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Abstract
Weconsider a pressure-stabilizedLagrange–Galerkin scheme for the transientOseen problem
with small viscosity. In the scheme we use the equal-order approximation of order k for both
the velocity and pressure, and add a symmetric pressure stabilization term. We show an error
estimate for the velocity with a constant independent of the viscosity if the exact solution is
sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure.
Numerical examples show high accuracy of the scheme for problems with small viscosity.

Keywords Transient Oseen problem · Lagrange–Galerkin scheme · Finite element method ·
Equal-order elements · Symmetric pressure stabilization · Dependence on viscosity
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1 Introduction

We consider a finite element scheme for the transient Oseen problem, known as linearization
of the Navier–Stokes problem, with small viscosity. In this paper we construct a pressure-
stabilized Lagrange–Galerkin (LG) scheme with higher-order elements, and show an error
estimate independent of the viscosity.

When the viscosity is small, the finite element method suffers from two kinds of insta-
bilities. We begin with the issue of the material derivative. In such case the convection is
dominated and it is important to put weight on information in the upwind direction to make
schemes stable. We here focus on the LG method, e.g. [31,32,34,37,39], which is a combi-
nation of the characteristics method and the finite element method. One of the advantages
of it is that the resultant matrix is symmetric, which allows us to use efficient linear solvers
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[3]. Recently a LG method with a locally linearized velocity [40] has been developed [39]
and convergence has been shown. The locally linearized velocity overcomes the difficulty
in computing composite function term that appears in LG schemes. In [39] inf-sup stable
elements [6] were used.

Besides the inf-sup stable elements, P1/P1-element with a pressure stabilization term has
been also used in LG methods, where Pk/Pl shows that we use the conforming triangular or
tetrahedral element of order k for the velocity and order l for the pressure. Notsu and Tabata
have been proposed a LG scheme using the stabilization term of Brezzi and Pitkäranta [8]
for the Navier–Stokes problem [29,30], and analyzed the scheme for the Oseen problem and
Navier–Stokes problem [31,32]. Jia et al. [24] have been proposed and analyzed a LG scheme
using the stabilization term of Bochev et al. [5].

Herewe extend the P1/P1 pressure-stabilizedLG scheme to higher-order elements. Simple
symmetric stabilization terms for higher-order elements have been presented and applied to
stationary problems in, e.g., [2,7,9,16,36] and to the transient Stokes problem in [11]. On the
other hand, classical stabilization terms based on the residual of the momentum equations
also have been studied for stationary problems in, e.g., [18,19,23] and for the transient Stokes
problem in [27]. These terms are, however, rather complicated to implement compared to the
symmetric stabilization especially for transient problems.

Apart from the issue of the material derivative in the Oseen or Navier–Stokes problems,
dependence on the viscosity appears even in the Stokes problems. Numerical solutions of
the velocities contain approximation errors of the pressures multiplied by the inverse of the
viscosity in standard finite element methods (e.g. [26]). The grad-div stabilization [20] is
a choice to improve stability. Error analyses independent of the viscosity were performed
in [33] for the Stokes problem and in [14] for the transient Oseen problem relying on this
term. In [4] a LG scheme was developed for the Navier–Stokes problemwith local projection
stabilization that includes the grad-div term.

In this paper we use Pk/Pk-element, k ≥ 1, and pressure-stabilization in the LG scheme
for the transient Oseen problem, and show an error estimate independent of the viscosity.
In the scheme the symmetric pressure stabilization of Burman [9] is used and symmetry of
the LG method is inherited. Although a pressure stabilized scheme for the transient Stokes
problem has been analyzed by Burman and Fernández [11], we here take the constant of the
stabilization term in a different way such that the constant does not depend on the viscosity.
We consider the case where the viscosity ν is small and the exact solution is sufficiently
smooth. The error bound presented here is of order �t + h2 + hk in the L2-norm for the
velocity and for ν1/2 times the gradient of the velocity, with constants independent of ν. Here,
�t is a time increment, h is a spatial mesh size. This scheme is essentially unconditionally
stable, that is, we can take �t and h independently. The grad-div stabilization is not needed
in the analysis as noted by de Frutos et al. [15]. The technique used in our estimate is a
projection of the exact solution of the velocity with the error independent of ν. The same
projection was used by de Frutos et al. [14]. Following [15], we also derive an error estimate
of a discrete primitive of the pressure.

This paper is organized as follows. In the next section, after preparing notation, we state the
Oseen problem and a pressure-stabilized LG scheme. In Sect. 3 we show error estimates with
constants independent of the viscosity and give proofs. In Sect. 4 we give some numerical
results that show high accuracy for small viscosity and large pressures, and additionally show
results of the Navier–Stokes problem. In Sect. 5 we give conclusions. In the “Appendix”
section we recall some lemmas used in the LG methods.

123



836 Journal of Scientific Computing (2019) 80:834–858

2 A Pressure-Stabilized LG Scheme for the Oseen Problem

We prepare notation used throughout this paper, state the Oseen problem and then introduce
our scheme.

Let Ω be a polygonal or polyhedral domain of Rd (d = 2, 3). We use the Sobolev spaces
Wm,p(Ω) equippedwith the norm ‖·‖m,p and the semi-norm |·|m,p for p ∈ [1,∞] and a non-
negative integer m. We denote W 0,p(Ω) by L p(Ω). W 1,p

0 (Ω) is the subspace of W 1,p(Ω)

consisting of functions whose traces vanish on the boundary of Ω . When p = 2, we denote
Wm,2(Ω) by Hm(Ω) and drop the subscript 2 in the corresponding norm and semi-norm.
For the vector-valued function w ∈ W 1,∞(Ω)d we define the semi-norm |w|1,∞ by

∥
∥
∥
∥

[ d
∑

i, j=1

(
∂wi

∂x j

)2]1/2∥
∥
∥
∥
0,∞

.

The pair of parentheses (·, ·) shows the L2(Ω)i -inner product for i = 1, d or d × d . L2
0(Ω)

is the space of functions q ∈ L2(Ω) satisfying (q, 1) = 0. We also use the notation | · |m,K

and (·, ·)K for the semi-norm and the inner product on a set K .
Let T > 0 be a time. For a Sobolev space X(Ω)i , i = 1, d , we use the abbreviations

Hm(X) = Hm(0, T ; X(Ω)i ) and C(X) = C([0, T ]; X(Ω)i ). We define the function space
Zm by

Zm := {v ∈ H j (0, T ; Hm− j (Ω)d); j = 0, . . . ,m, ‖v‖Zm < ∞},

‖v‖Zm :=
( m
∑

j=0

‖v‖2H j (0,T ;Hm− j (Ω)d )

)1/2

.

