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Abstract
In this paper, we develop and analyze a series of conservative and dissipative local discontin-
uous Galerkin (LDG) methods for the μ-Camassa–Holm (μCH) and μ-Degasperis–Procesi
(μDP) equations. The conservative schemes for both two equations can preserve discrete ver-
sions of their own first two Hamiltonian invariants, while the dissipative ones guarantee the
corresponding stability. The error estimates of both LDG schemes for the μCH equation are
given. Comparing with the error estimates for the Camassa–Holm equation, some important
tools are used to handle the unexpected terms caused by its particular Hamiltonian invariants.
Moreover, a priori error estimates of two LDG schemes for theμDP equation are also proven
in detail. Numerical experiments for both equations in different circumstances are provided
to illustrate the accuracy and capability of these schemes and give some comparisons about
their performance on simulations.

Keywords μ-Camassa–Holm equation · μ-Degasperis–Procesi equation · Local
discontinuous Galerkin methods · Hamiltonian invariants · Error estimates

1 Introduction

We introduce and study the local discontinuous Galerkin (LDG) methods to approximate the
μ-Camassa–Holm (μCH) equation

μ(u)t − uxxt + 2μ(u)ux = 2uxuxx + uuxxx , (1.1)

Y. Xu: Research supported by NSFC Grant Nos. 11722112, 91630207. Y. Xia: Research supported by NSFC
Grant Nos. 11471306, 11871449, and a Grant from the Science and Technology on Reliability and
Environmental Engineering Laboratory (No. 6142A0502020817).

B Yinhua Xia
yhxia@ustc.edu.cn

Chao Zhang
zc56@mail.ustc.edu.cn

Yan Xu
yxu@ustc.edu.cn

1 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026,
Anhui, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0891-7&domain=pdf
http://orcid.org/0000-0001-8120-3560


Journal of Scientific Computing (2019) 79:1294–1334 1295

and the μ-Degasperis–Procesi (μDP) equation

μ(u)t − uxxt + 3μ(u)ux = 3uxuxx + uuxxx . (1.2)

In fact, the μCH and μDP equations are the cases λ = 2 and λ = 3, respectively, of the
following family of equations

μ(u)t − uxxt + λμ(u)ux = λuxuxx + uuxxx , λ ∈ Z, (1.3)

which is a corresponding μ-version of the family of equations defined as follows

ut − uxxt + (λ + 1)uux = λuxuxx + uuxxx , λ ∈ Z, (1.4)

that consists of the well knownCamassa–Holm (CH) andDegasperis–Procesi (DP) equations
with respective choices λ = 2 and λ = 3.

The μCH equation (1.1) originally derived and studied in [10] attracts a lot of attention.
The variable u(x, t) is a time-dependent function on the unit circle S1 = R/Z and μ(u) =∫
S1 udx denotes its mean. In [10], the authors generalize that the μCH equation can be
regarded as a natural generalization of the rotator equation in some sense and can also describe
the geodesic flow endowed with the H1

μ-inner product (·, ·)μ and associated H1
μ-norm ‖ · ‖μ

as defined in [4]

(u, v)μ := μ(u)μ(v) +
∫

S1
uxvxdx, (1.5)

‖u‖μ := √
(u, u)μ =

√

μ(u)2 +
∫

S1
u2xdx . (1.6)

The closest relative of the μCH equation should be the Camassa–Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx , (1.7)

which is a completely integrable systemwith the bi-Hamiltonian structure and can be viewed
as a shallow water approximation. In [20], Xu and Shu developed a high-order accuracy and
stable LDG method to solve the Camassa–Holm equation (1.7). The L2 stability of their
LDG method to CH equation is given, and a detailed error estimate for the scheme is also
proven. Some efficient numerical experiments have validated their scheme and illustrated that
the LDG methods have a good potential in solving these kinds of nonlinear equations. Our
numerical schemes and main framework are inspired greatly by their contributions. Besides,
another invariant preserving DGmethod for CH equation presented in [12] also give us some
useful hints in designing conservative schemes for the μCH equation.

