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Abstract
In Eikonal equations, rarefaction is a common phenomenon known to degrade the rate of
convergence of numerical methods. The “factoring” approach alleviates this difficulty by
deriving a PDE for a new (locally smooth) variable while capturing the rarefaction-related
singularity in a known (non-smooth) “factor”. Previously this technique was successfully
used to address rarefaction fans arising at point sources. In this paper we show how simi-
lar ideas can be used to factor the 2D rarefactions arising due to nonsmoothness of domain
boundaries or discontinuities in PDE coefficients. Locations and orientations of such rarefac-
tion fans are not known in advance and we construct a “just-in-time factoring” method that
identifies them dynamically. The resulting algorithm is a generalization of the Fast March-
ing Method originally introduced for the regular (unfactored) Eikonal equations. We show
that our approach restores the first-order convergence and illustrate it using a range of maze
navigation examples with non-permeable and “slowly permeable” obstacles.

Keywords Eikonal · Rarefaction fans · Factoring · Fast Marching · Robotic navigation

Mathematics Subject Classification 49L20 · 49L25 · 49N90 · 65N12 · 65N22

1 Introduction

The Eikonal equation arises in many application domains including the geometric optics,
optimal control theory, and robotic navigation. It is a first-order non-linear partial differential
equation of the form
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Fig. 1 A simple example with F = 1 and the exit set Q consisting of a single “point source” x0 =
(0.15, 0).(Left) level sets of u(x), the distance to x0 on the domain with an obstacle. Dashed lines show
the optimal/shortest paths, some of which follow a part of the obstacle boundary. The “shockline” (where
∇u is undefined) consists of all points starting from which the shortest path is not unique. The point source
and 3 out of 4 obstacle corners generate “rarefaction fans” of characteristics. (Right) The level curves of the
log-Frobenius-norm of Hessian, illustrating the blow up of the second derivatives of u due to rarefaction fans
(Color figure online)

{ |∇u(x)| F(x) = 1,
u(x) = 0, x ∈ Q.

(1)

In control-theoretic context, the function u(x) can be interpreted as theminimum time needed
to reach the exit set Q starting from x, with F specifying the speed of motion. The character-
istics of this PDE coincide with the gradient lines of u and yieldmin-time-optimal trajectories
to Q. This equation typically does not have a classical solution, making it necessary to select
a weak Lipschitz-continuous solution that is physically meaningful. The theory of viscosity
solutions [7] accomplishes this and guarantees the existence and uniqueness for a very broad
set of problems. Viscosity solutions exhibit both shocklines (where characteristics run into
each other) and rarefaction fans (where many characteristics emanate from the same point).
Typically, the former receive most of the attention in numerical treatment since they lead to
a discontinuity in ∇u. But in this paper we focus on the latter, which result in a blow up in
second derivatives of u on parts of the domain where ∇u remains continuous and bounded.
(See Fig. 1.)

Since the local truncation error of numerical discretizations is proportional to higher
derivatives, it is not surprising that rarefaction fans degrade the rate of convergence of standard
numerical methods. Special “factoring techniques” have been introduced to alleviate this
problem for rarefaction fans arising frompoint source boundary conditions [10,15–17,20,27].
The idea is to represent u as a product [10] or a sum [16] of two functions: one capturing the
right type of singularity at the point source and another with bounded derivatives except at
shocklines. The former is known based on F restricted to Q; the latter is a priori unknown
and recovered by solving a modified PDE by a version of one of the efficient methods (e.g.,
[21,29] or [32]) originally developed for an “un-factored” Eikonal equation (1). We review
this prior work in Sect. 2 and show that, despite its better rate of convergence, factoring
can also have detrimental effects on parts of the domain far from the point source. We also
consider a localized version of factoring, which often improves the accuracy and is more
suitable for problems with multiple point sources.
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However, point sources are not the only origin of rarefaction fans. They can also arise
due to non-smoothness of the boundary; e.g., at some of the “obstacle corners” in 2D maze
navigation problems (see Fig. 1). The degradation of accuracy leads to numerical artifacts
in computed trajectories passing near such corners. Unlike in the point source case, these
rarefaction fans are not radially symmetric; moreover, their locations and geometry have to
be determined dynamically.We handle this by developing a “just-in-time localized factoring”
method and verifying its rate of convergence numerically (Sect. 3). Even more complicated
fans can arise at corners of “slowly permeable obstacles” (i.e., problems with piecewise-
continuous speed function F). The extension of our dynamic factoring to this case is covered
in Sect. 4.

Throughout the paper, we present our approach using a Cartesian grid discretization of the
Eikonal equation with grid aligned obstacles (and discontinuities of F). However, the ideas
presented here have a broader applicability. Arbitrary polygonal obstacles can be treated in
exactly the same way if the discretization is posed on an obstacle-fitted triangulated mesh.
Dynamic factoring for more general Hamilton–Jacobi–Bellman PDEs would work very sim-
ilarly, though the factoring will need to account for the anisotropy in rarefaction fans. We
conclude by discussing these and other future extensions as well as the limitations of our
approach in Sect. 5.

2 Point-Sources and Factoring

We begin by examining the classical Eikonal Eq. (1) in 2D with a “single point-source”
boundary condition: Q = {x0} and u(x0) = 0. Throughout this paper, we will assume
that the controlled process is restricted to a closed set Ω ⊂ R2. I.e., u(x) is the minimal-
time from x ∈ Ω to Q ⊂ Ω without leaving Ω though possibly traveling along parts of
∂Ω; see the trajectories traveling along the obstacle boundary in Fig. 1a. This makes u anΩ-
constrained viscosity solution of (1) (see Chapter 4.5 in [2]), but for the purposes of numerical
implementation we can simply impose the boundary condition u = +∞ on R2\Ω .

