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Abstract
In this paper we aim at developing highly accurate and stable method in temporal direction
for time-fractional diffusion equations with initial data v ∈ L2(Ω). To this end we begin
with a kind of (time-)fractional ODEs, and a hybrid multi-domain Petrov–Galerkin spectral
method is proposed. To match the singularity at the beginning of time, we use geometrically
graded mesh together with fractional power Jacobi functions as basis on the first interval.
Jacobi polynomials are then chosen to approximate the solution in temporal direction on the
intervals hereafter. The algorithm is motivated by the discovery that the solution in temporal
direction possesses high regularity in proper weighted Sobolev space on a special mesh in
piecewise sense. Combining standard finite element method, we extend it to solve time-
fractional diffusion equations with initial data v ∈ L2(Ω), in which the mesh in temporal
direction is determined by spatial mesh size and finial time T . Numerical tests show that the
scheme is stable and converges exponentially in time.

Keywords Multi-domain spectral method · Jacobi polynomials · Fractional power Jacobi
functions · Time-fractional diffusion equation

Mathematics Subject Classification 65N35 · 65N30 · 65N15

1 Introduction

Let Ω ⊂ R
d (d = 1, 2, 3) be a bounded convex domain with a polygonal boundary ∂Ω . In

this paper we consider the following initial value problem for the unknown u(x, t):
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0∂
α
t u(x, t) + Lu(x, t) = 0, in QT := Ω × (0, T ],

u(x, t) = 0, on ∂Ω × (0, T ],
u(x, 0) = v(x), in Ω,

(1.1)

where Lu = ∇ · (a(x)∇u) + b(x)u, with a(x), b(x) functions such that L positive definite
and possessing full regularity. Here 0∂

α
t u denotes the left-sided Caputo fractional derivative

of order α ∈ (0, 1) in t , cf. (2.2) below.
In fact (1.1) has an equivalent form, which can be obtained by operating 0 Iα

t on both sides
of (1.1)

u(x, t) + 0 I
α
t Lu(x, t) = v(x), in QT := Ω × (0, T ]. (1.2)

1.1 Brief Overview of Existing Approaches

Convolution quadrature in time is usually chosen to solve evolution equations like (1.2)
numerically. To our best knowledge, the earlier work was established in [16], based on the
previous work of Lubich [13–15].

Many numerical approaches have been developed to deal with the fractional differential
operator 0∂

α
t . L1 scheme is themost popular andwidely used scheme up to now because of its

simple formulation. It has been proven to be (2−α)’s order in [12,28] under the assumption
that u(x, t) ∈ C2[0, T ] for any x ∈ Ω . However, one can not expect such high regularity for
u(x, t)with respect to t because of the so called initial layer [26]. Even though the initial data
is very smooth, the solution still can be singular when t is close to zero [25]. Jin et al. revisited
the L1 scheme in [10] and showed that the scheme is of first order accuracy for v ∈ L2(Ω).
Most recently Yan et al. [31] presented a modified L1 scheme for (1.1) and proved that it
is of O(τ 2−α) even for non-smooth initial data v(x). Stynes et al. [26] considered the L1
method on a graded mesh of the form (t/N )γ T . Under the assumption of certain singularity
of the solution, they proved the method on such mesh is ofO(N−min{2−α,γ α}). Furthermore,
to overcome the computational cost some fast and parareal algorithms are proposed to speed
up the approximation schemes in temporal direction for time fractional diffusion equation,
e.g., [8,22,29,30].

It is known that (1.2) is actually an Volterra-type integral equation with a weakly singular
kernel (t−τ)α−1 in frequency space with respect to each eigenpair ofL. The global behavior
of the solution inspires researchers to apply global approaches, e.g. [2,3,11] which use Jacobi
orthogonal polynomials to approximate the solution numerically.

Spectral methods have been being developed for fractional differential operators. Roughly
speaking, there are twopredominant approaches: using generalized Jacobi functions (GJFs, or
named ‘polyfractonomials’) as basis [1,5,23,24,32–34] or employing fractional power Jacobi
functions (FPJFs, also referred asMüntz-type functions) as basis, see e.g. [6,7].Usually FPJFs
are obtained from Jacobi polynomials, by means of a nonlinear variable transform. In most
recent work [27], a new technique to construct Müntz-type functions was introduced and
singularly perturbed fractional differential equations were solved.

1.2 The Reason of Reconsideration

The spectral methods mentioned above can deal with the singularity of the solution at t = 0
in some degree, but still does not work well for long time simulation, i.e., for problems with
a large final time T . To illustrate it, ignoring the spatial direction, we consider the model
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Table 1 Absolute error under different λT and N by GJFs

N 10 20 40 80 160 320

λT = 10 6.53e−02 1.88e−02 3.65e−03 4.80e−04 9.92e−05 1.00e−05

λT = 100 4.29e−01 1.75e−01 7.80e−02 1.87e−02 6.70e−03 8.77e−04

λT = 1000 5.46e−01 2.22e−01 1.42e−01 5.01e−02 3.70e−02 1.36e−02

Table 2 Absolute error under different λT and N by FPJFs

N 10 15 20 25 30 35

λT = 10 1.41e−03 2.31e−05 2.38e−07 9.43e−08 2.18e−07 5.40e−07

λT = 100 3.40e−01 1.43e−01 5.15e−02 6.54e−03 1.24e−02 1.14e−02

λT = 1000 8.84e−01 7.83e−01 6.66e−01 7.39e−02 8.09e−02 2.13e−01

problem 0∂
α
t û(t) + λû(t) = 0 on t ∈ (0, T ] with initial data v̂. After shifting the domain to

(0, 1], we obtain an equivalent problem (we still use û(t) to denote the unknown)

0∂
α
t û(t) + λT û(t) = 0, in t ∈ (0, 1],

û(0) = v̂.
(1.3)

with λT = T αλ. By Laplace transform one can obtain û(t) = Eα,1(−λT tα) with Eα,1(t)

the Mittag–Leffler function defined by Eα,1(t) = ∑∞
k=0

tk
Γ (kα+1) and Γ (·) representing the

Euler Gamma function.
Let { J̃ δ,σ

n (t)}∞n=0 denote the shifted Jacobi polynomials defined on [0, 1].We applyPetrov–
Galerkin (PG) spectral methods correspondingly with utilizing GJFs {tα J̃−α,α

n (t)}Nn=0 and

FPJFs { J̃ 0,0n (tα)}Nn=0 (referred as fractional spectralmethod in [7] andMüntz SpectralMethod
in [6]) as trial functions to solve (1.3) with α = 0.5 and different λT (Tables 1 and 2).

It can be seen that the method by GJFs converges like O(N−1) and for big λT , i.e., for
long time simulation, more terms of expansion are needed to achieve the desired accuracy.
Thus if we apply the scheme to (1.1) in temporal direction then it will cost too much to solve
the space-time problem to balance the error in time and space.

The scheme by FPJFs converges exponentially for small λT , but does not work for big λT .
This can be interpreted as follows: suppose the error satisfies the same error bound like in
[6, Theorem 3.7], i.e., bounded by Nc−k‖∂kt ûα(t)‖L2

k,k (I )
with ûα(t) = û(t1/α), I := (0, 1).

