
Journal of Scientific Computing (2019) 80:878–902
https://doi.org/10.1007/s10915-019-00960-z

Performance Comparison of HPX Versus Traditional
Parallelization Strategies for the Discontinuous Galerkin
Method

Maximilian Bremer1 · Kazbek Kazhyken1 · Hartmut Kaiser2 · Craig Michoski1 ·
Clint Dawson1

Received: 2 May 2018 / Revised: 23 February 2019 / Accepted: 16 April 2019 / Published online: 2 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
As high performance computing moves towards the exascale computing regime, applications
are required to expose increasingly fine grain parallelism to efficiently use next generation
supercomputers. Intended as a solution to the programming challenges associated with these
architectures, High Performance ParalleX (HPX) is a task-based C++ runtime, which empha-
sizes the use of lightweight threads and algorithm-dependent synchronization to maximize
parallelism exposed by the application to the machine. The aim of this work is to explore
the performance benefits of an HPX parallelization versus a MPI parallelization for the dis-
continuous Galerkin finite element method for the two-dimensional shallow water equations.
We present strong and weak scaling results comparing the performance of HPX versus a
MPI parallelization strategy on Knights Landing architectures. Our results indicate that for
average task sizes of 3.6ms, HPX’s runtime overhead is offset by more efficient execution
of the application. Furthermore, we demonstrate that running with sufficiently large task
granularity, HPX is able to outperform the MPI parallelization by a factor of approximately
1.2 for up to 128 nodes.

Keywords Parallel computing · Discontinuous Galerkin · Shallow water equations ·
Manycore computing · Task-based parallelism · Knights Landing

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10915-019-
00960-z) contains supplementary material, which is available to authorized users.

B Maximilian Bremer
max@oden.utexas.edu

1 Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin,
Austin, TX, USA

2 Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-00960-z&domain=pdf
http://orcid.org/0000-0002-5940-3432
https://doi.org/10.1007/s10915-019-00960-z
https://doi.org/10.1007/s10915-019-00960-z

Journal of Scientific Computing (2019) 80:878–902 879

1 Introduction

The advent of exascale computing presents a disruptive shift in computer architectures. With
the end of Moore’s law, applications can no longer rely on improving clock frequencies to
further computational capabilities. The continued gains in computational performance are
rather obtained through increasing core counts, which have been growing at exponential rates
over the past decade and are forecasted to continue this trend in the near futurewith an exascale
simulation expected to manage billions of concurrent threads [38]. On the “Stampede” series
of NSF flagship supercomputing clusters at the Texas Advanced Computing Center, this has
represented an over fourfold increase in the number of cores per node, going from 16 cores
per node on Stampede1 to 68 cores per node on Stampede2.

This growth of concurrency makes application performance increasingly sensitive to
synchronization mechanisms common in current parallelization strategies such as bulk-
synchronous message passing or fork-join parallelism. Task-based parallelism has been
noted as an attractive alternative programming model for handling power-constrained design
choices including complexmemoryhierarchies, node heterogeneity, and asynchrony [1]. Fun-
damentally, task-based parallelism expresses an algorithm as a directed acyclic graph where
the vertices are the application’s tasks and the edges represent data-dependencies between
tasks. By allowing tasks to be scheduled as soon as their dependencies have been satisfied,
task-based parallelism naturally gives rise to behaviors such as work stealing and message
latency hiding. There has been extensive work on developing task-based programming mod-
els, creating a diverse ecosystem of software packages, e.g. Chapel [4,13], Charm++ [36],
HPX [29,35], Legion [6], StarPU [2], and OpenMP starting with Version 3.0 [49].

The aim of this paper is to examine the performance of HPX versus a MPI parallelization.
HPX is a standards-oriented C++ runtime system, which emphasizes the use of lightweight
threads and algorithm dependent synchronization to utilize the concurrency exposed by these
new architectures. HPX has been demonstrated to be highly scalable, scaling out to hundreds
of thousands of cores for computational astrophysics simulations [28].

The motivating application for this work is the numerical simulation of large-scale coastal
ocean physics, in particular, the modeling of hurricane storm surges. One of the leading
simulation codes in this area is the Advanced Circulation (ADCIRC) model, developed by a
large collaborative team including some of the co-authors [11,17–19,32,33,43,52]. ADCIRC
is a Galerkin finite element based model that uses continuous, piecewise linear basis func-
tions defined on unstructured triangular meshes. The model has been parallelized using MPI
and has been shown to scale well to a few thousand processors for large-scale problems
[51]. While ADCIRC is now an operational model within the National Oceanographic and
Atmospheric Administration’s Hurricane Surge On-Demand Forecast System (HSOFS), its
performance on future computational architectures is dependent on potentially restructuring
the algorithms and software used within the model. Furthermore, ADCIRC provides a low-
order approximation and does not have special stabilization for advection-dominated flows,
thus requiring a substantial amount of mesh resolution. Extending it to higher-order or sub-
stantially modifying the algorithms within the current structure of the code is a challenging
task.

With this in mind, our group has also been investigating the use of discontinuous Galerkin
(DG) methods for the shallow water equations [12,39,41,42,44–47,53,54], focusing on the
Runge–Kutta DG method as described in [14]. We have shown that this model can also
be applied to hurricane storm surge [16]. DG methods have potential advantages over the
standard continuous Galerkin methods used in ADCIRC, including local mass conservation,

123

880 Journal of Scientific Computing (2019) 80:878–902

ability to dynamically adapt the solution in both spatial resolution and polynomial order
(hp-adaptivity), and potential for more efficient distributed memory parallelism [40]. While
DG methods for the shallow water equations have not yet achieved widespread operational
use, recent results have shown that for solving a physically realistic coastal application at
comparable accuracies, the DG model outperformed ADCIRC in terms of efficiency by a
speed-up of 2.3 and when omitting eddy viscosity, a speed-up of 3.9 [9]. In this paper, we
will focus on the DG method applied to the shallow water equations and examine its parallel
performance using bothHPXandMPI. Based on the knowledge gained,we plan to extend this
work to include additional physics necessary for modeling hurricane storm surge; however,
in this paper we will focus on a simple test problem that captures the basic algorithm needed
for any DG approximation of a shallow water system. One can expect that our results would
extend to the application of Runge–Kutta DG methods for general conservation laws.

2 High Performance ParalleX

As computer architectures adapt to meet the design requirements of an exascale system,
one of the most disruptive features of the proposed chips is the deluge of concurrency.
Applications need to be able to expose increasingly fine grain parallelism to fully utilize
these modern architectures. HPX is a C++ runtime system that is designed to take advantage
of this concurrency using a task-based approach.

To motivate the design of HPX, we begin with the issues that HPX attempts to address.
The Ste||ar group1 has coined the term S.L.O.W. to describe behaviors of multithreaded
applications that hinder performance. The four components of S.L.O.W. are:

1. Starvation: cores idling due to insufficient parallelism exposed by the application,
2. Latency: delays induced by waiting on dependencies, e.g. waiting on messages which

are sent through a cluster’s interconnect,
3. Overhead: additional work performed for a multithreaded application which is unneces-

sary in a sequential implementation,
4. Waiting for contention resolution: delays associated with the accessing of shared

resources between threads.

In addition, HPX provides an elegant programming model based on and extending the C++
concurrency technical specification. Rather than forcing application developers to write effi-
cient multithreaded code, which can lead to difficult to debug race conditions, HPX interfaces
with the application at a task-dependency graph based level, taking care of issues such as
scheduling. This guards application developers from common multithread-related pitfalls,
and in doing so, increases developer productivity.

The HPX runtime system can be categorized into five major components described in the
following subsections. A diagram of these components is displayed in Fig. 1.

2.1 Local Control Objects

Asmentioned previously, the application interfaces with HPX at the level of the application’s
task dependency graph. The basic abstraction used in HPX is futurization. The completion
of any given function returning a type T can be represented by a future, e.g.

hpx::future <T> my_future = some_expensive_function ();

1 http://stellar-group.org/.

123

http://stellar-group.org/

Journal of Scientific Computing (2019) 80:878–902 881

Fig. 1 Software stack diagram of the five major HPX components

When this function is invoked, an HPX-thread is created, which the HPX runtime will sched-
ule and execute. Once the function has been executed, the return value can be retrieved. Upon
which, the future is said to have returned.

While futures are used to represent the vertices of the application’s task-dependency graph,
local control objects (LCOs) define the directed edges. One commonly used LCO is the then
construct. As a member function of hpx::future, hpx::future::then accepts a
function object as its argument, which will be executed upon the returning of the given
future. The return type is itself a future, corresponding to the completion of the task being
passed in hpx::future::then’s argument. The then construct allows the result of one
function to be used in the evaluation of the continuation without having to explicitly wait for
the first future to have returned.

