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Abstract
A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed
for an initial-boundary-value problemof semilinear subdiffusion equations.The two-level fast
L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique.
The resulting fast algorithm is computationally efficient in long-time simulations or small
time-steps because it significantly reduces the computational cost O(MN 2) and storage
O(MN ) for the standard L1 formula to O(MN log N ) and O(M log N ), respectively, for
M grid points in space and N levels in time. The nonuniform time mesh would be graded to
handle the typical singularity of the solution near the time t = 0, and Newton linearization
is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently
developed discrete fractionalGrönwall inequality, a global consistency analysis and a discrete
H2 energy method. A sharp error estimate reflecting the regularity of solution is established
without any restriction on the relative diameters of the temporal and spatial mesh sizes.
Numerical examples are provided to demonstrate the effectiveness of our approach and the
sharpness of error analysis.
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1 Introduction

A two-level linearized method is considered to numerically solve the following semilinear
subdiffusion equation on a bounded domain

Dα
t u = �u + f (u) for x ∈ � and 0 < t ≤ T , (1.1a)

u = u0(x) for x ∈ � and t = 0, (1.1b)

u = 0 for x ∈ ∂� and 0 < t ≤ T , (1.1c)

where ∂� is the boundary of � := (xl , xr ) × (yl , yr ), and the nonlinear function f (u) is
smooth. In (1.1a), Dα

t = C
0Dα

t denotes the Caputo fractional derivative of order α:

(Dα
t v)(t) :=

∫ t

0
ω1−α(t − s)v′(s) ds, 0 < α < 1, (1.2)

where the weakly singular kernelω1−α is defined byωμ(t) := tμ−1/�(μ). It is easy to verify
that ω′

μ(t) = ωμ−1(t) and
∫ t
0 ωμ(s) ds = ωμ+1(t) for t > 0.

In any numerical methods for solving semilinear fractional diffusion equations (1.1a), a
key consideration is the singularity of the solution near the time t = 0, see [5,9,19,23]. For
example, under the assumption that the nonlinear function f is Lipschitz continuous and the
initial data u0 ∈ H2(�) ∩ H1

0 (�), Jin et al. [5, Theorem 3.1] prove that problem (1.1) has
a unique solution u for which u ∈ C

([0, T ]; H2(�) ∩ H1
0 (�)

)
, Dα

t u ∈ C
([0, T ]; L2(�)

)
and ∂t u ∈ L2(�) with

‖∂t u(t)‖L2(�) ≤ Cut
α−1 for 0 < t ≤ T ,

where Cu > 0 is a constant independent of t but may depend on T . Their analysis of
numerical methods for solving (1.1) is applicable to both the L1 scheme and backward Euler
convolution quadrature on a uniform time grid of diameter τ ; a lagging linearized technique
is used to handle the nonlinearity f (u), and [5, Theorem 4.5] shows that the discrete solution
is O(τα) convergent in L∞(L2).

This work may be considered as a continuation of [14], in which a sharp error estimate for
theL1 formula onnonuniformmesheswas obtained for linear subdiffusion-reaction equations
based on a discrete fractional Grönwall inequality and a global consistency analysis. In this
paper, we combine the L1 formula and the sum-of-exponentials (SOEs) technique to develop
a one-step fast difference algorithm for the semilinear subdiffusion problem (1.1) by using
the Newton’s linearization to approximate nonlinear term, and present the corresponding
sharp error estimate of the proposed scheme without any restriction on the relative diameters
of temporal and spatial mesh sizes.

It is known that the Caputo fractional derivative involves a convolution kernel. The total
number of operations required to evaluate the sum of L1 formula is proportional to O(N 2),
and the active memory to O(N ) with N representing the total time steps, which is pro-
hibitively expensive for the practically large-scale and long-time simulations. Recently, a
simple fast algorithm based on SOEs approximation is proposed to significantly reduce the
computational complexity to O(N log N ) and O(log N ) when the final time T � 1, see
[4,10]. For an evolution equation with memory, a fast summation algorithm was also pro-
posed [17] by interval clustering. Very recently, another fast algorithm for the evaluation of
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the fractional derivative has been proposed in [1], where the compression is carried out in
the Laplace domain by solving the equivalent ODE with some one-step A-stable scheme.
Here the technique of SOEs approximation is used to develop a two-level fast L1 formula
by combining a nonuniform mesh suited to the initial singularity with a fast time-stepping
algorithm for the historical memory in (1.2). As an interesting property, this scheme com-
putes the current solution by only using the solution at previous time-level, so it would be
useful to develop efficient parallel-in-time algorithms, cf. [21], for time-fractional differential
equations.

On the other hand, the nonlinearity of the problem also results in the difficulty for the
numerical analysis. To establish an error estimate of the two-level linearized scheme at time tn ,
it always requires to prove the boundedness of the numerical solution at the previous time
level, that is ‖un−1‖∞ ≤ Cu . Traditionally it is gotten by using the mathematical induction
and some inverse estimate, assuming the underlaying scheme is accurate of order O(τβ +h2)
with β representing the temporal convergence order,

‖un−1‖∞ ≤ ‖Un−1‖∞ + ‖Un−1 − un−1‖∞
≤ ‖Un−1‖∞ + h−1‖Un−1 − un−1‖
≤ ‖Un−1‖∞ + Cuh

−1(τβ + h2
)
.

This leads to a restriction of the time-space grid τ = O(h1/β) in the theoretical analysis even
though it is nonphysical and may be unnecessary in numerical simulations. In this paper,
we will extend the discrete H2 energy method developed in [11–13] to prove unconditional
convergence of our fully discrete solution without any time-space grid restrictions. The main
idea of discrete H2 energy method is to separately treat the temporal and spatial truncation
errors. Thismethod avoids some nonphysical time-space grid restrictions in the error analysis.
Another related approach in a finite element setting is discussed in [6–8].

The convergence rate of L1 formula for the Caputo derivative is limited by the smooth-
ness of the solution. We approximate the Caputo fractional derivative (1.2) on a (possibly
nonuniform) time mesh 0 = t0 < · · · < tk−1 < tk < · · · < tN = T , with the time-step sizes
τk := tk − tk−1 for 1 ≤ k ≤ N , the maximum time-step τ = max1≤k≤N τk and the step size
ratios

ρk := τk/τk+1 for 1 ≤ k ≤ N − 1.

The analysis here is based on the following assumptions on the continuous solution

‖u‖H4(�) ≤ C, ‖∂t u‖H4(�) ≤ C(1 + tσ−1) and p ‖∂t t u‖H2(�) ≤ C(1 + tσ−2) (1.3)

for 0 < t ≤ T , where σ ∈ (0, 1) ∪ (1, 2) is a regularity parameter. To satisfy the regularity
conditions in (1.3), appropriate regularity and compatibility assumptions should be imposed
on the given data in problem (1.1). Investigating this is beyond the scope of the paper. Noting
that, the first two regularity conditions in (1.3) can be relaxed by using the finite elements
instead of finite differences [15]. Throughout the paper, any subscripted C , such as Cu , Cγ ,
C�, Cv , C0 and CF , denotes a generic positive constant, not necessarily the same at different
occurrences, which is always dependent on the given data and the continuous solution u, but
independent of the time-space grid steps.

To resolve the singularity at t = 0, it is reasonable to use a nonuniform mesh that con-
centrates grid points near t = 0, see [2,3,14,16,20]. We make the following assumption on
the time mesh:
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AssG For a parameter γ ≥ 1, there are positive constantCγ and C̃γ , independent of k, such

that τk ≤ Cγ τ min{1, t1−1/γ
k } for 1 ≤ k ≤ N , and tk ≤ C̃γ tk−1 for 2 ≤ k ≤ N .

The assumption AssG implies that τ1 = O(τ γ ), and allows the time-step size τk to increase
as the time tk increases, meanwhile, one may has τk = O(τ ) as those bounded tk away
from t = 0. The parameter γ controls the distribution density of the grid points concentrated
near t = 0: increasing γ will refine the time-step sizes near t = 0 and so move mesh points
closer to t = 0. A simple example of a family of meshes satisfying AssG is the graded
grid tk = T (k/N )γ , see discussions in [2,14,16,18–20]. Although nonuniform time meshes
are flexible and reasonably convenient for practical implementations, they also significantly
complicate the numerical analysis of schemes, both with respect to stability and consistency.
In this paper, our analysiswill rely on a generalized fractionalGrönwall inequality [15],which
would be applicable for any discrete fractional derivatives having the discrete convolution
form.As themain result shown in Theorem 4.2, the proposed two-level linearized fast scheme
is proved to be unconditionally convergent in the sense that (ε is the SOE approximation error
and h is the maximum spatial length)

∥∥Uk − uk
∥∥∞ ≤ Cu

σ(1 − α)

(
τmin{2−α,γ σ } + h2 + ε

)
,

where Cu may depend on u and T , but is uniformly bounded with respect to α and σ .
The paper is organized as follows. Section 2 presents the two-level fast L1 formula and the

corresponding linearized fast scheme. The global consistency analysis of fast L1 formula and
the Newton’s linearization are presented in Sect. 3. A sharp error estimate for the linearized
fast scheme is proved in Sect. 4. Two numerical examples in Sect. 5 are given to demonstrate
the sharpness of our analysis.

