04E−04 1.76E−01 1

(11, 9) 6.36E−03 84/167960 2.01E−04 2.33E−04 1.32E−01 1

Crank–Nicolson time discretization

32 (6, 9) 1.02E−01 38/5005 3.62E−03 4.38E−03 1.75E−01 1

(7, 9) 7.50E−02 45/11440 1.62E−03 1.85E−03 1.07E−01 1

(8, 9) 3.58E−02 50/24310 4.96E−04 8.15E−04 6.25E−02 1

(9, 9) 1.54E−02 62/48620 3.24E−04 3.67E−04 5.52E−02 1

(10, 9) 6.65E−03 83/92378 1.20E−04 1.70E−04 6.84E−02 1

(11, 9) 4.36E−03 89/167960 7.37E−05 8.30E−05 1.42E−02 1

algorithms for collocation points Nc = 32, 64 with (M, K) pairs being (9, 9) and (10, 10)
respectively. Both forward Euler and Crank–Nicolson methods are implemented up to T = 5
with time step size
t = 10−3 i.e. time steps n = 5000. The results, shown in Fig. 2, indicates
that the COFRB_PDE method is effective for PDE. We only need to resolve about 0.2% of
all the multi-indices through the high-fidelity simulation. Everybody else can be supplied by
the reduced solver without degrading the accuracy. We compute eR B M

2 = E[‖uN
M,K (5, ·) −

uN
M,K (5, ·)‖2

l2
] as proxy of error, where the discrete L2 norm for v is defined by

‖v‖2l2 := 2π

Nc

Nc∑

j=1

(v(x j))
2

e2
RBM,e2

ORI

C
PU

 T
im

e(
s)

0 0.001 0.002 0.003 0.004

102

103

RBM
ORI

e2
RBM,e2

ORI

C
PU

 T
im

e(
s)

0 0.001 0.002 0.003 0.004

102

103

RBM
ORI

Fig. 3 CPU times (or COFRB_PDE and the original algorithm) versus errors for the 1D SPDE problem with
(M, K ,Nc) = (6, 9, 32), (7, 9, 32), . . . , (11, 9, 32). Left: Forward Euler time discretization; Right: Crank–
Nicolson time discretization

123

Journal of Scientific Computing (2019) 81:1210–1239 1231

and for comparison, we also compute the error eO RI
2 = E[‖uO RI

N ,K (5, ·) − u(5, ·)‖2
l2

] where
u is the exact solution of the SPDE. In Table 3, we find that when the errors eR B M

2 and
eO RI
2 reach the same order of magnitude, our algorithm is much faster than the original
algorithm. This result also stands for the Crank–Nicolson method. We normalize the time
with respect to that for one truth solve. We see that our algorithm achieves savings of two
orders of magnitude. And we also compare Algorithm 2 with 3, to verify that Algorithm 3
not only saves more storage but is also more efficient than the Algorithm 2. In addition,
we demonstrate the scalability of our Algorithm COFRB_PDE. Toward that end, we fix the
number of random variables K = 9 while increasing polynomial degree M . The results are

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-6

10-4

10-2

100

FE RBM
FE ORI

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101

0.0E+00

1.0E+04

2.0E+04

3.0E+04
FE RBM
FE ORI

εtol

N

10-310-210-11001010

40

80

120

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-6

10-4

10-2

100

FE RBM
FE ORI

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101
0.0E+00

4.0E+04

8.0E+04

1.2E+05

FE RBM
FE ORI

εtol

N

10-310-210-11001010

40

80

120

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-6

10-4

10-2

100

CN RBM
CN ORI

εtol

C
PU

 T
im

e(
s)

