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Abstract

We propose a hybridizable discontinuous Galerkin (HDG) finite element method to approx-
imate the solution of the time dependent drift—diffusion problem. This system involves a
nonlinear convection diffusion equation for the electron concentration u coupled to a linear
Poisson problem for the electric potential ¢. The non-linearity in this system is the product
of the V¢ with u. An improper choice of a numerical scheme can reduce the convergence
rate. To obtain optimal HDG error estimates for ¢, u and their gradients, we utilize two
different HDG schemes to discretize the nonlinear convection diffusion equation and the
Poisson equation. We prove optimal order error estimates for the semidiscrete problem. We
also present numerical experiments to support our theoretical results.

Keywords Hybridizable discontinuous Galerkin method - Drift—diffusion - Error analysis -
Optimal convergence rate

1 Introduction

Drift—diffusion equations play an important role in modeling the movement of charged parti-
cles particularly in semiconductor physics [1,2,10,28,45-47,53]. Besides the applications to
semiconductors, these kinds of PDEs have many applications in the simulation of batteries
[54,64], charged particles in biology [52,65] and physical chemistry [7,30,43,44].

We consider the following model time dependent drift—diffusion equation posed on a
Lipschitz polyhedral domain £2 € R?(d = 2, 3): we seek to determine the unknown electron
density u and the electric potential ¢ that satisfy
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U —Au+V-uVe) =0 in 2 x (0, T1], (1a)
—Ap+u=20 in 2 x (0, T], (1b)

u=gy ondf2 x (0, T], (1c)

¢ =gy ondf2 x (0, T], (1d)

u(-,0) =up in £2, (le)

where ¢ is a constant and typically small in real applications. In our analysis, we have not
analyzed the ¢ dependence of the coefficients. This will be considered in future work. To
simplify the presentation, we set ¢ = 1 in the rest of the paper. We shall discuss the smooth-
ness assumptions on g, g4 and uo needed for our analysis later in the paper. Applications
of the drift—diffusion model often involve more complicated versions of the above model,
for example including additional particle transport equations (for example, for holes) and
recombination terms. However the above system contains the principle difficulty from the
point of view of proving convergence: the term V - (uV).

Theoretical and numerical studies for this type of partial differential equation (PDE)
have a long history. For the theoretical analysis of the drift-diffusion system we refer to
[5,6,34,35,46,56] and the references therein. Computational studies started in the 1960s
[29,39] and many discretization methods have been used for the drift—diffusion system in the
past decades. For an extensive body of literature devoted to this subject we refer to, e.g., the
finite difference method [31,40,50,55], the finite volume method [3,4,12—14], the standard
finite element method (FEM) [36,52,62], and mixed FEM [37,41]. Furthermore, there are
many new models in which the drift-diffusion equation coupled with other PDEs; such as
Stokes [42], Navier—Stokes [61] and Darcy flow [32]. However these extensions are outside
the scope of this paper.

The product of the gradient of the electric potential, V¢ with electron concentration u in
(1a) can cause a reduction in the convergence rate of the solution if the numerical schemes
for the two equations are not properly devised. In [62], the authors obtained an optimal
convergence rate in H' norm but a suboptimal in L? norm by using the standard FEM. To
overcome the convergence order reduction, a new method was proposed to discretize the
system (1): mixed FEM for Poisson equation (1b) and standard FEM for (1a). This scheme
provides optimal error estimates for 1 and ¢ in both the H' and H (div) norms. Very recently,
the authors in [37] obtained an optimal convergence rate by using mixed FEM for both (1a)
and (1b).

In the drift—diffusion model, typically, the magnitude of V¢ is huge (see [9]). Therefore,
it is natural to consider the discontinuous Galerkin (DG) method to discretize the system
(1). In [51], alocal DG (LDG) method was used to study a 1D drift-diffsuion equation, they
obtained an optimal convergence rate by using an important relationship between the gradient
and interface jump of the numerical solution with the independent numerical solution of the
gradient in the LDG methods; see [63, Lemma 2.4] and [51, Lemma 4.3]. However, to the
best of our knowledge, the inequality in [63, Lemma 2.4] is not straightforward to extend to
high dimensions.

Moreover, the number of degrees of freedom for the DG or LDG methods is much larger
compared to standard FEM; this is the main drawback of DG methods. Hybridizable dis-
continuous Galerkin (HDG) methods were originally proposed in [25] to remedy this issue.
The global system of HDG methods only involve the degrees of freedom on the interfaces
between elements. Therefore, HDG methods have a significantly smaller number of degrees
of freedom in the global system compared to DG methods, LDG methods or mixed FEM.
Moreover, HDG methods keep the advantages of DG methods, which are suitable for the
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drift term if V¢ is large. For more information about HDG methods for convection diffusion
problems; see, e.g., [17-19,33,59].

There are many different HDG schemes, see for example [20-25,48]. Among all of these
methods, two are most popular, following standard terminology we call them are HDGy, and
HDG(A) in the rest of the paper. The HDG; method uses polynomials of degree k to approx-
imate the solution, the flux, and the trace on the interfaces between elements together with
a positive stabilization parameter chosen to be O(1). The HDG(A) method uses polynomial
degree k + 1 to approximate the solution, polynomial degree k to approximate the flux and
uses the so called Lehrenfeld-Schoberl stabilization function, see [48, Remark 1.2.4]. These
two methods were used to study the Poisson equation in [27,49,57], the linear elasticity
[22,58], the convection diffusion equation in [18,19,59], the Stokes equation in [26,38] and
the Navier—Stokes equation in [11,60].

The goal of this paper is to design an HDG scheme by the appropriate choice of HDG
spaces such that the overall scheme is optimally convergent and to prove semi-discrete optimal
convergence rates in d spatial dimensions (d = 2, 3). The result is a new HDG scheme for
the drift—diffusion system with attractive convergence properties. We shall assume that a
suitably regular solution of the drift—diffusion system exists. For existence theory, see for
example the book of Markowich [53].