2 A Two-Level Fast Method

In space we use a standard finite difference method on a tensor product grid. Let M1 and M2

be two positive integers. Set h1 = (xr − xl)/M1, h2 = (yr − yl)/M2 and the maximum
spatial length h = max{h1, h2}. Then the fully discrete spatial grid

�̄h := {xh = (xl + ih1, yl + jh2) | 0 ≤ i ≤ M1, 0 ≤ j ≤ M2}.

Set �h = �̄h ∩ � and the boundary ∂�h = �̄h ∩ ∂�. Given a grid function v = {vi j },
define

vi− 1
2 , j = (vi, j + vi−1, j

)
/2, δxvi− 1

2 , j = (vi, j − vi−1, j
)
/h1,

δ2xvi j = (δxvi+ 1
2 , j − δxvi− 1

2 , j

)
/h1.

Also, discrete operators vi, j− 1
2
, δyvi, j− 1

2
, δxδyvi− 1

2 , j− 1
2
and δ2yvi j can be defined analo-

gously. The second-order approximation of �v(xh) for xh ∈ �h is �hvh := (δ2x + δ2y)vh .
Let Vh be the space of grid functions,

Vh = {v = (vh)xh∈�̄h

∣∣ vh = 0 for xh ∈ ∂�h
}
.
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For v,w ∈ Vh , define the discrete inner product 〈v,w〉 = h1h2
∑

xh∈�h
vhwh , the discrete

L2 norm ‖v‖ := √〈v, v〉, the discrete H1 seminorms

‖δxv‖ :=

√√√√√h1h2

M1∑
i=1

M2−1∑
j=1

(
δxvi− 1

2 , j

)2
, ‖δyv‖ :=

√√√√√h1h2

M1−1∑
i=1

M2∑
j=1

(
δyvi, j− 1

2

)2
,

‖∇hv‖ =
√

‖δxv‖2 + ‖δyv‖2 and the maximum norm ‖v‖∞ = maxxh∈�h |vh |. For any
v ∈ Vh , by [13, Lemmas 2.1, 2.2 and 2.5] there exists a constant C� > 0 such that

‖v‖ ≤ C�‖∇hv‖, ‖∇hv‖ ≤ C�‖�hv‖, ‖v‖∞ ≤ C�‖�hv‖. (2.1)

2.1 A Fast Variant of the L1 Formula

On our nonuniform mesh, the standard L1 approximation of the Caputo derivative is

(Dα
τ v)n :=

n∑
k=1

1

τk

∫ tk

tk−1

ω1−α(tn − s)∇τ v
k ds =

n∑
k=1

a(n)
n−k∇τ v

k, (2.2)

where ∇τ v
k := vk − vk−1 and the convolution kernel a(n)

n−k is defined by

a(n)
n−k := 1

τk

∫ tk

tk−1

ω1−α(tn − s) ds = 1

τk

[
ω2−α(tn − tk−1) − ω2−α(tn − tk)

]
, 1 ≤ k ≤ n.

(2.3)

Lemma 2.1 For any fixed integer n ≥ 2, the convolution kernel a(n)
n−k of (2.3) satisfies

(i) a(n)
n−k−1 > ω1−α(tn − tk) > a(n)

n−k, 1 ≤ k ≤ n − 1;
(ii) a(n)

n−k−1 − a(n)
n−k > 1

2

[
ω1−α(tn − tk) − ω1−α(tn − tk−1)

]
, 1 ≤ k ≤ n − 1.

Proof The integral mean value theorem yields

a(n)
n−k = 1

τk

∫ tk

tk−1

ω1−α(tn − s)ds = ω1−α(tn − sk) for some sk ∈ (tk−1, tk),

which implies the result (i) directly since the kernel ω1−α is decreasing, also see [14,23]. For
any function q ∈ C2[tk−1, tk], let �1,kq be the linear interpolant of q(t) at tk−1 and tk . Let

˜�1,kq := q − �1,kq

be the error in this interpolant. For q(s) = ω1−α(tn − s) one has q ′′(s) = ω−α−1(tn − s) > 0
for 0 < s < tn , so the Peano representation of the interpolation error [14, Lemma 3.1] shows
that ∫ tk

tk−1

(
˜�1,kq

)
(s) ds < 0.

Thus the definition (2.3) of a(n)
n−k yields

a(n)
n−k − 1

2
ω1−α(tn − tk) − 1

2
ω1−α(tn − tk−1)
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= 1

τk

∫ tk

tk−1

(
˜�1,kq

)
(s) ds < 0, 1 ≤ k ≤ n − 1.

Subtract this inequality from (i) to obtain (ii) immediately. ��
One can see that the direct evaluation of the L1 formula (2.2) is quite inefficient as it

requires the information of solutions at all previous time levels while solving problem (1.1).
Thismotivates us to develop a fast L1 formula based on the SOEs approach given in [4,10,22].
A basic result of SOE approximation (see [4, Theorem 2.5] or [22, Lemma 2.2]) is as follows:

Lemma 2.2 Given α ∈ (0, 1), an absolute tolerance error ε � 1, a cut-off time �t > 0 and
a final time T , there exists a positive integer Nq , positive quadrature nodes θ� and positive
weights �� (1 ≤ � ≤ Nq) such that

∣∣∣ω1−α(t) −
Nq∑
�=1

��e−θ�t
∣∣∣ ≤ ε ∀ t ∈ [�t, T ],

where the number Nq of quadrature nodes satisfies

Nq = O

(
log

1

ε

(
log log

1

ε
+ log

T

�t

)
+ log

1

�t

(
log log

1

ε
+ log

1

�t

))
.

To design the fast L1 algorithm, we divide the Caputo derivative (Dα
t v)(tn) of (1.2) into a

sum of a local part (an integral over [tn−1, tn]) and a history part (an integral over [0, tn−1]),
and approximate v′ by linear interpolation in the local part (as the same as the standard L1
method) and use the SOE technique of Lemma 2.2 to approximate the kernel ω1−α(t − s) in
the history part. It arrives at

(
Dα
t u
)
(tn) ≈

∫ tn

tn−1

ω1−α(tn − s)
∇τun

τn
ds +

∫ tn−1

0

Nq∑
�=1

��e−θ�(tn−s)u′(s) ds

= a(n)
0 ∇τu

n +
Nq∑
�=1

��e−θ�τnH�(tn−1), n ≥ 1,

whereH�(tk) := ∫ tk0 e−θ�(tk−s)u′(s) ds withH�(t0) = 0 for 1 ≤ � ≤ Nq . To computeH�(tk)
efficiently we apply linear interpolation in each cell [tk−1, tk] to have

H�(tk) = e−θ�τkH�(tk−1) +
∫ tk

tk−1

e−θ�(tk−s)u′(s) ds ≈ e−θ�τkH�(tk−1) + b(k,�)∇τu
k,

where the positive coefficient is given by

b(k,�) := 1

τk

∫ tk

tk−1

e−θ�(tk−s) ds, k ≥ 1, 1 ≤ � ≤ Nq . (2.4)

In summary, we now have the two-level fast L1 formula

(Dα
f u)n := a(n)

0 ∇τu
n +

Nq∑
�=1

��e−θ�τn H �(tn−1), n ≥ 1, (2.5a)

where H �(tk) satisfies H �(t0) = 0 and the recurrence relationship

H �(tk) = e−θ�τk H �(tk−1) + b(k,�)∇τu
k, k ≥ 1, 1 ≤ � ≤ Nq . (2.5b)
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2.2 The Two-Level Linearized Scheme

Let Un
h = u(xh, tn) for xh ∈ �̄h , 0 ≤ n ≤ N , and unh be the discrete approximation of Un

h .
Using the fast L1 formula (2.5) and the Newton linearization, we obtain a linearized scheme
for problem (1.1): find {uN

h } ∈ Vh such that

(Dα
f uh)

n = �hu
n
h + f (un−1

h ) + f ′(un−1
h )∇τu

n
h, xh ∈ �h, 1 ≤ n ≤ N ; (2.6a)

u0h = u0(xh), xh ∈ �̄h . (2.6b)

The Newton linearization of a general nonlinear function f = f (x, t, u) at t = tn is taken
as the form

f (xh, tn, unh) ≈ f (xh, tn, u
n−1
h ) + f ′

u(xh, tn, u
n−1
h )∇τu

n
h .