10-310-210-11001010.0E+00

2.0E+04

4.0E+04

6.0E+04

FE RBM
FE ORI

εtol

N

10-310-210-11001010

40

80

120

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-6

10-4

10-2

100

FE RBM
FE ORI

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101
0.0E+00

1.0E+05

2.0E+05 FE RBM
FE ORI

εtol

N

10-310-210-1100101

40

80

120

Fig. 4 COFRB for 2D SPDE problem based on Forward Euler method with (M, K ,Nc) = (9, 9, 32 × 32)
(Row 1), (10, 10, 32 × 32) (Row 2), (8, 8, 64 × 64) (Row 3), and (9, 9, 64 × 64) (Row 4). From left to right
are histories of convergence of eRB M

2 and eO RI
2 , CPU time of Algorithm 3 as a function of εtol, and number

of chosen multi-indices as a function of εtol

123

1232 Journal of Scientific Computing (2019) 81:1210–1239

listed in the Table 4. We observe that, to reach the same level of accuracy as the original
algorithm, the number of snapshots N does increase as expected since the original algorithm
is getting more accurate. However, this increase in N is quite gradual. As a consequence,
our algorithm is actually getting slightly more efficient overall in comparison to the original
algorithm which becomes more costly faster as M increases. We visualize these trends in
Fig. 3.

Example 5.3 (Linear 2D parabolic PDE) We consider two-dimensional linear transport type
SPDE. Consider the following distribution-free equation, equipped with periodic boundary
condition.

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-6

10-4

10-2

100

CN RBM
CN ORI

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101

0.0E+00

3.0E+03

6.0E+03 CN RBM
CN ORI

εtol

N

10-310-210-11001010

40

80

εtol

e 2R
B

M
,e

2O
R

I

10-310-210-1100101

10-6

10-4

10-2

100

CN RBM
CN ORI

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101
0.0E+00

1.0E+04

2.0E+04

3.0E+04

CN RBM
CN ORI

εtol

N

10-310-210-11001010

40

80

120

εtol

e 2ex
ac

t

10-310-210-1100101

10-4

10-3

10-2

10-1

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101

1.0E+04

2.0E+04

3.0E+04

εtol

N

10-310-210-11001010

40

80

εtol

e 2ex
ac

t

10-310-210-1100101

10-4

10-3

10-2

10-1

εtol

C
PU

 T
im

e(
s)

10-310-210-1100101

2.0E+04

4.0E+04

εtol

N

10-310-210-11001010

40

80

120

Fig. 5 COFRB for 2D SPDE problem based on Crank Nicolson method with (M, K ,Nc) = (6, 6, 32 × 32)
(Row 1), (7, 7, 32× 32) (Row 2), (6, 6, 64× 64) (Row 3), and (7, 7, 64× 64) (Row 4). From left to right are
histories of convergence of eRB M

2 and eO RI
2 , CPU time of Algorithm 3 as a function of εtol, and number of

chosen multi-indices as a function of εtol

123

Journal of Scientific Computing (2019) 81:1210–1239 1233

∂t u(t, x, y) =
(
1

2
∂2x + cos(x)∂y

)

u + ∂x u � Ṅ(t), (t, x, y) ∈ [0, T] × [0, 2π]2 (5.5)

u(0, x, y) = sin(2x) sin(y), (x, y) ∈ [0, 2π]2. (5.6)

Fourier collocation method is used for spatial discretization withNx = 32, 64 collocation
points in each dimension. Equidistant collocation points are denoted by x j = y j = 2π(j−1)

Nx
.

The propagator system is then evolved to T = 0.2. We test Algorithm 3 for both for-
ward Euler and Crank Nicolson methods. For forward Euler, we set time steps n = 5000,
(M, K) = (9, 9), (10, 10) for Nx = 32 and (M, K) = (8, 8), (9, 9) for Nx = 64. For
Crank–Nicolson, n is set to be 400, (M, K) to be (6, 6), (7, 7) forNx = 32 andNx = 64.We
also computemean square truncation error, eR B M

