
Journal of Scientific Computing (2019) 79:1854–1881
https://doi.org/10.1007/s10915-019-00915-4

Generalized Uniformly Optimal Methods for Nonlinear
Programming

Saeed Ghadimi1 · Guanghui Lan2 · Hongchao Zhang3

Received: 14 September 2017 / Revised: 20 June 2018 / Accepted: 21 January 2019 /
Published online: 14 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Uniformly optimal convex programming algorithms have been designed to achieve the
optimal complexity bounds for convex optimization problems regardless of the level of
smoothness of the objective function. In this paper, we present a generic framework to
extend such existing algorithms to solve more general nonlinear, possibly nonconvex, opti-
mization problems. The basic idea is to incorporate a local search step (gradient descent or
Quasi-Newton iteration) into the uniformly optimal convex programming methods, and then
enforce amonotone decreasing property of the function values computed along the trajectory.
While optimal methods for nonconvex programming are not generally known, algorithms of
these types will achieve the best known complexity for nonconvex problems, and the optimal
complexity for convex ones without requiring any problem parameters. As a consequence,
we can have a unified treatment for a general class of nonlinear programming problems
regardless of their convexity and smoothness level. In particular, we show that the acceler-
ated gradient and level methods, both originally designed for solving convex optimization
problems only, can be used for solving both convex and nonconvex problems uniformly.
In a similar vein, we show that some well-studied techniques for nonlinear programming,
e.g., Quasi-Newton iteration, can be embedded into optimal convex optimization algorithms
to possibly further enhance their numerical performance. Our theoretical and algorithmic
developments are complemented by some promising numerical results obtained for solving
a few important nonconvex and nonlinear data analysis problems in the literature.

Keywords Nonconvex optimization · Uniformly optimal methods · Parameter free
methods · Quasi-Newton methods · Accelerated gradient methods · Accelerated level
methods

Mathematics Subject Classification 90C25 · 90C06 · 90C26 · 49M37

This research was partially supported by NSF Grants CMMI-1254446, CMMI-1537414, DMS-1319050,
DMS-1522654, DMS-1819161 and ONR Grant N00014-13-1-0036. This paper was first released on ArXiv
in August, 2015 (arXiv:1508.07384).

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-00915-4&domain=pdf
http://orcid.org/0000-0002-2103-087X
http://arxiv.org/abs/1508.07384

Journal of Scientific Computing (2019) 79:1854–1881 1855

1 Introduction

In this paper, we consider the following nonlinear programming problem

Ψ ∗ := min
x∈X{Ψ (x) := f (x) + X (x)}, (1.1)

where X ⊆ R
n is a closed convex set, f : X → R is possibly nonconvex, and X is a simple

but possibly non-differentiable convex function with known structure (e.g. X (x) = ‖x‖1 or
X even vanishes). Moreover, we assume that f has Hölder continuous gradient on X i.e.,
there exists H > 0 and ν ∈ [0, 1] such that

‖ f ′(y) − f ′(x)‖ ≤ H‖y − x‖ν ∀ x, y ∈ X , (1.2)

where f ′(x) is the gradient of f at x and ‖·‖ is the Euclidean norm inRn . The above assump-
tion in (1.2) covers a wide range class of objective functions, including smooth functions
(with ν = 1), weakly smooth functions (with ν ∈ (0, 1)), and nonsmooth convex functions
with bounded subgradients (with ν = 0).

The complexity of solving (1.1) has been well-understood under the convex setting, i.e.,
when f is convex. According to the classic complexity theory by Nemirovski and Yudin [21],
if f is a general convex function with bounded subgradients (i.e., ν = 0), then the number of
subgradient evaluations of f required tofind a solution x̄ ∈ X such thatΨ (x̄)−Ψ ∗ ≤ ε cannot
be smaller than O(1/ε2) when n is sufficiently large. Here Ψ ∗ denotes the optimal value of
(1.1). Such a lower complexity bound can be achieved by different first-order methods,
including the subgradient and mirror descent methods in [21], and the bundle-level type
methods in [4,18]. Moreover, if f is a smooth convex function with Lipschitz continuous
gradients (i.e., ν = 1), then the number of gradient evaluations of f cannot be smaller than
O(1/

√
ε) for sufficiently large n. Such a lower complexity bound can be achieved by the

well-known Nesterov’s accelerated gradient (AG) method, which was originally developed
in [22] for the smooth case with X = 0, and recently extended for an emerging class of
composite problems with a relatively simple nonsmooth term X [2,24,29].

While traditionally different classes of convex optimization problems were solved by
using different algorithms, the last few years have seen a growing interest in the development
of unified algorithms that can achieve the optimal complexity for solving different classes
of convex problems, preferably without requiring the input of any problem parameters. Lan
showed in [14] that Nesterov’s AGmethod in [22,23] can achieve the optimal complexity for
solving not only smooth, but also general nonsmooth optimization problems (i.e., ν = 0 in
(1.2)) by introducing a novel stepsize policy and some new convergence analysis techniques.
Devolder, Glineur and Nesterov [28] further generalized this development and showed that

the AG method can exhibit the optimal O(1/ε
2

1+3ν) complexity for solving weakly smooth
problems. These methods in [14,28] still require the input of problem parameters like ν and
H , and even the iteration limit N . In a different research line, Lan [15] generalized the bundle-
level typemethods, originally designed for nonsmooth problems, for both smooth andweakly
smooth problems. He showed that these accelerated level methods are uniformly optimal for
convex optimization in the sense that they can achieve the optimal complexity boundswithout
requiring the input of any problem parameters and the iteration limit. Simplified variants of
these methods were also proposed in [7] for solving ball-constrained and unconstrained
convex optimization problems. Recently, Nesterov [25] presented another uniformly optimal
method, namely, the universal accelerated gradient method for nonsmooth and (weakly)
smooth convex programming. This method only needs the target accuracy as an input, which,

123

1856 Journal of Scientific Computing (2019) 79:1854–1881

similar to those in [7,15], completely removes the need of inputting problem parameters in
[14,28].

In general, all the above-mentionedmethods require the convexity on theobjective function
to establish their convergence results. When f is possibly nonconvex, a different termination
criterion according to the projected gradient gX ,k (see e.g., (2.16)) is often employed to analyze
the complexity of the solution methods. While there is no known lower iteration complexity
bound for first-order methods to solve the problem (1.1), the (projected) gradient-type meth-
ods [6,12,23] achieve the best-known iteration complexity O(1/ε) to find a solution such
that ‖gX ,k‖2 ≤ ε when f in (1.1) has Lipschitz continuous gradient. Recently, Ghadimi and
Lan [11] generalized Nesterov’s AG method to solve this class of nonconvex nonlinear opti-
mization problems. They showed that this generalized AG method can not only achieve the
best-known O(1/ε) iteration complexity for finding approximate stationary points for non-
convex problems, but also exhibit the optimal iteration complexity if the objective function
turns out to be convex. However, in oder to apply this method, we need to assume that all the
generated iterates lie in a bounded set and that the gradients of f are be Lipschitz continuous,
and also requires the input of a few problem parameters a priori. Our main goal of this paper
is to understand whether we can generalize some of the aforementioned uniformly optimal
methods to solve a broader class of nonlinear programming given in (1.1), where function f
could be nonconvex and only weakly smooth or nonsmooth (see (1.2)). In addition to these
theoretical aspects, our study has also been motivated by the following applications.

– Inmanymachine learning problems, the regularized loss function in the objective is given
as a summation of convex and nonconvex terms (see e.g., [8,19,20]). A unified approach
may help us in exploiting the possible local convex property of the objective function in
this class of problems, while globally these problems are not convex.

– Some optimization problems are given through a black-box oracle (see e.g., [1,9,17]).
Hence, both the smoothness level of the objective function and its convex property are
unknown. A unified algorithm for both convex and nonconvex optimization and for
handling the smoothness level in the objective function automatically could achieve
better convergence performance for this class of problems.

Our contribution in this papermainly consists of the following aspects. First, we generalize
Nesterov’s AG method and present a unified problem parameter free accelerated gradient
(UPFAG) method for a broad class of problems with ν ∈ [0, 1] in (1.2). The basic idea of
this method is to combine a gradient descent step with Nesterov’s AG method and maintain
the monotonicity of the objective function value at the iterates generated by the algorithm.
Hence, the UPFAG method contains the gradient projection and Nesterov’s AG methods as
special cases (see the discussions after presenting Algorithm 1). It should also be pointed out
that two different line search procedures are implemented at each iteration of the UPFAG
method which remove the necessity of knowing problem parameters in advance. We then
show that this method achieves the best known iteration complexity

O
(

H
1
ν

ε
1+ν
2ν

)
(1.3)

to find at least one k such that ‖gX ,k‖2 ≤ ε, and exhibits, similar to those in [15,25,28], the
optimal complexity

O
([

H

ε

] 2
1+3ν

)
(1.4)

to find a solution x̄ ∈ X such that Ψ (x̄) − Ψ ∗ ≤ ε, if f turns out to be convex.

123

Journal of Scientific Computing (2019) 79:1854–1881 1857

To the best of our knowledge, this is the first time that a uniform first-order algo-
rithm, which does not require any problem parameter information but only takes the
target accuracy and a few user-defined line search parameters as the input, has been
presented for solving smooth, nonsmooth, weakly smooth convex and nonconvex optimiza-
tion problems. Moreover, this algorithm can also exploit a more efficient Quasi-Newton
step rather than the gradient descent step for achieving the same iteration complexity
bounds.

Second, by incorporating a gradient descent step into the framework of the bundle-level
typemethods, namely, the accelerated prox-level (APL)method presented in [15],we propose
a unified APL (UAPL) method for solving a class of nonlinear programming defined in (1.1),
where f satisfies (1.2). We show that this method achieves the complexity bounds in (1.4)
and (1.3) for both convex and nonconvex optimization. Moreover, we simplify this method
and present its fast variant, by incorporating a gradient descent step into the framework of the
fast APL method [7], for solving ball-constrained and unconstrained problems. To the best
of our knowledge, this is the first time that the bundle-level type methods are generalized
for these nonconvex nonlinear programming problems. Indeed, the new algorithmic frame-
work presented in this paper can be used to generalize any optimal first-order algorithm
for convex optimization to solve general nonlinear (not necessarily convex) optimization
problems.

The rest of the paper is organized as follows. In Sect. 2, we present the UPFAGmethod for
solving a broad class of nonlinear programming problems where the objective function is the
summation of a weakly smooth function with Hölder continuous gradient and a simple con-
vex function, and establish the convergence results. In Sect. 3, we provide different variants
of the bundle-level type methods for solving the aforementioned class of nonlinear program-
ming. In Sect. 4, we show some numerical illustration of implementing the above-mentioned
algorithms.