We also use the notation Hm(t1, t2; X) and Zm(t1, t2) for spaces on a time interval (t1, t2).
We consider the Oseen problem: find (u, p) : Ω × (0, T ) → R

d × R such that

∂u

∂t
+ (w · ∇)u − ν�u + ∇ p = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω, (1)

where ∂Ω represents the boundary of Ω , the constant 0 < ν ≤ 1 represents a viscosity, and
w, f : Ω × (0, T ) → R

d and u0 : Ω → R
d are given functions.

We define the bilinear forms a on H1
0 (Ω)d × H1

0 (Ω)d and b on H1
0 (Ω)d × L2

0(Ω) by

a(u, v) := ν(∇u,∇v), b(v, q) := −(∇ · v, q).

Then, we canwrite theweak form of (1) as follows: find (u, p) : (0, T ) → H1
0 (Ω)d×L2

0(Ω)

such that for t ∈ (0, T ),
((∂u

∂t
+ (w · ∇)u

)

(t), v

)

+ a(u(t), v) + b(v, p(t)) = ( f (t), v), (2a)

∀v ∈ H1
0 (Ω)d ,

b(u(t), q) = 0, ∀q ∈ L2
0(Ω), (2b)

with u(0) = u0.
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We introduce time discretization. Let �t > 0 be a time increment, NT := 
T /�t� the
number of time steps, tn := n�t , andψn := ψ(·, tn) for a functionψ defined inΩ × (0, T ).
For a set of functions ψ = {ψn}NT

n=0 we use two norms ‖ · ‖�∞(L2) and ‖ · ‖�2(L2) defined by

‖ψ‖�∞(L2) := max
{‖ψn‖0; n = 0, . . . , NT

}

,

‖ψ‖�2(L2) :=
(

�t
NT∑

n=1

‖ψn‖20
)1/2

.

Let w be smooth. The characteristic curve X(t; x, s) is defined by the solution of the
system of the ordinary differential equations,

dX

dt
(t; x, s) = w(X(t; x, s), t), t < s,

X(s; x, s) = x . (3)

Then, we can write the material derivative term ∂u
∂t + (w · ∇)u as follows:

(
∂u

∂t
+ (w · ∇)u

)

(X(t), t) = d

dt
u(X(t), t).

For w∗ : Ω → R
d we define the mapping X1(w

∗) : Ω → R
d by

(X1(w
∗))(x) := x − w∗(x)�t . (4)

Remark 1 The image of x by X1(w(·, t)) is nothing but the approximate value of X(t −
�t; x, t) obtained by solving (3) by the backward Euler method.

Then, it holds that

∂un

∂t
+ (wn · ∇)un = un − un−1 ◦ X1(w

n−1)

�t
+ O(�t),

where the symbol ◦ stands for the composition of functions, e.g., (g ◦ f )(x) := g( f (x)).
We next introduce spatial discretization. Let {Th}h↓0 be a regular family of triangulations

of Ω [12], hK := diam(K ) for an element K ∈ Th , and h := maxK∈Th hK . For a positive
integer m, the finite element space of order m is defined by

W (m)
h := {ψh ∈ C(Ω); ψh|K ∈ Pm(K ), ∀K ∈ Th},

where Pm(K ) is the set of polynomials on K whose degrees are equal to or less than m. Let
�

(m)
h : C(Ω) → W (m)

h be the Lagrange interpolation operator, which is naturally extended
to vector-valued functions.

We begin with a scheme using the standard Pk/Pk−1-finite element, which is called (gen-
eralized) Taylor–Hood element. Let

Vh × Qh := ((W (k)
h )d ∩ H1

0 (Ω)d) × (W (k−1)
h ∩ L2

0(Ω)) (5)

be the Pk/Pk−1-finite element space for k ≥ 2. The LG scheme with a locally linearized
velocity and this Taylor–Hood element for the Oseen problem (OsTH) is stated as follows:

Scheme OsTH Let u0h ∈ Vh be an approximation of u0. Find {(unh, pnh )}NT
n=1 ⊂ Vh × Qh such

that
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(
unh − un−1

h ◦ X1(�
(1)
h wn−1)

�t
, vh

)

+ a(unh, vh)+ b(vh, p
n
h )

= ( f n, vh), ∀vh ∈ Vh, (6a)

b(unh, qh) = 0, ∀qh ∈ Qh . (6b)

When k = 2, this type of scheme for the Navier–Stokes problem has already been intro-
duced and analyzed in [39]. In the mapping X1(·), a locally linearized velocity �

(1)
h wn−1 is

used instead of the original velocity wn−1. If the original velocity is used, it is difficult to
evaluate the exact value of integration. The next proposition assures that the scheme with the
locally linearized velocity is exactly computable.

Proposition 1 ([38,39]) Let uh, vh ∈ (W (m)
h )d for a positive integer m. Suppose that

w∗ ∈ W 1,∞
0 (Ω)d and α∗�t |w∗|1,∞ < 1, (7)

where α∗ is the constant defined in (11) below. Then,
∫

Ω
(uh ◦ X1(�

(1)
h w∗)) · vhdx is exactly

computable.

With the Assumption (7) for w∗ = wn−1 at each step n, (6) is exactly computable
thanks to Proposition 1. The condition w∗ = 0 on ∂Ω is assumed so that the inclusion
(X1(�

(1)
h w∗))(Ω) ⊂ Ω holds, which is necessary in our analysis. For example, the condi-

tion also appears in Lemmas 7–11 below.
In [39] the authors have analyzed the scheme to show the estimates

‖∇(uh − u)‖�∞(L2), ‖ph − p‖�2(L2) ≤ c(ν−1)(�t + h2),

where the constant c depends on ν−1 exponentially.
Here we use the equal-order element with pressure stabilization. Let

Vh × Qh := ((W (k)
h )d ∩ H1

0 (Ω)d) × (W (k)
h ∩ L2

0(Ω))

be the equal-order Pk/Pk-finite element space for k ≥ 1. We define a pressure stabilization
term Ch : Qh × Qh → R, which enables us to use the equal-order element, by

Ch(ph, qh) :=
∑

K∈Th

h2kK
∑

|α|=k

(Dα ph, D
αqh)K ,

where α is the multi-index and Dα is the partial differential operator. We define the corre-
sponding semi-norm on Qh by

|qh |h := Ch(qh, qh)1/2 =
⎛

⎝
∑

K∈Th

h2kK |qh |2k,K
⎞

⎠

1/2

. (8)

Remark 2 The term Ch introduced by Burman [9] is an extension of that by Brezzi and
Pitkäranta [8] for the P1/P1-element to higher order elements. For the stabilization term,
instead of Ch , we can also choose another positive semi-definite bilinear form whose corre-
sponding semi-norm is equivalent to (8). Examples include the terms in [2,16,36], as pointed
out in [9].

We are now in position to state a pressure-stabilized LG scheme for the Oseen problem
(OsPstab).
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Scheme OsPstab Let u0h ∈ Vh be an approximation of u0. Find {(unh, pnh )}NT
n=1 ⊂ Vh × Qh

such that
(
unh − un−1

h ◦ X1(�
(1)
h wn−1)

�t
, vh

)

+ a(unh, vh) + b(vh, p
n
h )

= ( f n, vh), ∀vh ∈ Vh, (9a)

b(unh, qh) − δ0Ch(pnh , qh) = 0, ∀qh ∈ Qh, (9b)

where δ0 > 0 is a stabilization parameter.