To develop our HDG method, we write the drift—diffusion system as a first order system
by introducing new variable g and p such thatg + Vu = 0, p+ V¢ = 0. Then (1), becomes
the problem of finding (u, g, ¢, p) such that

q+Vu=0 in 2 x (0, T], (2a)

p+Vp=0 in £ x (0, T, (2b)

u, +V-q—V-(pu)=0 in 2 x (0, T}, (2¢)
eV-p+u=0 in 2 x (0, T], (2d)

u=gy ondf2 x (0, T], (2e)

d=g4 on 382 x (0, T, (2f)

u(-,0) = ug in £2. (2g)

In this work, we only

We can now introduce our HDG formulation by first defining the mesh. Let 7;, denote a
collection of disjoint simplexes K that partition §2 and let 37, be the set {0K : K € 7;}. Here
h denotes the maximum diameter of the simplices in 7j,. Since we will need to use an inverse
inequality in our analysis, we assume that the mesh is shape regular and quasi-uniform.

We denote by &, the set of all faces (or edges in when d = 2) in the mesh. Then we define
the set of interior and boundary faces or edges denoted &} and 5,? respectively. From now
on, to simplify terminology, we shall refer to elements of &), as faces, even if d = 2. For each
face e we say e € & is an interior face if the Lebesgue measure of e = 9K N 9K~ for
some pair of elements K+, K~ € 7j, is non-zero, similarly, e € 52 is a boundary face if the
Lebesgue measure of e = d K N 952 is non-zero. We set

W, V)7, = Y (w, vk, (¢ Pz, = Y (¢ Pax »

KeTy, KeT,

where (-, -)g denotes the L2(K) inner product and (-, -)5x denotes the L? inner product on
oK.
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The HDG method uses discontinuous finite element spaces Q;,, Vi, Vh, Sn, Y, l/P\h that
we shall discuss shortly. Assuming these are given, the HDG method seeks (g, un, up) €
Q) x Vi x Vi(gu) and (py,, @i, ) € Sp X ¥ X W (gy) satisfying

. rO7 — Wp, Vor)g, + (W, r1-n)yg, =0, (3a)
Py 127, — @1, V - 127, + (B0, 11 - m)aT, =0, (3b)

for all (r1,r2) € Q) x Sy, together with

Un,s w7, — (qp, Vw7, + (@ - n, wi)ag, + (Prun, Vwi)T,

— (P, - nup, wi)a7, =0, (3c)
= (p, Yw) 7, + (Pp, - n, w2doz, + (up, wa)z;, =0 (3d)

for all (w1, wa) € V), x ¥,. The boundary fluxes must satisty

@) -n, u)oz00 =0, (3e)
(Pn-n, w2)oznoe =0 (3f)

for all (11, w2) € Vi, (0) x Wj,(0). The numerical fluxes 4, and p;, will be specified later.
Asin [11,51], we shall need the following energy estimate

-1/2 ~
IVunllz, + g un — a3,
—1/2, 6 ~
< C (Naul3, + I >, =137, )
where 17T ,? is the L2 projection defined in (12). Inequality (4) cannot hold for the HDGy
method unless we take the stabilization function to be h;l. However, in this case we only

have a suboptimal convergence rate for the flux ¢g. Hence we need to use the HDG(A) method
to approximate the Eq. (1a), i.e., we choose
Q) = {vp € [L2 (D)1 s vplg € [PYK)IY, VK € Ty},
Vi == {up € L*(2) : vplx € PMTHK), VK € T},
Vi(g) = (O € L*(€n) : Thle € PH(e), Ve € & Thlgy = Mg},

where PX(K) denotes the set of polynomials of degree at most k on the element K (similarly
Pk (&) denotes the set of polynomials of degree at most k on the faces in the mesh). Moreover,
the numerical trace of the flux on 97, is defined as

o~

Gn-n=qp-n+h Iuy — ), )

where I7, ,f denotes L projection onto P¥(&,) which can be done face by face.
To avoid a reduction in the convergence rate for the solution uy,, the polynomial degree of
the space V}, for uj, and the space S, for p, need to be the same, i.e.,

Sp = {vp € [L2(2)1? : vplx € [PFLK)Y, VK € Th).

If we choose the HDG(A) method to discretize (1b) we would need to use polynomials of
degree k + 2 to approximate ¢, but in this case, we get a suboptimal convergence rate for ¢.
Therefore, we use HDGy 1 to discretize (1b) and so choose
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W = {vy € L*(2) s wplx € P*THK), YK € Tl

i (8) = (0h € L*(En) : Thle € PXH1(0), Ve € & Tilgy = IT4418)-
and the numerical trace of the flux on 07}, is defined as

Dn-n=p,-n+t(n—dn), (6)

where 7 is a positive O(1) function and the initial condition uj, (0) will be specified in Sect. 3.1.
If needed, T can be chosen to provide upwind stabilization as in [59].

The organization of the paper is as follows. In Sect. 2, we present our main results and
some useful projections. Then the proof of the main results is given in Sect. 3. In Sect. 4, we
provide some numerical experiments to support our theoretical results.

2 Main Result and Preliminary Material

In this section, we first present the main result in Sect. 2.1 for the semidiscrete HDG for-
mulation (3). Next, we provide preliminary material in Sect. 2.2, which are required for the
analysis.

We use the standard notation W7 (D) for Sobolev spaces on D with norm || - ||, », p and
seminorm | - [m, p, D. We also write H" (D) instead of W™2(D), and we omit the index p
in the corresponding norms and seminorms. Moreover, we omit the index m when m = 0.

Throughout, we assume the data and the solution of (1) are smooth enough for our analysis.

2.1 Main Result

The proof of our main error estimate relies on the use of duality arguments and requires
sufficient regularity for the solution of the corresponding “adjoint”problem. In particular:

Assumption 2.1 Assume that the component p of the solution of (2) is such that p €
H'((0,T), W°(£2)). Let M > 0 be such that for all time ¢t € (0, T)

M = ||V - p@®)llo.co + 2110 p@)ll0,00- (7
If p=0,set M = 0. Then, for ® € L2(£2 x (0, T)), let (@, ¥) be the solution of

®+V¥ =0 inS2,
MDP+V-@+p- V¥ =6 inS2, (8)
Y =0 onas2.