After manipulations we get (see Sect. 3 for details)

‖∂kt ûα(t)‖L2
k,k (I )

≤ c
Γ (k + 1)|v̂|
Γ (kα + 1)

(
λT

4

)k

. (1.4)

One can see that for large λT , the right hand side grows super fast with respect to k, which
ruins the convergency order N−k . Furthermore, the condition number also increases super
fast which makes it hard to solve for slightly big N .

Besides big finial time T , another reasonwe consider (1.3) with large input λT is because it
can be taken as the eigen-problem of (1.1) (after shifting (0, T ] to (0, 1]), and λ is considered
as the eigenvalue of L. For non-smooth initial data, e.g., v ∈ L2(Ω), we can not ignore the
high frequency part of the solution since it decreases slowly with the increase of λ.
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1.3 Our Approach

In this paper we mainly aim at developing highly accurate and stable scheme in temporal
direction for (1.1) with v ∈ L2(Ω). Our scheme is a space-time formulation, in which we
apply standard finite element method (FEM) in space and hybrid multi-domain PG spectral
method in time which will be clarified later.

We first introduce some notations for use. LetA(·, ·) denote the bilinear form correspond-
ing toL and Vh ⊂ H1

0 (Ω) represent the finite element space with h the parameter of the mesh
size of space. And we use Lh to denote the discrete counterpart of the elliptic operator L,
mapping from Vh to Vh and satisfying for any φ, χ ∈ Vh , (Lhφ, χ) = A(φ, χ)with (·, ·) the
inner product in L2(Ω). Furthermore, we use λh,min = λ1,h < λ2,h < · · · < λM,h = λh,max

to represent the eigenvalues of Lh . Then it is known that λh,min is bounded from below by a
constant independent of h and λh,max ≤ ch−2 with c a constant independent of h.

After applying standard FEM to (1.1) in space and shifting the time domain to (0, 1]we
obtain the semidiscrete problem (see e.g., [9, eq. (3.2)]): find uh(t) ∈ Vh with uh(0) = vh ,
such that

0∂
α
t uh(t) + T αLhuh(t) = 0, for t ∈ (0, 1] (1.5)

where vh ∈ Vh is an appropriate approximation of v. Instead of considering the space-time
scheme directly, we begin with (1.5) in frequency space, say the fractional ODE (1.3), which
was showed in [4], has close connection with (1.1). Since the tensor structure of the time-
space domain and follow the idea of [4], we in fact just need to show the scheme in temporal
direction converges uniformly for (1.3) for any λT ∈ [T αλh,min, T αλh,max ].

Experientially, the more regularity of the solution one can utilize, the higher accuracy
one can achieve. We find that the solution of (1.3) actually possesses high regularity in
piecewise sense on a special mesh. The mesh is geometrically graded with the first interval
I0 satisfying |I0|αλT ≤ 1. For the solution on the first interval, after the transformation of
variable (t/|I0|)α → t/|I0| it can be dropped in the space Bn

δ,σ (I0)(δ, σ > −1) (see the next
section for the definition) for anyfixedn. And the solution on each interval hereafter is actually
infinitely smooth in the space Bn

β,−1(Ii )(β > −1). Based on this we design a hybrid spectral

method,which uses FPJFs as basis on the first interval andGJF s of type (t−ti ) J̃
β,1,i
n (t) for the

intervals hereafter, with J̃β,1,i
n (t) denoting the shifted Jacobi polynomial on Ii := [ti , ti+1] .

The remaining part of this paper is organized as follows: In Sect. 2 we recall some basic
definitions and properties about fractional calculus and Jacobi polynomials. In Sect. 3, we
give the regularity of the solution on the special mesh we mentioned above and present
the hybrid PG spectral method for (1.3). In Sect. 4 we generalize the scheme to (1.1) with
applying FEM in space. We also present some error analysis of the scheme but rigorous error
bound is beyond the goal of this paper. Some numerical results are carried out in Sect. 5 to
verify the stability and the accuracy of the scheme in temporal direction. We finally make
some conclusions in Sect. 6.

2 Preliminaries

2.1 Fractional Calculus

Firstly we recall the definitions of fractional calculus. DenoteΛ := (a, b). For any β > 0 and
f ∈ L1(Λ), the left-sided and right-sided Riemann–Liouville fractional integral operators,
i.e., a I

β
t and t I

β
b , of order β are defined respectively by
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(

a I
β
t f

)
(t) = 1

Γ (β)

∫ t

a
(t − s)β−1 f (s)ds and

(

t I
β
b f

)
(t) = 1

Γ (β)

∫ b

t
(s − t)β−1 f (s) ds,

(2.1)

where Γ (·) is the Euler Gamma function defined by Γ (z) = ∫∞
0 e−t t z−1dt for 	z > 0. For

any s > 0 with k − 1 ≤ s < k, k ∈ N
+, the (formal) left-sided and right-sided Riemann–

Liouville fractional derivative of order s is defined respectively by

R
a∂

s
t f = dk

dtk

(

a I
k−s
t f

)

and R
t∂

s
b f = (−1)k

dk

dtk

(

t I
k−s
b f

)

. (2.2)

Correspondingly the left-sided and right-sided fractional derivative in Caputo sense is defined
respectively by

C
a∂

s
t f = a I

k−s
t

(
dk

dtk
f

)

and C
t ∂

s
b f = (−1)k t I

k−s
b

(
dk

dtk
f

)

. (2.3)

These fractional-order derivatives are well defined for sufficiently smooth functions. Further-
more, it is easy to verify that

C
0 ∂st t

ns = Γ (ns + 1)

Γ ((n − 1)s + 1)
t (n−1)s (2.4)

holds for any n ∈ N
+ with any s > 0, and it reduces to zero when n = 0. Hereafter we use

the notation 0∂
α
t to represent the Caputo fractional derivative operator C

0∂
α
t for notational

simplicity.

2.2 Jacobi Polynomials and Fractional Power Jacobi Functions

Let {Jβ,γ
n (x)}∞n=0 denote the Jacobi polynomials on [−1, 1]. It can be defined by

Jβ,γ
n (x) = (−1)n

(γ + 1)n
n! 2F1

(

−n, n + β + γ + 1, γ + 1,
x + 1

2

)

(2.5)

where (q)n is the (rising) Pochhammer symbol defined by

(q)0 = 1, and (q)n = q(q + 1) . . . (q + n − 1) for n = 1, 2, . . .

and 2F1(a, b, c, x) is the Gauss hypergeometric function given as follows

2F1(a, b, c, x) =
∞∑

k=0

(a)k(b)k
(c)kk! xk, |x | < 1, a, b, c ∈ R,−c 
= N := {0 ∪ N

+}. (2.6)

For a non-positive integer input a = − n, 2F1(a, b, c, x) degenerates to a polynomial, such
that it accepts |x | = 1.