2 = E[‖uN
M,K (0.2, ·, ·)−uN

M,K (0.2, ·, ·)‖2
l2

],
eO RI
2 = E[‖uN

M,K (0.2, ·, ·) − u(0.2, ·, ·)‖2
l2

] where the discrete L2 norm is ‖v‖2
l2

:=
4π2

N2
x

∑Nx
i=1

∑Nx
j=1(v(xi , y j))

2. We plot the histories of convergence, computation time, and

the number of chosen multi-indices as functions of εtol in Figs. 4 (forward Euler) and 5
(Crank Nicolson). And we also plot the variance of exact solution and the RBM solutions in
Figs. 6 and 7. It is clear the COFRB method captures the variances well.

Table 5, where we list the computational time, shows that the COFRB_PDE algorithm
achieves savings of two orders of magnitude when the RBM solution reaches the same
accuracy level as truth approximation. We note that Algorithm 2 becomes infeasible for the
two-dimensional problem due to the memory constraint. For Crank–Nicolson method with

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

Fig. 6 Variance of 2D SPDE problem withNc = 32×32: from left to right are exact solution, RBM solutions
with Algorithm 3 based on Forward Euler method with (M, K) = (9, 9) and Crank Nicolson method with
(M, K) = (6, 6)

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

Fig. 7 Variance of 2D SPDE problem withNc = 64×64: from left to right are exact solution, RBM solutions
with Algorithm 3 based on Forward Euler method with (M, K) = (8, 8) and Crank Nicolson method with
(M, K) = (6, 6)

123

1234 Journal of Scientific Computing (2019) 81:1210–1239

Ta
bl
e
5

2D
SP

D
E
pr
ob

le
m
:e
rr
or

an
d
co
m
pu

tin
g
co
st
s
of

A
lg
or
ith

m
C
O
FR

B
_P

D
E

M
et
ho

d
N x

×
N x

(M
,

K
)

ε
to
l

N
N

eR
B

M
2

eO
R

I
2

C
PU

T
im

e
C
O
FR

B
_P

D
E

Fu
ll

FE
32

×
32

(9
,
9)

5.
00

E
−0

2
48

48
62

0
2.
01

E
−0

4
3.
51

E
−0

4
1.
37

E
−0

2
1

(1
0,

10
)

3.
00

E
−0

2
52

18
47

56
2.
04

E
−0

4
3.
49

E
−0

4
4.
60

E
−0

3
1

64
×

64
(8

,
8)

1.
00

E
−0

1
42

12
87

0
1.
91

E
−0

4
3.
50

E
−0

4
1.
15

E
−0

1
1

(9
,
9)

1.
00

E
−0

1
48

48
62

0
2.
01

E
−0

4
3.
50

E
−0

4
2.
92

E
−0

2
1

C
N

32
×

32
(6

,
6)

1.
00

E
−0

1
38

92
4

4.
62

E
−0

5
3.
89

E
−0

5
1.
49

E
−0

2
1

(7
,
7)

2.
00

E
−0

2
67

34
32

3.
35

E
−0

6
4.
29

E
−0

6
1.
03

E
−0

2
1

64
×

64
(6

,
6)

1.
00

E
−0

1
48

92
4

7.
24

E
−0

5
73

01
.4
5

N
A
N

(7
,
7)

1.
00

E
−0

1
54

34
32

3.
69

E
−0

5
12

39
9.
77

N
A
N

123

Journal of Scientific Computing (2019) 81:1210–1239 1235

Nc = 64 × 64, the full problem is out of reach. Therefore, we compute the error between
the RBM solutions and the exact solutions, eexact2 , and show them in the Table 5.

eexact2 = E

[
‖uN

M,K (0.2, ·, ·) − u(0.2, ·, ·)‖2l2
]
. (5.7)

The fact that the reduced solver COFRB_PDE reaches five digits of accuracy when the
full solver or the COFRB_ODE is out of reach underscores the power of the COFRB_PDE
method.