Notation For a differentiable function h : R
n → R, h′(x) is the gradient of h at

x . More generally, when h is a proper convex function, ∂h(x) denotes the subdifferen-
tial set of h at x . For x ∈ R

n and y ∈ R
n , 〈x, y〉 is the standard inner product in

R
n . The norm ‖ · ‖ is the Euclidean norm given by ‖x‖ = √〈x, x〉, while ‖x‖G =√〈Gx, x〉 for a positive definite matrix G. Moreover, we let B(x̄, r) to be the ball with

radius r centered at x̄ i.e., B(x̄, r) = {x ∈ R
n | ‖x − x̄‖ ≤ r}. We denote I

as the identity matrix. For any real number r ,
r� and �r� denote the nearest integer
to r from above and below, respectively. R+ denotes the set of nonnegative real num-
bers.

2 Unified Problem Parameter Free Accelerated Gradient Method

Our goal in this section is to present a unified gradient type method to solve problem (1.1)
when f is smooth, weakly smooth or nonsmooth. In particular, we consider the class of prob-
lems in (1.1) such that the gradient of f is Hölder continuous in the sense of (1.2), which
also implies

| f (y) − f (x) − 〈 f ′(x), y − x〉| ≤ H

1 + ν
‖y − x‖1+ν for any x, y ∈ X . (2.1)

Our algorithm is stated below as Algorithm 1 which involves two line search proce-
dures.

123

1858 Journal of Scientific Computing (2019) 79:1854–1881

Algorithm 1 The unified problem-parameter free accelerated gradient (UPFAG) algorithm
Input: x0 ∈ X , line search parameters γ1, γ2, γ3 ∈ (0, 1), and accuracy parameter δ > 0.
0. Set the initial point xag0 = x0, Λ0 = 0, and k = 1.

1. Choose initial stepsize λ̂k > 0 and find the smallest integer τ1,k ≥ 0 such that with

ηk = λ̂kγ
τ1,k
1 and λk = (ηk +

√
η2k + 4ηkΛk−1)/2, (2.2)

the solutions obtained by

xmd
k = (1 − αk)x

ag
k−1 + αk xk−1, (2.3)

xk = arg min
u∈X

{
〈 f ′(xmd

k), u〉 + 1

2λk
‖u − xk−1‖2 + X (u)

}
, (2.4)

x̃agk = (1 − αk)x
ag
k−1 + αk xk , (2.5)

satisfy

f (x̃agk) ≤ f (xmd
k) + αk 〈 f ′(xmd

k), xk − xk−1〉 + αk

2λk
‖xk − xk−1‖2 + δαk , (2.6)

where

αk = λk/Λk and Λk =
k∑

i=1

λi . (2.7)

2. Choose initial stepsize β̂k > 0 and find the smallest integer τ2,k ≥ 0 such that with

βk = β̂kγ
τ2,k
2 , (2.8)

we have

Ψ (x̄agk) ≤ Ψ (xagk−1) − γ3

2βk
‖x̄agk − xagk−1‖2 + 1

k
, (2.9)

where

x̄agk = arg min
u∈X

{
〈 f ′(xagk−1), u〉 + 1

2βk
‖u − xagk−1‖2 + X (u)

}
. (2.10)

3. Choose xagk such that

Ψ (xagk) = min{Ψ (xagk−1), Ψ (x̄agk), Ψ (x̃agk)}. (2.11)

4. Set k ← k + 1 and go to step 1.

We have the following remarks for this algorithm. First, observe that by just considering
(2.3), (2.4), (2.5) and setting xagk = x̃agk , Algorithm 1 would reduce to a variant of the well-
known Nesterov’s optimal gradient method (see, e.g., [23]). Moreover, if replacing xagk−1 by
xmd
k in (2.10) and setting xagk = x̄agk , then (2.3), (2.4) and (2.10) would give the accelerated

gradient (AG)methodproposedbyGhadimi andLan [11].However,when f is nonconvex, the
convergence of this AG method in [11] requires the boundedness assumption on the iterates.
On the other hand, by just considering (2.10) and setting xagk = x̄agk , the UPFAG algorithm
would be a variant of the projected gradient method [12]. Indeed, it follows from these
observations that we can possibly perform the convergence analysis of the UPFAG method

123

Journal of Scientific Computing (2019) 79:1854–1881 1859

for convex and nonconvex optimization separately (see the discussions after Corollary 1). It
should be also pointed out that these algorithms are designed to solve the class of problems
in (1.1) when f is smooth and they do not necessarily use line search procedures to specify
the stepsizes. Moreover, (2.11) guarantees the objective function value at the iterates xagk
generated by theUPFAGalgorithm is non-increasing. Different from the previous accelerated
gradient method, such a monotonicity of the objective function value is enforced by the
UPFAG method to establish convergence analysis when Ψ is nonconvex, as shown in the
proof of Theorem 1.b).

Second, note that in steps 1 and 2, we implement two independent line search procedures,
respectively, in (2.6) and (2.9). Indeed, we start with initial choices of stepsizes λ̂k and β̂k ,
and then performArmijo type of line searches such that certain specially designed line search
conditions are satisfied. We will show in Theorem 1.a) that the two line search procedures
will finish in finite number of inner iterations. One simple choice of line search in practice is
to set the initial stepsizes to be some Barzilai-Borwein type stepsizes such as

λ̂k = max

{ 〈smd
k−1, y

md
k−1〉

〈ymd
k−1, y

md
k−1〉

, σ

}
for k ≥ 1, and β̂k = max

{ 〈sagk−1, y
ag
k−1〉

〈yagk−1, y
ag
k−1〉

, σ

}
for k > 1,

(2.12)

where smd
k−1 = xmd

k−1 − x̃agk−1, y
md
k−1 = f ′(xmd

k−1) − f ′(x̃agk−1), s
ag
k−1 = xagk−1 − xagk−2 and yagk−1 =

f ′(xagk−1) − f ′(xagk−2). And we can choose β̂1 = 1/Ĥ , if an estimation of Ĥ of the Hölder

continuity constant in (1.2) is known; otherwise, we can simply set β̂1 to be a positive constant
(e.g., β̂1 = min{1/‖ f ′(x0)‖, 1}).

Third, the Euclidean metric used in the quadratic term of the gradient projection step in
(2.10) can be replaced by a variable metric. In particular, ‖ · ‖ can be replaced by ‖ · ‖Gk for
some positive definite matrix Gk , i.e.,

x̄agk = argmin
u∈X

{
〈 f ′(xagk−1), u〉 + 1

2βk
‖u − xagk−1‖2Gk

+ X (u)

}
. (2.13)

This modification allows us to include some curvature information of f into the matrix Gk

to have better local approximation of the function Ψ at xagk−1. In this case, unit initial stepsize

is often preferred, that is to set β̂k = 1 for all k ≥ 1. In practice, we can set Gk to be
some Quasi-Newton matrix, e.g., the well-known BFGS or limited memory BFGS (LBFGS)
matrix (see e.g., [5,26,27]). Then, the unit step β̂k = 1 can be often accepted near the solution,
which implies (2.13) will be exactly a Quasi-Newton step ifX (x) ≡ 0, and hence, a fast local
convergence rate could be expected in practice (see Sect. 4 for more details). For some special
structured X and X , if the inverse G−1

k is known, we may have closed formula solution of
the subproblem (2.13) (e.g., see [3]). However, for more general cases, we may not have
closed formula for the solution of this subproblem. Then, the alternating direction method
of multipliers or primal-dual type algorithms could solve (2.13) quite efficiently, since its
objective function is just a composition of a simple convex functionX and a convex quadratic
function with known inverse of the Hessian. It is also worth noting that we actually do not
need to solve the subproblem (2.13) exactly if no closed formula solution exists. We can see
from the proof of Theorem 1 that, instead of having (2.23) implied by the exact subproblem
solution, we only need to find an approximate solution x̄agk of (2.13) such that

〈 f ′(xagk−1), x̄
ag
k − xagk−1〉 + X (x̄agk) ≤ X (xagk−1) − σ

βk
‖x̄agk − xagk−1‖2. (2.14)

123

1860 Journal of Scientific Computing (2019) 79:1854–1881

for some σ ∈ (0, 1). Hence, it is quite flexible to choose proper algorithms to solve the
subproblem (2.13). We may even apply different algorithms to solve (2.13) when different
solution accuracy are required. And similar as showing (2.23), the solution of the subproblem
(2.13) will satisfy (2.14) as long as Gk � σ I for all k. In addition, similar as the proof in
Theorem 1, if the parameter γ3 in Algorithm 1 is set such that 0 < γ3 < 2σ , the line search
condition (2.9) will be finally satisfied as βk goes to zero. Hence, step 2 of Algorithm 1
is also well-defined under the variable matric and inexact solutions of subproblem (2.13).
In general, by different choices of the matrix Gk , many well-studied efficient methods in
nonlinear programming could be incorporated into the algorithm. Furthermore, from the
complexity point of view, instead of setting the initial stepsizes given in (2.12), we could also
take advantage of the line search in the previous iteration and set

λ̂k = ηk−1 and β̂k = βk−1, (2.15)

where ηk−1 and βk−1 are the accepted stepsizes in the previous k−1-th iteration. The choice
of initial stepsizes in (2.12) is more aggressive and inherits some quasi-Newton information,
and hence, could perform better in practice. However, the strategies in (2.15) would have
theoretical advantages in the total number of inner iterations needed in the line search (see
the discussion after Corollary 1).

In the remaining part of this section, we provide convergence properties of Algorithm 1.
Noticing that X in problem (1.1) is not necessarily differentiable and f in (1.1) may not
be a convex function, we need to define a termination criterion for this algorithm when the
objective function Ψ is nonconvex. In this case, we would terminate the algorithm when the
norm of the generalized projected gradient defined by

gX ,k = xagk−1 − x̄agk
βk

(2.16)

is sufficiently small. Note that gX ,k = f ′(xagk−1) when X vanishes and X = R
n . Indeed

the above generalized projected gradient in constrained nonsmooth optimization plays an
analogous role to that of the gradient in unconstrained smooth optimization. In particular, it
can be shown that if ‖gX ,k‖ ≤ ε, then Ψ ′(x̄agk) ∈ −NX (x̄agk) + B(εν(ε1−ν + Hβν

k)), where
Ψ ′(x̄agk) ∈ ∂Ψ (x̄agk),NX (x̄agk) is the normal cone of X at x̄agk , and B(r) := {x ∈ R

n : ‖x‖ ≤
r} (see e.g., [11]).

To establish the convergence of the UPFAG algorithm, we also need the following simple
technical result (see Lemma 3 of [16] for a slightly more general result).

Lemma 1 Let {αk} be a sequence of real numbers such that α1 = 1 and αk ∈ (0, 1) for any
k ≥ 2. If a sequence {ωk} satisfies

ωk ≤ (1 − αk)ωk−1 + ζk, k = 1, 2, . . . , (2.17)

then for any k ≥ 1 we have

ωk ≤ Γk

k∑
i=1

(ζi/Γi),

where

Γk :=
{
1, k = 1,
(1 − αk)Γk−1, k ≥ 2.