It is well known that {Jβ,γ
n (x)}∞n=0 are mutually orthogonal with respect to the Jacobi

weight function (1−x)β(1+x)γ for β, γ > −1. To apply the Jacobi polynomials on generic
interval [a, b], we define the shifted Jacobi polynomials { J̃β,γ

n (t)}∞n=0 by J̃β,γ
n (t) = Jβ,γ

n (x)
with x = 2 t−a

b−a − 1. Then the orthogonality holds
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∫ b

a
J̃β,γ
n (t) J̃β,γ

m (t)ωβ,γ (t)dt = hβ,γ
n δm,n, m, n = 0, 1, . . . (2.7)

where ωβ,γ (t) = (b − t)β(t − a)γ and (see e.g., [5, (2.7) and (2.8)])

hβ,γ
n = (b − a)β+γ+1Γ (n + β + 1)Γ (n + γ + 1)

(2n + β + γ + 1)Γ (n + 1)Γ (n + β + γ + 1)
. (2.8)

Furthermore, the k’th order derivative of J̃β,γ
n (t) for n = k, k + 1, . . . satisfy

∂kt J̃
β,γ
n (t) = Γ (n + k + β + γ + 1)

(b − a)kΓ (n + β + γ + 1)
J̃β+k,γ+k
n−k (t), n ≥ k (2.9)

and are mutually orthogonal with the weight function ωβ+k,γ+k(t):
∫ b

a
∂kt J̃

β,γ
m (t) ∂kt J̃

β,γ
n (t)ωβ+k,γ+k(t)dt = hβ,γ

k,n δm,n, m, n = k, k + 1, k + 2, . . . ,

(2.10)

with

hβ,γ

k,n = (b − a)β+γ+1Γ (n + β + 1)Γ (n + γ + 1)Γ (n + k + β + γ + 1)

(2n + β + γ + 1)Γ (n − k + 1)Γ 2(n + β + γ + 1)
, k ≤ n.

(2.11)

Let Λ := (a, b). we will use PN (Λ) to denote the set of polynomials on Λ with degree less
than or equal to N hereafter.

We define the fractional power Jacobi functions (FPJFs) {Jβ,γ
α,n (t)}∞n=0 for t ∈ [0, T ] and

α ∈ (0, 1] as follows

Jβ,γ
α,n (t) = (−1)n

(γ + 1)n
n! 2F1

(

−n, n + β + γ + 1, γ + 1,
tα

T α

)

n = 0, 1, 2, . . . .

(2.12)

Since the series 2F1(a, b, c, x) terminates if either a or b is a non-positive integer, the FPJFs
Jβ,γ
α,n (t) defined by (2.12) has finite terms which consists of {1, tα, t2α, . . . , tnα}. So we can

extend the domain from t ∈ [0, T ) to t ∈ [0, T ].
Applying the transformation of integral variable t → T 1−1/αt1/α , we get the following

orthogonality of Jβ,γ
α,n (t):

∫ T

0
Jβ,γ
α,n (t)Jβ,γ

α,m (t)ωβ,γ
α (t)dt = hβ,γ

α,n δm,n, m, n = 0, 1, . . . (2.13)

where ω
β,γ
α (t) = t (γ+1)α−1(T α − tα)β and

hβ,γ
α,n = T α(β+γ+1)Γ (n + β + 1)Γ (n + γ + 1)

α(2n + β + γ + 1)Γ (n + 1)Γ (n + β + γ + 1)
. (2.14)

Applying (2.9) it is easy to verify the following formula holds

∂t J
β,γ
α,n (t) = tα−1kβ,γ

α,n J
β+1,γ+1
α,n−1 (t) (2.15)
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with kβ,γ
α,n = α

T α (n + β + γ + 1). Denote IT = (0, T ) and

Pα
N (IT ) := Span

{
Jβ,γ
α,0 (t), Jβ,γ

α,1 (t), . . . , Jβ,γ

α,N (t)
}

= Span
{
1, tα, t2α, . . . , t Nα

}
, (2.16)

then for any ϕα(t) ∈ Pα
N (IT ), we have 0∂

α
t ϕα(t) ∈ Pα

N−1(IT ) and 0 Iα
t ϕα(t) ∈ Pα

N+1(IT ).

Let {t j ,wβ,γ

j }Nj=0 denote the set of Jacobi–Gauss (JG), Jacobi–Gauss–Radau (JGR),
or Jacobi–Gauss–Lobatto (JGL) nodes and weights relative to the Jacobi weight function

ωβ,γ (t). Denote tα, j = T 1−1/αt1/αj and wβ,γ

α, j = T (α−1)(β+γ+1)

α
wβ,γ

j , appealing to Jacobi–

Gauss quadrature and utilizing transformation of variable t → tαT 1−α , it can be verified
that for any ϕα(t) ∈ Pα

2N+l(I )(l = 1, 0,−1)

∫ T

0
ϕα(t)ωβ,γ

α (t)dt =
N∑

j=0

ϕα(tα, j )w
β,γ

α, j (2.17)

where l = 1, 0,−1 for JG, JGR and JGL respectively.

2.3 Differential Matrix for FPJFs

The definition of Jβ,γ
α,n (t), cf. (2.12), implies the following expansion holds

tα Jβ,γ
α,n (t) =

n∑

k=0

(−1)n
(γ + 1)n

n!
(−n)k(n + β + γ + 1)k

T kα(γ + 1)kk! t (k+1)α :=
n∑

k=0

cn,k
t (k+1)α

T kα
.

(2.18)

Utilizing (2.4) it follows

0∂
α
t

(
tα Jβ,γ

α,n (t)
)

=
n∑

k=0

cn,k
Γ ((k + 1)α + 1)

Γ (kα + 1)T kα
tkα :=

n∑

k=0

cα
n,k

(
t

T

)kα

(2.19)

for n ≥ 0. On the other hand, for l ∈ N, we expand t lα as

(
t

T

)lα

=
l∑

i=0

dl,i J
β,γ

α,i (t) (2.20)

where

dl,i = 1

hβ,γ

α,i

∫ T

0

(
t

T

)lα

Jβ,γ

α,i (t)ωβ,γ
α (t)dt .

So if we denote

G(t) =
[
tα Jβ,γ

α,0 (t), tα Jβ,γ
α,1 (t), . . . , tα Jβ,γ

α,N (t)
]T

and

J (t) = [Jβ,γ
α,0 (t), Jβ,γ

α,1 (t), . . . , Jβ,γ

α,N (t)]T ,

then there holds the following formula

0∂
α
t G(t) = CDJ (t) (2.21)
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where

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cα
0,0 0 0 0 0
cα
1,0 cα

1,1 0 . . . 0
cα
2,0 cα

2,1 cα
2,2 . . . 0

... . . .
... 0

cα
N ,0 cα

N ,1 cα
N ,2 . . . cα

N ,N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d0,0 0 0 . . . 0
d1,0 d1,1 0 . . . 0
d2,0 d2,1 d2,2 . . . 0
... . . . . . .

...

dN ,0 dN ,1 dN ,2 . . . dN ,N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and we use 0∂
α
t G(t) to denote

0∂
α
t G(t) :=

[

0∂
α
t

(
tα Jβ,γ

α,0 (t)
)

, 0∂
α
t

(
tα Jβ,γ

α,1 (t)
)

, . . . , 0∂
α
t

(
tα Jβ,γ

α,N (t)
)]T

.

2.4 Some Useful Definitions and Lemmas

Definition 1 [21, see pp. 117] Suppose L2
β,γ (Λ) is the space of all functions defined on the

interval Λ = (a, b) with corresponding norm ‖·‖L2
β,γ (Λ) < ∞. The inner product and norm

are defined as follows

(v1, v2)L2
β,γ (Λ) =

∫

Λ

v1(t)v2(t)ω
β,γ (t)dt, ‖v‖L2

β,γ (Λ) = (v, v)
1/2
L2

β,γ (Λ)
,

with ωβ,γ (t) = (b− t)β(t −a)γ . And let Bm
β,γ (Λ) denote the non-uniformly (or anisotropic)

Jacobi-weighted Sobolev space:

Bm
β,γ (Λ) :=

{
v : ∂kt v ∈ L2

β+k,γ+k(Λ), 0 ≤ k ≤ m
}

, m ∈ N,

equipped with the inner product and norm

(v1, v2)Bm
β,γ (Λ) =

m∑

k=0

(
∂kt v1, ∂

k
t v2

)

L2
β+k,γ+k (Λ)

, ‖v‖Bm
β,γ (Λ) = (v, v)

1/2
Bm

β,γ (Λ)
.