A common approach for discretizing (1) on a uniform Cartesian grid is to use upwind
finite differences:

max
{
D−x
i, j u,−D+x

i, j u, 0
}2 + max

{
D−y
i, j u,−D+y

i, j u, 0
}2 = 1

F2
i, j

, (2)

using the standard finite difference notation

D−x
i, j u = ui, j − ui−1, j

h
, D+x

i, j u = ui+1, j − ui, j
h

,

D−y
i, j u = ui, j − ui, j−1

h
, D+y

i, j u = ui, j+1 − ui, j
h

.

(3)

The discretized systemofEq. (2) is coupled and non-linear.We postpone the discussion of fast
algorithms used to solve it until Sect. 2.1 and for now focus on the rate of convergence of the
numerical solution to the viscosity solution of PDE (1). Since this discretization is globally
first-order accurate, the local truncation error is proportional to the second derivatives of u,
which blow up as we approach x0. Because of this blow up, even if we assume that local
truncation errors accumulate linearly, the global error would decreases as O(h log 1

h ) instead
of the expected O(h).

123



Journal of Scientific Computing (2019) 79:1456–1476 1459

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) level sets of u(x)
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Fig. 2 (Left) level curves of the value function computed from the formula (4) with x0 = (0, 0), s0 =
2, v = (0.5, 0).(Right) the corresponding convergence plot (based on the L∞ error) for several discretization
approaches, with the thin black line of slope (−1) included to aid the visual comparison. For this example,
the convergence plot based on the L1 error is very similar and thus omitted (Color figure online)

To illustrate the convergence rate,wewill consider a simple examplewith a known analytic
solution [16] on a square domain1:

F(x) = 1

s0
+ v · (x − x0) �⇒ u(x) = 1

|v| acosh
(
1 + 1

2
s0|v|2 |x − x0|2

F(x)

)
. (4)

Figure 2 shows the solution and the convergence plots for the parameter values x0 =
(0, 0), s0 = 2, v = (0.5, 0). The thick black line in Fig. 2b corresponds to solving (2)
on Ω and clearly shows the sublinear convergence. (Throughout this paper, all logarithms of
errors and grid sizes are reported and plotted in base e.)

To alleviate this issue, one could simply “enlarge the exit set” by choosing some (h-
independent) constant radius r > 0, initializing u = 0 on the disk B = Br (x0) = {x ∈
Ω | |x − x0| ≤ r}, and solving (2) on the rest of the grid. This avoids the rarefaction fan
(since only one characteristic stems from each point on ∂B), but introduces a O(r) difference
compared to the solution of the original point-source-based problem.One can also use a better
approximation of u on B; e.g., using T (x) = |x−x0|

F(x0)
, we already reduce this additional error

to O(r2). The latter approach is based on assuming that F (rather than u) is constant on
B, in which case the characteristics are straight lines. Of course, one could also take a truly
Lagrangian approach, employing ray-tracing to compute a highly accurate value of u at all
gridpoints on B, but this becomes increasingly expensive as h → 0. Instead, we evaluate the
feasibility of an “approximate Lagrangian” initialization technique, where the characteristics
are still assumed to be straight on B, but u(x) is approximated more accurately by integrating
1/F on the line segment from x0 to x. In all the figures of this section, we slightly abuse the

1 This formula for u(x) is derived on the unbounded domain Ω∞ = {x ∈ R2 | F(x) > 0} but remains valid
on Ω = [0, 1] × [0, 1] as long as Ω∞-optimal trajectories from every x ∈ Ω to x0 stay entirely inside Ω,

which is the case for all examples considered in this section. The linearity of F(x) can be used to show that
all optimal paths are circular arcs, whose radii are monotone decreasing in |v|. (When v = 0, these radii are
infinite; i.e., all optimal paths are straight lines and u(x) = s0|x − x0|.)
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Fig. 3 (Left) level curves of the value function u(x) computed from the formula (4) with x0 = (0, 0), s0 =
0.5, v = (12, 0).(Center and right) the corresponding convergence plot for several discretization approaches
(based on the L∞ & L1 errors respectively) (Color figure online)

notation and call this approach Lagrangian, reporting the results for r = 0.1 in all the figures
of this section. Figures 3 and 4 show that, for general F , the error due to this “characteristics
are straight” assumption prevents the overall first order convergence on the entire grid.

A factored Eikonal equation was proposed in [10] as a method for dealing with point-
source rarefaction fans without introducing any special approximations on B and recovering
the first order of accuracy on the entire domain. The main idea is to split the original value
function u(x) into two functions: one of them (T , defined above) encodes the right type of
singularity at the point source, while the other (τ(x), our new unknown) will be smooth
near x0. In addition to point-sources, [10] also used factoring to treat “plane-wave sources”
(i.e., constant Dirichlet boundary conditions specified on a straight line in 2D). In the latter
case, there is no singularities in the solutions at the boundary (so, the numerics for the
original/unfactored version is still first-order accurate), but a factored version still yields
lower errors in many examples.

Theoriginal factoring in [10] used an ansatzu(x) = T (x)τ (x) to derive a new factoredPDE
for τ , which was then solved with the boundary condition τ(x0) = 1. In this paper we rely on
a slightly simpler additive splitting2 introduced in [16] : assuming that u(x) = T (x) + τ(x),

we find τ by solving

|∇T (x) + ∇τ(x)| F(x) = 1, (5)

with the boundary condition τ(x0) = 0. Similarly to (1) this can be discretized using upwind
finite differences and then solved on Ω (see Sect. 2.2). In all our convergence figures we
refer to this approach as the “global factoring” (shown by a solid blue line). In Figs. 2, 3
and 4 it is clear that global factoring has a clean linear convergence. Moreover, in Fig. 2
it exhibits smaller errors than either the original/“unfactored” discretization or even the
Lagrangian-initialized version regardless of the grid resolution. However, as examples in
Figs. 3 and 4 show, on relatively coarse grids it can be actually less accurate than the unfac-
tored discretization—particularly when the characteristics are far from straight lines. This
phenomenon has not been examined in prior literature, but it is hardly surprising: farther
from the point source, u and T can be quite different, and if the second derivatives of u are
smaller, this will result in larger local truncation errors when computing τ .