With the Assumption (7) for w∗ = wn−1 at each step n, (9) is exactly computable and
has a unique solution (unh, p

n
h ) thanks to Proposition 1 and the stabilization term Ch [9]. The

error introduce by the locally linearized velocity is properly estimated in (21) below.

Remark 3 1. In SchemeOsPstab, the resultant matrix to be solved is symmetric and remains
unchanged at each time step, which enables us to use efficient linear solvers and precon-
ditioners [3].

2. The inequality (7) is related to the stability condition of the SchemeOsPstab. This scheme
is essentially unconditionally stable, that is, the condition on�t is not affected by themesh
size h. It is known that the backward Euler, BDF2, Crank–Nicolson schemes (e.g. [14])
are also unconditionally stable. However, these schemes contain unsymmetric matrices
that originate from the convective terms.

3. When k = 1, Notsu and Tabata [31] proposed and analyzed a pressure-stabilized LG
scheme, where the locally linearized velocity was not introduced.

4. Burman and Fernández [11] proposed and analyzed a scheme for the transient Stokes
problem using the same type of pressure stabilization. Since in their choice the stabiliza-
tion parameter δ0 is proportional to 1/ν, it seems to be difficult to get error estimates
independent of ν, which we will show in the next section.

3 An Error Estimate Focused on the Viscosity for the Oseen Problem

3.1 An Error Estimate for the Velocity

Before stating the result we introduce hypotheses.

Hypothesis 1 The velocityw and the exact solution (u, p) of the Oseen problem (1) satisfies

w ∈ C(W 1,∞
0 ∩ W 2,∞) ∩ H1(L∞), u ∈ Z2 ∩ H1(Hk+1), p ∈ C(Hk+1).

Hypothesis 2 The time increment �t satisfies 0 < �t ≤ �t0, where

�t0 := 1

4α∗|w|C(W 1,∞)

,

and α∗ is the constant defined in (11) below.

Hypothesis 3 (Triangulation) Every element K ∈ Th has at least one internal vertex.

Hypothesis 4 (Choice of the initial value) There exists a positive constant c independent of
h such that

‖u0h − u0‖0 ≤ chk |u0|k .
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Remark 4 1. Hypothesis 1 implies that u ∈ C(Hk+1) and u0 ∈ Hk+1(Ω)d .
2. Under Hypotheses 1 and 2, the property (7) for w∗ = wn−1 at each step n is clearly

satisfied.
3. Hypothesis 4 is satisfied if we take u0h as the Lagrange interpolation of u0, for example.

Herein, Hypothesis 4 is enough to derive the estimate for the velocity (Theorem 1) and
a discrete primitive of the pressure (Theorem 2). However, to derive estimates for the
pressure in a norm, a special choice of the initial value is needed. In the analysis of
schemes with symmetric pressure stabilization [11], they took u0h as the Ritz-projection
of the initial value u0 to derive the optimal estimate O(hk) for the pressure in L2-norm.
In the analysis of pressure-stabilized Petrov–Galerkin schemes [27], they proposed a
special choice of u0h to remove the effect of the pressure error at the initial time. In the
present scheme with a special choice of the initial value, we can derive the estimate for
the pressure of the optimal order as in [31] but the constant depends on the viscosity.

Theorem 1 Let Vh ×Qh be the Pk/Pk-finite element space for k ≥ 1. Suppose Hypotheses 1–
4. Let (uh, ph) := {(unh, pnh )}NT

n=0 be the solution of Scheme OsPstab. Then it holds that

‖uh − u‖�∞(L2),
√

ν‖∇(uh − u)‖�2(L2)

≤ c∗(�t + h2 + hk)
[

‖w‖H1(L∞) + ‖u‖Z2 + ‖u‖H1(Hk+1) + (1 + δ−1
0 )‖u‖�∞(Hk+1)

(1 + δ0)‖p‖�2(Hk+1)

]

,

(10)

where c∗ is a positive constant independent of ν, h, �t but depends on T , ‖u‖C(H1) and
‖w‖C(W 2,∞).

Remark 5 1. Note that we assumed that ν ≤ 1.
2. The parameter δ0 should not depend on ν from the viewpoint of this estimate. In [11]

they took δ0 = 1/ν. Indeed, if we consider the physical units, the dimension of δ0 is
same as that of 1/ν, which is seen, e.g., in (25) below. However, to minimize the terms in
the right hand side of (25) and (26), the choice δ0 ∼ 1/ν does not seem always optimal.

3. If Pk/Pk−1-element is employed, we have an estimate of the same order �t + h2 + hk ,
but it seems to be difficult to remove the dependence on the viscosity, which is observed
in the numerical experiments in Sect. 4.

4. The term h2 appears in (10) because of the introduction of the locally linearized velocity.
5. It seems to be difficult to derive the estimate of orderO(hk+1) for the spatial discretization

in �∞(L2) independent of the viscosity. Although another type of Stokes projection yields
an estimate of order O(hk+1), e.g. [31], the projection error contains the dependence.
According to [25], it is open that whether such viscosity-independent “semi-robust”
estimate can be proved for some method. The estimate O(hk+1/2) can be found for the
continuous interior penalty method [10] and the local projection stabilization method
[15] for the Navier–Stokes problem. De Frutos et al. [14] derived the same order O(hk)
as ours independent of the viscosity for the backward Euler method or the BDF2 formula
with the grad-div stabilization.

6. When k = 1, Notsu and Tabata [31] analyzed the pressure-stabilized LG scheme without
the locally linearized velocity. They derived the estimates

‖∇(uh − u)‖�∞(L2), ‖ph − p‖�2(L2) ≤ c(ν−1)(�t + h),

where the constant c depends on ν−1 exponentially.
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Before the proof we prepare some lemmas. First we recall a discrete version of the Gron-
wall inequality.

Lemma 1 (discrete Gronwall inequality) Let γ0 and γ1 be non-negative numbers, �t ∈
(0, 1

2γ0
] be a real number, and {xn}n≥0, {yn}n≥1 and {bn}n≥1 be non-negative sequences.

Suppose
xn − xn−1

�t
+ yn ≤ γ0x

n + γ1x
n−1 + bn, ∀n ≥ 1.

Then, it holds that

xn + �t
n
∑

i=1

yi ≤ exp[(2γ0 + γ1)n�t]
(

x0 + �t
n
∑

i=1

bi
)

, ∀n ≥ 1.