Lemma 1 The following formula will be used in the analysis later

R
a∂

α
t

(
(t − a)γ J̃β,γ

n (t)
)

= Γ (n + γ + 1)

Γ (n + γ − α + 1)
(t − a)γ−α J̃β+α,γ−α

n (t), n ∈ N (2.22)

where J̃β,γ
n (t) represents the shifted Jacobi polynomials defined on Λ̄ = [a, b] and β ∈

R, γ > α − 1.

3 Multi-domain PG Spectral Scheme for Fractional ODEs

In this section we shall present the multi-domain PG spectral scheme for (1.3) under assump-
tion that λT ∈ [λmin, λmax ] with λmin, λmax ∈ R

+. To avoid heavy notations we use u(t) to
denote the solution û(t) and v to represent v̂ in this section.

Let Tτ be the partition of the time interval Ī := [0, 1] into L + 1 open subintervals
{In = [tn, tn+1]}Ln=0 with nodal points t0 = 0, tn = 2n−L−1 for n = 1, 2, . . . , L + 1, and L

is the smallest integer bigger than log2 λ
1/α
max . That is we ensure tα1 λmax ≤ 1. We assign to

each interval In an approximation order rn and store these orders in the vector r. Hereafter
we denote u j (t) := u(t)|t∈I j .
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3.1 Regularity of uj(t) and the Numerical Scheme

Let uα
0 (t) = u0(|I0|1−1/αt1/α), after trivial manipulations we get

∂nt u
α
0 (t) = v

∞∑

k=n

Γ (k + 1)(−λT |I0|α−1)k

Γ (k − n + 1)Γ (kα + 1)
tk−n . (3.1)

Since the Mittag–Leffler function Eα,1(−t) is completely monotonic [19], it holds

∥
∥∂nt u

α
0 (t)

∥
∥∞ = ∣

∣∂nt u
α
0 (t)

∣
∣
t=0 = Γ (n + 1)(λT |I0|α−1)n

Γ (nα + 1)
|v| (3.2)

then by the fact
∫
I0

(t1 − t)n+σ tn+δdt = |I0|2n+δ+σ+1B(n + δ + 1, n + σ + 1) we have

∥
∥∂nt u

α
0 (t)

∥
∥
L2
n+δ,n+σ (I0)

≤ B(n + δ + 1, n + σ + 1)
Γ (n + 1)(λT |I0|α−1)n

Γ (nα + 1)
|I0|n+ δ+σ+1

2 |v|. (3.3)

with B(·, ·) the Euler Beta function. Note that for δ, σ > −1

B(n + δ + 1, n + σ + 1) ≤ c

22n

and the mesh ensures |I0|αλmax ≈ 1, we then can conclude:

Proposition 1 For any δ, σ > −1 and any nonnegative integer n ∈ N, we have uα
0 (t) ∈

Bn
δ,σ (I0). Furthermore the following estimate holds

∥
∥∂nt u

α
0 (t)

∥
∥
L2
n+δ,n+σ (I0)

≤ cΓ (n + 1)|v|
22nΓ (nα + 1)

(
λT

λmax

)n

|I0| δ+σ+1
2 (3.4)

where c is a constant independent of n and |I0|.
Denote z j (t) := u j (t)−u(t j ) for j = 1, 2, . . . , L , then obviously z j (t) ∈ L2

β,−1(I j )(β >

−1). For any positive integer n ∈ N
+, apply [18, Theorem 1.6] and the following properties

of the Mittag–Leffler function ([20, lemma 3.2]): for t, q > 0 and n ∈ N

dn

dtn
Eα,1(−qtα) = −qtα−n Eα,α+1−n(−qtα) (3.5)

then it follows
∥
∥∂nt z j (t)

∥
∥
L2
n+β,n−1(I j )

= λT |v| ∥∥tα−n Eα,α−n+1(−λT t
α)
∥
∥
L2
n+β,n−1(I j )

≤ λT t
α−n
j

c|v|
1 + λT tαj

‖1‖L2
n+β,n−1(I j )

≤ c|v|B(n + β + 1, n)t−n
j |I j |n+ β

2

(3.6)

where c is a constant independent of n and |I j |. Take into account that t j = t j+1 − t j = |I j |
we obtain the following proposition for u j (t)( j = 1, 2, . . . , L):

Proposition 2 For any β > −1 and n ∈ N we have z j (t) ∈ Bn
β,−1(I j ). Furthermore, for any

n ∈ N
+ there holds

∥
∥∂nt u j (t)

∥
∥
L2
n+β,n−1(I j )

= ∥
∥∂nt z j (t)

∥
∥
L2
n+β,n−1(I j )

≤ c|v|
22n

|I j | β
2 (3.7)

where c is a constant independent of n and |I j |.
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The basiswewill choose on each interval is based on the following qualitative analysis. Let
π

σ,δ
N represent the orthogonal projection mapping from f ∈ L2

σ,δ(I0) to π
σ,δ
N f ∈ PN (I0),

given by for any ϕ ∈ PN (I0), ( f − π
σ,δ
N f , ϕ)L2

σ,δ(I0)
= 0. Following the idea of [21,

Lemma 3.10] with noticing that maxx∈[−1,1]
∣
∣
∣Jσ,δ

m (x)
∣
∣
∣ = O(mmax(−1/2,σ,δ)) and the domain

transplant [−1, 1] → I0 one can obtain for max(σ, δ) + 1 < n ≤ N + 1

∥
∥
∥uα

0 − π
σ,δ
N uα

0

∥
∥
∥∞ ≤ c

(
2

|I0|
) σ+δ+1

2

n−1/2N 1+max(−1/2,σ,δ)−n
∥
∥∂nt u

α
0

∥
∥
L2
n+σ,n+δ(I0)

.

Recall Proposition 1 and take n = N + 1 then one can find the factor involving |I0| is
canceled and exponential convergency is achieved by the asymptotic equivalence NN+1/2 ∼
N !eN (see, e.g., [21, A.8]). That is, uα

0 (t) can be approximated accurately by Jacobi poly-
nomials which implies, by the nonlinear transplant t → |I0|1−αtα , u0(t) can be treated
accurately by FPJFs on I0 in L∞ sense. Similarly, by appealing to [5, Theorem 3.6] together
with Proposition 2 we know the GJFs {(t − t j ) J̃

β,1
n (t)}Nn=0 ∪ 1 (actually polynomials) on I j

can be applied to approximate u j (t) with exponential convergence rate in L∞ sense as well.
For any interval Λ = (a, b), denote

Qγ

N (Λ) = span
{
(t − a)γ J̃β,γ

0 (t), (t − a)γ J̃β,γ
1 (t), . . . , (t − a)γ J̃β,γ

N (t)
}
.