The scheme (2.6) is a two-level procedure for computing {unh}, because (2.6a) can be equiv-
alently reformulated as

[
a(n)
0 − �h − f ′(un−1

h )
]
∇τu

n
h = �hu

n−1
h + f (un−1

h ) −
Nq∑
�=1

��e−θ�τn H �
h (tn−1), (2.7)

H �
h (tn) = e−θ�τn H �

h (tn−1) + b(n,�)∇τu
n
h, 1 ≤ � ≤ Nq . (2.8)

Thus, once the values {un−1
h , H �

h (tn−1)} at the previous time-level tn−1 are available, the
current solution {unh} can be found by (2.7) with a fast matrix solver and the historic term
{H �

h (tn)} will be updated explicitly by the recurrence formula (2.8).

Remark 2.3 At each time level the scheme (2.6) requires O(MNq) storage and O(MNq)

operations, where M = M1M2 is the total number of spatial grid points. Given a tolerance
error ε0, by virtue of Lemma 2.2, the number of quadrature nodes Nq = O(log N ) if the final
time T � 1. Hence our fast method is efficient for long time simulations since it computes
the final solution using in total O(M log N ) storage and O(MN log N ) operations.

2.3 Discrete Fractional Grönwall Inequality

Our analysis relies on a generalized discrete fractional Grönwall inequality developed in [15],
which is applicable for any discrete fractional derivative having the discrete convolution form

(Dα
t v)n ≈

n∑
k=1

A(n)
n−k(v

k − vk−1), 1 ≤ n ≤ N , (2.9)

provided that A(n)
n−k and the time-steps τn satisfy the following three assumptions:

Ass1 The discrete kernel is monotone, that is,

A(n)
k−2 ≥ A(n)

k−1 > 0 for 2 ≤ k ≤ n ≤ N .

Ass2 There is a constant πA > 0 such that

A(n)
n−k ≥ 1

πA

∫ tk

tk−1

ω1−α(tn − s)

τk
ds for 1 ≤ k ≤ n ≤ N .
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Ass3 There is a constant ρ > 0 such that the time-step ratios

ρk ≤ ρ for 1 ≤ k ≤ N − 1.

The complementary discrete kernel P(n)
n−k was introduced by Liao et al. [14,15]; it satisfies

the following identity
n∑
j=k

P(n)
n− j A

( j)
j−k ≡ 1 for 1 ≤ k ≤ n ≤ N . (2.10)

Rearranging this identity yields a recursive formula that defines P(n)
n−k :

P(n)
0 := 1/A(n)

0 ,

P(n)
n− j := 1/A( j)

0

n∑
k= j+1

(
A(k)
k− j−1 − A(k)

k− j

)
P(n)
n−k, 1 ≤ j ≤ n − 1. (2.11)

From [15, Lemma 2.2] one can see that P(n)
n−k is well-defined and non-negative if the assump-

tion Ass1 holds true. Furthermore, if Ass2 holds true, then
n∑
j=1

P(n)
n− j ≤ πA ω1+α(tn) for 1 ≤ n ≤ N . (2.12)

Recall that the Mittag–Leffler function Eα(z) = ∑∞
k=0

zk
�(1+kα)

. We state the following
(slightly simplified) version of [15, Theorem 3.2]. This result differs substantially from the
fractional Grönwall inequality of Jin et al. [5, Theorem 4] since it is valid on very general
nonuniform time meshes.

Theorem 2.4 Let Ass1–Ass3 hold true. Suppose that the sequences (ξn1 )Nn=1, (ξn2 )Nn=1 are
nonnegative. Assume that λ0 and λ1 are non-negative constants and the maximum step size
τ ≤ 1/ α

√
2πA�(2 − α)(λ0 + λ1). If the nonnegative sequence (vk)Nk=0 satisfies

n∑
k=1

A(n)
n−k∇τ v

k ≤ λ0v
n + λ1v

n−1 + ξn1 + ξn2 for 1 ≤ n ≤ N ,

then it holds that for 1 ≤ n ≤ N,

vn ≤ 2Eα

(
2max{1, ρ}πA(λ0 + λ1)t

α
n

)(
v0 + max

1≤k≤n

k∑
j=1

P(k)
k− jξ

j
1 + πAω1+α(tn) max

1≤ j≤n
ξ
j
2

)
.

To facilitate our analysis, we now eliminate the historic term H �(tn) from the fast L1
formula (2.5a) for (Dα

f u)n . From the recurrence relationship (2.5b), it is easy to see that

H �(tk) =
k∑
j=1

e−θ�(tk−t j )b( j,�)∇τu
j , k ≥ 1, 1 ≤ � ≤ Nq .

Inserting this in (2.5a) and using the definition (2.4), one obtains the alternative formula

(Dα
f u)n = a(n)

0 ∇τu
n +

n−1∑
k=1

∇τuk

τk

∫ tk

tk−1

Nq∑
�=1

��e−θ�(tn−s) ds

=
n∑

k=1

A(n)
n−k∇τu

k, n ≥ 1, (2.13)
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where the discrete convolution kernel A(n)
n−k is henceforth given as

A(n)
0 := a(n)

0 , A(n)
n−k := 1

τk

∫ tk

tk−1

Nq∑
�=1

��e−θ�(tn−s) ds, 1 ≤ k ≤ n − 1, n ≥ 1. (2.14)

The formula (2.13) takes the form of (2.9), and we now verify that our A(n)
n−k defined by

(2.14) satisfyAss1 andAss2, allowing us to apply Theorem 2.4 and establish the convergence
of our computed solution. Part (I) of the next lemma ensures that Ass1 is valid, while part
(II) implies that Ass2 holds true with πA = 3

2 .

Lemma 2.5 If the tolerance error ε of SOE satisfies ε ≤ min
{ 1
3ω1−α(T ), α ω2−α(T )

}
, then

the discrete convolutional kernel A(n)
n−k of (2.14) satisfies

(I) A(n)
k−1 > A(n)

k > 0, 1 ≤ k ≤ n − 1;
(II) A(n)

0 = a(n)
0 and A(n)

n−k ≥ 2
3a

(n)
n−k, 1 ≤ k ≤ n − 1.

Proof The definition (2.3) and Lemma 2.1 (i) yield

a(n)
0 − a(n)

1 > a(n)
0 − ω1−α(τn) = α

τn
ω2−α(τn) ≥ α ω2−α(T ) ≥ ε.

The definition (2.14) and Lemma 2.2 imply that A(n)
0 = a(n)

0 > a(n)
1 + ε > A(n)

1 . Lemma 2.2
also shows that θ�,�� > 0 for � = 1, . . . , Nq ; the mean-value theorem now yields property
(I). By Lemma 2.1 (i) and our hypothesis on ε we have

ε ≤ 1

3
ω−α(tn) <

1

3
a(n)
n−1 ≤ 1

3
a(n)
n−k, 1 ≤ k ≤ n − 1.

Hence Lemma 2.2 gives

A(n)
n−k ≥ a(n)

n−k − ε ≥ 2

3
a(n)
n−k for 1 ≤ k ≤ n − 1.

The proof is complete. ��

3 Global Consistency Error Analysis

We now proceed with the consistency error analysis of our fast linearized method, and begin
with the consistency error of the standard L1 formula (Dα

τ u)n of (2.2).

Lemma 3.1 For v ∈ C2(0, T ] with ∫ T0 t |v′′(t)| ds < ∞, one has

∣∣(Dα
t v)(tn) − (Dα

τ v)n
∣∣ ≤ a(n)

0 Gn +
n−1∑
k=1

(
a(n)
n−k−1 − a(n)

n−k

)
Gk, n ≥ 1,

where the L1 kernel a(n)
n−k is defined by (2.3) and Gk := 2

∫ tk
tk−1

(t − tk−1)
∣∣v′′(t)

∣∣ dt .
Proof From Taylor’s formula with integral remainder, the truncation error of the standard L1
formula at time t = tn is (see [14, Lemma 3.3])

(Dα
t v)(tn) − (Dα

τ v)n =
n∑

k=1

∫ tk

tk−1

ω1−α(tn − s)
(
v′(s) − ∇τ v

k/τk

)
ds
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=
n∑

k=1

∫ tk

tk−1

v′′(t)
(
˜�1,k Q

)
(t) dt, n ≥ 1, (3.1)

where Q(t) = ω2−α(tn − t) and we use the notation of the proof of Lemma 2.1. By the error
formula for linear interpolation [14, Lemma 3.1], we have

(
˜�1,k Q

)
(t) =

∫ tk

tk−1

χk(t, y)Q
′′(y) dy, tk−1 < t < tk, 1 ≤ k ≤ n,

where the Peano kernel χk(t, y) = max{t − y, 0} − t−tk−1
τk

(tk − y) satisfies

− t−tk−1
τk

(tk − t) ≤ χk(t, y) < 0 for any t, y ∈ (tk−1, tk).