We assume the so lution (¥, @) has the following regularity
1Pl a1 @) + 1¥1H2 @) < Creell@llT;- (C))

Remark 2.2 1t is well known that the above regularity holds if the domain is convex, which
is usually the case in solar cell applications.

‘We can now state our main result for the HDG method.

Theorem 2.3 Suppose that Assumption 2.1 holds and that the mesh is quasi-uniform. Assume
in addition that
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(g, u) € H*((0, T), H*"'(£2)) x H*((0, T), H*(22)),
(p,®) € H*((0, T), H*(2)) x H*((0, T), H*3(2))

fork > 0 solve (2). Let (qy,, un, p, dn)€ O X Vi x Sy x W), be the solution of the semi-
discrete HDG equations (3). Then we have

lu —unliz, + 6 — dnllz, + Ip — pullz, < CHF?

forallt € [0, T), and
r 2 k+1
/0 lg —qpliz,dr <Ch™".

Remark 2.4 The error estimates in Theorem 2.3 are optimal for the variables ¢, u, p and ¢.
Since the global degrees of freedom are the numerical traces, then from the point of view of
global degrees of freedom, the error estimates for the variable u is superconvergent, which,
to our knowledge, is the first time this has been proved in the literature.

2.2 Preliminary Material

We first introduce the HDGy projection operator IT,(p, ¢) := (IIy p, [Tw¢) defined in
[27], where ITy p and ITy ¢ denote components of the projection of p and ¢ into S, and ¥,
respectively. For each element K € 7, the projection is determined by the equations

(Myp,r)x = (p,rk, Vre[Pu(K), (10a)
My, wk = (B, wk, Yw e Pe(K), (10b)
(Myp-n+tllye, we=(p-n+1h,1t)e, Vi € Prsile) (10c)

for all faces e of the simplex K. The approximation properties of the HDGy, projection (10)
are given in the following result from [27]:

Lemma 2.5 Suppose k > 0, tlyx is nonnegative and Tg™ = maxt|sg > 0. Then the
system (10) is uniquely solvable for Iy p and Iy . Furthermore, there is a constant C

independent of K and t such that

{p+1 Ly+1
Iy p— plik < Chd ™ |Ple,+1x +Ch™ tx1Ble 41k (11a)
o Lp+1
+
1Twg = ¢l < Chid " Ilege1x + Cm IV - Ple, x (11b)
K

for £y, Ly in [0, k + 1]. Here ‘cl*< = Max Tlyx\e*, Where e* is a face of K at which t|yx is
maximum.

We next define the standard L? projections IT7 : [L2(2))9 — 0, H/?—s—l CL2(2) >V,
and 1'[,? D L&) — Vh, which satisfy

(Mg, r)k = (g, 1)k, Vrie[P(K)1,
T u, w)g = (w, w)g, Ywy € Pry1(K), (12)

(Iu, i1)e = (U, p1)e, Y € Prle).
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In the analysis, we use the following classical results [16, Lemma 3.3]:
lg — Mqlz, < CH M iglksr e, llu— 7 ullg < CR P lulia.e,  (132)
3 _1
lu — I, ullag, < CH 2 ullksa,e, Iwllog, < Ch™2llwllg,, Yw e Vi (13b)

To shorten lengthy equations, we rewrite the HDG formulation (3) in the following com-

pact form: find (g, un. @) € Q4 x Vi x Vi(gu) and (pj,. . 1) € S x Wy x Wy(gy)
such that

@un, w5, + Algy, up, un; ri, wi, k1) + C(pp, Prs wn, p; wi) =0, (14a)
By bn. Gni 12, w2, 1) + (un, w2)7;, =0, (14b)

for all (rq, ro, wi, w2, n1, u2) € Qp X Sp X Vi X ¥, x ‘7;,(0) X @,(O), where the HDG
bilinear forms A, B and the trilinear form C are defined by

AGp, un, s 1, wiy (1)
=(qp. r)7, — Up, V-r)g, + @, r-n)yz, + (V-q,, w7, (14¢)

—{qp - n, nu1)ag, + (hgl(ﬁ,f’uh — ), M wy — w1)a,
for all (g, up, @, 11, wi, 1) € Qp X Vi X Vin(gu) x @y x Vi x Vi (0),

B(Pp» s P 2, w2, [12)
= (P, 127, — D1, V- 12) 7, + (B0 12 - m)a, + (V- py, w2)7, (14d)
— (P -1, 12)97;, + (TP — Bn)s w2 — 12)e,

for all (. dn. dn» 2, w2, i2) € Spp X W, X l:’V\h((g’(p) X Sp X ¥, x @,(0),
C(p, P; up, un; wi) = (pup, Vwi)g, — (P - nity, wi)a7, (14e)

for all (up, @h, w1, w1) € Vi X Vi(gu) x Vi X Vi (0).
Next, we present basic properties of the operators A and B.

Lemma2.6 Forany (q, up, iy, 1, wi, 1) € @ X Vp x 2"(0) x Qp X Vi X V), (0) and
Py, Gns G, 12, wo, p2) € Sp X Wy x W (0) X Sy x ¥ x Y (0), we have

A(gy,, up, Wy —r1, wi, w1) =A@, wi, wi; —qy,, Wy, Wh),

B(pp> bn Ons —12, wa, 12) = B(ra, wa, was — Py, bu> b)),
and

-~ . ~ 2 —1/2 9 —~ 2
AGp, un, uns qps uns un) = gl 7, + Mhyg "~ UTup —un) g, »

B(py. $n- dn: P - d1) = P4 1%, + IV/T (D1 — dn)l13; -
The proof of Lemma 2.6 is straightforward, hence we omit it here.

The proof of the following two lemmas are found in [59, Lemma 3.2] and [8, Equation
(1.3)], respectively.
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Lemma 2.7 If (q;,, un, up) satisfies the Eq. (3a), then we have
—1/2 ~ —1/2, 19 ~
IVunliz + P = @)laz, = € (Nanllz + "> (0T, =@ laz, )

Lemma 2.8 (Piecewise Poincdre-Friedrichs’ inequality) Let v, € H L(73), then we have

2
lallZ;, < € [ IVoRllZ;, + [vn. Dag* + > le]/0=D (/[[vh]]ds) ,
e

0
ee&y

where |e| denotes the measure of e.
By Lemma 2.8, we immediately have the following lemma.