The analysis above inspires us to use the following multi-domain PG spectral method: find
U (t) ∈ Sr0(Tτ ) with initial data U (0) = v such that

(
0∂

α
t U , w

)
ω

+ λT (U , w)ω = 0, ∀w ∈ Sr1(Tτ ) (3.8)

where

Sr0(Tτ ) = {
u ∈ C( Ī ) : u|I0 ∈ Pα

r0+1(I0); u|In ∈ Prn+1(In), n 
= 0
}

and

Sr1(Tτ ) = {
u : u|I0 ∈ Pα

r0(I0); u|In ∈ Q1−α
rn (In), n 
= 0

}

denote the trial and test space respectively and (·, ·)ω denotes the weighted L2-inner product
with weight function

ω(t) =
{

ω0(t) := ωδ,σ
α (I0) = t (σ+1)α−1(tα1 − tα)δ for t ∈ I0;

ωn(t) := ωβ+α,α−1(In) = (tn+1 − t)β+α(t − tn)α−1 for t ∈ In, n ≥ 1;
(3.9)

In fact (3.8) is a time stepping scheme. Denote Uj := U (t)|t∈I j , (3.8) can be put in the
following form:

(
t j∂

α
t U j , w

)
ω j

+ λT
(
Uj , w

)
ω j

= (
G j , w

)
ω j

, ∀w ∈ Sr1(Tτ ) (3.10)

where U0 = v, Uj (t j ) = Uj−1(t j ), G0(t) = 0,

G j (t) = − 1

Γ (1 − α)

j−1∑

i=0

∫

Ii
(t − ξ)−αU ′

i (ξ)dξ, t ∈ I j

for j = 1, 2, . . . , L and ω j := ω j (t) for j ≥ 1 with ω0 := ωδ,σ
α (I0). Hereafter we always

use ‖ · ‖ω j to represent the weighted norm ‖ · ‖L2
ω j

(I j ) in this section.
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3.2 Linear Algebraic Problem

For the consideration of computational cost, in practice we take δ = 0, β = −α. Expand
U (t) in each interval by

U0(t) = v +
r0∑

n=0

a0,nt
α Jσ,0

α,n (t),

Uj (t) = Uj−1(t j ) +
r j∑

n=0

a j,n(t − t j ) J̃
−α,1, j
n (t), j = 1, 2, . . . , L

where { J̃ ·,·, j
n }r jn=0 represent the shifted Jacobi polynomials defined on I j = [t j , t j+1]. For

i ∈ N, j ∈ N
+, denote

ai = [ai,0, ai,1, . . . , ai,ri ],
J j =

[
(t − t j ) J̃

−α,1, j
0 (t), (t − t j ) J̃

−α,1, j
1 (t), . . . , (t − t j ) J̃

−α,1, j
r j (t)

]T
,

J̄ j =
[
(t − t j )

1−α J̃ 0,1−α, j
0 (t), (t − t j )

1−α J̃ 0,1−α, j
1 (t), . . . , (t − t j )

1−α, j J̃ 0,1−α, j
r j (t)

]
,

then we can put the numerical solution in vector form

U0(t) = v + a0G(t), Uj (t) = Uj−1(t j ) + a jJ j .

Step 1 Compute the solution on the first interval, U0 := U (t)|t∈I0 . Firstly focus on the
inner product (0∂α

t U0, w)ω0 on the left hand side of (3.10). Recall (2.21) we have
(

0∂
α
t G(t), J 0,σα,k (t)

)

ω0
= CD(J (t), J 0,σα,k (t))ω0 (3.11)

where the inter product (matri x, scalar)ω is understood in element sense, i.e.,

(matri x, scalar)ω

=

⎡

⎢
⎢
⎢
⎣

(matri x(1, 1), scalar)ω (matri x(1, 2), scalar)ω . . . (matri x(1,m), scalar)ω
(matri x(2, 1), scalar)ω (matri x(2, 2), scalar)ω . . . (matri x(2,m), scalar)ω

...
... . . .

...

(matri x(n, 1), scalar)ω (matri x(n, 2), scalar)ω . . . (matri x(n,m), scalar)ω

⎤

⎥
⎥
⎥
⎦

.

Appealing to (2.13) and (2.14) with β = 0, γ = σ we have
(
J (t), J 0,σα,k (t)

)

ω0
=
[
0, 0, . . . , h0,σα,k , 0, . . . , 0

]T
(3.12)

where

h0,σα,k = |I0|α(σ+1)

α(2k + σ + 1)
, k = 0, 1, . . . , r0. (3.13)

Secondly, consider (U0, w)ω0 .

(
tα J 0,σα,n (t), J 0,σα,k (t)

)

ω0
=
∫ t1

0
tα J 0,σα,n (t)J 0,σα,k (t)ω0(t)dt := S0n,k (3.14)

where S0n,k can be calculated exactly by (2.17). Let S0 = (S0n,k)
r0
n,k=0, then by the orthogo-

nality of FPJFs we can verify S0 is tridiagonal. Set H0 = diag(h0,σα,0 , h
0,σ
α,1 , . . . , h

0,σ
α,r0) and
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M0 = CDH0, then the numerical solution on I0 can be obtained by

a0(M0 + λT S
0) = −λT v

[
h0,σα,0 , 0, 0, . . . , 0

]
:= −λT vJ0. (3.15)

Step 2 Compute U (t) on the intervals hereafter, i.e., Uj := U (t)|t∈I j , j = 1, 2, . . . , L .
As before we consider

(

t j ∂
α
t

(
(t − t j ) J̃

−α,1, j
n (t)

)
, (t − t j )

1−α J̃ 0,1−α, j
k (t)

)

ω j
, n, k = 0, 1, . . . , r j .

Recalling Lemma 1 and ω j in (3.9) it follows
∫

I j
t j ∂

α
t

(
(t − t j ) J̃

−α,1, j
n (t)

)
(t − t j )

1−α J̃ 0,1−α, j
k (t)ω j dt

= Γ (n + 2)

Γ (n + 2 − α)

∫

I j
J̃ 0,1−α, j
n (t) J̃ 0,1−α, j

k (t)(t − t j )
1−αdt

= Γ (n + 2)

Γ (n + 2 − α)
h0,1−α
k δn,k

(3.16)

where h0,1−α
k is given by (2.8) with b − a = |I j |. Secondly focus on
(
(t − t j ) J̃

−α,1, j
n (t), (t − t j )

1−α J̃ 0,1−α, j
k (t)

)

ω j
, n, k = 0, 1, . . . , r j .

Recalling ω j in (3.9) we have
∫

I j
(t − t j ) J̃

−α,1, j
n (t)(t − t j )

1−α J̃ 0,1−α, j
k (t)ω j dt =

∫

I j
J̃−α,1, j
n (t) J̃ 0,1−α, j

k (t)(t − t j )dt

= |I j |2
4

∫ 1

−1
J−α,1
n (x)J 0,1−α

k (x)(x + 1)dx := S j
n,k

(3.17)

where S j
n,k can be calculated accurately by Jacobi–Gauss quadrature with Jacobi weight

function (1 + x).
Finally consider the memory term (G j , (t− t j )1−α J̃ 0,1−α, j

k (t))ω j . Recall the composition
of G j (t) we only need calculate the following integrals

I 0, jn,k =
∫

I j
(t − t j )

1−α J̃ 0,1−α, j
k (t)ω j (t)dt

∫

I0
(t − ξ)−α

[
ξα J 0,σα,n (ξ)

]′
dξ,

I i, jn,k =
∫

I j
(t − t j )

1−α J̃ 0,1−α, j
k (t)ω j (t)dt

∫

Ii
(t − ξ)−α

[
(ξ − ti ) J̃

−α,1,i
n (ξ)

]′
dξ,

where i = 1, 2, . . . , L − 1, j = i + 1, . . . , L . Utilizing (2.15) it follows

∂ξ

[
ξα J 0,σα,n (ξ)

] = αξα−1 J 0,σα,n (ξ) + α

|I0|α (n + σ + 1)ξ2α−1 J 1,σ+1
α,n−1 (ξ).