2 Throughout the paperwe refer to this approach as “additive factoring” to stay consistentwith the terminology
used in prior literature.
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Fig. 4 (Left) level curves of the value function u(x) for s0 = 0.5, v = (5, 20) and two point sources at
x0 = (0, 0) and x1 = (0.8, 0).(Center and right) the corresponding convergence plot for several discretization
approaches (based on the L∞ & L1 errors respectively) (Color figure online)

We further examine a “localized factoring” version of this idea. For small r , this could
be posed as a 2-stage process: first solve (5) on B and then switch to solving (1) on Ω\B.

However, we have found that another interpretation is more suitable, particularly when char-
acteristics are highly curved: solve (5) on the entire Ω but defining T (x) = 0 on Ω\B.

We note that several recent papers have already considered such hybrid/localized factoring
motivated by decreasing the computational cost (since ∇T = 0 on most of the domain)
[20] and by the need for additional properties of T when pursuing a higher-order accurate
discretization [17]. Here, however, we show that the localized factoring (shown by a blue
dashed lines on convergence plots) has some accuracy advantages even with the first-order
upwind discretization. In our first example (Fig. 2), u ≈ T remains true on the whole Ω and
characteristics are fairly close to straight lines; so, the global factoring is more accurate. But
in Fig. 3 this is no longer the case, and the localized factoring is clearly preferable.

Localized factoring is also often advantageous (and more natural) when dealing with
multiple point sources. Consider, for example, the speed function specified in (4) with s0 =
0.5, v = (5, 20) and two point sources: x0 = (0, 0) and x1 = (0.8, 0). (See Fig. 4.) If
Q = {x0} or Q = {x1}, the respective value functions u0 and u1 are specified by formula (4).
For the two point-sources case, Q = {x0, x1}, the value function u(x) = min (u0(x), u1(x))

is no longer smooth: ∇u is undefined at the points from which the optimal paths to x0 and x1
are equally good. Since the characteristics run into the shockline rather than originate from
it, this does not degrade the rate of convergence, but the rarefaction fans remain a challenge.
In global factoring, there is a number of choices to capture in T the singularities at both point
sources. We use

T0(x) = |x − x0|
F(x0)

, T1(x) = |x − x1|
F(x1)

, T (x) = min
(
T0(x), T1(x)

)
,

but the convergence results based on T = T0 + T1 are qualitatively similar (though the L1

error becomes significantly larger). For the localized factoring, we simply set T (x) = Ti (x)

on Br (xi ) and T (x) = 0 everywhere else. Figure 4 shows that both versions of factoring
exhibit linear convergence, but the localized factoring yields significantly smaller errors both
in L∞ and L1 norms.
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2.1 Fast Methods for an (Unfactored) Eikonal

Since an Eikonal equation arises in so many applications, there has been a number of fast
numerical methods developed for it in the last 20 years. Most of these methods mirror the
logic of classical label-setting and label-correcting algorithms for finding shortest paths on
graphs [4]. In this discrete setting, an equation for the min-time-to-exitUi starting from each
node xi is posed using the min-time-to-exit values (Uj ’s) at its neighboring nodes (x j ’s).
Dijkstra’s method [9] is perhaps the most famous of label-setting algorithms for graphs with
positive edge-weights. It is based on the idea of monotone causality: an optimal path from
xi starts with a transition to some neighboring node x j∗ and, since all edge weights are
positive, this implies Ui > Uj∗ . Thus, even if we don’t know x j∗ a priori, Ui can be still
computed based on the set of all smaller neighboring values. Dijkstra’s method exploits
this observation to dynamically uncover the correct node-ordering, decoupling the system of
equations for Ui ’s. The nodes are split into three sets: Accepted (with permanently fixed U
values), Considered (with tentatively computed U values) and Far (with U values assumed
to be +∞). At each stage of the algorithm, the smallest of Considered U values is declared
Accepted and the values at its immediate not-yet-Accepted neighbors are recomputed. On
a graph with M nodes and bounded node connectivity, this yields the overall complexity of
O(M logM) due to the use of a heap to sort the Considered values. An additional useful
feature of this approach is that theU values are fixed/accepted after a small number of updates
on an (incrementally growing) part of the graph. Many label-correcting algorithms aim to
mimic this property, but without using expensive data structures to sort any of the values.
Unlike in label-setting algorithms, they cannot provide an a priori upper bound on the number
of times each Ui might be updated. As a result, their worst-case complexity is O(M2), but
on many types of graphs their average-case behavior has been observed to be at least as good
as that of label-setting techniques [4].

For Eikonal PDEs discretized on Cartesian grids, the Dijkstra-like approach was first
introduced in Tsitsiklis’s Algorithm [29] and Sethian’s Fast Marching Method (FMM) [21].
The latter was further extended to simplicial mesh discretizations in Rn and onmanifolds [12,
24], to higher-order accurate numerical schemes [22,24], and to Hamilton–Jacobi–Bellman
equations, which can be viewed as anisotropic generalizations of the Eikonal [1,8,18,25,26].
The major difficulty in applying Dijkstra-like ideas in continuous setting is that, unlike in
problems on graphs, a value of u at a gridpoint xi, j will depend on several neighboring values
used to approximate ∇u(xi, j ). To obtain the same monotone causality, this u(xi, j ) has to be
always larger than all of such contributing u values adjacent to xi, j . This property is enjoyed
by only some discretiations of (1), including the first-order accurate upwind scheme (2): a
direct verification shows that ux and uy are never approximated using any neighbors larger
that ui, j .