(2.18)

Below, we present the main convergence properties of the UPFAG algorithm.

123

Journal of Scientific Computing (2019) 79:1854–1881 1861

Theorem 1 Let {xagk } be the iterates generated by Algorithm 1 and Γk be defined in (2.18).

a) The line search procedures in step 1 and step 2 of the algorithmwill finish in finite number
of inner iterations.

b) Suppose that f is bounded below over X, i.e.,Ψ ∗ is finite. Then, for any N ≥ 1, we have

min
k=1,...,N

‖gX ,k‖2 ≤
2
[
Ψ (x0) − Ψ ∗ + ∑N

k=�N/2�+1 k
−1
]

γ3
∑N

k=�N/2�+1 βk
, (2.19)

where gX ,k is defined in (2.16).
c) Suppose that Ψ is convex and an optimal solution x∗ exists for problem (1.1). Then for

any N ≥ 1, we have

Ψ (xagN) − Ψ (x∗) ≤ ΓN‖x0 − x∗‖2
2λ1

+ δ. (2.20)

Proof We first show part a). By (2.1), we have

f (x̄agk) ≤ f (xagk−1) + 〈 f ′(xagk−1), x̄
ag
k − xagk−1〉 + H

1 + ν
‖x̄agk − xagk−1‖1+ν . (2.21)

Noting that the objective in (2.10) is strongly convex and hence has a quadratic growth
property near its minimum, for any x ∈ X , we have

〈 f ′(xagk−1), x̄
ag
k − x〉 + X (x̄agk) ≤ X (x)

+ 1

2βk

[‖xagk−1 − x‖2 − ‖x̄agk − x‖2 − ‖xagk−1 − x̄agk ‖2] . (2.22)

Letting x = xagk−1 in the above inequality, we have

〈 f ′(xagk−1), x̄
ag
k − xagk−1〉 + X (x̄agk) ≤ X (xagk−1) − 1

βk
‖xagk − x̄agk−1‖2. (2.23)

Summing (2.23) with (2.21), we have

Ψ (x̄agk) ≤ Ψ (xagk−1) −
(‖x̄agk − xagk−1‖2

βk
− H‖x̄agk − xagk−1‖1+ν

1 + ν

)
. (2.24)

Now, for ν ∈ [0, 1), it follows from the inequality ab ≤ a p/p + bq/q with p = 2
1+ν

,

q = 2
1−ν

, and

a = H

1 + ν

[
(1 − ν)k

2

] 1−ν
2 ‖xagk−1 − x̄agk ‖1+ν and b =

[
2

(1 − ν)k

] 1−ν
2

that

H

1 + ν
‖xagk−1 − x̄agk ‖1+ν = ab ≤ L(ν, H)k

1−ν
1+ν ‖xagk−1 − x̄agk ‖2 + 1

k
, (2.25)

where

L(ν, H) =

⎧⎪⎪⎨
⎪⎪⎩

H

2
[
1+ν
1−ν

] 1−ν
2

⎫⎪⎪⎬
⎪⎪⎭

2
1+ν

. (2.26)

123

1862 Journal of Scientific Computing (2019) 79:1854–1881

Let us define

L(1, H) = lim
ν→1

L(ν, H) = H

2
. (2.27)

Then, (2.25) holds for all ν ∈ [0, 1]. Combining (2.24) and (2.25), we have

Ψ (x̄agk) ≤ Ψ (xagk−1) − 1 − L(ν, H)k
1−ν
1+ν βk

βk
‖x̄agk − xagk−1‖2 + 1

k
. (2.28)

Also, by (2.1), (2.3), and (2.5), we have

f (x̃agk) ≤ f (xmd
k) + 〈 f ′(xmd

k), x̃agk − xmd
k 〉 + H

1 + ν
‖x̃agk − xmd

k ‖1+ν

= f (xmd
k) + αk〈 f ′(xmd

k), xk − xk−1〉 + Hα1+ν
k

1 + ν
‖xk − xk−1‖1+ν

= f (xmd
k) + αk〈 f ′(xmd

k), xk − xk−1〉
−αk

(‖xk − xk−1‖2
2λk

− Hαν
k

1 + ν
‖xk − xk−1‖1+ν

)
+ αk

2λk
‖xk − xk−1‖2

≤ f (xmd
k) + αk〈 f ′(xmd

k), xk − xk−1〉

−
αk

(
1 − 2L(ν, H)α

2ν
1+ν

k λkδ
ν−1
1+ν

)
‖xk − xk−1‖2

2λk
+ αk

2λk
‖xk − xk−1‖2 + δαk,

(2.29)

where the last inequality is obtained similar to (2.25) and L(ν, H) is defined in (2.26) and
(2.27).

Now, observe that if

α
2ν
1+ν

k λk ≤ δ
1−ν
1+ν

2L(ν, H)
and βk ≤ (2 − γ3)k

ν−1
1+ν

2L(ν, H)
, (2.30)

then (2.28) and (2.29), respectively, imply (2.9) and (2.6). By (2.2) and our setting of αk =
λk/Λk = λk/(λk + Λk−1), we have αkλk = ηk . Hence,

α
2ν
1+ν

k λk = (αkλk)
2ν
1+ν λ

1−ν
1+ν

k = η
2ν
1+ν

k λ
1−ν
1+ν

k . (2.31)

By (2.2), (2.8) and γ1, γ2 ∈ (0, 1), we have

lim
τ1,k→∞ ηk = 0, lim

ηk→0
λk = 0 and lim

τ2,k→∞ βk = 0,

for any fixed k, which together with (2.31) imply that (2.30) will be finally satisfied in the
line search procedure and therefore, (2.9) and (2.6) will essentially be satisfied. So the line
search procedures in step 1 and step 2 of Algorithm 1 are well-defined and finite.

We now show part b). Noting (2.9), (2.11), and in view of (2.16), we have

Ψ (xagk) ≤ Ψ (x̄agk) ≤ Ψ (xagk−1) − γ3‖x̄agk − xagk−1‖2
2βk

+ 1

k
= Ψ (xagk−1) − γ3βk

2
‖gX ,k‖2 + 1

k
.

123

Journal of Scientific Computing (2019) 79:1854–1881 1863

Summing up the above inequalities for k from �N/2� + 1 to N and re-arranging the terms,
we obtain

min
k=1,2,...,N

‖gX ,k‖2
N∑

k=�N/2�+1

γ3βk

2
≤ min

k=�N/2�+1,2,...,N
‖gX ,k‖2

N∑
k=�N/2�+1

γ3βk

2

≤
N∑

k=�N/2�+1

γ3βk

2
‖gX ,k‖2 ≤ Ψ (xag�N/2�) − Ψ (xagN)

+
N∑

k=�N/2�+1

1

k
≤ Ψ (x0) − Ψ (x∗) +

N∑
k=�N/2�+1

1

k
, (2.32)

where the last inequality follows from (2.11) and the fact that Ψ ∗ ≤ Ψ (xagN). Dividing both

sides of the above inequality by γ3
∑N

k=�N/2�+1
βk
2 , we clearly obtain (2.19).

We now show part c). By (2.3), (2.5), (2.6), and the convexity of f , for any x ∈ X , we
have

f (x̃agk) ≤ f (xmd
k) + αk〈 f ′(xmd

k), xk − xk−1〉 + αk‖xk − xk−1‖2
2λk

+ δαk

= f (xmd
k) + 〈 f ′(xmd

k), x̃agk − xmd
k 〉 + αk‖xk − xk−1‖2

2λk
+ δαk

= (1 − αk)[f (xmd
k) + 〈 f ′(xmd

k), xagk−1 − xmd
k 〉] + αk[f (xmd

k)

+ 〈 f ′(xmd
k), xk − xmd

k 〉] + αk‖xk − xk−1‖2
2λk

+ δαk

≤ (1 − αk) f (x
ag
k−1) + αk f (x) + αk〈 f ′(xmd

k), xk − x〉 + αk‖xk − xk−1‖2
2λk

+ δαk,

(2.33)

which together with (2.11), and the convexity of X imply that

Ψ (xagk) ≤ Ψ (x̃agk) = f (x̃agk) + X (x̃agk)

≤ (1 − αk) f (x
ag
k−1) + αk f (x) + αk〈 f ′(xmd

k), xk − x〉

+ αk‖xk − xk−1‖2
2λk

+ δαk + (1 − αk)X (xagk−1) + αkX (xk)

= (1 − αk)Ψ (xagk−1) + αk f (x) + αk〈 f ′(xmd
k), xk − x〉 + αk‖xk − xk−1‖2

2λk
+ δαk + αkX (xk).

(2.34)

Now, by (2.4) and similar to (2.22), we have

〈 f ′(xmd
k), xk − x〉 + X (xk) ≤ X (x) + 1

2λk

[‖xk−1 − x‖2 − ‖xk − x‖2 − ‖xk − xk−1‖2
]
.

Multiplying both sides of the above inequality by αk and summing it up with (2.34), we
obtain

Ψ (xagk) ≤ (1 − αk)Ψ (xagk−1) + αkΨ (x) + αk

2λk

[‖xk−1 − x‖2 − ‖xk − x‖2] + δαk .

(2.35)

123

1864 Journal of Scientific Computing (2019) 79:1854–1881

Also, note that by (2.7) and (2.18), we can easily show that

Γk = λ1∑k
i=1 λi

and
αk

λkΓk
= 1

λ1
∀k ≥ 1. (2.36)

Subtracting Ψ (x) from both sides of (2.35), dividing them by Γk , then it follows from
Lemma 1 that for any x ∈ X we have

Ψ (xagN) − Ψ (x)

ΓN
≤

N∑
k=1

αk

2λkΓk

[‖xk−1 − x‖2 − ‖xk − x‖2] + δ

N∑
k=1

αk

Γk

≤ ‖x0 − x‖2
2λ1

+ δ

ΓN
, (2.37)

where the second inequality follows from (2.36) and the fact that

N∑
k=1

αk

Γk
= α1

Γ1
+

k∑
k=2

1

Γk

(
1 − Γk

Γk−1

)
= 1

Γ1
+

k∑
k=2

(
1

Γk
− 1

Γk−1

)
= 1

ΓN
. (2.38)

Then, (2.20) follows immediately from (2.37) with x = x∗. ��
In the next result we specify the convergence rates of the UPFAG algorithm.