Additional LCOs include hpx::when_all and hpx::when_any. These LCOs
accept a collection of futures as arguments, and return a future, which will be returned
either when one or all of the argument futures have returned, respectively. An example use
case for hpx::when_all would be for a stencil-like kernel. We would like to evalu-
ate the next timestep only after both the internal work and messages have been processed.
hpx::when_all provides the means to represent this dependency relationship. For a full
list of LCOs, we refer the reader to the HPX documentation [35].

Lastly, the task dependency graph can be forked using shared futures or nested parallelism.
Since futures are simply C++ objects, the HPX runtime is able to handle nested parallelism
simply by instantiating several futures at once. This approach suffices in the case thatwe begin
with one task, and would like to parallelize the evaluation of several sub-tasks nested within
the given task. However, in general, we rely on hpx::shared_future. One important
aspect of hpx::future is that once the future has returned, the future’s data descopes
and becomes inaccessible. In order to support multiple dependents, HPX has introduced
the hpx::shared_future. For a given shared future, HPX manages the lifetime of the
contents of the future in amanner akin tostd::shared_ptr, descoping the data only after
all the dependents have retrieved the shared future’s content. Thus, several then continuations
may be attached to the same shared future, or the shared future may be passed to several
LCOs. A pictorial overview of these LCOs is shown in Fig. 2.

123

882 Journal of Scientific Computing (2019) 80:878–902

x

y

(a) hpx::future::then

x1

y

xn. . .

(b) hpx::when all

x

y1 yn. . .

(c) hpx::shared future

Fig. 2 Visual representation of how LCOs can be used to generate a task dependency graph in HPX. a Shows
the input task x and the follow-up task, y. Using the then continuation once x has returned, y will be scheduled.
b Shows {xi } input tasks and one output task, y. Using the hpx::when_all construct, when all futures
associated with {xi } have returned, y may be executed. c Shows the input task x with dependents {yi }. Once
the shared future x has returned, any yi may be evaluated. The HPX runtime manages the lifetime of the
shared future associated with the output of x , ensuring that the return value of x will remain available for each
of the yi

2.2 Threading Subsystem

Once the task dependency graph has been created, the HPX runtime must execute the tasks,
return the futures, and satisfy the dependencies. In doing so, HPX is particularly careful to
avoid the pitfalls outlined by S.L.O.W.. Given the large overheads associated with spawning
and joining operating system threads (OS threads), HPX provides lightweight HPX-threads
that execute the tasks associated with the futures created by the application. The scheduler
is implemented using an M : N hybrid scheduler [30]. Furthermore, the scheduler has
been optimized for rapid context switching of HPX threads. This context switching plays a
significant role inmitigating the effects of thread contention and network latencies. If a thread
is unable to make progress, the scheduler is able to efficiently switch out the HPX thread and
execute a different HPX thread. Ideally, after that thread has finished, the impediment of the
original thread’s progress will have been resolved, and the application can resume without
the core ever idling. This example illustrates one of HPX’s design principles: rather than
relying on improving interconnect technologies to lower latencies, latencies are hidden by
doing useful work until the required dependencies have arrived.

2.3 Active Global Address Space

While the threading subsystemoperateswithin a single private address space,HPXextends its
programming model to distributed runs via an active global address space (AGAS). Global
address spaces attempt to emulate the ease of programming on a single node, while still
maintaining tight control over data locality necessary for writing a performant distributed

123

Journal of Scientific Computing (2019) 80:878–902 883

code. Twowell-known global address spacemodels are UPC [22] and Co-Array Fortran [48].
While global address space models like UPC’s partitioned global address space (PGAS) are
more data-centric, e.g. by exposing pointers to memory addresses on different nodes, HPX
approaches global address spaces in a more object-oriented manner.

AGAS consists of a collection of private address spaces, called localities. Each locality
will run its own instance of the threading subsystem, scheduling threadswith locally available
resources. In practice, localities are typically chosen to be nodes or non-uniform memory
access (NUMA)domains. The basic addressable unit inAGAS is the component. Components
encapsulate the objects the user would like to remotely access. To interact with a component,
the user must go through a smart-pointer-like wrapper class called a client. The client can not
only manage the component’s lifetime via the “Resource acquisition is initialization” (RAII)
idiom, but also exposes remotely invokable member functions. Clients can either reside
on the same or different locality as their associated component. When a remote locality
executes a client member function, HPX will send an active message to the locality where
the component is located, execute the function there, and return the result to the client. By
interfacingwith components through clients, AGAS provides equivalent local and distributed
semantics, simplifying the programming of distributed applications.

The key difference between AGAS and other global address space models is its native
support for component migration. HPX’s AGAS layer allows the developer to relocate com-
ponents to different localities during runtime. With all component functions being invoked
through the client interface, HPX is able to ensure that the component functions invoked
through the client will be executed on the correct localities, guaranteeing the application’s
correctness. This functionality can be used to accelerate applications via dynamic load bal-
ancing. However, since component migration potentially requires sending large quantities of
data through the interconnect, and the load profile is application dependent, HPX requires
the application to manage component relocation.

Furthermore, the AGAS does not absolve the programmer of knowledge of where data
is located. Since communicating across localities is a relatively expensive operation, the
developer is still obliged to minimize this traffic. However, the AGAS guarantees that the
task graph will be correctly executed in light of a dynamic distribution of the components
across multiple localities.

2.4 Parcel Transport Layer

The parcel transport layer is the abstraction through which HPX sends messages. For this
paper, we rely exclusively on the MPI parcelport, which sends messages using MPI_Isend
and MPI_Irecv [30]. However, for optimal interconnect performance, HPX would be
able to utilize vendor specific APIs. Note that the implementation of these vendor-specific
parcelports through the OpenFabrics Interfaces API [27] are the subject of ongoing work.

2.5 Performance Counter Framework

The last major component of HPX is the performance counter framework. The increase
in complexity of both computing architectures and applications has led to challenges in
efficiently profiling performance. HPX integrates the process of profiling into the runtime,
providing a lightweight mechanism for monitoring application behavior. These counters can
not only inspect HPX-related quantities, such as the number of active AGAS components
or the length of thread queues, but also provide hooks to hardware counters via PAPI [8]

123

884 Journal of Scientific Computing (2019) 80:878–902

to directly measure low-level performance features such as memory bandwidth usage and
cachemisses [26].With the performance counter framework integrated natively into the HPX
runtime system, counters can readily be evaluated by the application, enabling optimizations
such as autotuning.

3 Application: The Two-Dimensional ShallowWater Equations

The prediction of hurricane storm surge involves solving physics-based models that deter-
mine the effect of wind stresses pushing water onto land and the restorative effects of gravity
and bottom friction. These flows typically occur in regimes where the shallow water approxi-
mation is valid [21,46]. Taking the hydrostatic andBoussinesq approximations, the governing
equations can be written as

∂tζ + ∇ · q = 0,

∂t qx + ∇ · (uqx) + ∂x g(ζ
2/2 + ζb) = gζ∂xb + S1,

∂t qy + ∇ · (uqy) + ∂yg(ζ
2/2 + ζb) = gζ∂yb + S2,

where:

– ζ is the water surface height above the mean geoid,
– b is the bathymetry of the sea floor with the convention that downwards from the mean

geoid is positive,
– H = ζ + b is the water column height,
– u = [u , v]T is the depth-averaged velocity of the water,
– q = Hu = [

qx , qy
]T is the velocity integrated over the water column height.

Additionally, g is the acceleration due to gravity, and S1 and S2 are source terms that introduce
additional forcing associatedwith relevant physical phenomena, e.g. bottom friction, Coriolis
forces, wind stresses, etc.

3.1 The Discontinuous Galerkin Finite Element Method

The discontinuous Galerkin (DG) kernel originally proposed by Reed and Hill [50] has
achieved widespread popularity due to its stability and high-order convergence properties.
For an overview on the method, we refer the reader to [15,31] and references therein. For
brevity, we forgo rigorous derivation of the algorithm, but rather aim to provide the salient
features of the algorithm to facilitate discussion of the parallelization strategies.

We can rewrite the shallow water equations in conservation form

∂tU + ∇ · F(t, x,U) = S(t, x,U), (1)

where

U =
⎛

⎝
ζ

qx
qy

⎞

⎠ , F =
⎛

⎝
qx qy

u2H + g(ζ 2/2 + ζb) uvH
uvH v2H + g(ζ 2/2 + ζb)

⎞

⎠ .