Lemma 2.9 (HDG Poinéare inequality) If (vj, Up) € V), X f/\h (0), then we have

—-1/2 p o~
lonliy, = € (IVenli3, + g 2 (Ton =l ) -

Proof By Lemma 2.9, vy, is zero on 852 and is single valued on interior faces. We have

—1/2
lonly, = € (Ve + Ik 1o, )

—1/2 ~

= C (IVunll3, + I o = v+ Moy = 511, )
—1/2 —-1/2 ~

= (IVunlly, + ki P wn = Io0 B + > (o = )13, )
—1/2 ; ~

= (IVunllg, + I P (Ton =03, ) -

3 Proof of Theorem 2.3

To prove Theorem 2.3, we follow a similar strategy to that in [15]. We first bound the error
between the solution of an HDG elliptic projection defined in (15) and the solution of the
system (1a). Then we bound the error between the solution of the HDG elliptic projection
(15) and the HDG formulation (14a) and the error between the solution of the system (1b) and
the solution of the HDG formulation (14b). A simple application of the triangle inequality
then gives a bound on the error between the solution of the HDG formulation (14) and the
system (1). First, we present the HDG elliptic projection.

3.1 HDG Elliptic Projection and Basic Estimates

Fort € [0, T1, let (g p, urn, urn) € Q) x Vi x f/\h(gu) be the solution of

Mup, w))g, +AG s win, Uins r1, wi, w1) + C(p, p; urn, Urn; wi)
= (Mu — u;, wy)7,

(15)
forall (r1, wy, n1) € Qp x Vi X \7;, (0) where M is a given constant such that (7) holds.
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TakAe the partial derivative of (15) with respect to ¢, hence, (3,4 ;,, dsurn, dUn) € Q} X
Vi x V3, (0:gy) is the solution of

M@ugn, w7, +AW@q . dupn, 3Tn; ri, wi, (1)
+ COp, 8 ps upn, urn; wi) + C(p, p; dupp, dn; wi) (16)
= (Mu; — uy, wl)’]7,

for all (r, w1, w1) € Q) x Vi x Vi (0).

We choose the initial condition uj,(0) = u,(0) for the purposes of analysis. In fact, the
initial condition uj (0) can be chosen to be the L? projection of ug, i.e., [T uo.

The following result, Theorem 3.1, gives the error between the solution of an HDG elliptic
projection (15) and the solution of the system (1a) and the proofs are given in Sect. 6.

Theorem 3.1 Foranyt € [0, T], if the elliptic regularity inequality (9) holds and h is small
enough, then we have the following error estimates

lu = umnllz, < CH**2|lullira, (17a)
—1/2 170 -~ k41
lg —qpllz, + lhg "I un —urn)lloz, < Ch™" |lullk42. (17b)
In addition, we have

8:u — durnll, < CH*F2)9,ull4a- (17¢)

3.2 Error Equation Between the HDG Formulation (14) and the HDG Elliptic
Projection (15)

To bound the error between the solution of the HDG elliptic projection (15) and the system
(14a), and the error between the solution of the HDG formulation (14b) and the system (1b).
We first derive the error equation summarized in the next lemma. To simplify notation, we
define

&l =qu—qn & =um—un, EF =Ty, — T,
E=Myp—p, & =0Owveé—¢n & =000 60—

Lemma3.2 Forany (ri, wi, u1,r2, w2, 2) € Q) x Vi x V4(0) x Sp x ¥, x @,(0), we
have the following error equation

(@&}, wi)T, +AELEE L wi, )
= (0;(urp —u), w7, + MW —up,, w7,
— C(p, P ELEL w1) — C(p — ppy p — P s s wh), (18a)
BEP £ €V ra wa, o) = My p — p,ra) 7, — (u — wp, w7, (18b)

Proof We first prove (18a). Subtracting Eq. (14a) from (15) and using the definition of A
and C we get

M(upp, wi)T, + AEL &L, EL 1, wi, 1) 4 C(p, piun, Wpns wh)
— Bup, w1);, — C(Pp, P Un, Uns w1)
= (Mu — u;, wy)7,.
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This gives
@&l w) g, +AGEL & ED rL wi, 1)
+ C(p, ps up, up; wi) — C(py, Py wgn, Urp; wy)
= (Orurn, w17, — W, w17, + MW —upp, w17,

We note that the nonlinear operator C is linear for each variables, hence we have
C(p, p; upn, un; wi) — C(py, Pps un, Wy wi)
=C(p, pium, Uy wy) — C(p, p; up, Up; wy)
+ C(p. pi un, up; wy) — C(py, Pps Un, Ups wi)
=C(p, p: &, & w) +C(p — pp, P — P un, s wy).
This implies
@& w)T, +AELELEN L wiL )
= O (up —uw), w7, + M@ —upp, w7z,
— C(p, p; &, &5 w1) — C(p — pp, P — Pps up, Wy wy).
Next, we prove (18b). By the definition of B in (14d), we have
By p, Twe. [T ¢; r2, wo, 12)
=Ulyp,r)g, — UIwo,V -r2)7, + (171?“(15, ry - n)yT,
+ (V-Iyp,wy)7, —Iyp-n, uz)sr,
+ (tTwe — I} 1§), w2 — w2)az, —(P - 1, 12)97;,-
By the definition of ITy and ITy in (10) we get
By p, Twe., [T ¢; ra, wa, 12)

=UIyp—p,r2)g, +(p,r2)7, — (@, V-r2)7, + (P, r2-n)sy7,
+ (V-IIyp—p),w)g, +(V-p,w)g, +{((p—Hyp) n, u2)sT,

+ (tUTwe = [T, 9), w2 — w2)ar,
=B(p, ¢, p;r2, w2, w2) + Uy p — p,r2)g, +(V-UTyp — p), w7,
+((p =My p) - n, wo)az, + (t(Twe — MY 19), w2 — 1275,
Since
V-lyp—p), w2y, =(Ulyp — p)-n,wa)sr, — Iy p — p, Vwi)7,
={(ITyp—p) -n, w)yz,-
We have
By p, Mwe, [T, ,¢; r2, w2, j12)
=B(p, ¢, ¢;r2, wa, w2) + ULy p — p,ra)7,
+((p =My p)-n, w2 —w2)yg, + (tUTwe — IT41$), w2 — 12)a7;.-
Using the analogue of Eq. (14b) for the exact solution, and (10) we get