6 Concluding Remarks

In this paper, we develop new reduced basis methods for SODEs and SPDEs, called
COFRB_ODE and COFRB_PDE respectively. The main features include a new space-time-
like treatment of time in the numerical schemes for ODEs and PDEs, an accurate yet efficient
compression technique for the spatial component of the space-time RBM bases, a non-
conventional “parameterization” of a non-parametric problem, and finally a RBM that is free
of any dedicated offline procedure yet still efficient. The numerical experiments corroborate
the effectiveness and robustness of our algorithms. Future work includes extension of the
current approaches to nonlinear and purely transport problems, and convergence analysis of
the error with respect to the number of chosen multi-indices.

Appendix A: Implementation of Algorithm 2

In this appendix, we present some details for efficient implementation of Algorithm 2 whose
steps 5, 6, and 10 are key.

A.1 Step 5

For the forward Euler time discretization, we rewrite the right hand side of (3.8) in the matrix
form

�fα =

⎛

⎜
⎜
⎜
⎝

u0
α +
tu0

α +
t
∑

εk≤α m0
ku0

α−εk

0
...

0

⎞

⎟
⎟
⎟
⎠

+
t
∑

εk≤α

⎛

⎜
⎜
⎜
⎝

0
m1

k
. . .

mn−1
k

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0
u1

α−εk
...

un−1
α−εk

⎞

⎟
⎟
⎟
⎠

= �f 0α +
t
∑

εk≤α

M0
k

�U 0�cα−εk (6.1)

where M0
k = diag{0, m1

k, . . . , mn−1
k } and

�U 0 =

⎛

⎜
⎜
⎜
⎝

0 0 . . . 0
u1

α1
u1

α2
. . . u1

αi
...

...
...

...

un−1
α1

un−1
α2

. . . un−1
αi

⎞

⎟
⎟
⎟
⎠

=
(�U 0

α1
�U 0
α2

. . . �U 0
αi

)
. (6.2)

123

1236 Journal of Scientific Computing (2019) 81:1210–1239

For the Crank–Nicolson method, we can also rewrite (3.10) similarly

�fα =

⎛

⎜
⎜
⎜
⎝

u0
α + 1

2
tu0
α + 1

2
t
∑

εk≤α m0
ku0

α−εk

0
...

0

⎞

⎟
⎟
⎟
⎠

+ 1

2

t

∑

εk≤α

⎛

⎜
⎜
⎜
⎝

0
m1

k
. . .

mn−1
k

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0
u1

α−εk
...

un−1
α−εk

⎞

⎟
⎟
⎟
⎠

+ 1

2

t

∑

εk≤α

⎛

⎜
⎜
⎜
⎝

m1
k

m2
k

. . .

mn
k

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

u1
α−εk

u2
α−εk
...

un
α−εk

⎞

⎟
⎟
⎟
⎠

= �f 0α + 1

2

t

∑

εk≤α

(
M0

k
�U 0 + Mk �U

)
�cα−εk (6.3)

where Mk = diag{m1
k, m2

k, . . . , mn
k }.

Due to the hierarchical nature of the RB space, the RB stiffness matrix ARB = �U T AT A �U
can be formed by appending a row and a column each time a new reduced basis �Uαi+1 is
identified. That is, we exploit the following identity.

(�U T

(�Uαi+1)
T

)

AT A
(�U , �Uαi+1

)
=

(�U T AT A �U �U T AT A �Uαi+1

(�Uαi+1)
T AT A �U (�Uαi+1)

T AT A �Uαi+1

)

. (6.4)

For the RB right hand side �fRB = �U T AT �fα , recognizing that

�fRB = �U T AT �fα =
{ �U T AT �f 0α +
t

∑
εk≤α

�U T AT M0
k

�U 0�cα−εk for FE
�U T AT �f 0α +
t

2

∑
εk≤α

�U T AT (M0
k

�U 0 + Mk �U)�cα−εk for CN

(6.5)

we can also exploit the hierarchical nature to gradually build up �U T AT , �U T AT M0
k

�U 0 and
�U T AT Mk �U .