Another popular class of efficient Eikonal solvers is Fast Sweeping Methods (FSM) [32],
which solve the system (2) by Gauss–Seidel iterations, but changing the order in which
the gridpoints are updated from iteration to iteration. When the direction of the current
sweep is aligned with the general direction of characteristics, many gridpoints will receive
correct values in a single “sweep”. If marching-type methods attempt to uncover the correct
gridpoint-ordering dynamically, in FSM the idea is to alternate through a number of geometri-
cally motivated orderings. (In 2D problems: from northeast, from northwest, from southwest,
and from southeast.) The resulting Eikonal solvers have O(M) complexity, but with a hid-
den constant factor, which depends on F and the grid orientation, and cannot be bound
a priori. These techniques have also been extended to anisotropic (and even non-convex)
Hamilton–Jacobi equations [11,28], as well as higher-order finite-difference (e.g., [31]) and
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discontinuous Galerkin (e.g., [30]) discretizations. Hybrid two-scale methods, combining
the best features of marching and sweeping, were more recently introduced in [5,6]. We
also refer to [5] for a comprehensive review of other fast solvers inspired by label-correcting
algorithms.

2.2 Modified Fast Marching for Factored Eikonal

We start by simplifying the original upwind discretization scheme (2) for the unfactored
Eikonal. Focusing on a gridpoint xi, j we define its smallest horizontal and vertical neigh-
boring values: uH = min(ui−1, j , ui+1, j ) and uV = min(ui, j−1, ui, j+1). If both of these
values are needed to compute ui, j , then (2) becomes equivalent to a quadratic equation
(ui, j −uH )2 + (ui, j −uV )2 = h2/F2

i, j . We are interested in its smallest real root satisfying
an upwinding condition ui, j ≥ max(uH , uV ). If there is no root satisfying it, then ui, j should
instead be computed from a one-sided-update ui, j = min(uH , uV ) + h/Fi, j , which corre-
sponds to the casewhere eithermax{D−x

i, j u,−D+x
i, j u, 0} ormax{D−y

i, j u,−D+y
i, j u, 0} evaluates

to zero. This procedure is monotone causal by construction and its equivalence to (2) was
demonstrated in [21], making a Dijkstra-like computational approach suitable.

Recalling the “additive factoring” ansatz u(x) = T (x) + τ(x), we now define the upwind
vertical and horizontal neighboring values for the new unknown τi, j but basing the compar-
ison on u rather than on τ itself and using the flags kH , kV ∈ {−1, 1} to identify the selected
neighbors. More specifically,{

τH = τi−1, j and kH = 1, if (Ti−1, j + τi−1, j ) < (Ti+1, j + τi+1, j );
τH = τi+1, j and kH = −1, otherwise;

with (τV , kV ) similarly defined based on the vertical neighbors. Since the partial derivatives
of T are known, the corresponding quadratic equation is

(
kH

∂Ti, j
∂x

+ τi, j − τH

h

)2

+
(
kV

∂Ti, j
∂ y

+ τi, j − τV

h

)2

= 1

F2
i, j

. (6)

We are interested in its smallest real root satisfying a similarly modified upwinding condition

Ti, j + τi, j ≥ max

(
min
k=±1

{
Ti+k, j + τi+k, j

}
, min
k=±1

{
Ti, j+k + τi, j+k

})
. (7)

If there is no such root, then τi, j should instead be computed from a one-sided-update as the
smaller of the two values corresponding to

kH

∂Ti, j
∂x

+ τi, j − τH

h
= 1

Fi, j
, and kV

∂Ti, j
∂ y

+ τi, j − τV

h
= 1

Fi, j
.

In other words,

τi, j = min

{
τH − hkH

∂Ti, j
∂x

, τV − hkV
∂Ti, j
∂ y

}
+ h

Fi, j
. (8)

The above is a full recipe for computing τi, j if all of the neighboring grid values are already
known. But since τ is a priori known only on Q, this yields a large coupled system of
discretized equations (oneper eachgridpoint inΩ\Q). This systemwasfirst treated iteratively
via Fast Sweeping [16], but themonotone causalitymakes aDijkstra-like approach applicable
as well. As in the original Fast Marching, the Considered gridpoints are sorted using a binary
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heap with a O(M logM) computational complexity; however, the sorting criterion is based
on u rather than on τ values. The resulting method is summarized in Algorithm 1. It is very
similar to a modified FMM recently introduced for the case of “multiplicative factoring” in
[27].

Algorithm 1: Modified Fast Marching Method
Input: source point x0, speed function F(x)

Initialize τ(x0) := 0 and τ(x) := +∞ for all gridpoints x 
= x0;
Initialize Considered := {x0} and Accepted := ∅;
while Considered 
= ∅ do

Find a Considered gridpoint x̂ whose (T + τ) value is the smallest;
Move x̂ to Accepted list;

for all not-yet-Accepted neighbors xi, j of x̂ do
Find τH , τV and solve the quadratic equation (6) for τnewi, j ;

if τnewi, j does not satisfy the upwinding condition (7) then
Use a one-sided update formula (8) to (re-)compute τnewi, j ;

end
if τnewi, j < τi, j then

Set τi, j := τnewi, j ;