Let Ω be the domain over which we would like to solve Eq. (1), and consider a mesh
discretization Ωh = ∪nel

e Ωh
e of the domain Ω , where nel denotes the number of elements in

the mesh.

123

Journal of Scientific Computing (2019) 80:878–902 885

We define the discretized solution space, Wh as the set of functions such that for each
state variable the restriction to any element Ωh

e is a polynomial of degree p. Note that we
enforce no continuity between element boundaries. Let 〈 f , g〉Γ = ∫

Γ
f g dx denote the L2

inner product over a set Γ . The discontinuous Galerkin formulation then approximates the
solution by projecting U onto Wh and enforcing Eq. (1) in the weak sense over Wh , i.e.

〈∂tU + ∇ · F(t, x,U) − S(t, x,U),w〉Ωh = 0

for all w ∈ Wh , where U ∈ Wh denotes the projected solution. Due to the discontinuities
between elements in both trial and test spaces, particular attention must be given to the
flux integral, 〈∇ · F(t, x,U),w〉Ωh , which is not well-defined between elements even in a
distributional sense. For evaluation, we define this term as

〈∇ · F(t, x,U),w〉Ωh ≡
nel∑

e=1

(
〈̂F · n,w〉∂Ωe − 〈F(t, x,U),∇w〉Ωe

)
,

where the boundary integral’s integrand is replaced with a numerical flux ̂F · n(Uint ,Uext)

wint . To parse this term, letUint andwint denote the value ofU andw at the boundary taking
the limit from the interior ofΩh

e , and letU
ext denote the value ofU at the boundary by taking

the limit from the interior of the neighboring element. For elements along the boundary of
the mesh, the boundary conditions are enforced by setting Uext to the prescribed values. For
the numerical flux, ̂F · n, we use the local Lax–Friedrichs flux,

̂F · n(Uint ,Uext) = 1

2

(
F(Uint) + F(Uext) + |Λ|(Uext − Uint)

)
· n,

where n is the unit normal pointing from Ωh
e outward, and |Λ| denotes the magnitude of the

largest eigenvalue of ∇uF · n at Uint or Uext .
Since the indicator functions over each element are members of Wh , consider the set Be

for a given element Ωe,

Be =
{

p1Ωe : p ∈
3⊕

d=1

P p(Ωh)

}

⊂ Wh,

where P p(Γ) is the set of polynomials of degree p on Γ , and 1Γ is the indicator function
over Γ , i.e. 1Γ (x) is 1 if x ∈ Γ and 0 if x /∈ Γ . Since {Be}nele=1 spansWh , the discontinuous
Galerkin method can be alternatively formulated as

∂t 〈U,w〉Ωh
e

= 〈F,∇w〉Ωh
e

− 〈̂F · n,w〉∂Ωh
e

+ 〈S,w〉Ωh
e

(2)

for all w ∈ ⊕3
d=1 P p(Ωh

e) and for all e = 1, . . . , nel .
In order to convey more clearly the implementation of such a kernel in practice, consider

the element Ωh
e . For simplicity of notation for the remainder of the subsection we drop all

element-related subscripts, e. Over this element, we can represent our solution using a basis,
{ϕi }ndofi=1 . Then we can let our solution be represented as

U(t, x) =
ndof∑

i=1

Ũi (t)ϕi (x),

123

886 Journal of Scientific Computing (2019) 80:878–902

where Ũ are the basis-dependent coefficients describing U. Following the notation of Warb-
uton [23], it is possible to break down Eq. (2) into a set of kernels as

∂t Ũi =
ndof∑

j=1

M−1
i j

⎛

⎜
⎜
⎝〈F,∇ϕ j 〉Ωh

e︸ ︷︷ ︸
V j

+〈S, ϕ j 〉Ωh
e︸ ︷︷ ︸

S j

−〈̂F · n, ϕ j 〉∂Ωh
e︸ ︷︷ ︸

I j

⎞

⎟
⎟
⎠ , (3)

whereMi j = 〈ϕi , ϕ j 〉Ωh
e
denotes the localmassmatrix.Herewedefine the following kernels:

– V: The volume kernel,
– S: The source kernel,
– I: The interface kernel.

To discretize in time, we use the strong stability preserving Runge–Kutta methods [24].
Letting

Lh
(
Ũ

)
= M−1

(
V

(
Ũ

)
+ S

(
Ũ

)
− I

(
Ũ

))
,

we can define the timestepping method, for computing the i-th stage as

Ũ
(i) =

i−1∑

k=0

αikŨ
(k) + βikΔtLh

(
Ũ

(k)
)

,

where Ũ
(k)

denotes the basis coefficients at the k-th Runge–Kutta stage. We denote the oper-

ator, which maps
{
Ũ

(k)
, V

(
Ũ

(k)
)

, S
(
Ũ

(k)
)

, I
(
Ũ

(k)
)}i−1

k=0
to Ũ

(i)
as the update kernel,

U .

3.2 Parallelization Strategies

In order to parallelize the DG method, we observe that the evaluation of one Runge–Kutta
stage of an element solely depends on the information of the element and its edge-wise
neighbors for the previous Runge–Kutta stages. With the intent of parallelization, the DG
method can be thought of as a stencil code with an unstructured communication pattern.

We assume that our computing environment can be modeled via a Candidate type archi-
tecture. Beyond ensuring that each CPU has access to sufficient work, the candidate type
architecture approximation allows us to optimize communication patterns taking into account
the difference in intra- and inter-nodemessage latencies. Themesh partitioning is thus broken
into 2 phases. An overview of the mesh partitioning strategy is shown in Fig. 3.

In both partitioning phases, we aim to balance the compute load between partitions while
minimizing the communication. Since the computational complexity of all kernels isO(nel),
the number of elements can be used as a proxy for the computational load. Additionally, we
assume that the communication is minimizedwhen the number of edge cuts is minimized. All
partitioning is performed using the METIS_PartGraphKway function from the METIS

library [37].
The first partitioning phase decomposes the mesh into submeshes. For HPX, these sub-

meshes define the granularity of parallelism exposed to the runtime, and ultimately determine
the task dependency graph. ForMPI, these submeshes correspond to the data assigned to indi-
vidual MPI ranks. The graph partitioned in this phase uses the mesh’s elements as the graph’s
vertices and places edges between edge-wise connected elements.

123

Journal of Scientific Computing (2019) 80:878–902 887

Computational Domain Submesh Partition Locality Partition

Fig. 3 Overview of the mesh partitioning strategy. The first partitioning phase assigns elements to submeshes,
forming our submesh partition. These submeshes are then assigned to localities, balancing the compute load
across nodes

The second phase of the graph partitioning assigns submeshes to localities. Since the
communication between submeshes is predicated by their shared interface, we can construct
a graph from the submeshes of the previous partition. To balance the load, we weight the
vertices of this second graph according to the number of elements associatedwith the relevant
submesh, and weight the edges by the number of edge-cuts performed on the element-level
graph between two submeshes. For both parallelization strategies, this second partitioning
ensures that submeshes which communicate frequently with one another are more likely to
be assigned to the same locality.

Beyond balancing the computational load, we include twoDG specific optimizations from
[3]:

1. Reduction of message sizes, by only sending state variables evaluated at quadrature
points along shared interfaces. This reduces message sizes from O(p2) to O(p) per
shared interface, where p is the polynomial order of the DG discretization,

2. Hiding message latencies by first sending messages and then computing internal work
before waiting for the messages to arrive.

Each Runge–Kutta stage update is broken into two steps as shown in Algorithms 1 and 2.
We denote edges whose neighboring elements are assigned to the same submesh as internal
interfaces, and edges whose neighboring elements are located on different submeshes as
shared interfaces. Basedon the data dependencies, the interface kernel canbe evaluated for the
internal interfaces as soon as SUBMESH_UPDATE_B of the previous timestep has returned,
and thus these evaluations are used to hide send latencies. However, for the shared interfaces,
the interface kernel relies on neighboring data, and therefore can only be evaluated once
the messages from neighboring submeshes have arrived. These optimizations are applied to
both our HPX andMPI implementations. Nevertheless there remain implementation specific
details.

3.2.1 HPX Parallelization

For the HPX implementation, each locality maintains a vector of submeshes. The number of
elements per submesh determines the grain size of parallelism. In selecting the grain size,
one must balance two factors. If the grain size is too fine, task overheads will dominate the
execution time. On the other hand, if the grain size is too large, we risk exposing insufficient
parallelism and performance may suffer due to resource starvation. Due to discrete effects,
the grain size is modulated in practice through an oversubscription factor, which is defined
as the number of submeshes per core on a locality.