Lemma 1 is shown by using the inequalities

xn + yn�t ≤ (1 − γ0�t)−1[(1 − γ0�t)xn + yn�t]
≤ (1 − γ0�t)−1[(1 + γ1�t)xn−1 + bn�t]
≤ exp[(2γ0 + γ1)�t](xn−1 + bn�t),

where we have used simple inequalities

1 ≤ 1

1 − γ0�t
≤ 1 + 2γ0�t,

1 ≤ 1 + γ�t ≤ exp(γ�t), γ ≥ 0.

Instead of the well-know summation form of the discrete Gronwall inequality, e.g., in [22],
we use this form because the condition on�t does not include γ1, which will make the proof
simpler.

In Lemmas 2–4 below, the constants c are independent of h.
We recall the fundamental properties of Lagrange and Clément interpolations [12,13].

Lemma 2 Suppose that {Th}h↓0 is a regular family of triangulations of Ω .

(i) Let �
(m)
h : C(Ω)i → (W (m)

h )i , i = 1, d, be the Lagrange interpolation operator to
Pm-finite element space for a positive integer m. Then there exist positive constants α∗ ≥ 1
and c independent of h such that

|�(1)
h w|1,∞ ≤ α∗|w|1,∞, ∀w ∈ W 1,∞(Ω)d , (11)

‖�(1)
h w − w‖0,∞ ≤ ch2|w|2,∞, ∀w ∈ W 2,∞(Ω)d ,

‖�(m)
h w − w‖0,K ≤ chm+1

K |w|m+1,K , ∀K ∈ Th,∀w ∈ Hm+1(K )i , i = 1, d.

(ii) Let �
(m)
h,C : L2(Ω) → W (m)

h be the Clément interpolation operator to Pm-finite element
space for a positive integer m. Then there exists a positive constants c such that

|�(m)
h,Cψ − ψ |1 ≤ chm |ψ |m+1, ∀ψ ∈ Hm+1(Ω),

(
∑

K∈Th

|�(m)
h,Cψ |2m,K

)1/2

≤ c|ψ |m, ∀ψ ∈ Hm(Ω).

In our analysis, we need an approximation zh of a divergence-free velocity and a bound
for b(zh, qh) for qh ∈ Qh . We choose zh as the Lagrange interpolation or the first component
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of a modified Stokes projection. These are examples of various projection considered in [11,
inequalities (3.5) and (3.6)].

When k ≥ 2, we use the auxiliary Pk−1-pressure space Qh defined in (5), and (̂zh, r̂h) ∈
Vh × Qh be the Stokes projection of (z, r) ∈ H1

0 (Ω)d × L2
0(Ω) for the fixed viscosity ν = 1

defined by

(∇ ẑh,∇vh) − (∇ · vh, r̂h) = (∇z,∇vh) − (∇ · vh, r), ∀vh ∈ Vh, (12a)

−(∇ · ẑh, qh) = −(∇ · z, qh), ∀qh ∈ Qh . (12b)

In the case (z, r) = (u, 0) this is the modified Stokes projection introduced by de Frutos et
al. [14].

Lemma 3 Suppose that {Th}h↓0 is a regular family of triangulations of Ω and Hypothesis 3.
Let Vh × Qh be the Pk/Pk−1-finite element space for k ≥ 2. Then, there exists a positive
constant c such that

‖̂zh − z‖1, ‖̂rh − r‖0 ≤ chk(|z|k+1 + |r |k), (13)

where (̂zh, r̂h) ∈ Vh × Qh is the Stokes projection of (z, r) ∈ (H1
0 (Ω)d ∩ Hk+1(Ω)d) ×

(L2
0(Ω) ∩ Hk(Ω)) defined in (12).

This estimate is a direct consequence of the inf-sup stability for the Pk/Pk−1-element [6].
Since in (12) the fixed viscosity is used, we have the estimate of the projection independent
of the viscosity.

Lemma 4 Suppose that z ∈ Hk+1(Ω)d satisfies ∇ · z = 0, {Th}h↓0 is a regular family of
triangulations of Ω and Hypothesis 3. Let Vh × Qh be the Pk/Pk-finite element space for
k ≥ 1. Let zh ∈ Vh be the Lagrange interpolation of z when k = 1, or the first component
of the Stokes projection of (z, 0) defined in (12) when k ≥ 2. Then, there exists a positive
constant c such that

b(zh, qh) ≤ chk |z|k+1|qh |h, ∀qh ∈ Qh, (14)

where the semi-norm | · |h is defined in (8)

Proof When k = 1, by using ∇ · z = 0, the integration by part and Lemma 2, we get the
estimate (14) as follows:

b(zh, qh) = b(zh − z, qh) = (zh − z,∇qh) ≤ c
∑

K∈Th

h2K |z|2,K ‖∇qh‖0,K

≤ ch|z|2|qh |h .
When k ≥ 2, it holds that from (12b)

b(zh, qh) = b(z, qh) = 0, ∀qh ∈ Qh .

Let �
(k−1)
h qh ∈ Qh be the Lagrange interpolation of qh with the correction of the constant

so that �
(k−1)
h qh ∈ L2

0(Ω). Since qh − �
(k−1)
h qh ∈ L2

0(Ω) and L2
0(Ω) is orthogonal to

constants, it holds that from Lemma 2

‖qh − �
(k−1)
h qh‖0 ≤ ‖qh − �

(k−1)
h qh‖0 ≤ c

⎛

⎝
∑

K∈Th

h2kK |qh |2k,K
⎞

⎠

1/2

.
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By Lemma 3 we get the estimate (14) as follows:

b(zh, qh) = b(zh, qh − �
(k−1)
h qh)

≤ ‖∇ · (zh − z)‖0‖qh − �
(k−1)
h qh‖0 ≤ chk |z|k+1|qh |h .

��

We now begin the proof of Theorem 1, where we also refer to Lemmas 7–10 in the
“Appendix” section for properties of the mapping X1(·).

Proof (Theorem 1) Here we simply write Xn−1
1h = X1(�

(1)
h wn−1). We use c to represent a

generic positive constant that is independent of ν, �t and h but depends on Sobolev norms
‖u‖C(H1) and ‖w‖C(W 2,∞), and may take a different value at each occurrence.

Let zh(t) ∈ Vh be, as in Lemma 4, the Lagrange interpolation of u(t) when k = 1, or
the first component of the Stokes projection of (u(t), 0) defined in (12) when k ≥ 2, and let
rh(t) ∈ Qh be the Clément interpolation of p(t) with the correction of the constant so that
rh(t) ∈ L2

0(Ω). We define the error terms by

(enh , ε
n
h ) := (unh − znh, p

n
h − rnh ), η(t) := u(t) − zh(t).