Corollary 1 Let {xagk } be the iterates generated by Algorithm 1. Suppose there exist some

constants λ > 0 and β > 0 such that the initial stepsizes λ̂k ≥ λ and β̂k ≥ β for all k ≥ 1.

a) Suppose that Ψ is bounded below over X, i.e., Ψ ∗ is finite. Then, for any N ≥ 1, we
have

min
k=1,...,N

‖gX ,k‖2 ≤ 8[Ψ (x0) − Ψ ∗ + 1]
γ2

[
8L(ν, H)

(2 − γ3)N
2ν
1+ν

+ 1

βN

]
. (2.39)

b) Suppose that f is convex and an optimal solution x∗ exists for problem (1.1). Then for
any N ≥ 1, we have

Ψ (xagN) − Ψ (x∗) ≤ 4‖x0 − x∗‖2
γ1N

1+3ν
1+ν

[
2L(ν, H)

δ
1−ν
1+ν

+ 1

λ

]
+ δ. (2.40)

Proof Since λ̂k ≥ λ and β̂k ≥ β for all k ≥ 1, then it follows from (2.2), (2.8), (2.30) and
ηk = αkλk that

βk ≥ γ2 min

{
(2 − γ3)k

ν−1
1+ν

2L(ν, H)
, β

}
and α

2ν
1+ν

k λk ≥ γ1 min

{
δ
1−ν
1+ν

2L(ν, H)
, λα

ν−1
1+ν

k

}
,

(2.41)

which together with

N∑
k=�N/2�+1

k
1−ν
1+ν ≤

∫ N+1

x=�N/2�+1
x

1−ν
1+ν dx ≤ 4N

2
1+ν ,

N∑
k=�N/2�+1

1

k
≤
∫ N

x=�N/2�
dx

x
= ln

N

�N/2� ≤ 1, (2.42)

and arithmetic-harmonic mean inequality imply that

123

Journal of Scientific Computing (2019) 79:1854–1881 1865

N∑
k=�N/2�+1

βk ≥
N∑

k=�N/2�+1

γ2 min

{
(2 − γ3)k

ν−1
1+ν

2L(ν, H)
, β

}

≥ γ2N 2

4
∑N

k=�N/2�+1 max

{
2L(ν,H)

(2−γ3)k
ν−1
1+ν

, 1
β

}

≥ γ2N 2

4
∑N

k=�N/2�+1

{
2(2 − γ3)−1L(ν, H)k

1−ν
1+ν + β−1

}
≥ γ2

4
(
8(2 − γ3)−1L(ν, H)N

−2ν
1+ν + (βN)−1

) . (2.43)

Combining the above relation with (2.19), we clearly obtain (2.39).
Now, observing (2.41) and the facts that αk ∈ (0, 1] and ν ∈ (0, 1], we have

α
2ν
1+ν

k λk ≥ γ1 min

{
δ
1−ν
1+ν

2L(ν, H)
, λ

}
,

which together with (2.36) imply that

λk ≥
(

λ1

Γk

) 2ν
1+3ν

γ
1+ν
1+3ν
1 min

⎧⎪⎨
⎪⎩
(

δ
1−ν
1+ν

2L(ν, H)

) 1+ν
1+3ν

, λ
1+ν
1+3ν

⎫⎪⎬
⎪⎭ .

Noticing this observation, defining c = 1+ν
1+3ν , then by (2.18) and (2.36), we have

1

Γ c
k

− 1

Γ c
k−1

= 1

Γ c
k

− (1 − αk)
c

Γ c
k

≥ cαk

Γ c
k

= cλkΓ
1−c
k

λ1
≥ cγ c

1

λc1
min

{
δ

1−ν
1+3ν

[2L(ν, H)]c , λc

}
,

where the first inequality follows from the fact that 1− (1− α)c ≥ cα for all α ∈ (0, 1] and
c ∈ [1/2, 1]. By the above inequality and noticing Γ0 = 1, similar to (2.43), for any N ≥ 1
we obtain

1

Γ c
N

≥ cγ c
1 N

2

λc1
∑N

k=1

{
[2L(ν, H)δ

ν−1
1+ν]c + λ−c

} ≥ cγ c
1 N

λc1

{
[2L(ν, H)δ

ν−1
1+ν]c + λ−c

} ,

which together with the facts that c
1
c ≥ 1/4 and (a + b)

1
c ≤ 2(a

1
c + b

1
c) for any a, b > 0,

imply that

ΓN ≤ 8λ1

γ1N
1+3ν
1+ν

[
2L(ν, H)

δ
1−ν
1+ν

+ 1

λ

]
.

Combining the above relation with (2.20), clearly we obtain (2.40). ��

We now add a few remarks about the results obtained in Corollary 1. First, for simplicity
let us assume β ≥ (2 − γ3)/L(ν, H). Then, by (2.39), we conclude that the number of

123

1866 Journal of Scientific Computing (2019) 79:1854–1881

iterations performed by the UPFAG method to have ‖gX ,k‖2 ≤ ε for at least one k, after
disregarding some constants, is bounded by1

O
(
H

1
ν

[
Ψ (x0) − Ψ ∗

ε

] 1+ν
2ν
)

. (2.44)

This bound can be also obtained by using a variable metric in (2.13) instead of the Euclidean
one in (2.10). When Gk is uniformly bounded from above, i.e., Gk � MI for some constant
M > 0, the projected gradients defined according to both (2.10) and (2.13) are equivalent.
Moreover, when ν = 1, the above bound will reduce to the best known iteration complexity
for the class of nonconvex functions with Lipschitz continuous gradient which is also known
for the steepest descent method for unconstrained problems [23], and the projected gradient
method for composite problems inGhadimi, Lan and Zhang [12]. In this case, a similar bound
is also obtained by the AG method [10], which however, for composite problems, relies on
an additional assumption that the iterates are bounded. In spite of this similarity in iteration
complexity of these methods, the UPFAG method can outperform the other two methods in
practice (see Sect. 4 for more details). On the other hand, one possible advantage of this AG
method in [10] exists in that it can separate the affects of the Lipschitz constants of smooth
convex terms.

Second, by choosing δ = ε/2 and assuming that λ ≥ δ
1−ν
1+ν /L(ν, H), (2.40) implies that

the UPFAG method can find a solution x̄ such that Ψ (x̄) − Ψ (x∗) ≤ ε, after disregarding
some constants, in at most

O
⎛
⎝[H‖x0 − x∗‖1+ν

ε

] 2
1+3ν

⎞
⎠ (2.45)

number of iterations which is optimal for convex programming [21]. Note that (2.45) is in
the same order of magnitude as the bound obtained by the universal fast gradient method
proposed by Nesterov [25] for convex optimization problems. While this method also uses
line search procedure to specify stepsizes, it does not applicable to nonconvex optimization.
On the other hand, the UPFAG method does not need to know the convexity of the objective
function as a prior knowledge. It treats both the convex and nonconvex optimization problems
in a unified way. In any case, this method always achieves the complexity bound in (2.44)
and when the objective function happens to be convex, it would also achieve the optimal
complexity bound in (2.45). This unified approach, as mentioned before, can help us to
exploit local convexity structure of general nonconvex problems and find a stationary point
faster.

Finally, it is interesting to find the number of gradient computations at each iteration of
Algorithm 1 assuming the initial stepsizes λ̂k ≥ λ and β̂k ≥ β for all k ≥ 1. According to
(2.8) and (2.41), we conclude that, after disregarding some constants, τ2,k ≤ log k which
implies that the number of gradient computations at point xagk−1 is bounded by log k. Similarly,
we obtain that the number of gradient computations at point xmd

k is also bounded by log k.
Hence, the total number of gradient computations at the k-th iteration is bounded by 2 log k.
On the other hand, suppose that we choose β̂k and λ̂k according to (2.15). Then, we have

τ1,k = (log ηk − log ηk−1)/ log γ1 and τ2,k = (logβk − logβk−1)/ log γ2.

1 This complexity bound was also derived for the gradient descent method as a homework assignment given
by the second author in Spring 2014, later summarized by one of the class participants in [30]. However this
development requires the problem to be unconstrained and the parameters H and ν be a given priori.

123

Journal of Scientific Computing (2019) 79:1854–1881 1867

So the number of gradient evaluations in step 1 and step 2 at the k-th iteration is bounded
by

1 + τ1,k = 1 + (log ηk − log ηk−1)/ log γ1 and 1 + τ2,k = 1 + (logβk − logβk−1)/ log γ2,

which implies the total number of gradient evaluations in step 1 and step 2 is bounded by

Nη = N +
N∑

k=1

τ1,k = N + log ηN − log η0

log γ1
and

Nβ = N +
N∑

k=1

τ2,k = N + logβN − logβ0

log γ2
.

Note that (2.41) implies Nη ≤ N + c1 and Nβ ≤ N + c2 log N for some positive constants
c1 and c2. Hence, the above relations show that the average number of gradient computations
at each iteration is bounded by a constant, which is less than the aforementioned logarithmic
bound log k obtained for the situationswhere β̂k and λ̂k are chosen according to (2.2) and (2.8).
However, in (2.2) and (2.8) the algorithm allows more freedom to choose initial stepsizes.

One possible drawback of the UPFAGmethod is that we need to fix the accuracy δ before
running the algorithm and if we want to change it, we should run the algorithm from the
beginning. Moreover, we need to implement two line search procedures to find βk and λk
in each iteration. In the next section, we address these issues by presenting some problem-
parameter free bundle-level type algorithms which do not require a fixed target accuracy in
advance and only performs one line search procedure in each iteration. These bundle-level
type methods can sometimes outperform gradient type methods in practice (see Sect. 4 for
more details).

3 Unified Bundle-Level TypeMethods

Our goal in this section is to generalize bundle-level type methods, originally designed for
convex programming, for solving a class of possibly nonconvex nonlinear programming
problems. Specifically, in Sect. 3.1, we introduce a unified bundle-level type method by
incorporating a local search step into an accelerated prox-level method and establish its
convergence properties under the boundedness assumption of the feasible set. In Sect. 3.2,
we simplify this algorithm and provide its fast variants for solving ball-constrained problems
and unconstrained problems with bounded level sets. To the best of our knowledge, this is
the first time that bundle-level type methods are proposed for solving a class of nonconvex
optimization problems.

3.1 Unified Accelerated Prox-level Method

In this subsection, we generalize the accelerate prox-level (APL) method presented by Lan
[15] to solve a class of nonlinear programming given in (1.1), where f has Hölder continuous
gradient on X . Lan [15] showed that theAPLmethod is uniformly optimal for solving problem
(1.1) when f is convex and satisfies (1.2). Here, we combine the framework of this algorithm
with a gradient descent step and present a unified accelerated prox-level (UAPL) method for
solving both convex and nonconvex optimization.