A.2 Step 6

Efficient and accurate evaluation of the error estimator is critical for the correct identification
of the key multi-indices and thus the convergence of the COFRB algorithms. The classical
approach of computing the square norm of A �U �cα − �fα and then expanding it to enable an
offline-online decomposition leads to numerical instability [11]. In our setting, it will result
in this norm being negative. To detail the numerically stable method, we follow [11]. Noting
that we can assume �f 0α = 0 since u0

α−εk
= 0 when |α| ≥ 2 due to the initial condition being

deterministic and all α with |α| = 1 are usually chosen meaning the residual will be zero,
we can rewrite the residual A �U �cα − �fα as

A �U �cα − �fα = BC̃α (6.6)

where

B =
(

A �Uα1 , M0
1

�U 0
α1

, M0
2

�U 0
α1

, . . . , M0
K

�U 0
α1

, A �Uα2 , M0
1

�U 0
α2

, . . . , M0
K

�U 0
α2

, . . . , A �Uαi ,

M0
1

�U 0
αi

, . . . , M0
K

�U 0
αi

)
(6.7)

123

Journal of Scientific Computing (2019) 81:1210–1239 1237

C̃α = (
c1(α),−
tδα−ε1c1(α − ε1),−
tδα−ε2c1(α − ε2), . . . ,−
tδα−εK c1(α − εK),

c2(α),−
tδα−ε1c2(α − ε1),−
tδα−ε2c2(α − ε2), . . . ,−
tδα−εK c2(α − εK), . . . ,

ci (α),−
tδα−ε1ci (α − ε1),−
tδα−ε2ci (α − ε2) . . . ,−
tδα−εK ci (α − εK)
)T

(6.8)

and δα−εk is defined as follows

δα−εk =
{
1, if εk ≤ α is true

0, otherwise.
(6.9)

We adopt the rank-revealing QR factorization through modified Gram–Schmidt for matrix
B.

B = QR, Q ∈ R
n×rank(B), R ∈ R

rank(B)×M(K+1). (6.10)

where rank(B) ≤ M(K + 1) is the rank of matrix B. Then
‖A �U �cα − �fα‖2 = C̃T

α RTRC̃α. (6.11)

The cost of computing this term is independent of n if we pre-compute matrixR. Notice that
the matricesQ andRmust also be gradually expanded similar to the way RB stiffness matrix
is handled recognizing that QR factorization can be expanded in a hierarchical fashion as the
data matrix is expanded.

A.3 Step 10

When a new multi-index αi+1 is deemed a candidate for addition to the RB space i.e.

i (αi+1) > εtol, we take v0 = �Uαi+1 . Then the modified Gram–Schmidt follows

ṽ j = v j−1− < v j−1, �Uαi > �Uαi , (6.12)

v j = ṽ j

‖ṽ j‖ , j = 1, 2, . . . , i (6.13)

where < ·, · > denotes the inner product. If ‖ṽ j‖ = 0 for some j ≤ i , we discard this
candidate and set the (RB) coefficients for this multi-index as

�cαi+1 =
(
< v0, �Uα1 >,< v1, �Uα2 > ‖ṽ1‖, . . . , < v j−1, �Uα j > �

j−1
l=1 ‖ṽl‖, 0, . . . , 0

)
.

Otherwise, we update �Uαi+1 = vi and augment the basis matrix, and set the (RB) coefficients

�cαi+1 =
(
< v0, �Uα1 >,< v1, �Uα2 > ‖ṽ1‖, . . . , < vi−1, �Uαi > �i−1

j=1‖ṽ j‖,�i
j=1‖ṽ j‖

)
.