Observing that for each fixed n ≥ 1 the function Q is decreasing and Q′′(t) = ω−α(tn − t) <

0, we arrive at the interpolation error
(
˜�1,k Q

)
(t) ≥ 0 for 1 ≤ k ≤ n, with

(
˜�1,nQ

)
(t) ≤ Q(tn−1) − (�1,nQ

)
(t) = (t − tn−1)a

(n)
0 ,

(
˜�1,k Q

)
(t) ≤ (tk−1 − t)

∫ tk

tk−1

Q′′(t) dt ≤ (t − tk−1)
[
ω1−α(tn − tk) − ω1−α(tn − tk−1)

]

≤ 2(t − tk−1)
(
a(n)
n−k−1 − a(n)

n−k

)
, t ∈ (tk−1, tk), 1 ≤ k ≤ n − 1,

where Lemma 2.1 (ii) is used in the last inequality. Thus, (3.1) yields

∣∣(Dα
t v)(tn) − (Dα

τ v)n
∣∣ ≤

∫ tn

tn−1

∣∣v′′(t)
∣∣ (˜�1,nQ

)
(t) dt +

n−1∑
k=1

∫ tk

tk−1

∣∣v′′(t)
∣∣ (˜�1,k Q

)
(t) dt

≤ a(n)
0

∫ tn

tn−1

(t − tn−1)
∣∣v′′(t)

∣∣ dt + 2
n−1∑
k=1

(
a(n)
n−k−1 − a(n)

n−k

) ∫ tk

tk−1

(t − tk−1)
∣∣v′′(t)

∣∣ dt,

and the desired result follows from the definition of Gk . ��
Remark 3.2 Compared with the previous estimate in [14, Lemma 3.3], Lemma 3.1 removes
the restriction of time-step ratios ρk ≤ 1, which is an undesirable restriction on the mesh for
problems that allow the rapid growth of the solution at the time far away from t = 0.

We now focus on the fast L1 method by taking the initial singularity into account. Here
and hereafter, we denote T̂ = max{1, T } and t̂n = max{1, tn} for 1 ≤ n ≤ N . Next lemma
presents the estimate of the global consistency error

∑n
j=1 P

(n)
n− j

∣∣ϒ j
∣∣ accumulating from

t = t1 to t = tn with the discrete convolution kernel P(n)
n− j .

Lemma 3.3 Assume that v ∈ C2((0, T ]) and that there exists a constant Cv > 0 such that∣∣v′(t)
∣∣ ≤ Cv(1 + tσ−1),

∣∣v′′(t)
∣∣ ≤ Cv(1 + tσ−2), 0 < t ≤ T , (3.2)

where σ ∈ (0, 1) ∪ (1, 2) is a parameter. Let

ϒ j := (Dα
t v)(t j ) − (Dα

f v) j

denote the local consistency error of the fast L1 formula (2.13). Assume that the SOE tolerance
error satisfies ε ≤ 1

3 min{ω1−α(T ), 3α ω2−α(T )}. Then the global consistency error can be
bounded by
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n∑
j=1

P(n)
n− j

∣∣ϒ j
∣∣ ≤ Cv

(τσ
1

σ
+ 1

1 − α
max
2≤k≤n

(tk − t1)
αtσ−2

k−1 τ 2−α
k + ε

σ
tαn t̂

2
n−1

)
(3.3)

for 1 ≤ n ≤ N. Moreover, if the mesh satisfies AssG, then

n∑
j=1

P(n)
n− j

∣∣ϒ j
∣∣ ≤ Cv

σ (1 − α)
τmin{2−α,γ σ } + ε

σ
Cvt

α
n t̂

2
n−1, 1 ≤ n ≤ N .

Proof The main difference between the fast L1 formula (2.13) and the standard L1 formula
(2.2) is that the convolution kernel is approximated by SOEs with an absolute tolerance error
ε. Thus, comparing the standard L1 formula (2.2) with the corresponding fast L1 formula
(2.13), by Lemma 2.2 and the regularity assumption (3.2) one has

∣∣(Dα
f v) j − (Dα

τ v) j
∣∣ ≤

j−1∑
k=1

∣∣∇τ v
k
∣∣

τk

∫ tk

tk−1

∣∣∣
Nq∑
�=1

��e−θ�(t j−s) − ω1−α(t j − s)
∣∣∣ ds,

≤ ε

j−1∑
k=1

∫ tk

tk−1

∣∣v′(s)
∣∣ ds ≤ Cv

(
t j−1 + tσj−1/σ

)
ε ≤ Cv

σ
t̂ 2j−1ε, j ≥ 1.

Lemma 2.2 implies that
∣∣A(n)

n−k − a(n)
n−k

∣∣ ≤ ε for 1 ≤ k ≤ n − 1. Recalling that A(n)
0 = a(n)

0 ,
one has

a( j)
j−k−1 − a( j)

j−k ≤ A( j)
j−k−1 − A( j)

j−k + 2ε, 1 ≤ k ≤ j − 1.

Then Lemma 3.1 and the regularity assumption (3.2) lead to

∣∣∣(Dα
t v)(t j ) − (Dα

τ v) j
∣∣∣ ≤ A( j)

0 G j +
j−1∑
k=1

(
A( j)
j−k−1 − A( j)

j−k

)
Gk + 2ε

j−1∑
k=1

Gk

≤ A( j)
0 G j +

j−1∑
k=1

(
A( j)
j−k−1 − A( j)

j−k

)
Gk + 4ε

j−1∑
k=1

∫ tk

tk−1

t
∣∣v′′(t)

∣∣ dt

≤ A( j)
0 G j +

j−1∑
k=1

(
A( j)
j−k−1 − A( j)

j−k

)
Gk + Cv

σ
t̂ 2j−1ε, j ≥ 1.

Now a triangle inequality gives

∣∣ϒ j
∣∣ ≤ A( j)

0 G j +
j−1∑
k=1

(
A( j)
j−k−1 − A( j)

j−k

)
Gk + Cv

σ
t̂ 2j−1ε, j ≥ 1. (3.4)

Multiplying the above inequality (3.4) by P(n)
n− j and summing the index j from 1 to n, one

can exchange the order of summation and apply the definition (2.11) of P(n)
n− j to obtain

n∑
j=1

P(n)
n− j

∣∣ϒ j
∣∣ ≤

n∑
j=1

P(n)
n− j A

( j)
0 G j +

n∑
j=2

P(n)
n− j

j−1∑
k=1

(
A( j)
j−k−1 − A( j)

j−k

)
Gk

+ Cv

ε

σ

n∑
j=2

P(n)
n− j t̂

2
j−1
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=
n∑
j=1

G j P(n)
n− j A

( j)
0 +

n−1∑
k=1

Gk
n∑

j=k+1

P(n)
n− j

(
A( j)
j−k−1 − A( j)

j−k

)

+ Cv t̂
2
n−1

ε

σ

n∑
j=2

P(n)
n− j

≤
n∑

k=1

P(n)
n−k A

(k)
0 Gk +

n−1∑
k=1

P(n)
n−k A

(k)
0 Gk + Cv

σ
tαn t̂

2
n−1ε, (3.5)

where the property (2.12) with πA = 3/2 is used in the last inequality. If the SOE approxi-
mation error ε ≤ 1

3 min{ω1−α(T ), 3α ω2−α(T )}, Lemma 2.5 (II) and Lemma 2.1 (i) imply
that

A(k)
0 = a(k)

0 = ω2−α(τk)/τk, A(k)
k−2 ≥ 2

3a
(k)
k−2 ≥ 2

3ω1−α(tk − t1),

and then

A(k)
0 /A(k)

k−2 ≤ 3
2(1−α)

(tk − t1)
ατ−α

k , 2 ≤ k ≤ n ≤ N .