Based on the study from [4,10,11], we know that the μCH equation is also a completely
integrable system with the bi-Hamiltonian structure and hence it has an infinite number of
conservation laws. The first two invariants of the μCH equation described by

E0(u) =
∫

S1
udx, E1(u) = μ(u)2 +

∫

S1
u2xdx, (1.8)

illustrate that, on the unit circle S1, the mean of any solution u and the H1
μ-norm of u defined

in (1.6) are both conservative in the time evolution. These properties enlighten us to design
a conservative numerical scheme preserving the discrete counterpart of these conservation
laws. A conservative scheme, together with a dissipative one, for the μCH equation are
designed and analyzed in the present paper. Owing to the term 2μ(u)ux in theμCH equation
(1.1), which is in fact a linearization of the analogue term 3uux in CH equation (1.7), the
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subtle difference between the conservative and dissipative LDG schemes only exists in the
choice of numerical flux for this term. For high order schemes, we will see that there is no
qualitative distinction between these two schemes in numerical experiments. Owing to the
really analogous structures and attributes of theμCH equation and CH equation, we will give
the error estimates of the semi-discrete LDG schemes for theμCH equation by following the
ideas and procedures of error estimates in [20] and applying some important tools to handle
the unexpected terms, such as the Poincaré-Friedrichs inequality for discontinuous piecewise
polynomials and the relationship between the auxiliary variables of the LDG methods.

As to the μDP equation (1.2), the notations u(x, t) and μ(u) have the same meanings
as in the μCH equation (1.1). Formally, the μDP equation can be described as an evolution
equation on the space of tensor densities over the Lie algebra of smooth vector fields on
the circle. The μDP equation is an extensive study of the well-known Degasperis–Procesi
equation

ut − uxxt + 4uux = 3uxuxx + uuxxx , (1.9)

which has a similar form to the CH equation. Otherwise the DP equation truly possesses
specific features, and one of them is that it admits not only peaked solutions but also shock
waves. Xu and Shu in [24] first proposed two provable stable LDG schemes to simulate
this DP equation. In their work, the L2 stability for general solutions and total variation
stability for piecewise constant case are both given. Motivated by the stability analysis in
[24], high order methods such as the Fourier spectral methods [16] and weighted essentially
non-oscillatory (WENO) schemes [17] for the DP equation have also been developed. The
idea of constructing the L2 stable scheme for the DP equation is also an important guideline
to design the numerical method for the μDP equation.

By the work for the μDP equation in [11], we know the facts: analogous to the μCH
equation, it is also a completely integrable system with a bi-Hamiltonian form and has an
infinite number of conservation laws. Here we also list the first two conserved invariants

H0(u) =
∫

S1
udx, H1(u) =

∫

S1
u2dx . (1.10)

This indicates that the mean and L2-norm of numerical solutions to the μDP equation keep
conserved in the time evolution, which motivates us to design L2 stable LDG schemes for
the μDP equation. For this purpose, we choose another equivalent form of the μDP equation
(1.2)

ut + uux + 3μ(u)(A−1
μ u)x = 0, (1.11)

where Aμ is an invertible linear operator defined as Aμ(u) = μ(u)− uxx . Equation (1.11) is
a consequence by applying A−1

μ to both sides of (1.2), and the detailed derivation is given in
“AppendixA.1”.Wewill design and analyze twodifferent schemes for theμDPequation.One
scheme is conservative, which preserves themean and L2 energy of solutions to this nonlinear
equation; another one is dissipative that still preserves H0(u) and just keeps the L2 stability
of numerical solutions. There is a relatively large difference between these two schemes due
to the choices of numerical fluxes. The global L2 projection, to deal with the central fluxes
and thus requiring special assumptions over the parity of the degree of polynomial and the
number of cells of the mesh, is used in the error estimates for such conservative scheme.
Meanwhile the local L2 projection is enough for the dissipative scheme which has no extra
restrict on the approximation spaces and meshes. To the best of our knowledge, there is no
study on the error estimates for the DG method to the DP equation because of the obstacles
caused by the nonlinear term 4uux in (1.9). However, the term 3μ(u)ux of theμDP equation,
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which is a linear term in some conservative sense, make us avoid this difficulty appeared in
the DP equation. In this paper, we present two a priori error estimates for both conservative
and dissipative schemes to the μDP equation and finally obtain two different results.

The LDGmethod discussed in present paper is an extension of the discontinuous Galerkin
(DG) method to solve PDEs containing higher than first order spatial derivatives, using dis-
continuous piecewise polynomials as numerical solutions and test functions in the spacial
variables. The LDG method was firstly constructed by Cockburn and Shu [7] in solving
nonlinear convection-diffusion equations, which was inspired by the efficient numerical
experiments of Bassi and Rebay [1] for simulating the compressible Navier-Stokes equa-
tions. In the procedure of the LDG method, higher order derivatives are rewritten into a first
order system and applied with DG method subsequently. The cardinal technique in the LDG
method is the design of the so-called numerical fluxes. The literatures on designing and ana-
lyzing the LDG schemes for different kinds of equations are quite plenty, and we suggest
the reader consulting [7,18,20–23,25] and the references therein. These contributions about
the LDG method could supply rich and efficient guidance for us when encountering new
equations or similar problems.