By p, My, I, ¢; 12, wa, o) = My p — p,r2)7, — (U, w2)7;.-
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Therefore, subtracting Eq. (14b) we have the following error equation

BEL, ‘Ef, 5,?; ro, w2, 2) = Iy p — p,r2)7, — (U — up, wa)7;,.

|

3.2.1 L? Error Estimates for p and ¢

Lemma 3.3 We have the following estimate

IE213 + VT80 — €13y < e — unllz; 167 17,
Proof We take (ry, wa, 42) = (S,f’, él‘f, E;?) in (18b) to get
BEL &0 60 e 50 D) =~ —un £z < lu— unlz 18]I
On the other hand, by Lemma 2.6 we have
||$;f||27h + IIﬁ(S;f - E;?)ng—h < llu— uh”Th”E}?”Th'

|

If we directly apply Lemma 2.9 to get the estimate of IIE;f |l 7;,» we will obtain only subop-
timal convergence rates. To obtain optimal rates we use the dual problem introduced in Eq.
(8) with p = 0 and M = 0 and assume the regularity estimate (9).

We follow the proof of Lemma 3.2 to get the following lemma.

Lemma3.4 Let (®,¥) soll/\e @) with p = 0 and M = 0 having data ®. Then for any
(ra, wa, w2) € Sp X ¥, x ¥, (0), we have the following equation

By, IwY, 171?+1‘1’; ro,wy, u2) = My ® — @, r2)7, + (O, w2)7,.
Using this lemma we can now estimate & Zb in terms of u — uy and other consistency terms.

Lemma3.5 Foranyt € [0, T], if the elliptic regularity inequality (9) holds, then we have
the following error estimates

IE71%, < Ch* iy p — pli%, + Cllu — upll%,.-

Proof Consider the dual problem (8) with p = O and M = 0 and ® = E;f . We take
(ro, wo, w2) = (—My®, I[IyY, H,?HIII) in Eq. (18b) of Lemma 3.2 to get
BE? €0, 0 —Myd, My, 110,
(Eh,éh,fh, V&, Lw¥, Ll )
=—Ulyp—p, Iy ®)7, — (u —up, Nw¥)7,. 19)
On the other hand, by Lemmas 2.6 and 3.4, we have
BEL &) &~y @, Tww, T}, W)
=By ®, Mww, I} w; —&f &7 &) (20)
=—(Iy® —@.8))7, + 6] 1% .
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Comparing the above two equalities (19) and (20) gives
IIE/szTh =Uy® —@. &)y, —(Iyp — p. My ®)7, — (u —up, My ¥)7,
=Iy® —@.&))7, —Typ—p.IIy® - D),
— UTyp—p,P)7, — (u—up, Nw¥)7,
=IIy® - ., —Typ—p My® — D)y,
+ (Ilyp — p, V¥)7, — (u —up, Nw¥)7,
=Iy® ~@.&))7, — (Myp— p.Mv® - D)7,
+ {Iyp—p, VW& —w¥)) 7, — (u —up, Mw¥) 7,
< CR*|§7 1%, + Ch* |y p — plI7, + llu — upl| 71 Tw ¥ |75,

By the continuous dependence result (9) and the projection property of ITw in (11b) we get

ITw® 3, < 1Tw¥ —¥lg, + ¥z, < Cl¥ g2 < ClOIT = ClIEL I

By Lemma 3.3 and the Cauchy-Schwarz inequality we obtain the result of the lemma:
€71, < CH* Iy p = pli7, + Cllu — unl,.
O

As a consequence of the above result, a simple application of the triangle inequality and
Lemmas 3.3 and 3.5 gives the following bounds of ||¢ — ¢ |7, and |p — p,ll7,:

Lemma3.6 Let (p, ¢) and (py,. $n) be the solutions of (2) and (3), respectively. For any
t € [0, T], if the elliptic regularity inequality (9) holds, then we have the following error
estimates

I — dnllz, + 1P — pyllz, < CLE* ™2 + Cllu — up iz,

where C depends on the H*'(£2) norm of p at each time.

3.3 L2 Error Estimates for u
Having the result of Lemma 3.6 it remains to estimate # — uj,. The fundamental estimate is
contained in the next lemma.

Lemma 3.7 If h small enough, then there exists t; € [0, T] such that for all t € [0, ;] we
have

1/2

t
161 + [ (16613, + i

Proof We take (r1, wi, 1) = (§7, &, £7) in (18a) to get

(T8} — D137, ) di < ChP+,

_l 2 L —~
@l DT + 1EL1E + Ihe 2 (T0el — D12,

= O —uw), §) 7, + M —un, &),
— ((p— ppun, VE)T, + ((p — Py) - nlip, & — 5;,7)377, 21

— (PEY, VEHT, + (p-nEL EY,
=R+ R+ R3+ R4 + R5 + Re.
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We note that &/ (0) = u;,(0) — uy5(0) = 0. Letr = 0 in (21) to get

151 )11, + 1k > (1281 ©0) — £ O) 3, = 0.

This implies é}l‘A(O) = £//(0) = 0. Hence we have uj, (0) = 77 (0). By Theorem 3.1 we have

1170, u(0) — upO) |75, = T u(0) — uzn(0)||7;, < CAFF2,
T3 u(0) — @ (0)lls7, = ITT7u(0) — @74 (0) a7, < CH¥T3/2.

For h small enough these estimates imply that

lu(t) — I qu(t)|| L2y < 1/2 and [lu(t) — H,?u(t)HLoo(gh) <1/2forallt € [0, T].
(22)

Let M = max(,x)e[0,7]x$ |u(t, x)|, then the inverse inequality gives

lun(0) | Loy < Ch™42 | ITE,u(0) — up(0)l7;
+ 1T u(0) — u(0) || oo (2) + [ (0) || L (@)
< Ch*2742 1 M 4172,
[ ()| Loy < ChYZ 2| T u(0) — @ (0) | 7,
+ T2 u(0) — u(0) |l 1o g,) + N1 (0) | 220 (g,
< Ch*H2=42 4 M4-1)2.