123

888 Journal of Scientific Computing (2019) 80:878–902

Algorithm 1 Compute the first part of the n-th Runge–Kutta Stage update on submesh j
function Submesh_Update_A(n, j)

require: Submesh_Update_B(n − 1, j) has returned
Fill all send buffers.
Post Receives.
Post Sends.
for all elements in Submesh j do

Evaluate S and V
end for
for all internal interfaces in Submesh j do

Evaluate I
end for
Wait for all sends and receives to complete. return

end function

Algorithm 2 Compute the second part of the n-th Runge–Kutta Stage update on submesh j
function Submesh_Update_B(n, j)

require: Submesh_Update_A(n, j) has returned.
for all shared interfaces in Submesh j do

Evaluate I
end for
for all elements in Submesh j do

Evaluate U
end forreturn

end function

For a given submesh, the evaluation ofAlgorithms 1 and 2 are futurized, and the futures are
chained together via hpx::future::then continuations. Furthermore, in Algorithm 1,
rather than explicitly waiting for all messages to have been processed, we return a future that
will return once all messages have been received and sent.

The use of futurization provides the key advantage of ceding control back to the runtime
without unnecessarily suspending the OS thread. While the HPX runtime will internally
monitor and process the messages associated with the given submesh, if available, the HPX
scheduler will schedule other submesh updates whose dependencies have been satisfied on
that OS thread. Thus, even though the locality is waiting for certain messages to arrive before
the given submesh update can be completed, the HPX runtime is nonetheless able to use that
core to execute tasks associated with other submeshes. Once all the message-related futures
have returned, the continuation of the submesh update will be scheduled, and ideally, the
application will have progressed without letting cores idle.

3.2.2 MPI Parallelization

The MPI implementation assigns one MPI rank to each core. These ranks communicate with
one another via persistent, non-blocking, point-to-point routines. The messages are waited
upon using an MPI_Waitall with the MPI requests of the local sends and receives as
arguments. In the case that the messages have not arrived at the time the MPI_Waitall is
called, the core will wait on these messages, halting local application progress.

One advantage of this approach is that—similar to HPX—each submesh waits solely on
themessages of its neighbors. In doing so, we avoid one of the pitfalls of fork-join parallelism.
To ensure application correctness, threads must be synchronized before leaving the fork-join
parallel region. With increasing core counts on future architectures, the performance of a

123

Journal of Scientific Computing (2019) 80:878–902 889

Table 1 Hardware specifications of the Knights Landing architecture on Stampede2

Core Intel Xeon Phi 7250 (“Knights Landing”)

Clock rate 1.4GHz

Cores per socket 68

Sockets per node 1

Interconnect Intel Omni-path with fat tree topology

Configuration Quad-cache

fork-join programming model is limited by Amdahl’s law. While using MPI to perform
shared memory message passing introduces some unnecessary overhead, the fundamental
programming model bypasses this limitation of a fork-join approach.

Lastly, although the send latency is partially hidden by completing internal work before
waiting on the messages to arrive, the latency hiding capability of the MPI implementation
is limited by the size of the submesh assigned to the MPI rank. With increasing concurrency
on future architectures, this MPI parallelization’s latency hiding technique will become less
efficient.

4 Results

4.1 Experimental Configuration

To assess the advantages of using an HPX over MPI parallelization, we perform strong
and weak scaling studies on the Intel Knights Landing (KNL) architecture—a many-core
architecturewith 68 cores per node.Adetailed description of theKNLarchitecture is provided
in Table 1. The software configuration and workflow used to generate the subsequent results
are detailed in Appendix A.

As the intent of this paper is not to present high-order methods for hurricane storm surge
modeling, but rather a performance comparison of parallelization strategies, we restrict
ourselves to solving the 1D inlet problem from [41]. Consider the rectangular domain
defined as the Cartesian product (x1, x2) × (y1, y2) with x1 = 0 km, x2 = 90 km, y1 =
0 km, y2 = 45 km. Additionally, the acceleration due to gravity is set to g = 9.81m/s2,
and the bathymetry is constant with depth H0 = 3m. For the boundary conditions, let the
superscripts ex /in correspond to the exterior and interior values at the boundary, respectively.
Across the boundary (x1, y1) − (x1, y2), we force a tidal boundary condition, i.e.

ζ ex = A cos (Ωt + η) and qex = qin,

where A = 0.3m, Ω = 1.405 · 10−4 rad/s, and η = 3π/2 rad. At the remaining boundaries,
we enforce a land boundary, i.e.

ζ ex = ζ in and qex · n = −qin · n and qex · τ = qin · τ ,

where n corresponds to the normal of the boundary, and τ is the tangent along the boundary.
Each mesh will be a triangulation of the domain (x1, x2) × (y1, y2). For each simulation,

we generate the mesh by partitioning the domain into an 2N × N Cartesian grid. Each
rectangle is then halved along opposite vertices to form a triangular mesh. All simulations
are run using a quadratic Dubiner basis [20]. To avoid the CFL condition-related challenges

123

890 Journal of Scientific Computing (2019) 80:878–902

associated with the various levels of mesh refinement, we select a RKSSP-(2,2) timestepping
scheme for the temporal discretization and fix Δt = 0.05 s with the end-time, tend = 150 s.

We exclude initialization from our time measurements, reporting only time spent evalu-
ating Runge–Kutta stages. For the time measurements, we use the high_resolution_
clock from the STL chrono library. The termination of the timings is enforced via a
global barrier. For the MPI parallelization, this is achieved by placing an MPI_Barrier
call after the computation and stopping the timing once MPI rank 0 exits the barrier. For the
HPX parallelization, we explicitly wait for all localities to have have finished their compu-
tations via an hpx::wait_all call, similarly achieving a global synchronization of the
application’s progress.

In the following sections, we perform strong and weak scaling studies. The execution time
for a given run is denoted as Ty x

n , where

– y is the type of experiment, with s and w used to indicate strong and weak scaling runs,
respectively,

– x is the parallelization strategy: either HPX or MPI,
– n is the number of nodes used for that run.

For the strong scaling study we consider a 1448 × 724 × 2 element mesh and observe
the speed-ups obtained by increasing the number of nodes. For a given number of nodes, the
mesh is partitioned into two submeshes per core in the case of HPX and one submesh per core
for the MPI parallelization. Thus, the communication overhead and task dependency graph
grow with the number of cores. In order to compare the performance of the two approaches
to one another, we evaluate the parallel efficiency, which we define as

Ex
n = T ∗

Cn Ts x
n

,

where Ts x
n is the strong scaling execution time using the parallelization strategy x—HPX

or MPI—with n nodes, C is the number of cores per node, and T ∗ corresponds to the serial
execution time. We remark that the serial implementation’s performance is strongly affected
by the random memory access pattern associated with the unstructured mesh. To mitigate
these effects, the serial execution time T ∗ is obtained by running the HPX parallelization
with one threadwhile still partitioning themesh into 136 submeshes. This overdecomposition
of the mesh effectively acts as a cache blocking mechanism. For reference, the naive serial
implementation ran for 122,000 s, and the single-threaded HPX version took 91,000 s. These
execution times are based on the average of 10 runs, with the standard deviation being below
0.5% for both cases.

The weak scaling study is done by assigning 1024 × 512 × 2 elements to each node,
and then observing the behavior as the number of nodes increases. When the node count
does not permit assigning precisely this element count to each node, the nearest number of
subdivisions of the domain is chosen to ensure that elements scale linearly with the number
of cores, e.g. for two nodes, a mesh with 1448 × 724 × 2 elements was used. For the weak
scaling, we use a metric of how many elements are updated by one Runge–Kutta stage per
unit time. This is can be thought of as an application specific means of measuring throughput.
We begin by analyzing the performance of the partitioning approach outlined in Sect. 3.2.
For the remainder of the paper, we refer to this strategy as the 2-phase partitioning strategy.
Thereafter, we present comparison results between HPX and MPI parallelizations.