Furthermore, the identical property (2.10) for the complementary kernel P(n)
n− j gives

P(n)
n−1A

(1)
0 ≤ 1 and

n−1∑
k=2

P(n)
n−k A

(k)
k−2 ≤

n∑
k=2

P(n)
n−k A

(k)
k−2 = 1.

The regularity assumption (3.2) gives

G1 ≤ Cvτ
σ
1 /σ and Gk ≤ Cv t

σ−2
k−1 τ 2k for 2 ≤ k ≤ n.

Thus it follows from (3.5) that
n∑
j=1

P(n)
n− j

∣∣ϒ j
∣∣ ≤ 2G1 + 2

n∑
k=2

P(n)
n−k A

(k)
0 Gk + Cv

σ
tαn t̂

2
n−1ε

≤ Cv

τσ
1

σ
+ Cv

1 − α

n∑
k=2

P(n)
n−k A

(k)
k−2(tk − t1)

αtσ−2
k−1 τ 2−α

k + Cv

σ
tαn t̂

2
n−1ε

≤ Cv

(τσ
1

σ
+ 1

1 − α
max
2≤k≤n

(tk − t1)
αtσ−2

k−1 τ 2−α
k + 1

σ
tαn t̂

2
n−1ε

)
, 1 ≤ n ≤ N .

The claimed estimate (3.3) is verified. In particular, if AssG holds, one has

tαk t
σ−2
k−1 τ 2−α

k ≤ Cγ t
σ−2+α
k τ

2−α−β
k τβ min{1, tβ−β/γ

k }
≤ Cγ t

σ−β/γ

k

(
τk/tk

)2−α−β
τβ ≤ Cγ t

max{0,σ−(2−α)γ }
k τβ, 2 ≤ k ≤ N ,

where β = min{2 − α, γ σ }. The final estimate follows since τσ
1 ≤ Cγ τ γ σ ≤ Cγ τβ . ��

Next lemmadescribes the global consistency error ofNewton’s linearized approach,which
is smaller than that generated by the above L1 approximation. In addition, there is no error
in the linearized approximation if f = f (u) is a linear function.

Lemma 3.4 Assume that v ∈ C([0, T ]) ∩C2((0, T ]) satisfies the regularity condition (3.2),
and the nonlinear function f = f (u) ∈ C2(R). Denote vn = v(tn) and the local truncation
error

Rn
f = f (vn) − f (vn−1) − f ′(vn−1)∇τ v

n
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such that the global consistency error

n∑
j=1

P(n)
n− j

∣∣R j
f

∣∣ ≤ Cvτ
α
1

(
τ 21 + τ 2σ1 /σ 2)+ Cvt

α
n max

2≤ j≤n

(
τ 2j + t2σ−2

j−1 τ 2j
)
, 1 ≤ n ≤ N .

Moreover, if the assumption AssG holds, one has

n∑
j=1

P(n)
n− j

∣∣R j
f

∣∣ ≤ Cvτ
min{2,2γ σ } max{1, τ γα/σ 2}, 1 ≤ n ≤ N .

Proof Applying the formula of Taylor expansion with integral remainder, one has

R j
f = (∇τ v

j )2
∫ 1

0
f ′′(v j−1 + s∇τ v

j )(1 − s) ds, j ≥ 1.

Under the regularity conditions, one has

∣∣R1
f

∣∣ ≤ Cv

( ∫ t1

t0

∣∣v′(t)
∣∣ dt)2 ≤ Cv

(
τ 21 + τ 2σ1 /σ 2) ,

and

∣∣R j
f

∣∣ ≤ Cv

( ∫ t j

t j−1

∣∣v′(t)
∣∣ dt)2 ≤ Cv

(
τ 2j + t2σ−2

j−1 τ 2j
)
, 2 ≤ j ≤ N .

Note that, Lemma 2.5 (II) and the definition (2.3) give A(k)
0 = a(k)

0 = ω2−α(τk)/τk , so the
identical property (2.10) shows

P(n)
n−1 ≤ 1/A(1)

0 ≤ �(2 − α)τα
1 .

Moreover, the bounded estimate (2.12) with πA = 3
2 gives

n∑
j=2

P(n)
n− j ≤ 3

2
ω1+α(tn).

Thus, it follows that

n∑
j=1

P(n)
n− j

∣∣R j
f

∣∣ ≤ P(n)
n−1

∣∣R1
f

∣∣+
n∑
j=2

P(n)
n− j

∣∣R j
f

∣∣ ≤ Cvτ
α
1

∣∣R1
f

∣∣+ Cvt
α
n max

2≤ j≤n

∣∣R j
f

∣∣

≤ Cvτ
α
1

(
τ 21 + τ 2σ1 /σ 2)+ Cvt

α
n max

2≤ j≤n

(
τ 2j + t2σ−2

j−1 τ 2j
)
, 1 ≤ n ≤ N .

If AssG holds, one has

τ 2j ≤ Cγ τ 2 min{1, t2−2/γ
j } ≤ Cγ τβ min{1, t2−2/γ

j },
and

t2σ−2
j−1 τ 2j ≤ Cγ t

2σ−2
j τ

2−β
j τβ min{1, tβ−β/γ

j }
≤ Cγ t

2σ−min{2,2γ σ }/γ
j

(
τk/tk

)2−β
τβ ≤ Cγ t

max{0,2σ−2/γ }
k τβ, 2 ≤ j ≤ N ,

where β = min{2, 2γ σ }. The second estimate follows since τ 2σ1 ≤ Cγ τ 2γ σ ≤ Cγ τβ . ��
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4 Unconditional Convergence

Assume that the time mesh fulfills Ass3 and AssG in the error analysis. We here extend the
discrete H2 energy method in [11–13] to prove the unconditional convergence of discrete
solutions to the two-level linearized scheme (2.6). In this section, K0, τ ∗, τ ∗

0 , τ
∗
1 , h0, ε0 and

any numeric subscripted c, such as c0, c1, c2 and so on, are fixed values, which are always
dependent on the given data and the continuous solution, but independent of the time-space
grid steps and the inductive index k in the mathematical induction as well. To make our ideas
more clearly, four steps are listed to obtain unconditional error estimate as follows.

4.1 STEP 1: Construction of Coupled Discrete System

We introduce a function w := Dα
t u − f (u) with the initial-boundary values w(x, 0) :=

�u0(x) for x ∈ � andw(x, t) := − f (0) for x ∈ ∂�. The problem (1.1a) can be formulated
into

w = Dα
t u − f (u), x ∈ �̄, 0 < t ≤ T ;

w = �u, x ∈ �, 0 ≤ t ≤ T .

Let wn
h be the numerical approximation of function Wn

h = w(xh, tn) for xh ∈ �̄h . As done
in subsection 2.2, one has an auxiliary discrete system: to seek {unh, wn

h } such that

wn
h = (Dα

f uh)
n − f (un−1

h ) − f ′(un−1
h )∇τu

n
h, xh ∈ �̄h, 1 ≤ n ≤ N ; (4.1)

wn
h = �hu

n
h, xh ∈ �h, 0 ≤ n ≤ N ; (4.2)

u0h = u0(xh), xh ∈ �̄h ; unh = 0, xh ∈ ∂�h, 1 ≤ n ≤ N . (4.3)

Obviously, by eliminating the auxiliary function wn
h in above discrete system, one directly

arrives at the computational scheme (2.6). Alternately, the solution properties of two-level
linearized method (2.6) can be studied via the auxiliary discrete system (4.1)–(4.3).

4.2 STEP 2: Reduction of Coupled Error System

Let ũnh = Un
h − unh , w̃

n
h = Wn

h − wn
h be the solution errors for xh ∈ �̄h . The solution errors

satisfy the governing equations as

w̃n
h = (Dα

f ũh)
n − N n

h + ξnh , xh ∈ �̄h, 1 ≤ n ≤ N ; (4.4)

w̃n
h = �hũ

n
h + ηnh , xh ∈ �h, 0 ≤ n ≤ N ; (4.5)

ũ0h = 0, xh ∈ �̄h ; ũnh = 0, xh ∈ ∂�h, 1 ≤ n ≤ N , (4.6)

where ξnh and ηnh denote temporal and spatial truncation errors, respectively, and

N n
h := f ′(un−1

h )∇τ ũ
n
h + f (Un−1

h ) − f (un−1
h ) +

(
f ′(Un−1

h ) − f ′(un−1
h )

)
∇τU

n
h

= f ′(un−1
h )∇τ ũ

n
h + ũn−1

h

∫ 1

0
f ′(sUn−1

h + (1 − s)un−1
h

)
ds

+ ũn−1
h ∇τU

n
h

∫ 1

0
f ′′(sUn−1

h + (1 − s)un−1
h

)
ds. (4.7)
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Acting the difference operators �h and Dα
f on the Eqs. (4.4)–(4.5), respectively, gives

�hw̃
n
h = (Dα

f �hũh)
n − �hN n

h + �hξ
n
h , xh ∈ �h, 1 ≤ n ≤ N ;

(Dα
f w̃h)

n = (Dα
f �hũh)

n + (Dα
f ηh)

n, xh ∈ �h, 1 ≤ n ≤ N .