Also, since the error Eq. (18a) is continuous with respect to the time 7, then there exists
t;y € [0, T'] such that for 4 small enough,

lunllLoec2y + linllLoeg,) < 2M +2. (23)
By the Cauchy-Schwarz inequality, Theorem 3.1 and Lemma 2.7 we get
R+ Ry < CH 2| |,
< ot (10, + Wi nfey — §DI3,).
For the term R3, by the Cauchy-Schwarz, Lemmas 3.6, 2.9 and 2.7 we get

Ry < Cllp — pyl5 I VEL I,
1
= Clp = pilg + IVE 1,

1
= CR 4 Cllu — w7, + SIVEIT,

l —1/2 P ~
< CR 4 ClgIT, + 5 (||s;,’ 1%, + g 2 a1de - s,;‘>||§Th).

@ Springer



Journal of Scientific Computing (2019) 80:420-443 433

Also, applying Lemma 2.7 again to obtain

Ry = ((p — Pp) - mitn, & — &
1,2 ~ ~1/2,0u _ &0
< Cld*(p = Bwlloz Ihg P& — &N o,
1 Ry ~
< CH¥** 4 ClIEI, + (||5,;’ 1%, + g P amer — sz‘)||57,,).

For the last two terms R5 + Rg, by the Assumption 2.1, we know that p is bounded. Next,
integration by parts to get

Rs+ Rg = —(p&', VE T, + (p - &l €)o7,

1 - ~
= —§<P~n(€;§‘ —&D.8 = &)1 — (V- p&L &) T,

1

_1 2 B —~
< lhg PAIler — EDIBL + IV - Pl X 1% .

0 |

Sum the above estimates of {R; }?=1 to get

—1/2 n
@&l 807, + 16115, + Ihg Pl — D13, < CR* + Clgl . @4

Integrating both sides of (24) on [0, t;’;] we finally obtain

i —1/2 i i
i (DI, + /0 (NEm 0, + I T — D3, ) do
A
< cpPktt +c/ €15, dt.
0
The use of Gronwall’s inequality gives the desired result. O

Lemma 3.8 For h small enough, the result in Lemma 3.7 holds on the whole time interval
[0, T]

Proof Fix h* > 0 so that Lemma 3.7 is true for all » < h*, and assume t,f is the largest value
for which (23) is true for all 1 < h*. Define the set A = {h € [0, h*] : ¢; # T}. If the result
is not true, then A is nonempty, inf{h : h € A} = 0, and also

lunllzo2) + l@nllzog,) =2M+2 forallh € A. (25)
However, by the inverse inequality and since Lemma 3.7 holds, we have
lun ooy + il < Ch*74? +2M +1 forallh € A.
Since C does not depend on £, there exists 7} < h* such that ||uy || .02y + [WhllL(g,) <

2M + 2 for all h € A such that & < h}. This contradicts (25), and therefore #; = T for all
h small enough. O

The above lemma, the triangle inequality, and Lemma 3.3 complete the proof of Theo-
rem 2.3.
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4 Numerical Results

In this section we present some numerical results in two spatial dimensions.

Example 4.1 We begin with an example with an exact solution in order to illustrate the con-
vergence theory. The domain is the unit square £2 = [0, 1] x [0, 1] C R? and homogeneous
Dirichlet boundary conditions are applied on the boundary. The source terms fi, f> and the
initial condition are chosen so that ¢ = 0.1 and the exact solution u = cos(¢) sin(x) cos(y)
and ¢ = sin(¢) cos(x) sin(y). The second order backward differentiation formula (BDF2)
is applied for the time discretization and for the space discretization we choose polynomial
degrees k = 0 or k = 1 (used in the definition of the discrete spaces in Sect. 1). The time
step is chosen to be Ar = i when k = 0 and Ar = h%/?> when k = 1. We report the errors at
the final time 7 = 1. The observed convergence rates match our theory (Tables 1, 2).

Next, we test an example without a convergence rate but that show the performance of the
HDG method. We take k = 0, the domain is also the unit square £2 = [0, 1] x [0, 1] C R2

Table 1 History of convergence

h
for qj, and py, for Example 4.1 Degree Vo llg —qp ”0,9 lp = pyllo,2
under uniform mesh refinement Error Rate Error Rate
k=0 21 4.2730E—02 6.4843E—03

272 22386E-02 093  19113E-03  1.76
273 11265E—02 099  5.1822E—04  1.88
274 56455E—03  1.00  1.3592E—04  1.93
275 2.8248E—03  1.00  3.4881E—05  1.96
k=1 2=l 2.9547E-03 3.8888E—04
272 75335E—04 197  5.4882E—05 282
273 19796E—04 193  7.5341E—06  2.86
2% 50451E—05 197  9.8858E—07  2.93
275 12748E—05 198  12705E—07 296

Table 2 History of convergence n

for uy, and ¢y, for Example 4.1 Degree V2 llu = unllo. I$ = nllo.2
under uniform mesh refinement Error Rate Error Rate
k=0 21 1.8339E—02 1.0205E—02

22 4.9503E—-03 1.89 2.3408E—03 2.12
23 1.2423E—-03 2.00 4.9774E—-04 2.23
24 3.1156E—04 2.00 1.1131E-04 2.16
273 7.7965E—05 2.00 2.6001E—05 2.09
k=1 2~ 1.8339E—-02 4.0894E—04
22 2.3140E—-04 2.98 3.7700E—05 3.43
23 2.9565E—05 2.97 4.6167E—06 3.03
24 3.7026E—06 3.00 5.3872E-07 3.01
273 4.6363E—-07 3.00 6.6418E—08 3.02
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0.6

! ] . 06
X X

Fig. 1 From left to right, from top to bottom are the contour plots of u, at time: 7 = 0.01,0.4, 0.7, 1 for
Example 4.2

and partition into 20,000 triangles, i.e., h = V2 /100. BDF2 is applied for time discretization
and the time step Ar = 1/1000, at each time step, we utilized the Newton’s method to solve
the nonlinear system.