123

Journal of Scientific Computing (2019) 80:878–902 891

4.2 Vectorization

One of the key aspects of achieving performance on modern CPU architectures is the ability
to effectively utilize SIMD registers. With the KNL’s AVX-512 instruction set architecture
extension, vectorization potentially allows for a speed-up of 8× for double precision arith-
metic. Achieving this speed-up however is hampered by how quickly data can be provided to
the processor, and how well the compiler vectorizes the code. Vectorization in the context of
DG methods for shallow water flows has been extensively studied in [10]. The method pre-
sented therein relies on transforming the code via loop inversion in a way that the compiler
is able to generate the optimized binaries. This approach however suffers from maintain-
ability issues that have prevented adoption in the main branch of the code base. For the
results presented here, we have utilized the Blaze linear algebra library [34]. This library
provides vector and matrix abstractions and combines them with expression templates for
efficient evaluation without generating temporary variables. Internally, Blaze either imple-
ments vectorized versions of these basic linear algebra operations, or offloads the calls to a
BLAS implementation, e.g. Intel’s Math Kernel Library (MKL). Although the vectorization
achieved by this approach is nearly identical to that in [10], it is the authors’ opinion that
code generated via this approach is more maintainable and readable.

Lastly, we remark that for the chosen test cases, the kernel remains memory bandwidth
bound. In particular, gathering elements’ Gauss point values at the boundaries and scattering
the flux values back to the elements during the interface kernel, I, generates random access
patterns. Reordering local element indices tominimize element-interface connectivity matrix
bandwidth would alleviate some of these issues. However, this remains an issue that we will
address in a later work.

4.3 Partitioner Performance

To begin, we benchmark the 2-phase partitioning strategy against a standard flat partitioning
strategy. The flat partitioning strategy consists of using METIS to partition the mesh into
submeshes, and then assigning submeshes to localities in a round robin manner.

The strong scaling results for the two partitioning approaches are shown in Fig. 4, and
the weak scaling results are shown in Fig. 5. Each configuration for the strong and weak
scaling studies has been run ten times. For the strong scaling studies, the execution times
varied considerably, and have thus been depicted via standard box-and-whisker plots with
the whiskers extending up to 1.5 times the inter-quartile range from the relevant quartile.

For the MPI parallelization, the strong scaling results are shown in Fig. 4a and the weak
scaling results are shown in Fig. 5a. These scaling results show the flat partitioning approach
outperforming the 2-phase partitioning approach by approximately a factor of two. This
discrepancy in performance is due the fact that METIS does not strictly satisfy partitioning
constraints. In the secondphase of the 2-phase partitioning, the number of submeshes assigned
to each locality is not strictly equal to the number of cores. Thus, there exist MPI ranks
which are assigned two submeshes, while other ranks are assigned none. Since there is no
mechanism for work stealing betweenMPI ranks, the 2-phase approach doubles the length of
the critical path of the task executions, causing the observed slow down. This slowdown for
the 2-phase partitioning strategy is most clearly observed at 128 nodes for the weak scaling
study where Tw MPI

1 / Tw MPI
128 is 0.50. This aspect of METIS has been extensively studied

in [5]. Nevertheless, it is worth noting that the flat partitioning approach proves to be highly

123

892 Journal of Scientific Computing (2019) 80:878–902

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0
P
ar

al
le

l
E

ffi
ci

en
y

0 25 50 75 0 25 50 75

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

al
le

l
E

ffi
ci

en
y

(a) MPI (b) HPX

Flat 2-phase

Fig. 4 Strong scaling comparison of flat and 2-phase partitioning approaches for MPI and HPX on the Knights
Landing (KNL) architecture. Each data point was simulated ten times with no data being omitted

Number of Nodes

0.00

0.25

0.50

0.75

1.00

E
le

m
en

t
U

p
da

te
s

p
er

Se
co

nd

×109

0 50 100 0 50 100

Number of Nodes

0.00

0.25

0.50

0.75

1.00

E
le

m
en

t
U

p
da

te
s

p
er

Se
co

nd

×109

(a) MPI (b) HPX

Ideal Flat 2-phase

Fig. 5 Weak scaling comparison of flat and 2-phase partitioning approaches for MPI and HPX on the Knights
Landing (KNL) architecture. Each data point was simulated ten times with the median value being reported
here. The ideal line is the ideal weak scaling based on a serial simulation

scalable with the median parallel efficiency decreasing 2.5% between 1 node and 64 nodes
for the strong scaling study, and for the weak scaling study, Tw MPI

1 / Tw MPI
128 = 0.91.

In contrast, the partitioning results for HPX show the 2-phase approach significantly out-
performing the flat partitioning approach. For the strong scaling results shown in Fig. 4b,
the 2-phase partitioning strategy is able to achieve comparable parallel efficiencies to the flat
approach with as few as an eighth of the elements per submesh that the flat approach requires.
Specifically, on the KNL nodes, we observe that using 2 nodes and a flat partitioning scheme
we obtain a parallel efficiency of 23.6%, on the other hand, using the 2-phase approach we
are able to scale out to 16 nodes, with a parallel efficiency of 19.1%. Similar to the MPI

123

Journal of Scientific Computing (2019) 80:878–902 893

parallelization, the 2-phase partitioner assigns non-uniform numbers of submeshes to each
locality. However, since the submeshes are assigned according to their approximate com-
putational load, the partitioner nevertheless balances the load, and aggressive work stealing
by the HPX scheduler and over-subscription of submeshes ensure that cores are given suffi-
cient work. While the flat partitioning ensures that numbers of submeshes assigned to each
node is constant, the increase of inter-node communication strongly affects HPX’s perfor-
mance. HPX channels, which manage inter-component communication are able to optimize
out overheads such as serializing messages when messages are sent to components on the
same locality. For HPX, the key aspect to obtaining good performance is keeping the ratio of
useful work to HPX overhead high. With the 2-phase partitioning, we find that we are able to
maintain significantly improved performance over the flat partitioning scheme by minimiz-
ing this communication overhead. For the weak scaling comparison of the two partitioners
shown in Fig. 5b, the 2-phase approach outperforms the flat partitioning approach by a factor
of 3.30 at 128 nodes.

5 Comparison of HPX Versus MPI

We now directly compare the performance of the two parallelization approaches. In order to
ensure a fair comparison, we consider theMPI and HPX parallelizations with their respective
best partitioning schemes, i.e. comparing MPI runs using the flat partitioning approach and
HPX runs using the 2-phase approach.

5.1 Single Node Performance Comparison

We begin by considering the weak scaling one node 1d inlet problem. The mesh contains
1,048,576 elements. To limit generated profiling data, we run this problem for a reduced time
period of tend = 10s. To profile the simulation, we use Intel’s VTune Amplifier 2018 Update
2. To add profiler support to our application code, HPX is compiled with VTune Amplifier
support [35], and all binaries are compiled with debugging symbols. Otherwise, we make
no modifications to the application configuration outlined in Appendix A. We additionally
modify the I_MPI_FABRICS environment variable to shm.

Ignoring initialization and finalization, the MPI simulation takes 67.9 s, and the HPX
simulation takes 55.2 s. Both timings are within 2% of the unprofiled runtimes. The HPX
parallelization provides a speed-up of 1.23 over the MPI implementation. To help explain
this performance difference, we used VTune to determine howmuch time the respective runs
were spending in each module, i.e. the application code, libraries, and kernel calls. These
results are presented in Fig. 6 and the timings are shown in Table 2. The dgswemv2 module
refers to the application code. Modules hpx, mkl, mpi, and jemalloc refer to time spent in
these respective libraries. Lastly, vmlinux refers to time spent in the Linux kernel.

The speed-up of theHPXparallelization versus theMPI parallelization can be attributed to
two main factors: firstly, the application runs 6% faster with the HPX parallelization. Due to
the overdecomposition of the mesh, the HPX parallelization uses submeshes half the size of
theMPI parallelization.We suspect that the performance difference arises due to better cache
behavior for the smaller submeshes.This performancedifference in the evaluation speedof the
RKupdate kernels accounts for 22.6%of the overall performance difference between theMPI
and HPX parallelizations. The second factor is the difference spent evaluating Linux kernel
functions and accounts for 67.4% of the performance difference. Using a bottom-up profile,

123

894 Journal of Scientific Computing (2019) 80:878–902

HPXMPI
0

10

20

30

40

50

60

70

80

T
im

e
(i

n
s)

dgswemv2
vmlinux
mkl
MPI
HPX
Other

Fig. 6 Module composition of the discontinuous Galerkin method of HPX and MPI parallelizations

Table 2 Time spent in modules
for single node analysis for HPX
and MPI parallelization

Parallelization

Module MPI HPX

dgswemv2 47.5 44.6

vmlinux 13.3 4.8

mkl 2.7 2.5

MPI 2.5 –

HPX and jemalloc – 1.1

Other 1.9 2.1

All timings are presented in seconds

the 5 most expensive functions are evaluated in the kernel for the MPI parallelization are
in order:native_queued_spin_lock_slowpath,get_page_from_freelist,
clear_page_c_e, handle_mm_fault, and page_fault. These functions suggest
that the flat MPI parallelization generates large numbers of page faults. This overhead is
not present in the HPX parallelization. These two factors account 90% of the performance
discrepancy in the two approaches. Lastly, we remark that there is some imbalance, but it
appears to only modestly impact application performance. The MPI implementation spends
3.9% of the time in the MPI module, including MPI_Wait calls. This is fairly small and
partially offset by HPX runtime overhead. Thus, the performance discrepancy is caused by
overhead generated by the MPI runtime, and not poor load balance or time spent waiting on
messages to arrive.