By eliminating the term (Dα
f �hũh)n in the above two equations, one gets

(Dα
f w̃h)

n = �hw̃
n
h + �hN n

h + (Dα
f ηh)

n − �hξ
n
h xh ∈ �h, 1 ≤ n ≤ N ; (4.8)

w̃0
h = η0h, xh ∈ �̄h ; w̃n

h = 0, xh ∈ ∂�h, 1 ≤ n ≤ N ; (4.9)

where the initial and boundary conditions are derived from the error system (4.4)–(4.6).

4.3 STEP 3: Continuous Analysis of Truncation Error

According to the first regularity condition in (1.3), one has
∥∥ηn∥∥ ≤ c1h

2, 0 ≤ n ≤ N . (4.10)

Since the spatial error ηnh is defined uniformly at the time t = tn [there is no temporal error
in the Eq. (4.2)], we can define a continuous function ηh(t) for xh = (xi , y j ) ∈ �h,

ηh(t) = h21
6

∫ 1

0

[
∂(4)
x u(xi − sh1, y j , t) + ∂(4)

x u(xi + sh1, y j , t)
]
(1 − s)3 ds

+ h22
6

∫ 1

0

[
∂(4)
y u(xi , y j − sh2, t) + ∂(4)

y u(xi , y j + sh2, t)
]
(1 − s)3 ds,

such that ηnh = ηh(tn). The second condition in (1.3) implies

∥∥η′(t)
∥∥ ≤ Cuh

2(1 + tσ−1).

Hence, applying the fast L1 formula (2.13) and the equality (2.10), one has

n∑
j=1

P(n)
n− j

∥∥(Dα
f η) j

∥∥ ≤
n∑
j=1

P(n)
n− j

j∑
k=1

A( j)
j−k

∥∥∇τ η
k
∥∥ =

n∑
k=1

∥∥∇τ η
k
∥∥ ≤ c2

σ
t̂ 2n h

2. (4.11)

Since the time truncation error ξnh in (4.4) is defined uniformly with respect to grid point
xh ∈ �̄h , we can define a continuous function ξn(x) = ξn1 (x) + ξn2 (x), where ξn1 , ξ

n
2 denote

the truncation errors of fast L1 formula and Newton’s linearized approach, namely,

ξn1 = (Dα
t u)(tn) − (Dα

f u)n, ξn2 = (∇τu(tn)
)2 ∫ 1

0
f ′′(u(tn−1) + s∇τu(tn)

)
(1 − s) ds,

such that ξnh = ξn(xi , y j ) for xh ∈ �̄h . By the Taylor expansion formula, one has

�h
(
ξn1
)
i j =

∫ 1

0

[
∂xxξ

n
1 (xi − sh1, y j ) + ∂xxξ

n
1 (xi + sh1, y j )

]
(1 − s) ds

+
∫ 1

0

[
∂yyξ

n
1 (xi , y j − sh2) + ∂yyξ

n
1 (xi , y j + sh2)

]
(1 − s) ds, 1 ≤ n ≤ N .
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Applying Lemma 3.3 with the second and third regularity conditions in (1.3), we have

n∑
j=1

P(n)
n− j

∥∥�hξ
j
1

∥∥ ≤ Cu

σ(1 − α)
τmin{2−α,γ σ } + Cu

σ
tαn t̂

2
n−1ε, 1 ≤ n ≤ N .

Similarly, one may have an integral expression of �h
(
ξn2

)
i j by using the Taylor expansion.

Assuming f ∈ C4(R) and taking the maximum time-step size

τ ≤ τ ∗
1 := γα

√
σ such that τγα ≤ (τ ∗

1 )γα = σ,

we apply Lemma 3.4 with the second regularity condition in (1.3) to find,

n∑
j=1

P(n)
n− j

∥∥�hξ
j
2

∥∥ ≤ Cuτ
min{2,2γ σ } max{1, τ γα/σ 2} ≤ Cu

σ
τmin{2,2γ σ }, 1 ≤ n ≤ N .

Thus, the triangle inequality leads to

n∑
j=1

P(n)
n− j

∥∥�hξ
j
∥∥ ≤ c3

σ(1 − α)
τmin{2−α,γ σ } + c4

σ
tαn t̂

2
n−1ε, 1 ≤ n ≤ N . (4.12)

4.4 STEP 4: Error Estimate byMathematical Induction

For a positive constant C0, let B(0,C0) be a ball in the space of grid functions on �̄h such
that

max
{‖ψ‖∞, ‖∇hψ‖, ‖�hψ‖} ≤ C0

for any grid function {ψh} ∈ B(0,C0). Always, we need the following result to treat the
nonlinear terms but leave the proof to Appendix A.

Lemma 4.1 Let F ∈ C2(R) and a grid function {ψh} ∈ B(0,C0). Thus there is a constant
CF > 0 dependent on C0 and C� such that,

‖�h [F(ψ)v]‖ ≤ CF ‖�hv‖ .

Under the regularity assumption (1.3) with Uk
h = u(xh, tk), we define a constant

K0 = 1

3
max

0≤k≤N

{∥∥Uk
∥∥∞,

∥∥∇hU
k
∥∥, ∥∥�hU

k
∥∥}.

For a smooth function F ∈ C2(R) and any grid function {vh} ∈ Vh , we denote the maximum
value of CF in Lemma 4.1 as c0 such that

‖�h [F(w)v]‖ ≤ c0 ‖�hv‖ for any grid function {wh} ∈ B(0, K0 + 1). (4.13)

Let c5 be the maximum value of C� to verify the embedding inequalities in (2.1), and

c6=max{1, c5}Eα

(
3max{1, ρ}(2K0 + 3)c0T

α
)
, c7=3c1+ 2c2

σ
T̂ 2 + 3(2K0 + 3)c0c1T

α.

Also let

τ ∗
0 := 1

α
√
3�(2 − α)(2K0 + 3)c0

, τ ∗ := γα

√
σ(1 − α)

6c3c6
≤ τ ∗

1 , (4.14)
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and

h0 := 1√
3c6c7

, ε0 := min
{ σ

6c4c6T̂ 2T α
,
1

3
ω1−α(T ), α ω2−α(T )

}
. (4.15)

For the simplicity of presentation, we define the following notations for 1 ≤ k ≤ N ,

Ek := Eα

(
3max{1, ρ}(2K0 + 3)c0t

α
k

)
,

T k := 2c3
σ(1 − α)

τmin{2−α,γ σ } +
(
2c1 + 2c2

σ
t̂ 2k + 3(2K0 + 3)c0c1t

α
k

)
h2 + 2c4

σ
tαk t̂

2
k−1ε.

We now apply the mathematical induction to prove that
∥∥�hũ

k
∥∥ ≤ EkT k + c1h

2 for 1 ≤ k ≤ N , (4.16)

if the time-space grids and the SOE approximation satisfy

τ ≤ min{τ ∗
0 , τ ∗}, h ≤ h0, ε ≤ ε0. (4.17)

Here τ ∗
0 , τ

∗, h0 and ε0 are fixed constants defined by (4.14)–(4.15). Note that, the restrictions
in (4.17) ensures the error function {ũkh} ∈ B(0, 1) for 1 ≤ k ≤ N .

Consider k = 1 firstly. Since ũ0h = 0, {u0h} ∈ B(0, K0) ⊂ B(0, K0 + 1) and the nonlinear
term (4.7) gives N 1

h = f ′(u0h)ũ1h . For the function f ∈ C3(R), the inequality (4.13) implies
∥∥�hN 1

∥∥ = ‖�h
(
f ′(u0)ũ1

) ‖ ≤ c0
∥∥�hũ

1
∥∥ ≤ c0

∥∥w̃1
∥∥+ c0c1h

2, (4.18)

where the Eq. (4.5) and the estimate (4.10) are used. Taking the inner product of the Eq. (4.8)
(for n = 1) by w̃1

h , one gets

A(1)
0

〈∇τ w̃
1, w̃1〉 ≤ 〈�hN 1, w̃1〉+ 〈(Dα

f η)1 − �hξ
1, w̃1〉,

because the zero-valued boundary condition in (4.9) leads to
〈
�hw̃

1, w̃1
〉 ≤ 0. With the view

of Cauchy–Schwarz inequality and (4.18), one has
〈∇τ w̃

1, w̃1〉 ≥ ∥∥w̃1
∥∥∇τ

(∥∥w̃1
∥∥)

and then

A(1)
0 ∇τ

(∥∥w̃1
∥∥) ≤∥∥�hN 1

∥∥+ ∥∥(Dα
f η)1 − �hξ

1
∥∥ ≤ c0

∥∥w̃1
∥∥+ ∥∥(Dα

f η)1 − �hξ
1
∥∥+ c0c1h

2.