Example 4.2 This example has non-homogeneous Dirichlet data and demonstrates that our
HDG scheme can handle this case. We take ¢ = 10~2 and the source terms f; = 0 and

—0.8 (0,0.5) x (1/2, 1),

fa= 0.8 else.

The Dirichlet boundary condition g, = 09,84 = 1.1 on{y = 0}, and g, = 0.1, g4 =
—1.1on{y = 1,0 < x < 0.25}. Elsewhere we impose homogeneous Neumann boundary
conditions. Initial condition ug = (1 + f2)/2. A similar example was studied in [3] by a
finite volume method. We plot the solutions uj and ¢, at different final time T'; see Figs. 1
and 2.

5 Conclusion

In this work, we proposed an HDG method for the drift—diffusion equation. We proved
optimal semi-discrete error estimates for all variables; moreover, from the point view of
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06

X

Fig. 2 From left to right, from top to bottom are the contour plots of ¢ at time: 7 = 0.01,0.4,0.7, 1 for
Example 4.2

degrees of freedom, we obtained a superconvergent convergence rate for the variable u. As
far as we are aware, this is the first such result in the literature.

Clearly it would be desirable to prove convergence without the need to assume an inverse
assumption. Equally, it would be useful to prove fully discrete estimates using, for example
BDF2 in time.

This is the first of a series of papers in which we develop efficient HDG methods for
drift—diffusion equation, including devising HDG methods when ¢ approaches to zero. We
have a great interest in the numerical solution of steady state drift—diffusion equation, and
we will explore this problem in our future papers.
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Grant Number 11801063 and China Postdoctoral Science Foundation under Grant Number 2018M633339.
The research of P. B. Monk and Y. Zhang is partially supported by the US National Science Foundation (NSF)
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6 Appendix

In this section we give a proof for (17a) and (17b). The proof of (17c¢) is similar and we do
not provide details.
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6.1 Error Equations

We start be deriving equations satisfied by standard projections [see (12)] of the exact solution.
Lemma 6.1 Let (q, u) be components of the solution of (2), then we have
MUTE, u, w7, + AWMYG, T u, T ws vy, wi, 1) + C(p, p; T, u, ITus wy)
= (Mu —u;, w)7;, + ((II7q — q) - n, wy — u1)a7, + (PUTY u —u), Vwy),
— (P nUT{u =), wi — w)az, + (g ATY 1 — w), Mwi = ui)a;,
holds for all (r1, wy, ju1) € Q, x Vi, x Vi,(0).

Proof By the definition of A and € in (14c) and (14e) respectively, the projections and
integrating by parts, we get

A(IT}q, T} u, H,?u; i, wi, (1)
=(Tq —q)-n,wi — pu1)e7, +(V-q, w7,
+ (h (T u — w), Twy — 1)a;
where we have also used (2a). In addition,
C(p, p; MY u, Mlus wy) = (pIIY qu, Vw)g, — (p - nlTlu, wi)y7, .
Hence, again using the projections, we have
MITY ju, w) 7, + AT}q, IT] u, H,?u; ri,wi, ) + C(p: I qu, H,?u; wi)
= (Mu, w17, +(UIq —q) -n,wi — u1)yg, + (V- q, w7,
+ (h T qu = w), Mwy =)oz, + (PITYu, Vo) g, — (p - nIT{u, i),

Since, using (2¢), V- q¢ = V - (pu) — u,, then we have

V-q,w)g, = —(u, w7, +(p-nu,wi)yg, — (pu, Vu)z,.
This implies that

MITY u, wi) g, + AMTYq, TTE, u, T w; vy, wy, ) + C(ps TTEqu, T u; wy)
= (Mu —u;, w)7;, + ((II7q — q) - n, wi — w1)a7, + (PUTY u —u), Vwy),
— (P n(Tu —w), wi — 1)og, + (hg (T — w), M wi — o,
and completes the proof of the lemma. O
To simplify notation, we define

’7;1. =I%q —q,. nj = H,fﬂu —up, ng = H,?u —Upp.
We then subtract the equation in Lemma 6.1 from (15) to get the following lemma.
Lemma 6.2 Under the conditions of Lemma 6.1, we have the error equation

M@, w7, + AL, ), e wi, 1) + C(p, pi it nls wy)
= ((M}q — q) -n, wy — 1)y, + (pUTu — u), Vwy)T, (26)
—(p - nUT{u —u), wi)a, + (h' U0, u — w), T wi — p1)a; .

holds for all (r1, wy, ju1) € Q, x Vi, x Vi,(0).
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6.2 Main Error Estimate
We can now prove (17b).

Lemma 6.3 For h small enough, we have the error estimates

—1/2 p ~
g — qullz, + lhig (T, = a) oz, < CH** ulgga.

Proof We take (ri, wi, 1) = (nZ, N nZ) in (26). First

m I 2
A g s i ) = i 17,
—-1/2 I
At — D13

Next,

My, np) 7, + C(p, ps g njy: )
= M@y, ny) 7, + (png, Vop)z, — (P - nny, 0y)aT,

1 1 _
= (M - EV'P, nZnZ) + 5(1)%?72, neT, — (P -y, e,

Th

1 1 _ _
(M—EV'I’, nZnZ) +§<p-n(nZ—nZ),nZ_nZ)aTh
Th

= 2l — 5 I1p - T~ nD, — Chllplo s IVEL ;.
For h small enough, we obtain
MG g, + AL k0l a0k, b + C(p, psnl, nik 1)
> % (MU, + 01, + W P (o = I, ) -
On the other hand,
M@ g, + ALk nl a0k, b + C(p, ps 0l nik 1)
= (U1} — q) - .0}t — Do, + (PUIL u — 1), V)T,

—{p-n(UT{u —w), nf — 0oz, + (hg" T u — w), Tl — ni)s,
=!Ri + Ry + R3 + Ry.