Appendix B: Implementation of Algorithm 3

In this appendix, we present some details for the efficient implementation of Algorithm 3.
The RB stiffness matrix and vector ARB and �fRB = �W T �V T AT �fα are expanded in the same
fashion as in Appendix A. For calculating
i (α), slight changes are necessary. Under the
same assumption �f 0α = 0, we have

123

1238 Journal of Scientific Computing (2019) 81:1210–1239

‖A �V �W �cα − �fα‖2 = ‖BC̃α‖2 (6.14)

= C̃T
α BTBC̃α, (6.15)

where

B =
(

A �V m
α1

�Wα1 , M0
1

�V m
α1

�W 0
α1

, M0
2

�V m
α1

�W 0
α1

, . . . , M0
K

�V m
α1

�W 0
α1

, A �V m
α2

�Wα2 , M0
1

�V m
α2

�W 0
α2

, . . . ,

M0
K

�V m
α2

�W 0
α2

, . . . , A �V m
αi

�Wαi , M0
1

�V m
αi

�W 0
αi

, . . . , M0
K

�V m
αi

�W 0
αi

)
. (6.16)

Wefirst use hierarchical expansion to form thematrixBTBwhich is of size i(K +1)-by-i(K +
1). Since it is symmetrical and positive definite, there exists an orthogonal decomposition.
Hence,

C̃T
α BTBC̃α = C̃T

α PT �PC̃α = ωT
α �ωα (6.17)

where P is an i(K +1)-by-i(K +1) orthogonalmatrix,� is a diagonalmatrixwhose diagonal
elements are square of singular values of matrix B denoted by s j and ωα = PC̃α . Thus the
residue

‖A �U �cα − �fα‖2 =
i(K+1)∑

j=1

s j (ωα)2j . (6.18)

In this way, we only need to store the i(K + 1)-by-i(K + 1) matrices BTB, P and i(K + 1)
diagonal elements of �.

References

1. Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to
efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris 339, 667–672
(2004)

2. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer Science
& Business Media, New York (2003)

3. Berkooz, P.H.G., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows.
Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)

4. Bernard, Haasdonk: Convergence rates of the pod-greedy method. ESAIM: Math. Model. Numer. Anal.
47(3), 859–873 (2013)

5. Binev, P., Cohen, A., Dahmen,W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy
algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

6. Boyd, J. P.: Chebyshev and Fourier spectral methods, Courier Corporation, (2001)
7. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-

Hermite functionals. Ann. Math. 48(2), 385–392 (1947)
8. Chen, Y., Gottlieb, S.: Reduced collocationmethods: reduced basis methods in the collocation framework.

J. Sci. Comput. 55(3), 718–737 (2013)
9. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds

for the harmonic maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)
10. Chen, T., Rozovskii, B., Shu, C.-W.: Numerical solutions of stochastic pdes driven by arbitrary type of

noise. Stoch. Partial Diff. Equ. Anal. Comput. 7(1), 1–39 (2019)
11. Chen, Y., Jiang, J., Narayan, A.: A robust error estimator and a residual-free error indicator for reduced

basis methods. Comput. Math. Appl. 77, 1963–1979 (2019)
12. Di Nunno, G., Øksendal, B.K., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to

Finance, vol. 2. Springer, New York (2009)
13. Elman, H., Liao, Q.: Reduced basis collocation methods for partial differential equations with random

coefficients. SIAM/ASA J. Uncertain. Quantif. 1(1), 192–217 (2013)
14. Glas, S., Mayerhofer, A., Urban, K.: Two Ways to Treat Time in Reduced Basis Methods, pp. 1–16.