123

1868 Journal of Scientific Computing (2019) 79:1854–1881

As the bundle-level type methods, we introduce some basic definitions about the objective
function and the feasible set. We first define a function h(y, x) for a given y ∈ X , as

h(y, x) = f (y) + 〈 f ′(y), x − y〉 + X (x) for any x ∈ X . (2.1)

Note that if f is convex, then we have h(y, x) ≤ f (x) + X (x) = Ψ (x) and hence h(y, x)
defines a lower bound for Ψ (x). Also, let SΨ (l) be the level set of Ψ given by SΨ (l) =
{x ∈ X : Ψ (x) ≤ l} and define a convex compact set X ′ as a localizer of the level set
SΨ (l) if it satisfies SΨ (l) ⊆ X ′ ⊆ X . Then, it can be shown [16] that, when Ψ is convex,
min{l, h(y)} ≤ Ψ (x) for any x ∈ X , where

h(y) = min{h(y, x) : x ∈ X ′}. (2.2)

Using the above definitions,we present a unified accelerated prox-level (UAPL) algorithm,
Algorithm 2, for nonlinear programming.

Algorithm 2 The unified accelerated prox-level (UAPL) algorithm
Input: p0 ∈ X , αt ∈ (0, 1) with α1 = 1, and algorithmic parameter η ∈ (0, 1).
Set p1 ∈ Argminx∈X h(p0, x), lb1 = h(p0, p1), x

ag
0 = p0, and k = 0.

For s = 1, 2, . . .:
Set x̂ag0 = ps , Ψ̄0 = Ψ (x̂ag0), Ψ 0 = lbs , and l = ηΨ 0 + (1 − η)Ψ̄0. Also, let x0 ∈ X and the initial
localizer X ′

0 be arbitrarily chosen, say x0 = ps and X ′
0 = X .

For t = 1, 2, . . .:

1. Update lower bound: set xmd
t = (1 − αt)x̂

ag
t−1 + αt xt−1 and Ψ t := max

{
Ψ t−1,min{l, ht }

}
,

where ht ≡ h(xmd
t) is defined in (2.2) with X ′ = X ′

t−1.
2. Update the prox-center: set

xt = argminx∈X ′
t−1

{
‖x − x0‖2 : h(xmd

t , x) ≤ l
}

. (3.3)

If (3.3) is infeasible, set xt = x̂agt−1.

3. Update upper bound: set k ← k + 1 and choose x̂agt such that Ψ (x̂agt) =
min{Ψ (x̂agt−1), Ψ (x̃agt), Ψ (x̄agk)}, where x̃agt = (1 − αt)x̂

ag
t−1 + αt xt and x̄agk is obtained by

step 2 of Algorithm 1. Set Ψ̄t = Ψ (x̂agt) and xagk = x̂agt .

4. Termination: If Ψ t ≤ Ψ̄t and Ψ̄t − Ψ t ≤ [1 − 1
2 min{η, 1 − η}](Ψ̄0 − Ψ 0), then terminate this

phase (loop) and set ps+1 = x̂agt and lbs+1 = Ψ t .

5. Update localizer: choose an arbitrary X ′
t such that Xt ⊆ X ′

t ⊆ X̄t , where

Xt =
{
x ∈ X ′

t−1 : h(xmd
t , x) ≤ l

}
and X̄t = {x ∈ X : 〈xt − x0, x − xt 〉 ≥ 0} . (3.4)

End
End

We now make a few remarks about the above algorithm. First, note that the updating of
x̄agk in step 3 of the UAPL algorithm is essentially a gradient descent step, and hence without
this update, the UAPL algorithm would reduce to a simple variant of the APL method in [15]
for convex programming. However, this update is required to establish convergence for the
case when the objective function is nonconvex. Second, this UAPL algorithm has two nested
loops. The outer loop called phase is counted by index s. The number of iterations of the

123

Journal of Scientific Computing (2019) 79:1854–1881 1869

inner loop in each phase is counted by index t . If we make a progress in reducing the gap
between the lower and upper bounds on Ψ , we terminate the current phase (inner loop) in
step 4 and go to the next one with a new lower bound. As shown in [15], the number of steps
in each phase is finite whenΨ is convex. However, whenΨ is nonconvex,Ψ is not necessary
a lower bound on Ψ , and hence the termination criterion in step 4 may not be satisfied. In
this case, we could still provide the convergence of the algorithm in terms of the projected
gradient defined in (2.16) because of the gradient descent step incorporated in step 3.

The following Lemma [15] shows some properties of the UAPL algorithm by generalizing
the prox-level method in [4].

Lemma 2 Assume that Ψ is convex and bounded below over X, i.e., Ψ ∗ is finite. Then, the
following statements hold for each phase of Algorithm 2.

a) {X ′
t }t≥0 is a sequence of localizers of the level set SΨ (l).

b) Ψ 0 ≤ Ψ 1 ≤ . . . ≤ Ψ t ≤ Ψ ∗ ≤ Ψ̄t ≤ . . . ≤ Ψ̄1 ≤ Ψ̄0 for any t ≥ 1.
c) ∅ �= Xt ⊆ X̄t for any t ≥ 1 and hence, step 5 is always feasible unless the current phase

terminates.

Now, we can present the main convergence properties of the above UAPL algorithm.

Theorem 2 Let the feasible set X be bounded.

a) Suppose Ψ is bounded below over X, i.e., Ψ ∗ is finite. The total number of iterations
performed by the UAPL method to have ‖gX ,k‖2 ≤ ε for at least one k, after disregarding
some constants, is bounded by (2.44).

b) Suppose that f is convex and an optimal solution x∗ exists for problem (1.1). Then,
the number of phases performed by the UAPL method to find a solution x̄ such that
Ψ (x̄) − Ψ (x∗) ≤ ε, is bounded by

S(ε) =
⌈
max

{
0, log 1

q

H maxx,y∈X ‖x − y‖1+ν

(1 + ν)ε

}⌉
, (3.5)

where

q = 1 − 1

2
min{η, 1 − η}. (3.6)

In addition, by choosing αt = 2/(t + 1) for any t ≥ 1, the total number of iterations to
find the aforementioned solution x̄ is bounded by

S(ε) + 1

1 − q
2

3ν+1

(
4
√
3H maxx,y∈X ‖x − y‖1+ν

ηθ(1 + ν)ε

) 2
3ν+1

. (3.7)

Proof First, note that part a) can be established by essentially following the same arguments
as those in Theorem 1.b) and Corollary 1.a) due to step 3 of Algorithm 2. Second, due to the
termination criterion in step 4 of Algorithm 2, for any phase s ≥ 1, we have

Ψ (ps+1) − lbs+1 ≤ q[Ψ (ps) − lbs],
which by induction and together with the facts that lb1 = h(p0, p1) and lbs ≤ Ψ (x∗), clearly
imply

Ψ (ps) − Ψ (x∗) ≤ [Ψ (p1) − h(p0, p1)] q
s−1. (3.8)

This relation, as shown in Theorem 4 of [15] for convex programming, implies (3.5). Third,
(3.7) is followed by (3.5) and [15, Proposition 2, Theorem 3]. ��

123

1870 Journal of Scientific Computing (2019) 79:1854–1881

We now add a few remarks about the above results. First, note that the UAPL and UPFAG
methods essentially have the same mechanism to ensure the global convergence when the
problem (1.1) is nonconvex. To the best of our knowledge, this is the first time that a
bundle-level type method is proposed for solving a class of possibly nonconvex nonlin-
ear programming problems. It should be also mentioned that similar complexity results can
be obtained by using (2.13) instead of (2.10) in step 3 of the UAPL method. Second, note
that the bound in (3.7) is in the same order of magnitude as the optimal bound in (2.45) for
convex programming. However, to obtain this bound, we need the boundedness assumption
on the feasible set X , although we do not need the target accuracy as a priori. Third, parts
a) and c) of Theorem 2 imply that the UAPL method can uniformly solve weakly smooth
nonconvex and convex problems without requiring any problem parameters. In particular, it
achieves the best known convergence rate for nonconvex problems and its convergence rate
is optimal if the problem turns out to be convex.

Finally, in steps 1 and 2 of the UAPL algorithm, we need to solve two subproblems which
can be time consuming. Moreover, to establish the convergence of this algorithm, we need
the boundedness assumption on X as mentioned above. In the next subsection, we address
these issues by exploiting the framework of another bundle-level type method which can
significantly reduce the iteration cost.

3.2 Unified Fast Accelerated Prox-level Method

In this subsection,we aim to simplify theUAPLmethod for solving ball-constrained problems
and unconstrained problems with bounded level sets. Recently, Chen et al. [7] presented a
simplified variant of the APL method, namely fast APL (FAPL) method, for ball constrained
convex problems. They showed that the number of subproblems in each iteration is reduced
from two to one and presented an exact method to solve the subproblem.

In this subsection, we first generalize the FAPL method for ball-constrained nonconvex
problems and then discuss how to extend it for unconstrained problems with bounded level
sets. It should be mentioned that throughout this subsection, we assume that the simple
nonsmooth convex term vanishes in the objective function i.e., X ≡ 0 in (1.1). Below, we
present the unified FAPL (UFAPL)method to sovle the problem (1.1) with the ball constraint,
i.e., X = B(x̄, R).

We now add a few remarks about this algorithm. First, note that we do not need to solve
the subproblem (2.2) in the UFAPL method. Moreover, the subproblem (3.3) in the UFAPL
method is to project x̄ over a closed polyhedral. There exist quite efficient methods for
performing such a projection on a polyhedral (see e.g., [7,13]). When (2.13) is used and
Gk = I , the subproblem associated with finding x̄agk in step 3 of the UFAPL method has a
closed-form solution. Hence, there is only one subproblem to be solved in each iteration of
the UFAPL method and this subproblem can be solved quite efficiently. In addition, since
the objective function may be nonconvex, when a phase s starts in the UAPL or the UFAPL,
the lower bound Ψ 0 could be even larger than the upper bound Ψ̄0. When this happens, from
practical efficiency point of view, onemay simply restart the algorithm at the current iteration
point ps or may even only perform the local nonlinear search iterations starting at ps .

Second, note that the UFAPL algorithm can be terminated in step 3 or step 4. Moreover,
by combining the convergence results in [7] and applying similar techniques used in showing
the Theorem 1, we can establish complexity results similar to the Theorem 2 for the UFAPL
method. For simplicity, we do not repeat these arguments here.

123

Journal of Scientific Computing (2019) 79:1854–1881 1871

Finally, we can extend the above results for theUFAPLmethod to unconstrained problems.
In particular, suppose the level set

S0 = {x ∈ R
n |Ψ (x) ≤ Ψ (x0)},

is bounded, where x0 is the initial point for the UFAPL method. Now, consider the ball-
constrained problem

min
x∈B(x0,R)

Ψ (x), (3.9)

such that R = maxx,y∈S0 ‖x − y‖ + δ for a given δ > 0. To solve this problem, we could
apply the UFAPL method with small modifications. Specifically, we use X = R

n to find x̄agk
in step 3 of this method. Now, let {xagk }k≥1 be generated by this modified UFAPL method.
By steps 3 and 4 of this method, we clearly have Ψ (xagk) ≤ Ψ (xagk−1) for all k ≥ 1, which
implies that xagk ∈ S0 for all k ≥ 1. Hence, all generated points {xagk }k≥1 lie in the interior
of the aforementioned ball B(x0, R) due to δ > 0, which consequently implies that the
optimal solution of the problem (3.9) is the same as the that of the unconstrained problem
minx∈Rn Ψ (x). Therefore, under the boundedness assumption on S0, we can apply the above
modified UFAPL method to solve the ball-constrained problem (3.9) in order to solve the
original unconstrained problem.