By variable transform η = ξα

|I0|α , θ = t−t j
|I j | with noticing that |I j | = t j = 2 j |I0| we have

I 0, jn,k = |I j |
∫ 1

0

∫ 1

0
(2 j θ + 2 j − η1/α)−α

(
J̃ 0,σn (η) + (n + σ + 1)η J̃ 1,σ+1

n−1 (η)
)
J̃ 0,1−α
k (θ)dηdθ

:= |I j | Î jn,k (3.18)
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where j = 1, 2, . . . , L and { J̃ ·,·
k (η)}∞k=0 are Jacobi polynomials defined on [0, 1]. Appealing

to (3.9) and Lemma 1 it holds

∂ξ

[
(ξ − ti ) J̃

−α,1,i
n (ξ)

]
= (n + 1) J̃ 1−α,0,i

n (ξ).

Apply domain transplant θ = t−t j
|I j | , η = ξ−ti|Ii | then

I i, jn,k = (n + 1)|Ii ||I j |
∫ 1

0

∫ 1

0

(|I j |θ + t j − |Ii |η − ti
)−α

J̃ 1−α,0
n (η) J̃ 0,1−α

k (θ)dηdθ.

Note that |I j | = t j , |Ii | = ti and |I j | = 2 j−i |Ii |, then

I i, jn,k = (n + 1)|Ii |1−α|I j |
∫ 1

0

∫ 1

0

(
2 j−iθ + 2 j−i − η − 1

)−α

J̃ 1−α,0
n (η) J̃ 0,1−α

k (θ)dηdθ

:= |Ii |1−α|I j | Î j−i
n,k . (3.19)

Denote

Î j−i =
(
Î j−i
n,k

)ri ,r j

n,k=0
, j − i = 1, 2, . . . , L

H j = diag
(
h0,1−α
k

)r j

k=0
, S j =

(
S j
n,k

)r j

n,k=0
, J j = (1, J̄ j )ω j ,

then a j , the coefficients of Uj (t) satisfy

a j (H j + λT S
j ) = −λTU j−1(t j )J j − 1

Γ (1 − α)

j−1∑

i=0

ai (c(i, j)Î j−i ), j = 1, 2, . . . , L

(3.20)

where c(i, j) = |I j | for i = 0 and c(i, j) = |Ii |1−α|I j | for i = 1, 2, . . . , L − 1.

Remark 1 The most time consuming part in this scheme is computing Î j−i for j − i =
1, 2, . . . , L . However once they were obtained, we can store them and reuse them when we
plan to apply more basis on each interval or do simulation for bigger λT , i.e., for larger T .
For example, suppose λ′

T is the new input under which we obtain a new mesh with nodes
t0, t1, . . . , tL ′+1. Furthermore, let

r′ := [r′
0, r

′
1, . . . , r

′
L ′ ]

denote the new vector of approximation order and Î j−i
new be the new matrix formed by (3.19).

Then for j − i ≤ L ,

Î j−i
new =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Î j−i
0,r j+1 . . . Î j−i

0,r′
j

Î j−i . . .
... . . .

Î j−i
ri ,r j+1 . . . Î j−i

ri ,r′
j

Î j−i
ri+1,0 . . . Î j−i

ri+1,r j
Î j−i
ri+1,r j+1 . . . Î j−i

ri+1,r′
j

... . . .
...

... . . .
...

Î j−i
r′
i ,0

. . . Î j−i
r′
i ,r j

Î j−i
r′
i ,r j+1 . . . Î j−i

r′
i ,r

′
j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.21)

And for j − i = L + 1, . . . , L ′ we use (3.19) to compute the whole r′
i + 1 by r′

j + 1 matrix.
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4 Multi-domain PG Spectral Scheme for Fractional PDEs

4.1 Semi-discretization with Respect to Space

Before introducing the fully discrete scheme, we first recall the Galerkin semidiscrete scheme
for (1.1). Let Th be a shape regular and quasi-uniform triangulation of the domain Ω into
d-simplexes with h denoting the maximum diameter and piecewise linear functions are
employed as the basis. We use Vh ⊂ H1

0 (Ω) to denote the discrete finite element space.
Furthermore we will use (·, ·) to represent the dual pair over Ω and A(·, ·) to represent the
bilinear form corresponding to L. After we use the transformation of variable t → T t , the
Galerkin semidiscrete scheme for (1.1) reads: for t ∈ (0, 1] find uh(t) ∈ Vh with uh(0) = vh
such that

(0∂
α
t uh(t), φ) + AT (uh(t), φ) = 0, for ∀φ ∈ Vh, (4.1)

where vh ∈ Vh is a proper approximation of v, and AT (·, ·) = T αA(·, ·).
To begin with we shall introduce some notations and definitions which will be used later.

Let {λ j , ψ j }∞j=1 denote the eigenpairs of L under Dirichlet boundary condition on Ω , and

the space Ḣ s(Ω)(s ∈ R) denote the Hilbert space induced by the norm ‖ · ‖s with

‖v‖2s =
∞∑

j=1

λsj 〈v,ψ j 〉2,

where 〈v1, v2〉 := ∫
Ω

v1v2dx . For s = 0 it reduces to the L2(Ω)-normandweuse the notation
‖ ·‖ for simplicity. We also need the L2-orthogonal projection Ph , mapping ϕ ∈ Ḣ s(Ω)with
s ≥ −1 to Phϕ ∈ Vh , defined by

(Phϕ, χ) = 〈ϕ, χ〉, ∀χ ∈ Vh, (4.2)

and the Ritz projection Rh : H1
0 → Vh , given by

A(Rhϕ, χ) = A(ϕ, χ), ∀χ ∈ Vh . (4.3)

Furthermore letLh represent the discrete counterpart of the elliptic operatorL, mapping from
Vh to Vh and satisfying for any φ, χ ∈ Vh

(Lhφ, χ) = A(φ, χ).

Correspondingly let {ψ j,h}Mj=1 ⊂ Vh denote the L2(Ω)-orthonormal basis for Vh of gener-

alized eigenfunctions of Lh and {λ j,h}Mj=1 be the eigenvalues, i.e.,

A(ψ j,h, χ) = λ j,h(ψ j,h, χ), ∀χ ∈ Vh .

Then we introduce the following norm for φ ∈ Vh

‖φ‖2h,s =
M∑

j=1

λsj,h(φ, ψ j,h)
2.