5.2 Strong andWeak Scaling Studies

While theHPXparallelization outperforms theMPIparallelization in the single node analysis,
the strong and weak scaling studies presented in this section explore the impact of task
granularity and increased network communication.

The strong scaling results for the two approaches are shown in Fig. 7. For a single node run,
HPX achieves a median parallel efficiency of 85.7%, and MPI achieves a parallel efficiency
of 63.5%. This corresponds to a speed-up of 1.35 for the HPX parallelization relative to the
MPI parallelization. We suspect that theMPI parallelization is incurring similar performance
overheads to those noted in the previous section.

123

Journal of Scientific Computing (2019) 80:878–902 895

0 25 50 75

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

al
le

l
E

ffi
ci

en
y

HPX
MPI

Fig. 7 Strong scaling results comparing the performance ofHPX toMPI for up to 64KNLnodes onStampede2.
For both machines, each simulation was run 10 times with no data being excluded

Aswe scale up in processor number, eventually the HPX task overhead begins to dominate
the amount of useful work being performed, and the MPI implementation outperforms HPX.
Furthermore, the scheduler’s aggressive work stealing leads to factors such as false sharing
further degrading performance. It is not a question of if HPX will be slower than MPI,
but rather at which point. On the KNL nodes, this point occurs around the task granularity
associated with 4 nodes.

To understand the performance profile of HPX’s overhead, we look at the relation between
the average task size versus the average overhead using HPX’s performance counters. The
average task size, tavg is computed as

tavg =
∑

tapp
nt

,

and the average task overhead, to is computed as

to =
∑

tthread − ∑
tapp

nt
,

where
∑

tapp is defined as the amount of time spent executing application tasks,
∑

tthread
is defined as the total execution time of all HPX threads, and nt is the number of application
threads. Both the average task size and the average task overhead are reported in units of time.
The average task size is evaluated using the /threads/time/average counter and the
average task overhead is evaluated using the /threads/time/average-overhead
counter. For further details on the counters, we refer the reader to [25]. Table 3 and Fig. 8
show the composition of the thread execution times for the strong scaling results. Each run is
done once, with the timings being thrown out if significant deviation from themedian parallel
efficiency reported in Fig. 7 was observed. For these results, the largest observed deviation
was 1.1% from the median reported in the strong scaling runs reported in Fig. 7. The node
configurations at which MPI outperforms HPX coincide with the task overheads comprising
significant portions of the thread execution times.

Although the results presented here were obtained from a DG kernel for the shallow water
equations, the impact of the HPX overhead can be determined by the task granularities. As
such, the regimes in which HPX runs efficiently can be generalized to arbitrary stencil-type
kernels. As a rule of thumb, for the KNL nodes, we recommend not scaling beyond the
grain size observed at 4 nodes, which corresponds to an average task size, tavg of 3.6ms. At

123

896 Journal of Scientific Computing (2019) 80:878–902

Table 3 HPX thread execution
composition for strong scaling
runs on Knights Landing (KNL)
architecture on Stampede2

Nodes tavg (in ms) to (in ms) I R (in %)

1 14.66 0.02 0.14

2 7.12 1.15 13.91

4 3.62 1.13 23.79

8 1.99 1.74 46.65

16 1.15 2.81 70.96

32 0.65 3.01 82.24

64 0.46 4.67 91.03

Both the average task size, tavg and the average task overhead, to are
reported inmilliseconds. The idle rate I R is the ratio of the task overhead
over the thread execution time, i.e. I R = to/(to + tavg). The idle rate
is reported as a percentage

1 2 4 8 16 32 64

Number of Nodes

0

5

10

15

T
im

e
(i

n
m
s)

Average Task Size
Average Task Overhead

Fig. 8 Comparison of the task overhead versus the the task size for strong scaling runs for KNL nodes on
Stampede2

0 20 40 60 80 100 120

Number of Nodes

0.0

0.2

0.4

0.6

0.8

E
le

m
en

t
U

p
da

te
s

p
er

Se
co

nd ×109

HPX
MPI

Fig. 9 Weak scaling study comparing the speed of the application to the number of nodes ranging from 1 to
128 nodes for each node type. The application speed, element updates per second is defined to be the number
times any element is advanced by one Runge–Kutta stage per second. The results shown are based on the
median of 10 runs

this granularity, HPX performs similarly to MPI. This task granularity is consistent with the
results reported in [25].

For this weak scaling experiment, the task granularity is well within the regime where
the HPX overhead constitutes a small fraction of the execution time. The results are shown

123

Journal of Scientific Computing (2019) 80:878–902 897

in Fig. 9. The weak scaling results show HPX outperforming MPI across the entire set
of nodes in consideration. Similar to the single node analysis and strong scaling study,
HPX outperforms MPI at low node counts with Tw MPI

1 / Tw HPX
1 = 1.26 on one node

and Tw MPI
2 / Tw HPX

2 decreases to 1.14 on two nodes once HPX sends messages over the
interconnect. This speed-up of HPX versus MPI is maintained as we scale out to 128 nodes,
with Tw MPI

128 / Tw MPI
128 = 1.19. These speed-ups underpin the conclusion of the previous

sections that the key driver of HPX performance is the proper balancing of task overheads
with usefulwork.By performing aweak scaling study,we are effectively fixing the scheduling
overhead, and observe that HPX scales very well with Tw HPX

1 / Tw HPX
128 equaling 0.86.

6 Conclusion

The massive increase in concurrency on future computer architectures necessitates the devel-
opment of new programming models to efficiently utilize these architectures. In this paper,
we compared the performance of an HPX versus MPI implementation of an unstructured
grid DG finite element code for the shallow water equations.

Scaling results were presented for the Knights Landing processors on TACC’s Stampede2.
Results indicate that with a sufficiently large task size HPX is able to outperform the MPI
application by a factor of approximately 1.2 with the speed-up being attributed to lower
runtime overhead. However, strong HPX performance is contingent upon the task granular-
ities remaining above a machine dependent size. For tasks with durations shorter than this
machine prescribed size, overheads will dominate the execution time. For these runs, we
found that MPI outperformed HPX. When considering adopting an HPX-based paralleliza-
tion, the question should be “Is this performance critical task granularity sufficiently fine
for my use case?” If answered in the affirmative, we believe that HPX presents a significant
improvement over traditional parallelization strategies.

One of the major benefits that remains unaddressed in this paper is the ability of HPX
to efficiently execute irregular applications. Whereas the kernels evaluated in this paper are
load balanced statically, there exists a large class of kernels whose task size varies at run time,
e.g. adaptive mesh refinement algorithms and local timestepping. These approaches are more
efficient theoretically, however, statically load balanced implementations achieve a fraction of
the theoretical speed-up due to resource starvation. HPX’s aggressive on-node work stealing
as well as task migration support should allow for more efficient implementations of these
algorithms. These are topics of future work. Another application specifically related to the
simulation of hurricane storm surge is load imbalance generated between the computational
cost difference between wet and dry regions of the mesh. Validating the algorithms presented
in [7] using HPX is another subject of ongoing work.

While thiswork has focused exclusively on theKnights Landing architecture, performance
portability is another area of interest. The upcoming NERSC machine, Perlmutter, and the
next TACCmachine, Frontera, will both utilize manycore architectures similar to the Knights
Landing architecture. While the task sizes that balance HPX overhead with application
throughput will change, we expect that the results presented here should largely general-
ize to these CPU-based architectures. Targeting accelerator-based clusters with task-based
programming models requires significantly more work, but is a topic of active development.
HPX has support for evaluating CUDA and OpenCL kernels on GPUs. This approach allows
HPX to utilize GPUs. However, HPX is not presently using task-based parallelism on the

123

898 Journal of Scientific Computing (2019) 80:878–902

device itself. The viability of task-based approaches on GPUs will need to navigate the
trade-offs between increased asynchrony and performance.