Algorithm 3 The unified fast accelerated prox-level (UFAPL) algorithm
Input: p0 ∈ B(x̄, R) and η, θ ∈ (0, 1).
Set p1 ∈ Argminx∈B(x̄,R)h(p0, x), lb1 = h(p0, p1), x

ag
0 = p0, and k = 0.

For s = 1, 2, . . .:
Set x̂ag0 = ps , Ψ̄0 = Ψ (x̂ag0), Ψ 0 = lbs , l = ηΨ 0 + (1 − η)Ψ̄0, and X ′

0 = X = R
n . Also, let

x0 ∈ B(x̄, R) be arbitrary given.

For t = 1, 2, . . .:

1. Set xmd
t = (1 − αt)x̂

ag
t−1 + αt xt−1 and define Xt as in (3.4).

2.Update the prox-center: Let xt be computed by (3.3)with x0 = x̄ , i.e., xt = argminx∈Xt
‖x−x̄‖2.

3. Update the lower bound: set k ← k + 1 and choose x̂agt such that Ψ (x̂agt) =
min{Ψ (x̂agt−1), Ψ (x̄agk)}, where x̄agk is obtained by step 2 of Algorithm 1 with X = B(x̄, R).

If Xt = ∅ or ‖xt − x̄‖ > R, then terminate this phase with xagk = x̂agt , ps+1 = x̂agt , and
lbs+1 = l.

4. Update upper bound: let x̃agt = (1 − αt)x̂
ag
t−1 + αt xt . If Ψ (x̃agt) < Ψ (x̂agt), then set xagk =

x̂agt = x̃agt and Ψ̄t = Ψ (x̂agt). If Ψ̄t ≤ l + θ(Ψ̄0 − l), then terminate this phase (loop) and set
ps+1 = x̂agt and lbs+1 = lbs .

5. Update localizer: choose any polyhedral X ′
t such that Xt ⊆ X ′

t ⊆ X̄t , where Xt and X̄t are
defined in (3.4) with X = R

n .
End

End

4 Numerical Experiments

In this section, we show the performance of our algorithms for solving two support vector
machine (SVM) problems. In particular, given data points {(ui , vi)}mi=1 we consider the SVM
problem defined as

123

1872 Journal of Scientific Computing (2019) 79:1854–1881

Table 1 Average required number of iterations (Iter(k)), runtime (T (s)), objective value, and classification
error found till reaching a desired accuracy for ‖gX (x̄∗)‖2 over 10 random generated instances of the SVM
problem with the sigmoid loss function

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

m = 1000, n = 2000

LBFGS Iter(k) 1 12 38 43.9 48.2 53.3

T (s) 0 0 0.1 0.1 0.1 0.1

Ψ (xagk) 1.3 0.289 0.277 0.277 0.277 0.277

er(xagk) 49.64 32.38 32.06 32.07 32.07 32.07

UPFAG-LBFGS Iter(k) 1 7.6 16.2 22.5 28.1 32.2

T (s) 0 0 0 0 0.1 0.1

Ψ (xagk) 1.3 0.295 0.277 0.277 0.277 0.277

er(xagk) 49.64 32.65 32.03 32.03 32.07 32.07

UPFAG-fullBB Iter(k) 1 8.6 20.7 32.6 43.9 55.9

T (s) 0 0 0 0 0.1 0.1

Ψ (xagk) 1.3 0.295 0.277 0.277 0.277 0.277

er(xagk) 49.64 32.66 32.1 32.05 32.06 32.07

UPFAG-GradDescent Iter(k) 1 36.8 101.8 227.6 422.3 649.6

T (s) 0 0 0.1 0.3 0.5 0.7

Ψ (xagk) 1.3 0.298 0.277 0.277 0.277 0.277

er(xagk) 49.64 32.53 32.09 32.05 32.05 32.06

UFAPL Iter(k) 1 10.2 17.9 24.9 29.2 35.3

T (s) 0 0.1 0.1 0.1 0.1 0.2

Ψ (xagk) 1.3 0.288 0.277 0.277 0.277 0.277

er(xagk) 49.64 32.33 32.06 32.06 32.06 32.04

UAPL Iter(k) 1 10.4 28.2 45.8 49.9 54.2

T (s) 0.1 0.9 2.7 4.5 4.9 5.4

Ψ (xagk) 1.59 0.287 0.277 0.277 0.277 0.277

er(xagk) 38.64 32.5 32.13 32.08 32.09 32.08

m = 4000, n = 8000

LBFGS Iter(k) 1 29.8 63.6 189 303.4 390.7

T (s) 0 0.1 0.2 0.5 0.7 0.9

Ψ (xagk) 1.3 0.173 0.122 0.12 0.12 0.119

er(xagk) 49.68 33.02 31.75 31.78 31.8 31.82

UPFAG-LBFGS Iter(k) 1 14.3 29.4 54.1 69.4 86.5

T (s) 0 0.1 0.2 0.4 0.4 0.5

Ψ (xagk) 1.3 0.175 0.121 0.119 0.119 0.119

er(xagk) 49.68 33.22 31.85 31.8 31.82 31.82

UPFAG-fullBB Iter(k) 1 17.3 50.1 89.2 129.3 162

T (s) 0 0.1 0.3 0.5 0.7 0.8

Ψ (xagk) 1.3 0.208 0.12 0.119 0.119 0.119

er(xagk) 49.68 34.63 31.92 31.83 31.87 31.86

123

Journal of Scientific Computing (2019) 79:1854–1881 1873

Table 1 continued

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

UPFAG-GradDescent Iter(k) 1 140.7 527.2 1289.2 >3000 –

T (s) 0 0.6 2.2 5.4 – –

Ψ (xagk) 1.3 0.184 0.119 0.119 – –

er(xagk) 49.68 33.15 31.78 31.79 – –

UFAPL Iter(k) 1 12.5 32.5 56.1 70.4 95

T (s) 0 0.1 0.3 0.5 0.6 0.9

Ψ (xagk) 0.95 0.18 0.121 0.12 0.12 0.119

er(xagk) 42.28 33.07 31.79 31.79 31.77 31.79

UAPL Iter(k) 1 39.7 87 183 269.5 332.1

T (s) 1.5 29.9 66.6 138.1 202.2 249.7

Ψ (xagk) 0.95 0.166 0.121 0.12 0.119 0.119

er(xagk) 42.28 32.88 31.8 31.77 31.78 31.78

Table 2 Required number of iterations (Iter(k)), runtime (T (s)), objective value, and classification error
found till reaching a desired accuracy for ‖gX (x̄∗)‖2 over real data of the SVM problem with the sigmoid
loss function

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

a6a

LBFGS Iter(k) 2 2 6 60 85 107

T (s) 0.2 0.2 0.2 0.3 0.4 0.4

Ψ (xagk) 0.488 0.488 0.483 0.31 0.31 0.31

er(xagk) 24.13 24.13 24.13 15.23 15.2 15.2

UPFAG-LBFGS Iter(k) 2 2 3 67 168 201

T (s) 0 0 0 0.3 0.7 0.8

Ψ (xagk) 0.488 0.488 0.483 0.31 0.31 0.31

er(xagk) 24.13 24.13 24.13 15.24 15.23 15.22

UPFAG-fullBB Iter(k) 2 2 2 258 451 743

T (s) 0 0 0 1.1 1.7 2.6

Ψ (xagk) 0.484 0.484 0.484 0.31 0.31 0.31

er(xagk) 24.13 24.13 24.13 15.21 15.22 15.21

UPFAG-GradDescent Iter(k) 15 34 94 >3000 >3000 >3000

T (s) 0.1 0.1 0.3 – – –

Ψ (xagk) 0.512 0.484 0.482 – – –

er(xagk) 24.92 24.16 24.13 – – –

UFAPL Iter(k) 1 1 6 46 70 101

T (s) 0.1 0.1 0.1 0.4 0.5 0.6

Ψ (xagk) 0.591 0.591 0.485 0.31 0.31 0.31

er(xagk) 24.13 24.13 24.13 15.24 15.22 15.22

UAPL Iter(k) 1 1 6 55 94 116

T (s) 0.1 0.1 0.1 0.7 1.1 1.3

123

1874 Journal of Scientific Computing (2019) 79:1854–1881

Table 2 continued

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

Ψ (xagk) 0.591 0.591 0.485 0.31 0.31 0.31

er(xagk) 24.13 24.13 24.13 15.25 15.22 15.22

w1a

LBFGS Iter(k) 20 21 748 2714 2738 2747

T (s) 0.2 0.2 0.7 1.9 1.9 1.9

Ψ (xagk) 0.213 0.209 0.146 0.145 0.144 0.144

er(xagk) 7.31 7.26 6.44 6.47 6.45 6.45

UPFAG-LBFGS Iter(k) 12 14 24 34 93 100

T (s) 0 0 0.1 0.1 0.1 0.2

Ψ (xagk) 0.231 0.186 0.146 0.145 0.144 0.144

er(xagk) 8.99 7.53 6.42 6.47 6.45 6.46

UPFAG-fullBB Iter(k) 12 15 24 63 73 95

T (s) 0 0 0 0.1 0.1 0.1

Ψ (xagk) 0.28 0.175 0.146 0.144 0.144 0.144

er(xagk) 11.05 7.05 6.45 6.46 6.46 6.45

UPFAG-GradDescent Iter(k) 20 70 944 >3000 >3000 >3000

T (s) 0 0.1 0.9 – – –

Ψ (xagk) 0.332 0.189 0.145 – – –

er(xagk) 13.27 7.58 6.45 – – –

UFAPL Iter(k) 1 4 17 41 45 54

T (s) 0.1 0.1 0.2 0.3 0.3 0.3

Ψ (xagk) 0.642 0.157 0.146 0.144 0.144 0.144

er(xagk) 6.85 6.69 6.45 6.45 6.45 6.45

UAPL Iter(k) 1 3 14 1915 1941 1949

T (s) 0.1 0.1 0.2 20.2 20.6 20.7

Ψ (xagk) 0.642 0.201 0.146 0.145 0.144 0.144

er(xagk) 6.85 6.74 6.48 6.46 6.45 6.45

min‖x‖≤a

{
Ψ (x) := 1

m

m∑
i=1

l(ui , vi ; x) + λ

2
‖x‖22

}
(4.1)

for some λ > 0, where l(x; ui , vi) is either the nonconvex sigmoid loss function [20] i.e.,

l(x; ui , vi) = 1 − tanh (vi 〈x, ui 〉) ,

or the convex squared hinge one i.e.,

l(x; ui , vi) = max {0, 1 − vi 〈x, ui 〉}2 .