end
end

end

3 Rarefaction Fans at Obstacle Corners

Even though all prior work on factored Eikonal equation was focused on isolated point
sources, there are other well-known situations where rarefaction fans can arise. As a simple
example in Fig. 1 shows, they can easily develop at the corners of obstacles (which are viewed
as a part of R2\Ω) or, more generally at any points on ∂Ω where the boundary is non-smooth
and the interior angle is larger than π. These non-point-source rarefaction fans result in a
similar degradation of convergence rate for standard numerical methods and also lead to
unpleasant artifacts in optimal trajectory approximations obtained by following (−∇u) to
the target set Q. Figure 5 shows several such trajectories in a “maze navigation” problem.
All of these trajectories should be piecewise-linear, with their directions only changing at
obstacle corners. A zoomed version in Fig. 5b clearly shows that they often approach an
obstacle too early, following its boundary to the corner and yielding longer paths. Similar
artifacts are common in determining parts of the domain visible by an observer [23] and
in multiobjective path-planning [13,19]. A natural question (and the focus of this paper) is
whether factoring techniques canbeused to alleviate this problem. InSect. 3.1wedemonstrate
experimentally that the “global factoring” is not suitable for this task. On the other hand, the
localized factoring works, but adopting it to corner-induced rarefaction fans presents two
new challenges. First of all, not all obstacle corners produce this effect; e.g., see the lower
left corner in Fig. 1a.
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Fig. 5 A maze navigation example: non-permiable obstacles with F = 1 on the rest of Ω.(Left) the level
sets of the value function u computed by the Fast Marching Method on a 240 × 240 grid and approximate
optimal trajectories to the origin from 12 starting locations. (Right) a zoomed version to highlight the incorrect
direction of “optimal” trajectories in the rarefaction fans at obstacle corners (Color figure online)
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Fig. 6 A simple example with one rarefying corner. (Left) level curves of the domain-restricted distance to
a point source. (Center) a dynamic domain splitting based on the rarefaction fan. (Right) the level sets of a
“cone + plane” function T capturing the correct rarefaction behavior (Color figure online)

Definition 3.1 An obstacle corner x̃ is “regular” if the characteristic leading to it from Q
points into that obstacle. (I.e., if an optimal trajectory starts from x̃ in the direction a, then
(−a) should point into the obstacle.) An obstacle corner is “rarefying” if it is not regular.

So, even though the rarefying corners are not known in advance, we can identify them
dynamically, checking the above condition when the corresponding corner x̃ becomes
Accepted in FastMarchingMethod and approximating the optimal a = −∇u(x̃)

|∇u(x̃)| using x̃’s pre-
viously Accepted upwind neighbors. The resulting “just-in-time localized factoring”method
is detailed inAlgorithm2. Itmaintains a list of identified rarefaction fans, with each entry con-
taining the center of the fan (either a point source or a rarefying corner) and the corresponding
localized function T . The algorithm is formulated in terms of u, with the corresponding τ

values computed on the fly once the appropriate localized T is selected.
The second difficulty is to define a suitable T that will be used for factoring when updating

all not-yet-Accepted gridpoints in Br (x̃). Intuitively, it might seem that a cone-like T = |x−x̃|
F(x̃)

is the right choice, similarly to our handling of point sources.However, aswe show inSect. 3.1,
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Algorithm 2: Just-in-time Localized Factoring
Input: source point x0, speed function F(x), fixed radius r

Initialize u(x0) := 0 and u(x) := +∞ for all gridpoints x 
= x0;
Initialize Considered := {x0} and Accepted := ∅;
Initialize FanList := {(

x0, T x0 = |x − x0|/F(x0)
)}
;

while Considered 
= ∅ do
Find a Considered gridpoint x̂ whose u value is the smallest;
Move x̂ to Accepted list;
if x̂ is a rarefying corner then

Build a suitable T x̂ using formula (9);

Add an entry
(

x̂, T x̂
)
to FanList;

end

for all not-yet-Accepted neighbors xi, j of x̂ do
Check if xi, j is within distance r from any x̃ on FanList

and identify the appropriate T = T x̃ (use T = 0 by default);
Given the current u values at xi, j & its neighbors,
define their τ values as τ = (u − T ) based on T selected for xi, j ;

Find τH , τV and solve the quadratic equation (6) for τnewi, j ;

if τnewi, j does not satisfy the upwinding condition (7) then
Use a one-sided update formula (8) to (re-)compute τnewi, j ;

end
unewi, j := τnewi, j + Ti, j ;

if unew < ui, j then
Set ui, j := unewi, j ;

end
end

end

this choice does not yield the desired rate of convergence. This is due to the fact that such
corner-born rarefaction fans are not radially symmetric. They only exist for u > u(x̃) in
the sector between a part of obstacle boundary and the characteristic passing through x̃; see
Fig. 1 and an even simpler example in Fig. 6. Note that, outside of that rarefaction sector, the
second derivatives of u are bounded. But using the ansatz u = T +τ with the above cone-like
T would introduce unbounded second derivatives in τ on non-rarefying parts of Br (x̃), thus
degrading the rate of convergence. Therefore, we need to construct T which is cone-like
only in the correct sector and remains smooth on the entire not-yet-Accepted portion of the
domain. This yields a “cone+plane” version of T shown in Fig. 6c. Assuming that c is a unit
vector bisecting the obstacle corner at x̃, we can now split the plane into two sets

S0 = {x ∈ Ω | (x − x̃) is between c and (−a)} ; S1 = Ω\S0.

Analytically, we can define T as follows

T (x) =

⎧⎪⎨
⎪⎩

|x − x̃|
F(x̃)

, x ∈ S0

−a · (x − x̃)

F(x̃)
, x ∈ S1.

(9)
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The resulting T is not continuous along c, but this will not matter since the discontinuity is
hidden within the obstacle. The gradient of T is also continuous wherever T is, though the
second derivatives are bounded but discontinuous along (−a). Our numerical results show
that this T fully recovers the first-order convergence of the numerical solution.

Remark 1 The bisector of obstacle corner is not the only choice for c. Any directions falling
inside the obstacle will work just as well since the idea is to “hide” the discontinuity line
of T . For rectangular obstacles, it might feel more natural to choose c orthogonal to the
characteristic direction a. However, we prefer the bisector simply because it is a safe choice
for arbitrary polygonal obstacles, which can be handled by a version of Algorithm 2 on
(obstacle-fitted) triangulated meshes.

Another possibility is to hide the T ’s discontinuity in the part ofΩ already Accepted (e.g.,
along a) by the time this rarefying corner is identified. This is the approach we use in Sect. 4,
when dealing with “slowly permeable obstacles”.