Springer International Publishing, Cham (2017)

123

Journal of Scientific Computing (2019) 81:1210–1239 1239

15. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized
parabolic partial differential equations. ESAIM: Math. Modell. Numer. Anal. 39(1), 157–181 (2005)

16. Haasdonk, B.: Chapter 2: Reduced Basis Methods for Parametrized PDEsNA Tutorial Introduction for
Stationary and Instationary Problems, pp. 65–136

17. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized
linear evolution equations. ESAIM: Math. Model. Numer. Anal. 42(2), 277–302 (2008)

18. Hesthaven, J., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Problems.
Springer Briefs in Mathematics. Springer (2015)

19. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Springer, New
York (1996)

20. Hou, T.Y., Luo, W., Rozovskii, B., Zhou, H.-M.: Wiener chaos expansions and numerical solutions of
randomly forced equations of fluid mechanics. J. Comput. Phys. 216(2), 687–706 (2006)

21. Jiang, J., Chen, Y., Narayan, A.: Offline-Enhanced reduced basis method through adaptive construction
of the surrogate training set. J. Sci. Comput. 73(2), 853–875 (2017)

22. Lototsky, S., Rozovskii, B.: Stochastic differential equations: awiener chaos approach. In FromStochastic
Calculus to Mathematical Finance, pp. 433–506. Springer, Berlin (2006)

23. Lototsky, S., Mikulevicius, R., Rozovskii, B.L.: Nonlinear filtering revisited: a spectral approach. SIAM
J. Control Optim. 35(2), 435–461 (1997)

24. Mikulevicius, R., Rozovskii, B.: On unbiased stochastic Navier–Stokes equations. Probab. Theory Relat.
Fields 154(3–4), 787–834 (2012)

25. Mikulevicius, R., Rozovskii, B.: On distribution free Skorokhod–Malliavin calculus. Stoch. Partial Diff.
Equ. Anal. Comput. 4(2), 319–360 (2016)

26. Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution
of parametrized partial differential equations: reduced-basis output boundmethods. J. Fluids Eng. 124(1),
70–80 (2002)

27. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. UNI-
TEXT, vol. 92. Springer International Publishing, Cham (2016)

28. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for
affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3),
1 (2007)

29. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for
affinely parametrized elliptic coercive partial differential equations: application to transport and continuum
mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

30. Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic
problems. Math. Comput. 83(288), 1599–1615 (2014)

31. Wick, G.-C.: The evaluation of the collision matrix. Phys. Rev. 80(2), 268 (1950)
32. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J.

40(11), 2323–2330 (2002)
33. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton

University Press, Princeton (2010)
34. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations.

SIAM J. Sci. Comput. 24(2), 619–644 (2002)
35. Yano, M., Patera, A.T., Urban, K.: A space-time hp-interpolation-based certified reduced basis method

for burgers’ equation. Math. Models Methods Appl. Sci. 24(09), 1903–1935 (2014)
36. Zhang, Z., Rozovskii, B., Tretyakov, M.V., Karniadakis, G.E.: A multistage wiener chaos expansion

method for stochastic advection–diffusion–reaction equations. SIAM J. Sci. Comput. 34(2), A914–A936
(2012)

37. Zhang, Z., Tretyakov, M.V., Rozovskii, B., Karniadakis, G.E.: Wiener chaos versus stochastic colloca-
tion methods for linear advection–diffusion–reaction equations with multiplicative white noise. SIAM J.
Numer. Anal. 53(1), 153–183 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise
	Abstract
	1 Introduction
	2 Background
	2.1 Distribution-Free Stochastic Analysis
	2.2 Reduced Basis Methods: A Brief Overview

	3 COFRB Algorithms
	3.1 SODE Problem
	3.2 SPDE Problem
	3.2.1 Method with No Spatial Compression Embedded
	3.2.2 Method with Spatial Compression Embedded

	4 Complexity Analysis of the COFRB Algorithms
	4.1 Computational Complexity for COFRB_ODE
	4.2 Computational Complexity for COFRB_PDE

	5 Numerical Results
	6 Concluding Remarks
	Appendix A: Implementation of Algorithm 2
	A.1 Step 5
	A.2 Step 6
	A.3 Step 10

	Appendix B: Implementation of Algorithm 3
	References