It is known thatλh,min , theminimal eigenvalue ofLh is bounded frombelowby some constant
independent of h and λh,max , the maximum eigenvalue ofLh is bounded from above by ch−2

with c independent of h.
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Now we are at the position to present the error bound for the semidiscrete scheme (4.1).
Thanks to [9, Theorem 3.5, Theorem 3.7, Remark 3.4] we know the following estimate holds

‖uh(t) − u(t)‖ + h‖∇(uh(t) − u(t))‖ ≤ Ch2Cht
−α(1− p

2 )‖v‖p (4.4)

for p = 0, 1, 2 where Ch = | ln h| for p = 0, 1 with vh = Phv, and Ch = 1 for p = 1, 2
with vh = Rhv.

4.2 Full Discretization and Error Analysis

Next we shall clarify how to deal with the temporal direction. Actually (4.1) can be refor-
mulated as

0∂
α
t uh + LT ,huh = 0 (4.5)

where LT ,h := T αLh . We apply the geometric mesh given at the very beginning in Sect. 3
and choose λT ,max := T αλh,max , the maximum eigenvalue of LT ,h as the parameter λmax

to determine the temporal mesh. That is t0 = 0, and for n = 1, 2, . . . , L + 1

tn = 2n−L−1 with L =
⌈
log2

(
Tλ

1/α
h,max

)⌉
.

Denote Qr,h
0 to be the tensor space Sr0(Tτ ) × Vh and correspondingly let Qr,h

1 represent

Sr1(Tτ ) × Vh . Then the PG spectral scheme reads: find Uh(x, t) ∈ Qr,h
0 with U (x, 0) = vh

such that
∫

QI

0∂
α
t Uhϕ ωdxdt +

∫

I
AT (Uh, ϕ)ωdt = 0, ∀ϕ(x, t) ∈ Qr,h

1 (4.6)

where ω(t) is defined by (3.9) and I := (0,1), QI = Ω × I .
Linear Algebraic Problem Let {φm}Mm=1denote the piecewise linear basis functions in Vh ,

then Uh(x, t) satisfies the following system

Uh(x, t)|t∈I0 = vh +
r0∑

n=0

M∑

l=1

c0n,l t
α J 0,σα,n (t)φl(x),

Uh(x, t)|t∈I j = Uh(t j ) +
r0∑

n=0

M∑

l=1

c jn,l(t − t j ) J̃
−α,1, j
n (t)φl(x), j = 1, 2, . . . , L.

Furthermore suppose vh = ∑M
l=1 vh(xl)φl(x), Uh(x, t j ) = ∑M

l=1Uh(xl , t j )φl(x) and
denote

v0 = [vh(x1), vh(x2), . . . , vh(xM )],
v j = [Uh(x1, t j ),Uh(x2, t j ), . . . ,Uh(xM , t j )],
c j = [c j0,1, c j0,2, . . . , c j0,M , c j1,1, c

j
1,2, . . . , c

j
1,M , . . . , c jr j ,1, c

j
r j ,2

, . . . , c jr j ,M ],
Φ(x) = [φ1(x), φ2(x), . . . , φM (x)]T ,

then Uh(t) can be given by the following linear system:

Uh(x, t)|t∈I0 = v0Φ(x) + c0 (J (t) ⊗ Φ(x)) ,

Uh(x, t)|t∈I j = v jΦ(x) + c j
(
J j (t) ⊗ Φ(x)

)
, j = 1, 2, . . . , L
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Fig. 1 Maximum absolute error under different α and N with λT = 1000

where J (t),J j (t) are defined as in the last section. Let Mh denote the mass matrix and Sh
represent the stiffness matrix corresponding to L under certain triangulation of Ω , recalling
(4.6) then we obtain

c0
(
M0 ⊗ Mh + S0 ⊗ Sh

) = −v0
(
J0 ⊗ Sh

)
,

c j (H j ⊗ Mh + S j ⊗ Sh) = −v j
(
J j ⊗ Sh

)
− 1

Γ (1 − α)

j−1∑

i=0

c(i, j)ci
(
Îi, j ⊗ Mh

)
,

(4.7)

where j = 1, 2, . . . , L and c(i, j) is the one in (3.20).

Remark 2 Note that the mesh Tτ in temporal direction is determined by λmax = T αO(h−2).
That is if we use finer mesh in space, then we obtain a finer mesh T ′

τ in time with L ′ > L
intervals. So we can reuse Î j−i as we had pointed out in remark 1, which can save much time.

Assumption A We assume that (3.8), the hybrid multi-domain PG spectral method for ODEs
satisfied the following error bound

‖U (t) − u(t)‖L∞(In) ≤ En(α, r)|v̂|
where v̂ is the initial data and En(α, r) depends only on α and r.

Suppose Assumption A holds then we have the following space time error:

Theorem 1 (Error analysis) Suppose v(x) ∈ Ḣ p(Ω) with p = 0, 1, 2. Take vh = Phv for
p = 0, 1 and vh = Rhv for p = 1, 2. Denote Un

h (x, t) := Uh(x, t)|t∈In with Uh(x, t) the
solution of (4.6). Then for n = 0, 1, . . . , L and any t ∈ In

‖un(t) −Un
h (t)‖ + h‖∇(un(t) −Un

h (t))‖ ≤ C ′ (h2Cht
−α(1− p

2 ) + En(α, r)
)

‖v‖p

where En(α, r) is defined as in Assumption A, and Ch is determined by vh, as claimed below
(4.4).
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(b) α = 0.8, N = 10

Fig. 2 Log–log plots for α = 0.2, 0.8 under λT = 0.1

Proof Using the basis {ψ j,h}Mj=1, we expand the solutions uh and Uh into

uh(t) =
M∑

j=1

û j,h(t)ψ j,h and Uh(t) =
M∑

j=1

Û j,h(t)ψ j,h, (4.8)

where û j,h(t) = (uh(t), ψ j,h) and Û j,h(t) = (Uh(t), ψ j,h). Obviously, the function û j,h(t)
satisfies û j,h(0) = v̂ j,h := (vh, ψ j,h) and

0∂
α
t û j,h + T αλ j,hû j,h = 0, 0 < t ≤ 1.

On the other hand, by taking ϕ = w(t)ψ j,h ∈ Qr,h
1 in (4.6) it follows that the function

Û j,h(t) satisfies

(0∂
α
t Û j,h + T αλ j,hÛ j,h, w)ω = 0, ∀w(t) ∈ Sr1(Tτ ).
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(b) α = 0.8, N = 10

Fig. 3 Log–log plots for α = 0.2, 0.8 under λT = 10

In other words, Û j,h(t) is the approximation of û j,h by PG multi-domain scheme (3.8).
Define

En
j,h(t) = ûnj,h(t) − Û n

j,h(t), j = 1, 2, . . . , M

where ûnj,h(t) = û j,h(t)|t∈In and Û n
j,h(t) = Û j,h(t)|t∈In . By Assumption A, one can obtain

that ‖En
j,h(t)‖∞ can be bounded as

‖En
j,h(t)‖∞ ≤ En(α, r)|v̂ j,h |.