Remark 2 Our approach uses local factoring with a continuous T on the entire Br (x̃) ∩ Ω .
A variant of the same idea is to employ local factoring with a standard cone-like T = |x−x̃|

F(x̃)

but only when updating gridpoints from a subset Br (x̃) ∩ Ω ∩ S0. (The difference is that one
would use T = 0 when updating gridpoints in Br (x̃) ∩ Ω ∩ S1.) While we do not formally
include this variant in our convergence studies in Sect. 3.1, its performance appears to be
quite similar. E.g., for the above example from Fig. 6, the alternative version also shows
the first-order convergence, but with L∞ errors ≈ 10% larger than those resulting from the
“cone+plane” formula (9).

We close this section by discussing a subtle property implicitly used in our approach. The
above construction relies on having a sufficiently accurate representation of the character-
istic direction a at each rarefying corner. This might seem unreasonable: if our numerical
approximation of u is only O(h) accurate [as is the case in formulas (2) and (6–8)], then one
could expect the resulting finite difference approximation of∇u to be completely inaccurate.
The same argument would imply that optimal trajectories also cannot be reliably approxi-
mated based on any first-order accurate representation of the value function. However, there
is ample experimental evidence that such trajectory approximation works in practice. See, for
example, the optimal trajectories in Figs. 5, 8, 9, 13 and in many optimal control and seismic
imaging publications with and without factoring. The fact that this gradient approximation
is in fact O(h) accurate is also confirmed by a numerical study in [3] and is instrumental for
constructing other (compact stencil, second-order) schemes for the Eikonal [3,24].

A plausible explanation for this “superconvergence” phenomenon is that the error in u-
approximation is sufficiently “smooth”, resulting in a convergent ∇u–approximation despite
the use of divided differences. To the best of our knowledge, this property has not been proven
for general Eikonal PDEs, though it has been rigorously demonstrated for the distance-to-
a-point computations and for constant coefficient linear advection equations [14, Appendix
B]. In our current context, we use the same idea to conjecture that the a-dependent approxi-
mation of the localized T is sufficiently accurate to recover the full first-order accuracy in u
computations with dynamic factoring. This conjecture appears to be fully confirmed by the
convergence rates observed in our numerical experiments throughout this paper.

3.1 Numerical Examples

As a first numerical test, we consider a simple example from Fig. 6a: a domain-constrained
distance u to the origin on Ω = [0, 1] × [0, 1]\Ωob, with a single rectangular obstacle
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Fig. 7 Convergence of several methods for a simple obstacle case of Fig. 6a (Color figure online)

Ωob = (0, 0.2)× (0.2, 1). Since F = 1, all optimal paths are piecewise-linear. According to
Definition 3.1, we find that the corner at x̃ = (0.2, 0.2) is rarefying. As a result, the problem
contains two rarefaction fans: one at this corner and the other at the point source x0 = (0, 0).
We test the accuracy of several methods:

1. Original Original (un-factored) Eikonal solved on the entire Ω with the original Fast
Marching Method.

2. Global cone Global factoring using T (x) = |x − x0| /F(x0) on the entire Ω with Algo-
rithm 1.

3. Global 2 cones Global factoring using T (x) = |x − x0| /F(x0) + |x − x̃| /F(x̃) on the
entire Ω with Algorithm 1.

4. Switching cones Global factoring using T (x) = |x − x0| /F(x0) until x̃ is accepted and
then switch to global factoring using T (x) = |x − x̃| /F(x̃) on the rest of Ω.

5. Localized cone only Just-in-time localized factoring Algorithm 2 with T (x) =
|x − x0| /F(x0) on Br (x0) and another cone-like T (x) = |x − x̃| /F(x̃) on Br (x̃).

6. Localized cone+plane Just-in-time localized factoring Algorithm 2 with T (x) =
|x − x0| /F(x0) on Br (x0) and a dynamically defined “cone+plane” T (x) specified by
formula (9) on Br (x̃).

The first four of these are included to show that the corner-induced rarefaction fans do indeed
degrade the rate of convergence and the issue cannot be addressed by global factoring. Accu-
racy of all methods is tested using a range of gridsizes (h = 1

502
−k , where k = 0, . . . , 5). The

localized factoring is based on r = 0.18. As Fig. 7b clearly shows, only the last method actu-
ally exhibits the first-order of convergence. Even though the usual global factoring (method
2) starts out with smaller errors on coarser meshes, it becomes worse than our preferred
approach (method 6) for smaller values of h. The fact that method 5 has a similar perfor-
mance degradation proves the importance of choosing the correct localized factoring function
T .

Sincewe do not rely on knowing ahead of timewhich corners are rarefying, the just-in-time
localized factoring algorithm is excellent for “maze-navigation problems” with numerous
obstacles and possibly inhomogeneous speed function F . Before running the algorithm, we
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(a) maze: original
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(b) maze: localized factoring

Fig. 8 Navigating a maze with F = 1. Level sets of u and representative optimal trajectories computed by the
original FMM (left) and by Algorithm 2 (right). The latter avoids obvious numerical artifacts near rarefying
corners (Color figure online)
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(b) maze: localized factoring

Fig. 9 Navigating a maze with F(x, y) = 1 + 0.3 sin (2πx) sin (2π y).Level sets of u and representative
optimal trajectories computed by the original FMM (left) and by Algorithm 2 (right). The latter avoids obvious
numerical artifacts near rarefying corners (Color figure online)

create a binary array to identify all gridpoints contained inside obstacles. This array is then
used to identify obstacle corners in Algorithm 2, and whenever a corner is found to be
rarefying by Definition 3.1, a factoring procedure is locally applied with an appropriately
chosen “additive factor” T (x). Below we show two examples based on a “maze” from Fig. 5.
In Fig. 8 we explore the version with F = 1. In Fig. 9 we use an inhomogeneous speed
F(x, y) = 1+ 0.3 sin (2πx) sin (2π y). In both cases, the white lines are used to indicate the
(local) boundaries of corner-induced rarefaction fans. Twelve sample trajectories are shown
to demonstrate that the trajectory distortions near the corners are avoided by just-in-time
factoring. The convergence is tested using the gridsizes h = 1