Setting τ1 ≤ τ ∗
0 ≤ 1/ α

√
3�(2 − α)c0, we apply Theorem 2.4 (discrete fractional Grönwall

inequality) with ξ11 = ∥∥(Dα
f η)1 − �hξ

1
∥∥ and ξ12 = c0c1h2 to get

∥∥w̃1
∥∥ ≤ Eα

(
3max{1, ρ}c0tα1

)(
2
∥∥η0∥∥+ 2P(1)

0

∥∥(Dα
f η)1 − �hξ

1
∥∥+ 3c0c1ω1+α(t1)h

2
)

≤ E1

( 2c3
σ(1 − α)

τmin{2−α,γ σ } + 2c1h
2 + 2c2

σ
t̂ 21 h

2 + 3c0c1ω1+α(t1)h
2
)

≤ E1T 1,

where the initial condition (4.9) and the error estimates (4.10)–(4.12) are used. Thus, the
Eq. (4.5) and the inequality (4.10) yield the estimate (4.16) for k = 1,

∥∥�hũ
1
∥∥ ≤ ∥∥w̃1

∥∥+ ∥∥η1∥∥ ≤ E1T 1 + c1h
2.
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Assume that the error estimate (4.16) holds for 1 ≤ k ≤ n − 1 (n ≥ 2). Thus we apply
the embedding inequalities in (2.1) to get

max
{∥∥ũk∥∥∞,

∥∥∇hũ
k
∥∥, ∥∥�hũ

k
∥∥} ≤ max{1, c5}

(
EkT k + c1h

2), 1 ≤ k ≤ n − 1.

Under the priori settings in (4.17), we have the error function {ũkh} ∈ B(0, 1), the discrete
solution {ukh} ∈ B(0, K0 + 1) for 1 ≤ k ≤ n − 1, and the continuous solution

{Uk
h } ∈ B(0, K0) ⊂ B(0, K0 + 1).

Then, for the function f ∈ C4(R), one applies the inequality (4.13) to find that
∥∥�h

[
f ′(un−1)∇τ ũ

n] ∥∥ ≤ c0
∥∥�h∇τ ũ

n
∥∥ ≤ c0

∥∥�hũ
n
∥∥+ c0

∥∥�hũ
n−1
∥∥,∥∥�h

[
ũn−1 f ′(sUn−1 + (1 − s)un−1)] ∥∥ ≤ c0

∥∥�hũ
n−1
∥∥,∥∥�h

[
ũn−1∇τU

n f ′′(sUn−1 + (1 − s)un−1)] ∥∥ ≤ c0
∥∥�h(ũ

n−1∇τU
n)
∥∥≤2c0K0

∥∥�hũ
n−1
∥∥,

where 0 ≤ s ≤ 1. From the expression (4.7) of N n and the triangle inequality, one has
∥∥�hN n

∥∥ ≤ c0
∥∥�hũ

n
∥∥+ 2(K0 + 1)c0

∥∥�hũ
n−1
∥∥

≤ c0
∥∥w̃n

∥∥+ 2(K0 + 1)c0
∥∥w̃n−1

∥∥+ (2K0 + 3)c0c1h
2, (4.19)

where the Eq. (4.5) and the estimate (4.10) are used.
Now, taking the inner product of (4.8) by w̃n

h , one gets〈
(Dα

f w̃)n, w̃n 〉 ≤ 〈�hN n, w̃n 〉+ 〈(Dα
f η)n − �hξ

n, w̃n 〉, (4.20)

because the zero-valued boundary condition in (4.9) leads to
〈
�hw̃

n, w̃n
〉 ≤ 0. Lemma 2.5

(I) says that the kernels A(n)
n−k are decreasing, so the Cauchy–Schwarz inequality gives

〈
(Dα

f w̃)n, w̃n 〉 ≥ A(n)
0 ‖w̃n‖2 −

n−1∑
k=1

(
A(n)
n−k−1 − A(n)

n−k

)‖w̃k‖‖w̃n‖ − A(n)
n−1‖w̃0‖‖w̃n‖

= ‖w̃n‖
[
A(n)
0 ‖w̃n‖ −

n−1∑
k=1

(
A(n)
n−k−1 − A(n)

n−k

)‖w̃k‖ − A(n)
n−1‖w̃0‖

]

= ‖w̃n‖
n∑

k=1

A(n)
n−k∇τ

(‖w̃k‖).

Thus with the help of Cauchy–Schwarz inequality and (4.19), it follows from (4.20) that

n∑
k=1

A(n)
n−k ∇τ

(‖w̃k‖) ≤ ∥∥�hN n
∥∥+ ∥∥(Dα

f η)n − �hξ
n
∥∥

≤ c0
∥∥w̃n

∥∥+ 2(K0 + 1)c0
∥∥w̃n−1

∥∥+ ∥∥(Dα
f η)n − �hξ

n
∥∥+ (2K0 + 3)c0c1h

2.

Setting the maximum time-step size

τ ≤ τ ∗
0 = 1/ α

√
3�(2 − α)(2K0 + 3)c0,
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we apply Theorem 2.4 with ξn1 = ∥∥(Dα
f η)n − �hξ

n
∥∥ and ξn2 = (2K0 + 3)c0c1h2 to get

∥∥w̃n
∥∥ ≤ En

⎛
⎝2∥∥η0∥∥+ 2 max

1≤ j≤n

j∑
k=1

P( j)
j−k

∥∥(Dα
f η)k − �hξ

k
∥∥+ 3(2K0 + 3)c0c1ω1+α(tn)h

2

⎞
⎠

≤ En

( 2c3
σ(1 − α)

τmin{2−α,γ σ } + 2c4
σ

tαn t̂
2
n−1ε

)

+ En

(
2c1 + 2c2

σ
t̂ 2n + 3(2K0 + 3)c0c1ω1+α(tn)

)
h2 ≤ EnT n,

where the initial data (4.9) and the three estimates (4.10)–(4.12) are used. Then the error
equation (4.5) with (4.10) implies that the claimed error estimate (4.16) holds for k = n,

‖�hũ
n‖ ≤ EnT n + c1h

2.

The principle of induction and the third inequality in (2.1) give the following result.

Theorem 4.2 Assume that the nonlinear function f ∈ C4(R) and the solution of nonlinear
subdiffusion problem (1.1) fulfills the regularity assumption (1.3)with a regularity parameter
σ ∈ (0, 1) ∪ (1, 2). Suppose that the SOE approximation error ε, the maximum time-step
size τ , and the maximum spatial length h satisfy

ε ≤ ε0, τ ≤ min{τ ∗
0 , τ ∗}, h ≤ h0,

where ε0, τ ∗
0 , τ

∗ and h0 are fixed constants defined by (4.14)–(4.15). Then the discrete solution
of two-level linearized fast scheme (2.6), on the nonuniform time mesh satisfying Ass3 and
AssG, is unconditionally convergent in the maximum norm, that is,

∥∥Uk − uk
∥∥∞ ≤ c8

σ(1 − α)
Eα

(
3max{1, ρ}(2K0 + 3)c0t

α
k

) (
τmin{2−α,γ σ } + h2 + ε

)
,

for 1 ≤ k ≤ N, where

c8 = max
{
1, c5}max{2c3, 4c1 + 2c2T̂

2 + 3(2K0 + 3)c0c1T
α, 2c4T

α T̂ 2}.
The numerical solution achieves an optimal time accuracy of order O(τ 2−α) if the grading
parameter is taken by γ ≥ max{1, (2 − α)/σ }.

5 Numerical Experiments

Two numerical examples are reported here to support our theoretical analysis. The two-level
linearized scheme (2.6) runs for solving the fractional Fisher equation

Dα
t u = �u + u(1 − u) + g(x, t), (x, t) ∈ (0, π)2 × (0, T ],

subject to zero-valued boundary data, with two different initial data and exterior forces:

• (Example 1) u0(x) = sin x sin y and g(x, t) = 0 such that no exact solution is available;
• (Example 2) g(x, t) is specified such that u(x, t) = ωσ (t) sin x sin y, 0 < σ < 2.