Next, we estimate {R; };‘: | term by term. For the first term Ry, Lemma 2.7 gives
Ry < CH gl g orf = niD o
= CH gl (I, + Wi 2T ngs = il ) -
For the term R, by Lemmas 2.9 and 2.7 to get
Ry < CH*Julis2]| VIl

-1/2 7
< CH*ule (If I + I 2Tt = D lag, )
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For the term R3, we use Lemma 2.7 to get

Ry = (p-n(Tlu —u), i —n})sm,
—1/2 I
< CH* ulepa Ih g 2l = n o,

—1/2 u
= CH b (I8 s + g (AT =l )

Moreover, for the last term we have
—1/2, ¢ n
Ry < CH N ulesr a2 nlt — i lla -

Use the Cauchy-Schwarz inequality for the above estimates of {R; }le, we get

—1/2 N
2z, + e > nt — nllaz, < CHH ulira.

Use of the triangle inequality and estimates (13a) and (13b) completes the estimate. O

6.3 Duality Arguments

To obtain a L% norm estimate of I 1l 7;,» we use the dual problem (8) with corresponding
a priori estimate (9). To perform the error analysis, the main difficulty is to deal with the
nonlinearity. We define a new form C* which is related to the trilinear form C:

C*(p, p; up, up; wy) = —(pup, Vwy)g, + (p - nup, wi)gg, — (V- pup, w))zg,. (27)

Next, we give a property of the operators € and C*. We omit the proof since it is very
straightforward.

Lemma 6.4 Forall (uy, up, wi, 11) € Vi X f/\h(O) x V x f/\h(O), we have
C(p, pi un. up; w1) + €*(p, pswi, w1 —up) = (p - nup —Up), w1 — 11)y7;-
Similarly to Lemma 6.1, we have the following lemma.

Lemma 6.5 Assuming M is chosen sufficiently large, let (D, W) solve (8) then we have the
equation
M(ITY @, wi)g, + AT, T, &, T3 0; ry, wi, 1) + C*(p, p; [0, @, [T) ®; wy)
= (O, wy) + (TQW — ¥)n, wi — 1)o7, + (hg T @ — @), [T wi — 1),
— (pUT{ @ — @), Vw))g, + (p - n(T}® — ®), wi)y,
— (V- pUI & — B, w))7;.
holds for all (r1, wy, n1) € Qp x Vi X Vh(O).
With the above preparation we can now derive estimate (17a).
Theorem 6.6 Let u and uyj, be the solutions of (2) and (15), respectively. If h is small enough,
then we have the error estimate

k+2
lu —umnllz, < CH 2 lullto.
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Proof We take (ry, wy, it1) = (ng, —ny, —nZ) and ® = —n; in Lemma 6.5 to get
- MUT @ mj)7, +A(H§l1/,1‘1,f+1<1> me; uj, —j, —np) + € (p; Y, @, 1) & —1jj)
= —Mlj [T, ®)7, — AGH .y~ T @, T ®) + € (pi 117, @, T ®: —n)
= —Mj, 7 @), — (Mg — @) - n, [T @ — [Py, —(pUTu — w), VITY,, ®),
+(p-n(Tu —u), T & — T)®)y7, — (hig" (T u — w), YT, @ — [T Py,
+ M, TTE4 @)1, + Cps nj mjys 1174 @) + € (ps [T, @, 1T 03 =11}

By Lemma 6.4 we have

C(p, p; UZ, 77 I'[k_H@) +C*(p, p; k+1q) Hk Uh)
=(p- "(Uh - ﬂh), Hk+1<1'> - Hk ‘D)E)Th-

This implies

— MUT2 @, )7, + AW, 17, @, T2 ®; 0, —nlt, —nih)
+ C*(p. p; [T, @, me; —nj)
—((1}q —q) -0, [T, ® — [ ®)a7, — (PUT{,u — ), VITY, ®),
+ (p-n(Tu—u), [T, @ — I} Py,
- U’%l (T — ), HI?HI?-Hq) - Hl?(p>37h
+ (pon(yp — ). 11, @ — T} )y,

On the other hand, we have

- MUY, @, 1), +A<H;§-If H,?H@,H,?@ n —njs —nj)
+C(p, p; ), @, IT) ®; —11j)
=~ — (AT —Wn, gl —ni)ag, — (h' (T2 ® — @), [T 0t — 1o,
+ (pUIL @ — @), Vi) g, — (p-nUT} @ — &), 0t — a7,
+ (V- pUTY @ — D), 07, -

Comparing the above two equations, we get

I, ||T,, —(Myq-n—q-n I} & — H}?‘p)aTh - (h;l(ﬂ,fﬂu —u), Hl?”l?ﬂ‘p
— ) ®)a7, — (PUTYu — ), VI, )7,
+(p-n(Tu—u), [0, & — [T}y,
+{(p-n(f — 0, [, @ — [T} @)y,
— (W -n — W -n, o — nem, — (hg (T @ — @), Tt — 1i)aT,
+ (pUIL @ — @), Vi) g, — (p - n(I] D — @), 0t — 1Yo,
+ (V- pUTL @ — @), )T,

10
= Zs,-.
i=1
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We estimate {S;}19, as follows (we omit some of the details):

i=1
Si=—(Mg-n—q-n & -1, )z < CH*|gli1] ]2,
So = —(hg (T u — u), [T @ — @)y7, < CH 2 ulepa | P2,
S3 = —(pUTY ju —u), VI ®)7, < Ch* 2 ulin| @]y,
Se = (p-n(Tlu —u), I, @ — D)z, < CH 2 ulep @2,

—1/2 n
Ss < Clig >l — i la k1@ < CH 2 {uliya| @11,
—-1/2 I
Se < Chllhy >t = nDllaz 1W 11 < CHA 2wy,

—1/2 n
Sy < Chllhg >0 = nDllaz 1912 < CH**2|uliya @2,

Sg < Ch2| @ |2lIV k|7, < CH*2| @2 lulrra,
So = —(p - n(UI{® — @), — n})oz, < CHT2|® |1 |ulksa,
Si0 < CH* @ 2l Il 75, -

A

IA

Summing the above estimates, we get

2 k2 2y 2
17, < CH P llullis2llng I, + Ch* I 117, -

Let & be small enough, we have

k+2
il < CH* 2 llullksa.

A simple application of the triangle inequality finishes the proof. O
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