Ultimately, applications will require new programming models to efficiently utilize exas-
cale machines. While the results in this paper are limited in scope, we believe they are
indicative of the substantial utility of a task-based approach for the next generation of com-
puter architectures. The observed performance benefits of HPX stem from a fundamental
change in the parallelization paradigm. We remark that both MPI and OpenMP are actively
changing their programming models as well. In the 3.0 standard, MPI has adopted many new
features such as RDMAs and shared memory operations, while OpenMP has moved from
a fork-join based parallelism model to adopting task-based parallelism and adding pragmas
for SIMD support. These are features that are being broadly adopted across the high perfor-
mance computing community. HPX represents one solution that incorporates these concepts
in a succinct and C++ standards-oriented framework, that allows developers to productively
parallelize their applications.

Acknowledgements Thisworkwas supported by theNational Science Foundation underGrantsACI-1339801
and ACI-1339782 and the U.S. Department of Energy through the Computational Science Graduate Fellow-
ship, Grant DE-FG02-97ER25308. Additionally, the authors would like to acknowledge the Texas Advanced
Computing Center (TACC) at the University of Texas at Austin for providing the HPC resources that enabled
this research. The presented results were obtained through XSEDE allocation TG-DMS080016N.

A Artifact Description: Performance Comparison of HPX Versus
Traditional Parallelization Strategies for the Discontinuous Galerkin
Method

A.1 Abstract

As part of the Association for Computing Machinery’s reproducibility initiative, this artifact
outlines the details of generating the computational results in the paper, “Performance Com-
parison of HPX Versus Traditional Parallelization strategies for the Discontinuous Galerkin
Method”.

A.2 Description

A.2.1 Check-List (Artifact Meta Information)

– Algorithm: Discontinuous Galerkin Finite Element Method on Unstructured Meshes
– Program: C++14
– Compilation: GNU C++14 Compiler
– Operating System: CentOS Linux release 7.4.1708
– Run-time environment: Stampede2
– Execution: Parallel/Distributed
– Experiment workflow: Compile; Preprocess meshes; Run simulation.
– Publicly available?: Yes

123

Journal of Scientific Computing (2019) 80:878–902 899

Table 4 Version numbers or git
hashes for all the software
dependencies on Stampede2

Software Stampede2

gcc 7.1.0

cmake 3.8.2

yaml- cpp e2818c4

METIS 5.1.0

MKL 17.0.4

blaze a292f43

MPI implementation impi/17.0.3

hwloc 1.11.5rc2-git

boost 1.64

jemalloc 3.6.0

HPX b6362c2

dgswem- v2 7a68320

These configurations were used to generate the results shown in this
paper

A.2.2 How Software Can be Obtained

dgswem- v2 has been released via the MIT license. The code can be obtained from the
GitHub repository: https://github.com/UT-CHG/dgswemv2.

A.2.3 Software Dependencies

The building of the software stack involves several libraries. We describe the dependencies
here, but provide specific version numbers in Table 4. To build the software stack, we use
C++14 conforming version of the GNU C and C++ compiler. We require cmake to build
yaml- cpp, HPX, and dgswem- v2. The preprocessor requires METIS to decompose the
meshes, and yaml- cpp is required to parse the input files. In addition to cmake, HPX is
also compiled with the boost, an MPI implementation, hwloc, and jemalloc libraries.

A.3 Installation

To build dgswem- v2, we refer the reader to the README.md page at the root level of the
GitHub repository. Additionally, we have made several Stampede2 specific optimizations.
Firstly, we have compiled the code on the KNL architecture with the -march=native
flag. Secondly, we have made several minor changes to optimize performance, i.e. disabling
slope limiting and linking MKL. These changes have been provided as a patch file in the
supplementary material.

A.4 ExperimentWorkflow

The workflow requires generating meshes, partitioning meshes, and executing the simula-
tions. For brevity, we omit the details here. However, they can be found in the dgswem- v2:
User’sGuide, located in thedocumentation/users-guide directory of the repository.

123

https://github.com/UT-CHG/dgswemv2

900 Journal of Scientific Computing (2019) 80:878–902

A.5 Evaluation and Expected Result

Each simulation run will return the execution time in microseconds to the standard output.

A.6 Notes

dgswem- v2 is under development at the date of publication, and all new contributions can
be found at https://github.com/UT-CHG/dgswemv2. If there are any comments, questions,
or suggestions, we encourage communicating with the developers through the GitHub issues
page.

References

1. Amarasinghe, S., Hall, M., Lethin, R., Pingali, K., Quinlan, D., Sarkar, V., Shalf, J., Lucas, R., Yelick,
K., Balanji, P., et al.: Exascale programming challenges. In: Proceedings of the Workshop on Exascale
Programming Challenges,Marina del Rey, CA, USA. USDepartment of Energy, Office of Science, Office
of Advanced Scientific Computing Research (ASCR) (2011)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures. Concurr. Comput. Pract. Exp. 23(2), 187–198 (2011)

3. Baggag, A., Atkins, H., Keyes, D.: Parallel implementation of the discontinuous Galerkin method. Tech.
Rep. ICASE-99-35, Institute for Computer Applications in Science and Engineering (1999)

4. Balaji, P.: Programming Models for Parallel Computing. MIT Press, Cambridge (2015)
5. Barat, R.: Load balancing of multi-physics simulation by multi-criteria graph partitioning. Ph.D. thesis,

Université de Bordeaux (2017)
6. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and independence with

logical regions. In: Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, p. 66. IEEE Computer Society Press (2012)

7. Bremer, M.H., Bachan, J.D., Chan, C.P.: Semi-static and dynamic load balancing for asynchronous hur-
ricane storm surge simulations. In: Proceedings of the Parallel Applications Workshop, Alternatives to
MPI, p. 13. IEEE (2018)

8. Browne, S., Dongarra, J., Garner,N.,Ho,G.,Mucci, P.: A portable programming interface for performance
evaluation on modern processors. Int. J. High Perform. Comput. Appl. 14(3), 189–204 (2000)

9. Brus, S.: Efficiency improvements for modeling coastal hydrodynamics through the application of high-
order discontinuous Galerkin solutions to the shallow water equations. Ph.D. thesis, University of Notre
Dame (2017)

10. Brus, S.R., Wirasaet, D., Westerink, J.J., Dawson, C.: Performance and scalability improvements for
discontinuous Galerkin solutions to conservation laws on unstructured grids. J. Sci. Comput. 70(1), 210–
242 (2017). https://doi.org/10.1007/s10915-016-0249-y

11. Bunya, S., Dietrich, J., Westerink, J., Ebersole, B., Smith, J., Atkinson, J., Jensen, R., Resio, D., Luettich,
R., Dawson, C., Cardone, V., Cox, A., Powell, M., Westerink, H., Roberts, H.: A high resolution coupled
riverine flow, tide, wind, wind wave and storm surge model for Southern Louisiana and Mississippi: part
I—model development and validation. Mon. Weather Rev. 138, 345–377 (2010)

12. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–
Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech.
Eng. 198(17), 1548–1562 (2009)

13. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel language. Int. J. High
Perform. Comput. Appl. 21(3), 291–312 (2007)

14. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

15. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated prob-
lems. J. Sci. Comput. 16(3), 173–261 (2001)

16. Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discon-
tinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176
(2011)

123

https://github.com/UT-CHG/dgswemv2
https://doi.org/10.1007/s10915-016-0249-y

Journal of Scientific Computing (2019) 80:878–902 901

17. Dietrich, J., Westerink, J., Kennedy, A., Smith, J., Jensen, R.E., Zijlema, M., Holthuijsen, L., Dawson,
C., Luettich, R., Powell, M., Cardone, V., Cox, A., Stone, G., Pourtaheri, H., Hope, M., Tanaka, S.,
Westerink, L., Westerink, H.J., Cobell, Z.: Hurricane Gustav (2008) waves and storm surge: hindcast,
synoptic analysis and validation in Southern Louisiana. Mon. Weather Rev. 139, 2488–2522 (2011)

18. Dietrich, J., Zijlema, M., Westerink, J., Holtjuijsen, L., Dawson, C., Luettich Jr., R.A., Jensen, R., Smith,
J., Stelling, G., Stone, G.: Modeling hurricane wave and storm surge using integrally-coupled, scalable
computations. Coast. Eng. 58, 45–65 (2011)

19. Dietrich, J.C., Bunya, S., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R., Resio,
D.T., Luettich, R.A., Dawson, C., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., Roberts,
H.J.: A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern
Louisiana and Mississippi: part II—synoptic description and analyses of Hurricanes Katrina and Rita.
Mon. Weather Rev. 138, 378–404 (2010)

20. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)
21. Dutykh, D., Clamond, D.: Modified shallow water equations for significantly varying seabeds. Appl.