Note that the above loss functions are smooth and have Lipschitz continuous gradients.
Hence, (4.1) fits into the setting of problem (1.1) with X ≡ 0.

Here, we use both real and synthetic data sets. For the former, we use some data sets
from LIBSVM at http://www.csie.ntu.edu.tw/~cjlin/libsvm. For the latter, we assume that

123

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Journal of Scientific Computing (2019) 79:1854–1881 1875

Table 3 Average required number of iterations (Iter(k)), runtime (T (s)), objective value, and classification
error found till reaching a desired accuracy for ‖gX (x̄∗)‖2 over 10 random generated instances of the SVM
problem with the squared hinge loss function

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

m = 1000, n = 2000

LBFGS Iter(k) 2.8 12.3 20.4 29.7 36.3 44.7

T (s) 0 0.2 0.3 0.3 0.3 0.3

Ψ (xagk) 0.451 0.0942 0.0891 0.089 0.089 0.089

er(xagk) 40.84 32.47 32.49 32.55 32.55 32.56

UPFAG-LBFGS Iter(k) 2.5 11.7 19.2 28.6 34.9 43

T (s) 0 0 0 0.1 0.1 0.1

Ψ (xagk) 0.477 0.094 0.0891 0.089 0.089 0.089

er(xagk) 41.57 32.47 32.49 32.55 32.55 32.56

UPFAG-fullBB Iter(k) 2.9 14.2 31.7 58.5 101 142

T (s) 0 0 0 0.1 0.1 0.2

Ψ (xagk) 0.539 0.117 0.0891 0.089 0.089 0.089

er(xagk) 42.37 34.47 32.54 32.55 32.55 32.55

UPFAG-GradDescent Iter(k) 5.3 25.1 56.2 183.9 372.8 617.7

T (s) 0 0 0.1 0.2 0.4 0.6

Ψ (xagk) 0.676 0.124 0.0893 0.089 0.089 0.089

er(xagk) 43.79 34.82 32.53 32.56 32.55 32.56

UFAPL Iter(k) 2.8 11.3 18.9 28.3 34.9 42.3

T (s) 0 0.1 0.1 0.1 0.2 0.2

Ψ (xagk) 0.457 0.0948 0.0891 0.089 0.089 0.089

er(xagk) 41.33 32.43 32.51 32.56 32.55 32.56

UAPL Iter(k) 2.6 16.9 26.6 34.3 41.2 52.2

T (s) 0.2 1.4 2.4 3.1 3.8 5.1

Ψ (xagk) 1.14 0.0955 0.0891 0.089 0.089 0.089

er(xagk) 36.37 32.28 32.5 32.55 32.56 32.56

AG Iter(k) 5.3 25.1 70 143.7 267 527.8

T (s) 0 0 0.1 0.1 0.2 0.4

Ψ (xagk) 0.089 0.089 0.089 0.089 0.089 0.089

er(xagk) 43.79 34.82 32.56 32.55 32.56 32.55

FAPL Iter(k) 14.3 45.5 96.3 150.2 >3000 >3000

T (s) 0 0.1 0.2 0.3 – –

Ψ (xagk) 0.633 0.102 0.0891 0.089 – –

er(xagk) 32.55 32.55 32.55 32.55 – –

each data point (ui , vi) is drawn from the uniform distribution on [0, 1]n × {−1, 1}, where
ui ∈ R

n is the feature vector and vi ∈ {−1, 1} denotes the corresponding label. Moreover,
we assume that ui is sparse with 5% nonzero components and vi = sign (〈x̄, ui 〉) for some
x̄ ∈ R

n with ‖x̄‖ ≤ a. We also consider two different problem sizes as n = 2000, 8000 with
m = 1000, 4000, respectively.

123

1876 Journal of Scientific Computing (2019) 79:1854–1881

Table 4 Average required number of iterations (Iter(k)), runtime (T (s)), objective value, and classification
error found till reaching a desired accuracy for ‖gX (x̄∗)‖2 over 10 random generated instances of the SVM
problem with the squared hinge loss function

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

m = 4000, n = 8000

LBFGS Iter(k) 4.3 15.1 43.5 61.4 77.8 94.4

T (s) 0.1 0.2 0.2 0.3 0.4 0.5

Ψ (xagk) 0.467 0.0798 0.0233 0.0232 0.0232 0.0232

er(xagk) 41.11 35.7 32.27 32.32 32.36 32.36

UPFAG-LBFGS Iter(k) 4.2 13.8 43.9 62.8 80.2 96.1

T (s) 0 0.1 0.3 0.4 0.5 0.6

Ψ (xagk) 0.44 0.111 0.0234 0.0232 0.0232 0.0232

er(xagk) 42.29 37.16 32.21 32.35 32.36 32.36

UPFAG-fullBB Iter(k) 6 16.8 92 226.7 407.9 585.8

T (s) 0 0.1 0.6 1.1 1.8 2.5

Ψ (xagk) 0.579 0.187 0.0235 0.0232 0.0232 0.0232

er(xagk) 43.38 40.29 32.37 32.36 32.36 32.36

UPFAG-GradDescent Iter(k) 14 44.2 212.9 693.8 1996.4 >3000

T (s) 0.1 0.2 0.8 2.6 7.5 –

Ψ (xagk) 0.688 0.196 0.024 0.0232 0.0232 –

er(xagk) 43.92 39.52 32.57 32.36 32.37 –

UFAPL Iter(k) 4.1 14.5 44.6 63.7 74.4 91

T (s) 0.1 0.1 0.4 0.6 0.7 0.9

Ψ (xagk) 0.396 0.0648 0.0234 0.0232 0.0232 0.0232

er(xagk) 38.27 34.07 32.22 32.35 32.36 32.36

UAPL Iter(k) 4.4 14.4 49 65.5 77 95.9

T (s) 10.6 20.1 53.7 68.4 78.6 95

Ψ (xagk) 0.354 0.0949 0.0234 0.0232 0.0232 0.0232

er(xagk) 35.48 33.25 32.12 32.36 32.35 32.36

AG Iter(k) 14 44.2 261.4 530.6 1054.2 >3000

T (s) 0 0.1 0.7 1.4 2.8 –

Ψ (xagk) 0.0232 0.0232 0.0232 0.0232 0.0232 –

er(xagk) 43.92 39.52 32.51 32.37 32.36 –

FAPL Iter(k) 16.2 29.9 117 240.7 >3000 >3000

T (s) 0.1 0.2 0.6 1.3 – –

Ψ (xagk) 0.579 0.0958 0.0233 0.0232 – –

er(xagk) 32.37 32.37 32.37 32.37 – –

In our experiments, we set λ = 1/m, a = 50. The initial point is randomly chosen
within the ball centered at origin with radius a. For synthetic data sets, we report the average
results of running different algorithms over 10 instances for each problem size using large
sample sizes of K = 10000. Moreover, in order to further assess the quality of the generated

123

Journal of Scientific Computing (2019) 79:1854–1881 1877

Table 5 Required number of iterations (Iter(k)), runtime (T (s)), objective value, and classification error found
till reaching a desired accuracy for ‖gX (x̄∗)‖2 over data set a6a of the SVM problem with the squared hinge
loss function

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

LBFGS Iter(k) 11 25 51 245 341 475

T (s) 0.2 0.3 0.3 0.5 0.6 0.8

Ψ (xagk) 0.472 0.427 0.424 0.423 0.423 0.423

er(xagk) 15.96 15.31 15.22 15.23 15.23 15.23

UPFAG-LBFGS Iter(k) 11 25 51 245 341 475

T (s) 0.1 0.1 0.2 0.7 0.9 1.2

Ψ (xagk) 0.472 0.427 0.424 0.423 0.423 0.423

er(xagk) 15.96 15.31 15.22 15.23 15.23 15.23

UPFAG-fullBB Iter(k) 23 64 191 606 1828 >3000

T (s) 0.1 0.2 0.6 2 5 –

Ψ (xagk) 0.473 0.433 0.424 0.423 0.423 –

er(xagk) 15.96 15.29 15.29 15.23 15.23 –

UPFAG-GradDescent Iter(k) 31 126 395 1493 >3000 >3000

T (s) 0.1 0.3 0.9 3.3 – –

Ψ (xagk) 0.516 0.43 0.424 0.423 – –

er(xagk) 17.09 15.23 15.22 15.21 – –

UFAPL Iter(k) 9 22 86 225 358 494

T (s) 0.2 0.2 0.5 1.2 1.8 2.4

Ψ (xagk) 0.478 0.427 0.424 0.423 0.423 0.423

er(xagk) 16.07 15.33 15.22 15.22 15.23 15.23

UAPL Iter(k) 24 33 59 144 204 311

T (s) 0.3 0.4 0.7 1.7 2.4 3.7

Ψ (xagk) 0.506 0.426 0.423 0.423 0.423 0.423

er(xagk) 16.12 15.32 15.21 15.24 15.23 15.23

AG Iter(k) 31 126 395 1546 >3000 >3000

T (s) 0.1 0.2 0.6 2.5 – –

Ψ (xagk) 0.516 0.43 0.424 0.423 – –

er(xagk) 17.09 15.23 15.22 15.22 – –

FAPL Iter(k) 44 87 327 1477 >3000 >3000

T (s) 0.2 0.3 1 4.7 – –

Ψ (xagk) 0.497 0.426 0.423 0.423 – –

er(xagk) 15.22 15.22 15.22 15.22 – –

solutions, we also report the classification error evaluated at the classifier x given by

er(x) := | {i : vi �= sign(〈x, ui 〉), i = 1, . . . , K } |
K

. (4.2)

Real data sets are divided into two categories. Training sets are used to form the loss
functions and the results are evaluated using the test sets. Tables 1, 2, 3, 4, 5 and 6 summarize

123

1878 Journal of Scientific Computing (2019) 79:1854–1881

Table 6 Required number of iterations (Iter(k)), runtime (T (s)), objective value, and classification error found
till reaching a desired accuracy for ‖gX (x̄∗)‖2 over data set w1a of the SVM problem with the squared hinge
loss function