Thanks to (4.8) we have for t ∈ In and s ∈ R

∥
∥(unh −Un

h )(t)
∥
∥2
h,s =

M∑

j=1

∥
∥En

j,h(t)
∥
∥2λsj,h

≤ (
En(α, r)

)2
M∑

i=1

v̂2j,hλ
s
j,h

= (
En(α, r)

)2 ‖vh‖2h,s .
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Fig. 4 Log–log plots for α = 0.2, 0.8 under λT = λT ,max = 1000

Let q denote 0 or 1. Then for v ∈ Ḣ p(Ω) with p = 0, 1 and vh = Phv, appealing to the
inverse inequality(see e.g., [9, Lemma 3.3]) we have

∥
∥(unh −Un

h )(t)
∥
∥
h,q ≤ En(α, r)‖vh‖h,q ≤ c En(α, r)h−q‖vh‖ ≤ c En(α, r)h−q‖v‖ (4.9)

where the last step follows form the stability of Ph in L2(Ω). For p = 1, 2 and vh = Rhv,
it follows

∥
∥(unh −Un

h )(t)
∥
∥
h,q ≤ En(α, r)‖vh‖h,q ≤ c En(α, r)‖vh‖h,1 ≤ c En(α, r)‖v‖1 (4.10)

where we applied the fact that Rh is stable in Ḣ1(Ω). Recall (4.4) and the coincidence of
Ḣ1(Ω) and H1

0 (Ω), then the desired estimate follows. ��
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(a) (b)

Fig. 5 ‖e‖2,∞ for case (a) and (b) under different α and N

5 Numerical Examples

5.1 Numerical Tests for Fractional ODEs

In this subsection we present some visualized plots of the error for

0∂
α
t u(t) + λT u(t) = 0, ∀t ∈ (0, 1] with u(0) = 1 (5.1)

under various α and λT . We set λmax = 1000 and use uniform approximation order for each
interval, i.e. r0 = r1 =, . . . ,= rL = N .

Figure 1 presents the maximum absolute errors for α = 0.2, 0.4, 0.6, 0.8 and N =
2, 3, . . . , 11 under λT = 1000. One can observe that the scheme is exponentially con-
vergent. Figures 2, 3 and 4 present |(u − U )(t)| respectively for λT = 0.1, λT = 10
and λT = λmax = 1000 by loglog function in MATLAB. We use the red dashed line
to mark the position of t1, since different approximation scheme is applied on the first
interval.

One can observe the error behaves different under different λT : for λT = 0.1, it grows
with time going while decreases from the second interval when λT = 1000. This is actu-
ally due to the behavior of the solution u(t) and the structure of the mesh: for large λT ,
the solution falls off super fast around t = 0 and then becomes very flat, so we do not
need big N to achieve the desired accuracy on the intervals away from t = 0, despite
the length of the interval grows exponentially. But for a small λT , with the growing of
the length of the interval, it is better to increase the number of the basis correspond-
ingly to fit the solution since u(t) is nearly-singular even on the intervals far away from
t = 0.
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(a)

(c) (d)

(b)

Fig. 6 Numerical solutions for case (a) under N = 8 and different α

5.2 Numerical Tests for 1-D Fractional PDEs

We shall first consider the following equation on Ω = (0, 1):

0∂
α
t u(x, t) − cdΔu(x, t) = 0, t ∈ (0, 1] (5.2)

with diffusion coefficient cd = 0.1 and initial data

(a) v =
{
1, x ∈ (0, 0.5]
0, x ∈ (0.5, 1)

, so that v ∈ Ḣ s(Ω) for s < 1
2 .

(b) v = 2min(x, 1 − x), so that v ∈ Ḣ s(Ω) for s < 3
2 .

We use uniform approximation order in time, say r0 = r1 =, . . . , rL = N , and fix the
spatial mesh size h = 1/100. By virtue of the fact that λh,max , the maximum eigenvalue of
−Δh , is bounded from above by λh,max ≤ ch−2 which implies cdλh,max ≤ ch−2, so we
determine the temporal mesh by t0 = 0 and

tn = 2n−L−1, n = 1, 2, . . . , L + 1

with

L =
⌈
1

α
log2 h

−2
⌉

. (5.3)
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(a) (b)

(c) (d)

Fig. 7 Errors for case (a) under N = 8 and different α

We aim at compute the maximum relative L2 error under different N

‖e‖2,∞ := max
t∈(0,1]

‖(Uh −Uref )(t)‖
‖Uref (t)‖

where ‖ · ‖ represents ‖ · ‖L2(Ω) and Uref is obtained by the same scheme with a higher
approximation order Nref .

Figure 5 shows ‖e‖2,∞ under N = 2, 4, 6, 8 and α = 0.2, 0.4, 0.6, 0.8 for case (a) and
case (b). It is known that the L2-projection for initial data given by case (a) oscillates near the
discontinuous point and the incompatible boundary, so we use lumpedmass matrix instead of
mass matrix. One can observe from the slop of each dashed line that the error decreases expo-
nentially. Figures 6 and 7 present 3-Dmeshed figures for the numerical solutionsUh(t)(under
N=8) and corresponding errors Uh(t) − Uref (t) of case (a) under different α, from which
one can have a visualized observation of how the solution and corresponding error behave
with time stepping. For case (b) we show the error Uh(t) − Uref (t) in Fig. 8 under N = 8.
One can see from Figs. 7 and 8 that the maximum absolute error at any time t is always
restricted in the range of the same magnitude, which indicates the scheme is stable.

We also would like to comment on the complexity of the scheme. On one hand, (5.3)
indicates that the scheme does not cost many solves. Take Ω = (0, 1) and h = 1/100 for an
example, forα = 0.2 the scheme needs L+1 = 68 steps totally to arrive at t = 1; Forα = 0.8
the total number of solves is L + 1 = 18. In spite of more solves will be needed if a finer
spatial mesh size is chosen, the total steps grows as | log2 h| for any fixed α, which actually
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(a)

(c) (d)

(b)

Fig. 8 Errors for case (b) under N = 8 and different α

is very slow. On the other hand, in practice we do not need big N , the approximation order
in temporal direction, to balance the error arising from spatial discretization. For instance,
Fig. 5 shows that N = 4 is enough for h = 1/100 since the spatial error is O(h2).

5.3 Numerical Tests for 2-D Fractional PDE

Next, to confirm the scheme really works verywell for complex domain, we do the simulation
for (5.2) with diffusion coefficient cd = 0.5 on domain Ω given in Fig. 9 with initial data
v = 1 onΩ . We apply ‘distmesh2d’ given by P. Persson and G. Strang in [17] and triangulate
the domain by the following code:

h0 = 0.12;d = 0.15; r = 0.5;
fd =@(p) ddiff ( dcircle (p,0 ,0 , r ) , drectangle (p,−d,d,−d,d) ) ;
[P, Tri]=distmesh2d(fd ,@huniform,h0,[−r,−r ; r , r ] , . . .
[−d,−d;−d,d;d,−d;d,d] ) ;

We then obtain 10782 triangles and 5207 inner points with 368 boundary points. The time
mesh is determined by λmax = 1002 and we use N = 5 as the approximation order for each
interval in time. Figure 10 presents the numerical solutions for α = 0.2 and α = 0.8, from
which one can confirm the scheme is stable and works very well.
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Fig. 9 Computational domain of
the 2-D example

(a) (b)

Fig. 10 Numerical solutions for 2-D fractional PDE on Ω at t = 1

6 Concluding Remarks

We proposed a hybrid multi-domain spectral method in time to solve fractional ODEs and
then extended it to solve time-fractional diffusion equations. Geometrically stepping mesh
was considered in temporal direction,which reduces the total number of solves a lot compared
with the uniform mesh. Numerical results show that the approach is stable and converges
exponentially in L∞ sense. However, the convergency is verified by numerical tests instead
of theoretical analysis, which still needs more work.
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