Note that, Example 2 with the regularity parameter σ is set to examine the sharpness of
predicted time accuracy on nonuniform meshes. Actually, our present theory also fits for the
semilinear problem with a nonzero force g(x, t) ∈ C(�̄ × [0, T ]).
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Fig. 1 The log–log plot of difference quotient ∇τ unh/τn versus the time for Example 1 (α = 0.4) with two
grading parameters γ = 1 (left) and γ = 3 (right)

Fig. 2 The log–log plot of difference quotient ∇τ unh/τn versus the time for Example 1 (α = 0.8) with two
grading parameters γ = 1 (left) and γ = 2 (right)

In our simulations, the spatial domain� is divided uniformly intoM parts in each direction
(M1 = M2 = M) and the time interval [0, T ] is divided into two parts [0, T0] and [T0, T ]with
total NT subintervals. According to the suggestion in [14], the graded mesh tk = T0 (k/N )γ

is applied in the cell [0, T0] and the uniform mesh with time step size τ ≥ τN is used over
the remainder interval. Given certain final time T and a proper number NT , here we would
take T0 = min{1/γ, T }, N = ⌈ NT

T+1−γ −1

⌉
such that

τ = T − T0
NT − N

≥ T + 1 − γ −1

NT
≥ N−1 ≥ τN .

Always, the absolute tolerance error of SOE approximation is set to ε = 10−12 such that the
two-level L1 formula (2.5a) is comparable with the L1 formula (2.2) in time accuracy.

In Example 1, we investigate the asymptotic behavior of solution near t = 0 and the
computational efficiency of the linearized method (2.6). Setting M = 100, T = 1/γ and
NT = 100, Figs. 1 and 2 depict, in log–log plot, the numerical behaviors of first-order
difference quotient∇τunh/τn at three spatial points near the initial time for different fractional
orders and grading parameters. Observations suggest that log |ut (x, t)| ≈ Cu(x) + (α −
1) log t as t → 0, and the solution is weakly singular near the initial time. Compared with
the uniform grid, the graded mesh always concentrates much more points in the initial time
layer and provides better resolution for the initial singularity.

To see the effectiveness of our linearizedmethod (2.6), we also consider another linearized
method by replacing the two-level fast L1 formula (Dα

f uh)
n with the nonuniform L1 formula

(Dα
τ uh)

n defined in (2.2). Setting α = 0.5, γ = 2, and M = 50, the two schemes are run for
Example 1 to the final time T = 50 with different total numbers NT . Figure 3 shows the CPU
time in seconds for both linearized procedures versus the total number NT of subintervals.
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Fig. 3 The log–log plot of CPU time versus the total number NT of time levels for the linearized method in
solving Example 1 with two different formulas of Caputo derivative

Table 1 Numerical temporal accuracy for σ = 2 − α and γ = 1

N α = 0.4, σ = 1.6 α = 0.6, σ = 1.4 α = 0.8, σ = 1.2

e(N ) Order e(N ) Order e(N ) Order

50 5.69e−04 – 1.14e−03 – 2.57e−03 –

100 1.57e−04 1.86 4.65e−04 1.30 1.23e−03 1.07

200 4.40e−05 1.84 1.88e−04 1.31 5.80e−04 1.08

400 1.45e−05 1.60 7.51e−05 1.32 2.71e−04 1.10

800 5.02e−06 1.53 2.98e−05 1.34 1.25e−04 1.12

min{γ σ, 2 − α} 1.60 1.40 1.20

We observe that the proposed method has almost linear complexity in NT and is much faster
than the direct scheme using traditional L1 formula.

Since the spatial error O(h2) is standard, the time accuracy due to the numerical approx-
imations of Caputo derivative and nonlinear reaction is examined in Example 2 with T = 1.
The maximum norm error e(N , M) = max1≤l≤N

∥∥U (tl) − ul
∥∥∞. To test the sharpness of

our error estimate, we consider three different scenarios, respectively, in Tables 1, 2, and 3:

Table 1: σ = 2 − α and γ = 1 with fractional orders α = 0.4, 0.6 and 0.8.
Table 2: α = 0.4 and σ = 0.4 with grid parameters γ = 1, 3

4γopt, γopt and 5
4γopt.

Table 3: α = 0.4 and σ = 0.8 with grid parameters γ = 1, 3
4γopt, γopt and 5

4γopt.

Table 1 lists the solution errors, for σ = 2 − α, on the gradually refined grids with the
coarsest grid of N = 50. Numerical data indicates that the optimal time order is of about
O(τ 2−α), which dominates the spatial error O(h2). Always, we take M = N in Tables 1,
2, and 3 such that e(N , M) ≈ e(N ). The experimental rate (listed as Order in tables) of
convergence is estimated by observing that e(N ) ≈ Cuτ

β and then β ≈ log2 [e(N )/e(2N )] .
Numerical results in Tables 2 and 3 (with α = 0.4 and σ < 2 − α) support the predicted

time accuracy in Theorem 4.2 on the smoothly graded mesh tk = T (k/N )γ . In the case of a
uniform mesh (γ = 1), the solution is accurate of order O(τσ ), and the nonuniform meshes
improve the numerical precision and convergence rate of solution evidently. The optimal
time accuracy O(τ 2−α) is observed when the grid parameter γ ≥ (2 − α)/σ .
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A Proof of Lemma 4.1

Proof Consider F(ψ) = ψ firstly. It is easy to check that, at point xh = (xi , y j ) ∈ �h ,

δ2x (ψi jvi j ) = ψi j
(
δ2xvi j

)+ δxψi− 1
2 , j

(
δxvi− 1

2 , j

)+ δxψi+ 1
2 , j

(
δxvi+ 1

2 , j

)+ vi j
(
δ2xψi j

)
,

so that

‖δ2x (ψv)‖ ≤ C0
(‖v‖ + ‖δxv‖ + ‖δ2xv‖) .

Similarly,

‖δ2y(ψv)‖ ≤ C0

(
‖v‖ + ‖δyv‖ + ‖δ2yv‖

)
.

Moreover, one has

‖δyδx (ψv)‖ ≤ C0
(‖v‖ + ‖δxv‖ + ‖δyv‖ + ‖δyδxv‖) ,

due to the fact

δyδx (ψi− 1
2 , j− 1

2
vi− 1

2 , j− 1
2
) = ψi− 1

2 , j− 1
2

(
δyδxvi− 1

2 , j− 1
2

)+ δyψi− 1
2 , j− 1

2

(
δxvi− 1

2 , j− 1
2

)
+ δxψi− 1

2 , j− 1
2

(
δyvi− 1

2 , j− 1
2

)+ (δyδxψi− 1
2 , j− 1

2

)
vi− 1

2 , j− 1
2
.

Noticing that ‖�hv‖2 = ‖δ2xv‖2+2‖δxδyv‖2+‖δ2yv‖2, we apply the embedding inequalities
in (2.1) to obtain, also see [11, Lemma 2.2],

‖�h(ψv)‖ ≤ Cu (‖v‖ + ‖�hv‖) ≤ CF ‖�hv‖ ,

where the constant CF is dependent on C0 and C�. For the general case F ∈ C2(R), one has

δ2x
[
F(ψi j )vi j

] = F(ψi j )
(
δ2xvi j

)+ δx F(ψi− 1
2 , j )
(
δxvi− 1

2 , j

)
+ δx F(ψi+ 1

2 , j )
(
δxvi+ 1

2 , j

)+ vi j
[
δ2x F(ψi j )

]
.

The formula of Taylor expansion with integral remainder gives

δx F(ψi− 1
2 , j ) = (F(ψi j ) − F(ψi−1, j )

)
/h1 = δxψi− 1

2 , j

∫ 1

0
F ′(sψi j + (1 − s)ψi−1, j

)
ds,

δ2x F(ψi j ) = (δ2xψi j
)
F ′(ψi j ) + (δxψi− 1

2 , j

)2 ∫ 1

0
F ′′(sψi j + (1 − s)ψi−1, j

)
(1 − s) ds

+ (δxψi+ 1
2 , j

)2 ∫ 1

0
F ′′(sψi j + (1 − s)ψi+1, j

)
(1 − s) ds,

such that ‖δx F(ψ)‖ ≤ CF and ‖δ2x F(ψ)‖ ≤ CF . Therefore, simple calculations arrive at

‖δ2x [F(ψ)v)] ‖ ≤ CF
(‖v‖ + ‖δxv‖ + ‖δ2xv‖) .

By presenting similar arguments as those in the above simple case, it is straightforward to
get claimed estimate and complete the proof. ��
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