From (9a), (2a) with t = tn and v = vh , and (9b), we have an error equations in (enh , ε
n
h ):

(

enh − en−1
h ◦ Xn−1

1h

�t
, vh

)

+ a(enh , vh) + b(vh, ε
n
h )

= (Rn, vh) + a(ηn, vh) + b(vh, p
n − rnh ), ∀vh ∈ Vh, (15a)

b(enh , qh) − δ0Ch(εnh , qh) = −b(znh, qh) + δ0Ch(rnh , qh), ∀qh ∈ Qh, (15b)

for n = 1, . . . , NT , where Rn := Rn
1 + Rn

2 + Rn
3 ,

Rn
1 := ∂un

∂t
+ (wn · ∇)un − un − un−1 ◦ X1(w

n−1)

�t
,

Rn
2 := un−1 ◦ Xn−1

1h − un−1 ◦ X1(w
n−1)

�t
,

Rn
3 := ηn − ηn−1 ◦ Xn−1

1h

�t
.

(16)

Substituting (vh, qh) = (enh , ε
n
h ) in (15) and using the identity (a − b)a = (1/2)(a2 − b2 +

(a − b)2) yields

1

2�t

(‖enh‖20 − ‖en−1
h ◦ Xn−1

1h ‖20 + ‖enh − en−1
h ◦ Xn−1

1h ‖20
)+ ν‖∇enh‖20 + δ0|εnh |2h

= (Rn, enh) + a(ηn, enh) + b(enh , p
n − rnh ) + b(znh, ε

n
h ) − δ0Ch(rnh , εnh ).

(17)

We now estimate the terms in (17). With Hypothesis 2 and the properties

�
(1)
h wn−1 ∈ W 1,∞

0 (Ω)d and |�(1)
h wn−1|1,∞�t ≤ α∗|wn−1|1,∞�t ≤ 1/4, (18)

we use Lemma 7 in “Appendix” to have

‖en−1
h ◦ Xn−1

1h ‖20 ≤ (1 + c�t)‖en−1
h ‖20. (19)
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To apply the discrete Gronwall inequality (Lemma 1) with xn := ‖enh‖20, we fix a γ0 such
that �t0 ≤ 1

2γ0
. From the Schwarz’s inequality, we obtain

(Rn
i , enh) ≤ 2

γ0
‖Rn

i ‖20 + γ0

8
‖enh‖20, i = 1, 2, 3.

We estimate ‖Rn
i ‖0, i = 1, 2, 3. By Lemma 8 in “Appendix”,

‖Rn
1‖0 ≤ c

√
�t

(

‖u‖Z2(tn−1,tn) +
∥
∥
∥
∥

∂w

∂t

∥
∥
∥
∥
L2(tn−1,tn;L∞)

)

. (20)

By Lemma 9 in “Appendix” with q = 2, p = ∞, p′ = 1, w1 = �
(1)
h wn−1, w2 = wn−1 and

v = un−1, and by Lemma 2,

‖Rn
2‖0 ≤ c‖�(1)

h wn−1 − wn−1‖0,∞ ≤ ch2. (21)

By Lemma 10 in “Appendix” with v = η and w∗ = �
(1)
h wn−1, and by Lemmas 2 or 3,

‖Rn
3‖0 ≤ c√

�t

(∥
∥
∥
∥

∂η

∂t

∥
∥
∥
∥
L2(tn−1,tn;L2)

+ ‖∇η‖L2(tn−1,tn;L2)

)

≤ chk√
�t

(

‖u‖H1(tn−1,tn;Hk+1)

)

.

(22)

An estimate for a is easily obtained by Lemmas 2 or 3:

a(ηn, enh) ≤ ν

2
‖∇ηn‖20 + ν

2
‖∇enh‖20 ≤ ch2k |un |2k+1 + ν

2
‖∇enh‖20, (23)

where we note that we assumed ν ≤ 1. The integration by part and Lemma 2-(ii) yields

b(enh , p
n − rnh ) = (enh ,∇(pn − rnh )) ≤ γ0

8
‖enh‖20 + 2

γ0
‖∇(pn − rnh )‖20

≤ γ0

8
‖enh‖20 + ch2k |pn |2k+1.

(24)

By Lemma 4,

b(znh, ε
n
h ) ≤ chk |un |k+1|εnh |h ≤ c

δ0
h2k |un |2k+1 + δ0

4
|εnh |2h . (25)

By using stability of Clément interpolation (Lemma 2-(ii)),

− δ0Ch(rnh , εnh ) ≤ δ0|rnh |h |εnh |h ≤ δ0|rnh |2h + δ0

4
|εnh |2h ≤ cδ0h

2k |pn |2k + δ0

4
|εnh |2h . (26)

Gathering the estimates (19)–(26), from (17) we obtain

1

2�t
(‖enh‖20 − ‖en−1

h ‖20) + ν

2
‖∇enh‖20 + δ0

2
|εnh |2h ≤ c‖en−1

h ‖20 + γ0

2
‖enh‖20

+ c

{

�t

(

‖u‖2Z2(tn−1,tn) +
∥
∥
∥
∥

∂w

∂t

∥
∥
∥
∥

2

L2(tn−1,tn;L∞)

)

+ h2k

�t
‖u‖2H1(tn−1,tn;Hk+1)

+ h4 + h2k[(1 + δ−1
0 )‖un‖2k+1 + (1 + δ0)‖pn‖2k+1]

}

,
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We now apply Lemma 1 to obtain the following for 1 ≤ n ≤ NT

‖enh‖20 + ν�t
n
∑

j=1

‖∇e jh‖20 + δ0�t
n
∑

j=1

|ε j
h |2h

≤ c exp{c′n�t}(�t2 + h2k + h4)

[∥
∥
∥
∥

∂w

∂t

∥
∥
∥
∥

2

L2(0,tn;L∞)

+ ‖u‖2Z2(0,tn) + ‖u‖2H1(0,tn;Hk+1)

+ (1 + δ−1
0 )�t

n
∑

j=1

‖u j‖2k+1 + (1 + δ0)�t
n
∑

j=1

‖p j‖2k+1 + ‖u0‖2k+1

]

,

(27)

where we have used Hypothesis 4 for the initial value. We have the conclusion by the triangle
inequalities,

‖uh − u‖�∞(L2) ≤ ‖eh‖�∞(L2) + ‖η‖�∞(L2)

≤ ‖eh‖�∞(L2) + chk‖u‖�∞(Hk+1),

‖∇(uh − u)‖�2(L2) ≤ ‖∇eh‖�2(L2) + ‖∇η‖�2(L2)

≤ ‖∇eh‖�2(L2) + chk‖u‖�2(Hk+1).

��
Remark 6 Our analysis need that Qh is Pk-finite element space in the estimate (24) to have
O(hk) in H1-norm.

3.2 An Error Estimate of a Discrete Primitive of the Pressure

Following [15] we derive an error estimate of a discrete in time primitive of the pressure
instead of the �2(L2) norm of the pressure. We also use the estimate in [17] to bound a term
in the LG scheme.

First we recall the inf-sup stability of the stabilized method [9].

Lemma 5 There exists a positive constant c such that

‖qh‖0 ≤ c sup
vh∈Vh

b(vh, qh)

‖vh‖1 + c|qh |h, qh ∈ Qh .