‖gX (x̄∗)‖2 < 10−2 < 10−4 < 10−6 < 10−8 < 10−10 < 10−12

LBFGS Iter(k) 6 10 24 36 54 63

T (s) 0.2 0.2 0.2 0.3 0.3 0.3

Ψ (xagk) 0.322 0.151 0.131 0.131 0.131 0.131

er(xagk) 9.72 7.05 6.97 6.97 6.98 6.98

UPFAG-LBFGS Iter(k) 6 11 24 36 44 55

T (s) 0 0 0.1 0.1 0.1 0.1

Ψ (xagk) 0.298 0.146 0.131 0.131 0.131 0.131

er(xagk) 9.98 7.05 6.99 6.98 6.98 6.99

UPFAG-fullBB Iter(k) 6 17 42 108 145 251

T (s) 0 0 0.1 0.1 0.1 0.2

Ψ (xagk) 0.298 0.149 0.132 0.131 0.131 0.131

er(xagk) 9.93 7.06 6.97 7.04 6.97 7.01

UPFAG-GradDescent Iter(k) 19 84 390 1554 >3000 >3000

T (s) 0 0.1 0.3 1.2 – –

Ψ (xagk) 0.36 0.158 0.131 0.131 – –

er(xagk) 10.38 7.15 6.99 6.97 – –

UFAPL Iter(k) 4 9 23 34 50 67

T (s) 0.1 0.1 0.2 0.2 0.3 0.4

Ψ (xagk) 0.354 0.15 0.131 0.131 0.131 0.131

er(xagk) 10.33 7.07 6.99 6.97 7.02 7.02

UAPL Iter(k) 4 12 26 37 46 59

T (s) 0.1 0.2 0.4 0.5 0.6 0.8

Ψ (xagk) 0.598 0.163 0.131 0.131 0.131 0.131

er(xagk) 8.23 7.13 6.91 6.96 6.97 7.04

AG Iter(k) 19 84 390 1431 >3000 >3000

T (s) 0 0.1 0.2 0.9 – –

Ψ (xagk) 0.36 0.158 0.131 0.131 – –

er(xagk) 10.38 7.15 6.99 7.01 – –

FAPL Iter(k) 6 20 75 240 >3000 >3000

T (s) 0 0.1 0.2 0.3 – –

Ψ (xagk) 0.253 0.152 0.131 0.131 – –

er(xagk) 6.96 6.96 6.96 6.96 – –

the results of implementing the following algorithms. The LBFGS method only performs
the local quasi-Newton search step (2.13), where Gk is the LBFGS [26,27] matrix, without
incorporating the acceleration techniques for convex optimization. The UPFAG-LBFGS,
UPFAG-fullBB, and UPFAG-GradDescent methods are different variants of Algorithm 1. In
particular, the UPFAG-LBFGS applys the LBFGS local search (2.13) and uses the Barzilai-
Borwein initial stepsizes (2.12). The UPFAG-fullBB and the UPFAG-GradDescent methods

123

Journal of Scientific Computing (2019) 79:1854–1881 1879

both apply the gradient projection step (2.10), while the former uses the Barzilai-Borwein
initial stepsizes (2.12), and the latter tries the stepsize policy in (2.15). The UAPL and the
UFAPL methods are also equipped with the LBFGS quai-Newton step (2.13). In all the
above algorithms, step (2.13), if used, is only solved inexactly according to (2.14) with
σ = 10−10. In addition to the above algorithms, when the convex loss function is used, we
also implement two well-known optimal methods for convex optimization, namely, a variant
of the accelerated gradient (AG) method in [11] and the FAPL method in [7]. To make a fair
comparison, the generalized projected gradient (2.16) with βk = 1 are always used in the
stopping condition for all the comparison algorithms.

The following observations can be made from the numerical results. First, for the noncon-
vex problems, the UPFAG-GradDescent method performs the worst among all the compared
algorithms. Second, the UPFAG-LBFGSmethod outperforms the other two variants of Algo-
rithm 1 showing the effectiveness of the quasi-Newton step (2.13) in comparison to the
gradient descent step in (2.10). The LBFGS method is also usually worse than the UPFAG-
LBFGSmethod. Third, the UPFAG-LBFGS and the UFAPLmethods have the best and most
stable performances over all instances. While both methods have comparable running times,
the UFAPL method sometimes outperforms the UPFAG-LBFGS method in terms of number
iterations. The UAPL method is also usually comparable to the UFAPL method in terms
of number of iterations. However, its running time is much worse as expected due to the
existence of two subproblems at each iteration. It is worth noting that the UFAPL method
simplifies the subproblems of the UAPLmethod and hence reduce its running time only when
the feasible region is ball-constrained or unconstrained.

In addition, similar observations can be also made on the above-mentioned algorithms
when convex loss function is used. Furthermore, it can be observed that by incorporating
local quasi-Newton steps, the unified algorithms presented here perform significantly better
than the two optimal methods even for solving convex problems, which shows the practical
importance of using the local search steps (2.10) and (2.13) especially in a large data set-
ting. Finally, the bundle-level type methods often outperform the accelerated gradient type
methods in terms of the iteration number for solving both convex and nonconvex models,
indicating the potential of these methods for the situation when the computation of gradients
are more expensive than the solution of projection subproblems. This observation has also
been particularly made for convex problems without using the local search step (see e.g.,
[7,15]).

5 Concluding Remarks

In this paper, we extend the framework of uniformly optimal algorithms, currently designed
for convex programming, to nonconvex nonlinear programming. In particular, by incorpo-
rating a gradient descent step into the framework of uniformly optimal convex programming
methods, namely, accelerated gradient and bundle-level typemethods, and enforcing the func-
tion values evaluated at each iteration of these methods non-increasing, we present unified
algorithms for minimizing composite objective functions given by summation of a function
f with Hölder continuous gradient and simple convex term over a convex set. We show that
these algorithms exhibit the best known convergence rate when f is nonconvex and possess
the optimal iteration convergence rate if f turns out to be convex. Therefore, these algorithms
allow us to have a unified treatment for nonlinear programming problems regardless of their
smoothness level and convexity property. Furthermore, we show that by incorporating quasi-

123

1880 Journal of Scientific Computing (2019) 79:1854–1881

Newton local search steps, the practical performance of these algorithms can be often greatly
improved. Preliminary numerical experiments are also presented to show the performance of
our developed algorithms for solving a couple of important nonlinear programming problems
arising from machine learning.

References

1. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithm and Analysis. Springer, New York (2000)
2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imaging Sci. 2, 183–202 (2009)
3. Becker, Stephen, Fadili, Jalal M.: A quasi-newton proximal splitting method. Adv. Neural Inf. Process.

Syst. 25, 2618–2626 (2012)
4. Ben-Tal, A., Nemirovski, A.S.: Non-Euclidean restricted memory level method for large-scale convex

optimization. Math. Program. 102, 407–456 (2005)
5. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-newtonmatrices and their use in limited

memory methods. Math. Program. 63(4), 129–156 (1994)
6. Cartis, C., Gould, N.I.M., Toint, PhL: On the complexity of steepest descent, Newton’s and regularized

Newton’s methods for nonconvex unconstrained optimization. SIAM J. Optim. 20(6), 2833–2852 (2010)
7. Chen, Y., Lan, G., Ouyang, Y., Zhang, W.: Fast bundle-level type methods for unconstrained and

ball-constrained convex optimization. Manuscript, University of Florida, Gainesville, FL 32611, USA,
December 2014. http://www.optimization-online.org/

8. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.
Stat. Assoc. 96, 13481360 (2001)

9. Fu, M.: Optimization for simulation: theory vs. practice. INFORMS J. Comput. 14, 192–215 (2002)
10. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic com-

posite optimization, II: shrinking procedures and optimal algorithms. SIAM J. Optim. 23, 2061–2089
(2013)

11. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic optimization.
Math. Program. (2015). https://doi.org/10.1007/s10107-015-0871-8

12. Ghadimi, S., Lan,G., Zhang,H.:Mini-batch stochastic approximationmethods for constrained nonconvex
stochastic programming. Math. Program. (2014). https://doi.org/10.1007/s10107-014-0846-1

13. Hager, W.W., Zhang, H.: Projection on a polyhedron that exploits sparsity. Manuscript, University of
Florida and Louisiana State University, Gainesville, FL 32611, USA and Baton Rouge, LA (June 2015)

14. Lan, G.: An optimal method for stochastic composite optimization. Math. Program. 133(1), 365–397
(2012)

15. Lan, G.: Bundle-level type methods uniformly optimal for smooth and non-smooth convex optimization.
Math. Program. 149(1), 145 (2015)

16. Lan, G.: The complexity of large-scale convex programming under a linear optimization oracle.
Manuscript, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL,
USA (June 2013). http://www.optimization-online.org

17. Law, A.M.: Simulation Modeling and Analysis. McGraw Hill, New York (2007)
18. Lemaréchal, C., Nemirovski, A.S., Nesterov, Y.E.: New variants of bundle methods. Math. Program. 69,

111–148 (1995)
19. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML, pp.

689–696 (2009)
20. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent in function space.

In: Proceedings of the NIPS, vol. 12, pp. 512–518 (1999)
21. Nemirovski, A.S., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley-

Interscience Series in Discrete Mathematics. Wiley, XV, New York (1983)
22. Nesterov, Y.E.: A method for unconstrained convex minimization problem with the rate of convergence

O(1/k2). Dokl. Acad. Nauk SSSR 269, 543–547 (1983)
23. Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston (2004)
24. Nesterov, Y.E.: Gradient methods for minimizing composite objective functions. Math. Program. Ser. B

140, 125–161 (2013)
25. Nesterov, Y.E.: Universal gradient methods for convex optimization problems. Math.Program. Ser. A

(2014). https://doi.org/10.1007/s10107-014-0790-0

123

http://www.optimization-online.org/
https://doi.org/10.1007/s10107-015-0871-8
https://doi.org/10.1007/s10107-014-0846-1
http://www.optimization-online.org
https://doi.org/10.1007/s10107-014-0790-0

Journal of Scientific Computing (2019) 79:1854–1881 1881

26. Nocedal, J.: Updating quasi-newton matrices with limited storage. Math. Comput. 35(151), 773–782
(1980)

27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
28. Devolder, O., Glineur, F., Nesterov, Y.E.: First-order methods of smooth convex optimization with inexact

oracle. CORE, Université catholique de Louvain, Louvain-la-Neuve, Belgium, Manuscript (December
2010)

29. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. University of
Washington, Seattle, Manuscript (May 2008)

30. Yashtini, M.: On the global convergence rate of the gradient descent method for functions with Hölder
continuous gradients. Optim. Lett. (2015). https://doi.org/10.1007/s11590-015-0936-x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Saeed Ghadimi1 · Guanghui Lan2 · Hongchao Zhang3

B Guanghui Lan
george.lan@isye.gatech.edu
http://pwp.gatech.edu/guanghui-lan/

Saeed Ghadimi
sghadimi@princeton.edu

Hongchao Zhang
hozhang@math.lsu.edu
https://www.math.lsu.edu/ hozhang

1 Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA

2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
USA

3 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

123

https://doi.org/10.1007/s11590-015-0936-x
http://orcid.org/0000-0002-2103-087X

	Generalized Uniformly Optimal Methods for Nonlinear Programming
	Abstract
	1 Introduction
	2 Unified Problem Parameter Free Accelerated Gradient Method
	3 Unified Bundle-Level Type Methods
	3.1 Unified Accelerated Prox-level Method
	3.2 Unified Fast Accelerated Prox-level Method

	4 Numerical Experiments
	5 Concluding Remarks
	References