302
−k , where k = 0, . . . , 4,

and the “ground truth” is computed on a much finer grid with h = 1/4800. Figure 10 shows
that, unlike the Fast Marching Method for the original Eikonal, our approach is globally
first-order accurate in both examples.
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Fig. 10 L∞ error for maze navigation examples (Color figure online)

4 Discontinuous Speed Function

Rarefaction fans can also arise due to discontinuities in F . Herewe consider a simple subclass
of such problems: a generalization of maze navigation examples from the previous section
to account for “slowly permeable obstacles”. We will assume that obstacles are described by
an open set Ωob ⊂ (Ω\Q) and the speed F is lower inside them. In the simplest setting,
F is piecewise constant with a discontinuity on ∂Ωob and 0 < Fob < Ff ree. We will use
Υ = Ff ree/Fob to measure the severity of obstacle slowdown.

The following properties are relatively easy to prove for this simple type of discontinuous
F in 2D problems:

1. Rarefaction fans canonly arise at point sources or at rarefying corners of slowlypermeable
obstacles. (E.g., there are no fans arising on non-corner parts of obstacle boundaries.)

2. When a rarefaction fan arises at an obstacle corner x̃, it does not propagate into that
obstacle.

3. Such rarefaction fans are always confined to a sector between the characteristic direction
(−a) and another vector (−b) found from Snell’s law.

4. Suppose a makes an angle α ∈ (0, π/2) with a normal to one side of a rectangular
obstacle at x̃ and (−b) makes an angle β ∈ (0, π/2] with a normal to the other side of
that obstacle; see Fig. 11. Then these angles must satisfy

sin β = min
(√

Υ 2 − sin2 α, 1
)

. (10)

and the rarefaction fan takes place in a sector of angle δ = (α + β − π
2 ).

For the sake of brevity, we sketch the proof of the last of these only.

Proof We can reinterpret the characteristics as light rays traveling from a point source and
refracted at the boundary of slowly permeable obstacles. We then use the Snell’s Law to
determine their changing directions.
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(a) (b)

Fig. 11 A rarefaction fan at the corner of a slowly permeable obstacle. (Left) α is the incidence angle of a ray
from the point source to the rarefying corner x̃ and β is the “refracted” angle from the normal on the other
side of the obstacle. The rarefaction fan appears in a sector corresponding to the angle δ between (−b) shown
in red and the yellow dash-dotted line corresponding to (−a). (Right) a ray refraction happening at a point z
close to x̃. As z → x̃, θ1 and θ3 will tend to α and β respectively, with the purple segment disappearing, and
yielding the (−a,−b) path through x̃ in the limit (Color figure online)

Consider a point z close to the corner x̃, whose characteristic has an incidence angle θ1
and refraction angle θ2; see Fig. 11b. The incidence angle of the second refraction is π

2 − θ2
and the second refraction angle is θ3. If θ3 < π

2 , by Snell’s Law these three angles must
satisfy

sin θ1

Ff ree
= sin θ2

Fob
,

cos θ2

Fob
= sin θ3

Ff ree
. (11)

Eliminating θ2, we obtain

sin θ3 =
√(

Ff ree

Fob

)2

− sin2 θ1 =
√

Υ 2 − sin2 θ1

Wenote that this equality onlymakes sense if
√

Υ 2 − sin2 θ1 ≤ 1.Otherwise,wewill observe
the “total internal reflection” with θ3 = π

2 and Snell’s Law not holding for the θ2 − θ3 transi-

tion. So, the more accurate version of this relationship is sin θ3 = min
(√

Υ 2 − sin2 θ1, 1
)

.

As z → x̃, we have θ1 → α, θ3 → β, and we recover (10) in the limit. ��
Remark 3 It is easy to provide a sufficient condition for the rarefaction fan filling the whole
region between (−a) and the obstacle boundary (exactly as we saw in the non-permeable
case). Whenever Υ ≥ √

2, we have sin β = 1 and hence β = π
2 ; so, optimal trajectories

from all starting positions in Ω\Ωob reach the exit set Q without passing through Ωob. On
the other hand, in the continuous case (Υ = 1), formula (10) implies that β = π

2 − α, δ = 0
and no rarefaction fan is present.

Using a and b defined at a rarefying corner x̃ in the above properties, it is natural to split
Br (x̃) into three regions:

S0 = {x ∈ Ω | (x − x̃) is between (−b) and (−a)} ;
S1 = {x ∈ Ω | (x − x̃) is between (−b) and a} ; S2 = Ω\(S0 ∪ S1).
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Fig. 12 A simple example with one “permeable obstacle”. (Left) level curves of the “partially refracted”
distance to a point source. (Center) a dynamic domain splitting based on the rarefaction fan. (Right) the level
sets of a “cone + 2 planes” function T capturing the correct rarefaction behavior. The function has a small
discontinuous jump along the ray parallel to a through x̃ (Color figure online)

We can now build a suitable (localized) factoring function T as follows:

T (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|x − x̃|
F(x̃)

, x ∈ S0

−b · (x − x̃)

F(x̃)
, x ∈ S1

−a · (x − x̃)

F(x̃)
, x ∈ S2.

(12)

Based on the shape of the graph, we refer to this function as a “cone+2 planes”; see Fig. 12c.
This formulation makes T discontinuous along a ray parallel to a = −∇u(x̃)/|∇u(x̃)|, but
for a sufficiently small r all gridpoints close to this ray in Br (x̃) will be already Accepted by
the time we start this factoring. Both T and ∇T are continuous along (−a) and (−b).