We now define the discrete in time primitive of the pressure:

Pn := �t
n
∑

j=1

p j , Pn
h := �t

n
∑

j=1

p j
h , n = 1, . . . , NT .

Theorem 2 Under the same assumption as in Theorem 1, it holds that

‖Ph − P‖�∞(L2)

≤ c∗∗(�t + h2 + hk)max{1, δ−1/2
0 }

[

‖w‖H1(L∞) + ‖u‖Z2 + ‖u‖H1(Hk+1)

+ (1 + δ−1
0 )‖u‖�∞(Hk+1) + (1 + δ0)‖p‖�2(Hk+1)

]

,

(28)

where c∗∗ is a positive constant independent of ν, h, �t but depends on T , ‖u‖C(H1) and
‖w‖C(W 2,∞).
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Proof We use same notation in the proof of Theorem 1. We define En
h by

En
h := �t

n
∑

j=1

ε
j
h .

By Lemma 5 it holds that

‖En
h‖0 ≤ c sup

vh∈Vh

b(vh, En
h )

‖vh‖1 + c|En
h |h . (29)

From (15a) we obtain for n = 1, . . . , NT ,

b(vh, E
n
h ) = −

n
∑

j=1

(e jh − e j−1
h ◦ X j−1

1h , vh) − �t
n
∑

j=1

a(unh − un, vh)

+ �t
n
∑

j=1

(R j , vh) + �t
n
∑

j=1

b(vh, p
n − rnh )

=:I1 + I2 + I3 + I4.

For I1, it holds that

|I1| =
∣
∣
∣
∣
(enh − e0h, vh) +

n
∑

j=1

(e j−1
h − e j−1

h ◦ X j−1
1h , vh)

∣
∣
∣
∣
,

and

|(e j−1
h − e j−1

h ◦ X j−1
1h , vh)| ≤ ‖e j−1

h − e j−1
h ◦ X j−1

1h ‖−1‖vh‖1 ≤ c�t‖e j−1
h ‖0‖vh‖1,

where ‖ · ‖−1 is the norm in H−1 and we have used Lemma 11 in the “Appendix” section.
We then obtain

|I1| ≤ (‖enh‖0 + ‖e0h‖0 + cT ‖eh‖�∞(L2))‖vh‖1.
Estimates of |Ii |, i = 2, 3, 4, are easily obtained as follows:

|I2| ≤ ν�t
n
∑

j=1

‖∇(u j
h − u j )‖0‖∇vh‖0

≤ √
νT (

√
ν‖∇(uh − u)‖�2(L2))‖vh‖1,

|I3| ≤ �t
n
∑

j=1

‖R j‖0‖vh‖0 ≤ √
T ‖R‖�2(L2)‖vh‖1,

|I4| ≤ �t
n
∑

j=1

‖pn − rnh ‖0‖vh‖1.

For |En
h |h , it holds that

|En
h |h ≤ √

T δ
−1/2
0

(

δ0�t
n
∑

j=1

|ε j
h |2h
)1/2

.
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Gathering these estimates, from (29) we have

‖En
h‖0 ≤ c

[

(1 + T )‖eh‖�∞(L2) + √
νT (

√
ν‖∇(uh − u)‖�2(L2))

+ √
T ‖R‖�2(L2) + �t

n
∑

j=1

‖pn − rnh ‖0 + √
T δ

−1/2
0

(

δ0�t
n
∑

j=1

|ε j
h |2h
)1/2]

.

The bound for δ0�t
∑n

j=1 |ε j
h |2h was already obtained in (27) in the proof of Theorem 1.

Gathering these estimate and using (10), (20)–(22) and Lemma 2, we have we have the
conclusion (28).

4 Numerical Results

We consider test problems given by manufactured solutions in d = 2. We compare Schemes
OsTH and OsPstab with k = 2 for the Oseen problem (1) to show higher accuracy of
Scheme OsPstab for small viscosity and large pressures. We additionally show numerical
results of the Navier–Stokes problem, which is given by replacing w by the unknown u in
(1). The corresponding Schemes NSTH and NSPstab are given by replacing wn−1 by un−1

h
in Schemes OsTH and OsPstab.

Scheme NSTH Let u0h ∈ Vh be an approximation of u0. Find {(unh, pnh )}NT
n=1 ⊂ Vh × Qh such

that
(
unh − un−1

h ◦ X1(�
(1)
h un−1

h )

�t
, vh

)

+ a(unh, vh) + b(vh, p
n
h )

= ( f n, vh), ∀vh ∈ Vh,

b(unh, qh) = 0, ∀qh ∈ Qh .

Scheme NSPstab Let u0h ∈ Vh be an approximation of u0. Find {(unh, pnh )}NT
n=1 ⊂ Vh × Qh

such that
(
unh − un−1

h ◦ X1(�
(1)
h un−1

h )

�t
, vh

)

+ a(unh, vh) + b(vh, p
n
h )

= ( f n, vh), ∀vh ∈ Vh,

b(unh, qh) − δ0Ch(pnh , qh) = 0, ∀qh ∈ Qh .

In the four schemes we set the initial value as u0h = �
(2)
h u0, where �

(2)
h is the interpolation

operator to the P2-element.

Example 1 Weconsider theOseen problem and theNavier–Stokes problem. LetΩ = (0, 1)2,
T = 1. The functions f and u0 are defined so that the exact solution is

u1(x, t) = φ(x1, x2, t),

u2(x, t) = −φ(x2, x1, t),

p(x, t) = Cp sin(π(x1 + 2x2) + 1 + t),

(30)

where

φ(a, b, t) = − sin(πa)2 sin(πb){sin(π(a + t)) + 3 sin(π(a + 2b + t))}.
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Fig. 1 The triangulation of Ω for
N = 16 used in Examples 1 and
2

Table 1 Symbols used in Example 1

φ u u p
X �∞(L2) �2(H1

0 ) �2(L2)

TH � • �
Pstab � ◦ �

For the Oseen problem we set w := u. We consider the six cases ν = 10−2, 10−4, 10−6,
Cp = 1, 10.

For triangulations of domains FreeFem++ [21] is used. Let N = 16, 23, 32, 45 and 64
be the division number of each side of Ω , and we set h = 1/N . When ν = 10−6, we also
performed experiments for N = 90, 108 and 128. Figure 1 shows the triangulation of Ω

when N = 16. The time increment �t is set to be �t = h2 so that we can observe the
convergence behavior of order h2. The purpose of the choice �t = O(h2) is to examine
the theoretical convergence order, but it is not based on the stability condition. We set the
stabilization parameter δ0 = 10−1 for Schemes OsPstab and NSPstab.