Math. Model. 40(23), 9767–9787 (2016). https://doi.org/10.1016/j.apm.2016.06.033
22. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC: Distributed Shared Memory Programming,

vol. 40. Wiley, London (2005)
23. Gandham, R., Medina, D., Warburton, T.: GPU accelerated discontinuous Galerkin methods for shal-

low water equations. Commun. Comput. Phys. 18(1), 3764 (2015). https://doi.org/10.4208/cicp.070114.
271114a

24. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.
SIAM Rev. 43(1), 89–112 (2001)

25. Grubel, P., Kaiser, H., Cook, J., Serio, A.: The performance implication of task size for applications on
the HPX runtime system. In: 2015 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 682–689. IEEE (2015)

26. Grubel, P., Kaiser, H., Huck, K.A., Cook, J.: Using intrinsic performance counters to assess efficiency in
task-based parallel applications. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 1692–1701 (2016)

27. Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R.D., Pritchard, H., Squyres, J.M.: A brief introduction to
the OpenFabrics interfaces-a new network API for maximizing high performance application efficiency.
In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects (HOTI), pp. 34–39. IEEE
(2015)

28. Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., Kaiser, H.: HPX—an open source C++ standard library
for parallelism and concurrency. In: Proceedings of OpenSuCo, OpenSuCo’17. ACM (2017)

29. Heller, T., Kaiser, H., Diehl, P., Fey, D., Schweitzer, M.A.: Closing the Performance Gap with Modern
C++. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) High Performance Computing, Lecture Notes in
Computer Science, vol. 9945, pp. 18–31. Springer International Publishing, Berlin (2016)

30. Heller, T., Kaiser, H., Schäfer, A., Fey, D.: Using HPX and LibGeoDecomp for scaling HPC applications
on heterogeneous supercomputers. In: Proceedings of the Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, p. 1. ACM (2013)

31. Hesthaven, J.S.,Warburton, T.: NodalDiscontinuousGalerkinMethods:Algorithms,Analysis, andAppli-
cations. Springer, Berlin (2007)

32. Hope, M.E., Westerink, J.J., Kennedy, A.B., Kerr, P.C., Dietrich, J.C., Dawson, C., Bender, C.J., et al.:
Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. J. Geophys. Res.
Oceans 118, 4424–4460 (2013)

33. Hope, M., Westerink, J., Kennedy, A., Smith, J., Westerink, H., Cox, A., Nong, S., Roberts, K., Resio, D.,
A.P, T.: Hurricane Sandy (2012) wind, waves and storm surge in New York Bight. I: Model validation. J.
Waterw. Port Coast. Ocean Eng. (2016)

34. Iglberger, K., Hager, G., Treibig, J., Rüde, U.: Expression templates revisited: a performance analysis of
current methodologies. SIAM J. Sci. Comput. 34(2), C42–C69 (2012)

35. Kaiser, H., Adelstein Lelbach, B., Heller, T., Berg, A., Biddiscombe, J., Bikineev, A., et al.: STEllAR-
GROUP/hpx: HPX V1.0: The C++ standards library for parallelism and concurrency (Version 1.0.0).
Zenodo. https://doi.org/10.5281/zenodo.556772 (2107)

36. Kale, L.V., Krishnan, S.: CHARM++: A portable concurrent object oriented system based on C++. In:
ACM Sigplan Notices, vol. 28, pp. 91–108. ACM (1993)

37. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput. 20(1), 359–392 (1998)

38. Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “new normal” for computer architecture.
Comput. Sci. Eng. 15(6), 16–26 (2013)

123

https://doi.org/10.1016/j.apm.2016.06.033
https://doi.org/10.4208/cicp.070114.271114a
https://doi.org/10.4208/cicp.070114.271114a
https://doi.org/10.5281/zenodo.556772

902 Journal of Scientific Computing (2019) 80:878–902

39. Kubatko, E., Bunya, S., Dawson, C., Westerink, J.: Dynamic p-adaptive Runge–Kutta discontinuous
Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 198, 1766–1774
(2009)

40. Kubatko, E., Bunya, S., Dawson, C.,Westerink, J.,Mirabito, C.: A performance comparison of continuous
and discontinuous finite element shallow water models. J. Sci. Comput. 40, 315–339 (2009)

41. Kubatko, E., Westerink, J., Dawson, C.: hp Discontinuous Galerkin methods for advection dominated
problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196, 437–451 (2006)

42. Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-
exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2),
832–848 (2007)

43. Luettich, R., et al. J.W.: ADCIRC: a parallel advanced circulationmodel for oceanic, coastal and estuarine
waters (2017). Users manual www.adcirc.org

44. Michoski, C., Alexanderian, A., Paillet, C., Kubatko, E., Dawson, C.: Stability of nonlinear convection-
diffusion-reaction systems in discontinuous Galerkin methods. J. Sci. Comput. 70, 516–550 (2017)

45. Michoski, C., Dawson, C., Kubatko, E., Wirasaet, D., Brus, S., Westerink, J.: A comparison of artificial
viscosity, limiters, and filter, for high order discontinuous Galerkin solution in nonlinear settings. J. Sci.
Comput. (2015). https://doi.org/10.1007/s10915.015.0027.2

46. Michoski, C., Dawson, C., Mirabito, C., Kubatko, E., Wirasaet, D., Westerink, J.: Fully coupled methods
for multiphase morphodynamics. Adv. Water Resour. 59, 95–110 (2013)

47. Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierar-
chic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of
generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011)

48. Numrich, R.W., Reid, J.: Co-Array Fortran for parallel programming. In: ACM Sigplan Fortran Forum,
vol. 17, pp. 1–31. ACM (1998)

49. OpenMP Architecture Review Board: OpenMP Application Program Interface Version 3.0 (2008). http://
www.openmp.org/mp-documents/spec30.pdf

50. Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. rep., Los Alamos
Scientific Lab., N. Mex. (USA) (1973)

51. Tanaka, S., Bunya, S., Westerink, J., Dawson, C., Luettich, R.: Scalability of an unstructured grid contin-
uous Galerkin based hurricane storm surge model. J. Sci. Comput. 46, 329–358 (2011)

52. Westerink, J.J., Luettich, R.A., Feyen, J.C., Atkinson, J.H., Dawson, C.N., Roberts, H.J., Powell, M.D.,
Dunion, J.P., Kubatko, E.J., Pourtaheri, H.: A basin to channel scale unstructured grid hurricane storm
surge model applied to southern Louisiana. Mon. Weather Rev. 136, 833–864 (2008)

53. Wirasaet,D., Brus, S.,Michoski, C.,Kubatko, E.,Westerink, J.:Artificial boundary layers in discontinuous
Galerkin solutions to shallow water equations in channels. J. Comput. Physics 299, 597–612 (2015)

54. Wirasaet, D., Kubatko, E., Michoski, C., Tanaka, S., Westerink, J., Dawson, C.: Discontinuous Galerkin
methodswith nodal andhybridmodal/nodal triangular, quadrilateral, and polygonal elements for nonlinear
shallow water flow. Comput. Methods Appl. Mech. Eng. 270, 113–149 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

www.adcirc.org
https://doi.org/10.1007/s10915.015.0027.2
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

	Performance Comparison of HPX Versus Traditional Parallelization Strategies for the Discontinuous Galerkin Method
	Abstract
	1 Introduction
	2 High Performance ParalleX
	2.1 Local Control Objects
	2.2 Threading Subsystem
	2.3 Active Global Address Space
	2.4 Parcel Transport Layer
	2.5 Performance Counter Framework

	3 Application: The Two-Dimensional Shallow Water Equations
	3.1 The Discontinuous Galerkin Finite Element Method
	3.2 Parallelization Strategies
	3.2.1 HPX Parallelization
	3.2.2 MPI Parallelization

	4 Results
	4.1 Experimental Configuration
	4.2 Vectorization
	4.3 Partitioner Performance

	5 Comparison of HPX Versus MPI
	5.1 Single Node Performance Comparison
	5.2 Strong and Weak Scaling Studies

	6 Conclusion
	Acknowledgements

	A Artifact Description: Performance Comparison of HPX Versus Traditional Parallelization Strategies for the Discontinuous Galerkin Method
	A.1 Abstract
	A.2 Description
	A.2.1 Check-List (Artifact Meta Information)
	A.2.2 How Software Can be Obtained
	A.2.3 Software Dependencies

	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result
	A.6 Notes

	References