4.1 Numerical Examples

Returning to the example in Fig. 12, we choose Fob = 2√
5

≈ 0.894 inside the obstacle

Ωob = (0, 0.2) × (0.2, 1) and Ff ree = 1 on Ω\Ωob. Based on the properties discussed
above, this will result in a rarefaction fan spreading in a sector of angle δ = π

12 between the
two white dashed lines in Fig. 13a. We test the convergence of several methods described in
Sect. 3.1 and report the results in Fig. 13b. The numerical experiments are conducted using
gridsizes h = 1

502
−k, where k = 0, . . . , 4 and the “ground truth” is computed on a much

finer grid with h = 1/4000. Unsurprisingly, the “original” (unfactored) method results in
the largest errors and only the “localized cone + 2 planes” method exhibits the first-order
convergence.

Our final example in Fig. 14 has multiple slowly permeable obstacles with each having
a different Fob (indicated in Fig. 14a) and Ff ree = 1 in the complement. At each corner,
we use equation (10) to find (−b) and use two white line segments to indicate the rarefying
region. The “ground truth” is computed using h = 1/6400 and the convergence is tested
using gridsizes h = 1

402
−k, k = 0, . . . , 4. Figure 14b demonstrates that our method reduces

the errors and recovers the first-order convergence.
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Fig. 13 Optimal trajectories and convergence for a “single permeable obstacle” example introduced in Fig. 12.
(Left) The level sets of u, with purple dashed lines showing the obstacle boundaries and white dashed lines
showing the rarefaction fan boundaries. Eight representative optimal trajectories shown in black: (1) outside
any region influenced by the obstacle, taking a straight line to the point source; (2, 3) starting within the
rarefaction fan, coinciding after reaching the rarefying corner; (4–6) experiencing a double refraction; (7)
starting inside the obstacle and experiencing the “total internal reflection” described in the proof, with two
different segments inside the obstacle; (8) starting inside the obstacle and experiencing a single refraction.
[Note the “light rays” (5–8) enter the obstaclewith small incidence angles, resulting in barely changed refracted
angles, so the first refraction is difficult to identify visually.] (Color figure online)
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Fig. 14 A maze with several slowly permeable obstacles. (Left) the level sets of u with dashed lines showing
the obstacle boundaries and white line segments showing the rarefaction fan boundaries. The speed Fob is
shown inside each obstacle (Color figure online)
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5 Conclusions

Wehave introduced a new just-in-time factoring algorithm for Eikonal equations to reduce the
numerical errors due to rarefaction fans. Prior (global and localized) factoring algorithmswere
meant to deal with rarefactions arising at point sources and we have carefully compared their
accuracy in that setting. However, ourmain focus has been on rarefactions arising in 2Ddue to
nonsmothness of ∂Ω (e.g., corners of non-permeable obstacles) or discontinuities in the speed
function (e.g., corners of “slowly-permeable” obstacles). The locations and the geometry of
such rarefaction fans are a priori unknown. Our algorithm uncovers them dynamically and
adoptively applies the localized factoring. This dynamic aspectmakes our approach natural in
the Fast Marching framework. (With Fast Sweeping, one could in principle solve the original
Eikonal on the entire domain, then identify all rarefaction fans in post-processing and re-solve
the correctly factored equation on Ω.) Numerical tests confirm that our method restores the
full linear convergence and prevents numerical artifacts in approximating optimal trajectories
once the value function is already computed.While we have only implemented and tested the
“additive” dynamic factoring, we expect that in the “multiplicative” case the results would
be qualitatively similar. All presented examples were in the context of time-optimal path
planning, but other optimization criteria (e.g., a cumulative exposure to an enemy observer)
would also lead to a similarly factored Eikonal equation as long as the running cost remains
isotropic. Even though our focus so far has been on applications in robotic navigation and
computational geometry, we hope that the same general approach might also be useful in
seismic imaging problems, which motivated much of the prior work on Eikonal factoring.

Several straightforward generalizations will make our method more useful in practice.

1. We can easily treat general polygonal obstacles by adding dynamic factoring to prior Fast
Marching techniques on (obstacle-fitted) triangulated meshes [12,24]. The definition of
our “additive factor” T will stay exactly the same; see also Remark 1 in Sect. 3.

2. The examples presented in Sect. 4 are based on rectangular “slowly permeable obstacles”
with a piecewise constant speed function. However, the same approach is also applicable
for the general discontinuous speed functions as long as the discontinuity lines are polyg-
onal and aligned with the discretization mesh. The rarefaction fans can be determined
based on a local information only (i.e., the directional limits of the speed function at a
rarefying corner of the discontinuity line), and the definition of T in dynamic factoring
will remain the same even when F is not piecewise constant.

3. If the speed ofmotion is anisotropic (i.e., dependent on the direction ofmotion rather than
just the current location), the value function satisfies a more general Hamilton–Jacobi–
Bellman PDE. Point-source-based factoring for the latter has already been developed
(e.g., by Fast Sweeping in [16]). Marching-type techniques for anisotropic problems
(e.g., [26] or [18]) can be similarly modified to handle the corner-induced rarefactions.

4. Another easy extension is to treat rarefaction fans due to more general boundary con-
ditions (e.g., fast-varying u = g specified on ∂Ω can result in rarefactions even if the
boundary is smooth).

It will bemore difficult tomove to factoring suitable for higher-order accurate discretizations.
For point-source-induced fans, this has been addressed in [15] and [17]. Similar ideas might
work in our context, but higher derivatives will need to be estimated at rarefying corners and
one would need to construct a smoother T than the version used in this paper.

Finally, the obvious limitation of our current approach is that Ω ⊂ R2. We expect that
Eikonal problems in higher dimension will be much harder to factor dynamically. Even with
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F = 1 and simple non-permeable box-obstacles in 3D, one would already need to deal with
rarefying edges rather than corners.

Acknowledgements The authors are grateful to anonymous reviewers for their suggestions on improving this
paper.
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