The relative error EX is defined by

EX (φ) = ‖φ − φh‖X ,h

‖φ‖X ,h
,

for φ = u in X = �∞(L2) and �2(H1
0 ), and for φ = p in X = �2(L2). Here ‖ · ‖X ,h means

that the spatial norm is computed approximately by numerical quadrature of order nine [28].
Table 1 shows the symbols used in graphs. Since every graph of the relative error EX versus
h is depicted in the logarithmic scale, the slope corresponds to the convergence order.
Case (a) Let Cp = 1 in (30). We consider the Oseen problem and compare Schemes OsTH
and OsPstab.
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Fig. 2 Case (a). Relative errors
versus h for ν = 10−2 (top left),
ν = 10−4 (top right) and
ν = 10−6 (bottom)

Figure 2 shows the graphs of the errors E�∞(L2)(u) (�,�), E�2(H1
0 )(u) (•,◦) and

E�2(L2)(p) (�,�) versus h. When ν = 10−2, all convergence orders are almost two and
there are no significant differences in both schemes.

When ν = 10−4, the convergence orders of E�∞(L2)(u) (�,�) are almost two in both
schemes and there are no significant differences. The values of them are almost 1.5 times
larger than those for ν = 10−2. The convergence order of E�2(H1

0 )(u) in Scheme OsTH (•)
is less than two, while the convergence order is almost two in OsPstab (◦) and the value for
N = 64 is four times smaller than that in Scheme OsTH. In order to obtain the convergence
order two in Scheme OsTH, finer meshes seem to be necessary. The convergence order of
the error E�2(L2)(p) (�,�) is almost two in both schemes and the values are almost same as
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those for ν = 10−4. However, we do not have theoretical estimates for p independent of the
viscosity in the �2(L2)-norm.

We observe that, although in Case (a) there are no significant differences between the both
schemes in the errors E�∞(L2)(u) (�,�) for ν = 10−2 and ν = 10−4, Scheme OsPstab shows
higher accuracy for ν = 10−4 in the errors E�2(H1

0 )(u) (◦). When ν = 10−6, the increase in

the errors E�∞(L2)(u) of Scheme OsPstab (�) as compared with ν = 10−4 is less than 2%.
We cannot observe monotonic convergence in E�2(H1

0 )(u) of Scheme OsTH (•), whereas we
can observe the convergence of Scheme OsPstab (◦) but the order is less than two. We note
that in the theoretical error bound of E�2(H1

0 )(u) the constant includes
√

ν. To observe the

convergence order O(h2), more finer meshes will be necessary.
We consider the problem where the pressure value is larger.

Case (b) Let Cp = 10 in (30). We consider the Oseen problem and compare Schemes OsTH
and OsPstab.

Figure 3 shows the graphs of the errors. When ν = 10−2, the values of E�∞(L2)(u) (�,�)
are almost same as Case (a). We observe differences in E�2(H1

0 )(u) in the two schemes. The
values of errors in SchemeOsTH (•) are about 1.5 times as large as those in SchemeOsPstab
(◦), and the values in the both schemes are about two to three times as large as in Case (a).
The values of relative errors E�2(L2)(p) (�,�) are, conversely, smaller than those in Case
(a).

When ν = 10−4, differences of the schemes appear more clearly in E�∞(L2)(u) and
E�2(H1

0 )(u) than Case (a). The values of E�∞(L2)(u) in Scheme OsTH (�) are almost two to
three times as large as those in Scheme OsPstab (�). The values in Scheme OsPstab (�) are
almost 1.5 times larger than those for ν = 10−2. For N = 16 and 23 the values of E�2(H1

0 )(u)

in Scheme OsTH (•) are too large to be plotted in the graph, and for N = 32, 45 and 64 the
values are almost four to seven times as large as those in Scheme OsPstab (◦). The values
of relative errors E�2(L2)(p) (�,�) are, conversely, smaller than those in Case (a).

When ν = 10−6, for E�∞(L2)(u) in Scheme OsPstab (�), we observe less than 15%
increase compared with ν = 10−4. The values of E�2(H1

0 )(u) in Scheme OsTH (•) are too
large to be plotted on the graph.

We additionally consider the Navier–Stokes problem.
Case (c) Let Cp = 1 in (30). We consider the Navier–Stokes problem and compare
Schemes NSTH and NSPstab.

Figure 4 shows the graphs of the errors. We observe almost the same behavior of the errors
E�∞(L2)(u) (�,�) and E�2(H1

0 )(u) (•,◦) as in Case (a) while the values of E�2(L2)(p) (�,�)
are almost 1.5 to 2 times as large as in Case (a).
Case (d) Let Cp = 10 in (30). We consider the Navier–Stokes problem and compare
Schemes NSTH and NSPstab.

Figure 5 shows the graphs of the errors. When ν = 10−2, we observe the almost same
behavior as in Case (b). When ν = 10−4, the values of E�∞(L2)(u) (�,�) and E�2(L2)(p)
(�,�) are almost two to four times as large as in Case (b), while the values of E�2(H1

0 )(u)

(•,◦) are almost same as in Case (b). When ν = 10−6, the errors of Scheme NSTH (�, •,
�) are not shown because the values E�2(H1

0 )(u) of Scheme NSTH (•) at N = 16, 23, 32
are larger than 7.0 and thus not solved property.

Example 2 In the Navier–Stokes problem we set

Ω = (0, 1)2, T = 40, ν = 10−4, f (x, t) = (0, 10 sin(2πx2))
T , u0 = 0,
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Fig. 3 Case (b). Relative errors
versus h for ν = 10−2 (top left),
ν = 10−4 (top right) and
ν = 10−6 (bottom)

and compare Schemes NSTH and NSPstab.

We can easily check that the solution is (u, p)(x, t) = (0,− 5
π
cos(2πx2)). We use the

mesh shown in Fig. 1 and take �t = 0.01. We set the stabilization parameter δ0 = 10−3 for
Scheme NSPstab.

Figures 6 and 7 show the stereographs of the solutions (unh, p
n
h ) at t

n = 40 by the both
schemes. InSchemeNSTH,oscillation is clearly observed for both components of the velocity
and they are far from the constant zero, while in Scheme NSPstab the velocity is almost zero
although small ruggedness is observed. For the pressure, difference between the two schemes
is small compared to the velocity but the solution by SchemeNSPstab is better. Figure 8 shows
the cross-sections of the solutions. We cannot observe difference between the solution by
Scheme NSPstab and the exact solution while that by Scheme NSTH takes different values.
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Fig. 4 Case (c). Relative errors
versus h for ν = 10−2 (top left),
ν = 10−4 (top right) and
ν = 10−6 (bottom)

5 Concluding Remarks

We constructed a pressure-stabilized Lagrange–Galerkin scheme for the Oseen problem
with high-order elements, and showed error estimates with the constants independent of the
viscosity. The numerical examples showed the scheme has higher accuracy than the scheme
with Taylor–Hood element especially for problems with small viscosity and large pressures.
(i) Choice of the stabilization parameter in the pressure stabilization term, (ii) extension of
the discussion to the Navier–Stokes problems, and (iii) numerical experiments of physically
relevant problems will be future works. The error estimate of the pressure in the strong norm
is a remaining issue. To achieve this estimate independent of the viscosity, we will need not
only a special choice of the initial value of the velocity but also new arguments for an error
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Fig. 5 Case (d). Relative errors
versus h for ν = 10−2 (top left),
ν = 10−4 (top right) and
ν = 10−6 (bottom)

estimate of the time derivative of the velocity. Because of the term h2 from the use of the
locally linearized velocity, the order of convergence is optimal only when k = 1 or 2. A new
technique for exact implementation of the LG scheme with higher order is also desired.
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Fig. 6 Example 2. Stereographs of unh1 (top) and u
n
h2 (bottom) at tn = 40 by Scheme NSTH (left) and Scheme

NSPstab (right)

A Estimates for LG Schemes

Lemma 6 is shown in [39, Lemma 5.7].

Lemma 6 Let w∗ ∈ W 1,∞(Ω)d and X1(w
∗) be the mapping defined in (4). Under the

condition �t |w∗|1,∞ ≤ 1/4, the estimate

1

2
≤ det

(
∂X1(w

∗)
∂x

)

≤ 3

2

holds, where det(∂X1(w
∗)/∂x) is the Jacobian of X1(w

∗).

Lemma 7 is shown in [35, Lemma 1].

Lemma 7 Let w∗ ∈ W 1,∞
0 (Ω)d and X1(w

∗) be the mapping defined in (4). Under the
condition �t |w∗|1,∞ ≤ 1/4, there exists a positive constant c independent of �t such that
for v ∈ L2(Ω)d

‖v ◦ X1(w
∗)‖20 ≤ (1 + c|w∗|1,∞�t)‖v‖20.
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Fig. 7 Example 2. Stereographs of pnh at tn = 40 by Scheme NSTH (left) and Scheme NSPstab (right)

Fig. 8 Example 2. Cross-sections of pnh (1/2, ·) and p(1/2, ·)

We now show an estimate for Rn
1 in Lemma 8, or tools for estimating Rn

2 and Rn
3 in Lemmas 9

and 10, where Rn
i , i = 1, 2, 3, are defined in (16). Although these estimates are frequently

used in the analysis of the LG method, e.g. [31,39], we show proofs of Lemmas 8 and 10 for
completeness.

Lemma 8 Suppose that u ∈ Z2, w ∈ C(W 1,∞
0 ) ∩ H1(L∞) and �t |w|C(W 1,∞) ≤ 1/4. Then
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‖Rn
1‖0 ≤ √

�t

[√

2

3
(‖wn−1‖20,∞ + 1)‖u‖Z2(tn−1,tn) +

∥
∥
∥
∥

∂w

∂t

∥
∥
∥
∥
L2(tn−1,tn;L∞)

‖∇un‖0
]

.

Proof We estimate ‖Rn
1‖0 by dividing

Rn
1 =

(
∂un

∂t
+ (wn−1 · ∇)un − un − un−1 ◦ X1(w

n−1)

�t

)

+ ((wn · ∇)un − (wn−1 · ∇)un
)

=:Rn
11 + Rn

12.

For Rn
11, we set

y(x, s) := x − swn−1(x)�t, t(s) := tn − s�t,

and use Taylor’s theorem to get

(un−1 ◦ X1(w
n−1))(x) = un(x) − �t

(
∂un

∂t
+ (wn−1 · ∇)un

)

(x)

+ �t2
∫ 1

0
(1 − s)

(
∂

∂t
+ wn−1(x) · ∇

)2

u(y(x, s), t(s))ds.

Using the property of the Bochner integral, we then have

‖Rn
11‖0 ≤ �t

∫ 1

0

∥
∥
∥
∥
(1 − s)

(
∂

∂t
+ wn−1(·) · ∇

)2

u(y(·, s), t(s))
∥
∥
∥
∥
0
ds

≤ �t

(∫ 1

0
(1 − s)2dx

)1/2(∫ 1

0

∥
∥
∥
∥

(
∂

∂t
+ wn−1(·) · ∇

)2

u(y(·, s), t(s))
∥
∥
∥
∥

2

0
ds

)1/2

≤ √2/3√�t(‖wn−1‖20,∞ + 1)‖u‖Z2(tn−1,tn).

where we have used the transformation of independent variables from x to y and s to t , and
the estimate | det(∂x/∂ y)| ≤ 2 by virtue of Lemma 6. It is easy to show

‖Rn
12‖0 ≤ √

�t

∥
∥
∥
∥

∂w

∂t

∥
∥
∥
∥
L2(tn−1,tn;L∞)

‖∇un‖0.

Combining the two estimate, we have the conclusion. ��
Lemma 9 is a direct consequence of [1, Lemma 4.5] and Lemma 6.

Lemma 9 Let 1 ≤ q < ∞, 1 ≤ p ≤ ∞, 1/p + 1/p′ = 1 and wi ∈ W 1,∞
0 (Ω)d , i = 1, 2.

Under the condition �t |wi |1,∞ ≤ 1/4, it holds that, for v ∈ W 1,qp′
(Ω)d ,

‖v ◦ X1(w1) − v ◦ X1(w2)‖0,q ≤ 21/(qp
′)�t‖w1 − w2‖0,pq‖∇v‖0,qp′ ,

where X1(·) is defined in (4).

Lemma 10 Suppose that v ∈ H1(H1), w∗ ∈ W 1,∞
0 (Ω)d , and �t |w∗|1,∞ ≤ 1/4. Then

∥
∥vn − vn−1 ◦ X1(w

∗)
∥
∥
0 ≤ √

2�t

(∥
∥
∥
∥

∂v

∂t

∥
∥
∥
∥
L2(tn−1,tn;L2)

+ ‖w∗‖0,∞‖∇v‖L2(tn−1,tn;L2)

)

,

where X1(·) is defined in (4).
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Proof Similar to the proof of Lemma 8, by defining

y(x, s) := x − sw∗(x)�t, t(s) := tn − s�t,

and by using the property of the Bochner integral, we have the estimate

∥
∥vn − vn−1 ◦ X1(w

∗)
∥
∥
0 ≤ �t

∫ 1

0

∥
∥
∥
∥

(
∂

∂t
+ (w∗(·) · ∇)

)

v(y(·, s), t(s))
∥
∥
∥
∥
0
ds.

The conclusion follows from the transformation of the independent variables from x to y and
s to t , and the estimate | det(∂x/∂ y)| ≤ 2 by virtue of Lemma 6. ��

Lemma 11 is an extension of [17, Lemma 1] obtained in the 1D case.

Lemma 11 Let w∗ ∈ W 1,∞
0 (Ω)d . Under the condition �t |w∗|1,∞ ≤ 1/4, there exists a

positive constant c independent of �t such that, for v ∈ L2(Ω)d ,

‖v − v ◦ X1(w)‖−1 ≤ c�t‖w‖1,∞‖v‖0,
where X1(·) is defined in (4) and ‖ · ‖−1 is the norm in H−1.
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