The extremely local, element baseddiscretization in theDGmethod is effectively favorable
for parallel computing and retaining high-precision on unstructuredmeshes. Particularly, DG
methods are well suited for hp-adaptation, which consists of local mesh refinement and the
adjustment of the polynomial order in individual elements. The LDG schemes for the μCH
(1.1) and μDP (1.11) equations in present paper keep all these good properties.

Our paper is organized as follows: In Sect. 2, notations and other preliminary materials,
such as the function spaces are firstly introduced. Section 3 is devoted to the study of the LDG
schemes for the μCH equation. In Sects. 3.2 and 3.3 , the conservation of E0 and E1 of the
μCH equation are proved valid for the conservative scheme and the H1

μ error estimate of the
scheme is also given. Besides, we also supplement a dissipative scheme for theμCH equation
by altering the numerical fluxes and prove the corresponding stability according to E1 and
the error estimate. Section 4 is on the subject of the μDP equation. Similarly we design two
LDG schemes for the μDP equation, one is conservative and the other one is dissipative.
The evolution of Hamiltonian invariants H0 and H1 of the μDP equation is analyzed in
Sect. 4.2. Then in Sect. 4.3, we give the L2 error estimates of these two schemes. In Sect. 5,
we implement these numerical schemes for some examples to illustrate the accuracy and
capability of LDG schemes for both μCH and μDP equations. In particular, the features of
admitting peakon solutions (for both μCH and μDP) and shock solutions (for μDP only) are
numerically validated in this part. Concluding remarks are given in Sect. 6. Some proofs of
several lemmas for the μCH equation are placed in “Appendix A”.

2 Notations, Function Spaces and Norms

In the following discussion, we just take one period, denoted by I = [0, L], of the whole
domain R to replace the unit circle S by setting L = 1. Let Th denote the partition of I with
the mesh denoted by I j = [x j− 1

2
, x j+ 1

2
] for j = 1, . . . , N . The center of the cell is x j =

1
2 (x j− 1

2
+ x j+ 1

2
) and the mesh size is denoted by h j = x j+ 1

2
− x j− 1

2
with h = max1≤ j≤N h j

being the maximum cell size. The mesh is assumed to be regular, which means the ratio
between the maximum and minimum mesh sizes keeps bounded in the mesh refinements.

The so-called broken Sobolev spaces Ws,p(Th) are the finite Cartesian products of the
standard Sobolev spaces Ws,p(I j ) on all cells in Th . Norms of Ws,p(Th) with p = 2,∞ are
given by
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‖u‖Ws,2(Th)
= ‖u‖Hs (Th) =

⎛

⎝
N∑

j=1

‖u‖2Hs (I j )

⎞

⎠

1
2

, ‖u‖Ws,∞(Th) = max
1≤ j≤N

‖u‖Ws,∞(I j ).

In the case s = 0 with the interval I being clear from context, we would like to use the
norms ‖u‖ and ‖u‖∞ to connote ‖u‖L2(Th)

and ‖u‖L∞(Th), respectively. Then we choose the
following discontinuous piecewise polynomial space as the finite element space

Vh =
{
v(x) : v(x) ∈ Pk(I j ), for x ∈ I j , j = 1, . . . , N

}
, (2.1)

where Pk(I j ) denotes the set of polynomials of the degree up to k in each cell I j . It transpires
that the functions belonging to Vh could be discontinuous on the element interfaces.

The solution of the numerical scheme is denoted by uh , which belongs to the finite element
space Vh . We denote the values of uh at x j+ 1

2
by (uh)

+
j+ 1

2
and (uh)

−
j+ 1

2
, from the right cell

I j+1 and the left cell I j , respectively. We use the usual notations [uh] = u+
h − u−

h and
{uh} = 1

2 (u
+
h +u−

h ) to denote the jump and the mean of the function uh , respectively, at each
element boundary point.

3 The �-Camassa–Holm Equation

In this section, we devote to construct and analyze a conservative LDG scheme for the μCH
equation, verify the properties of preserving Hamiltonian invariants and give the detailed
error estimates. Besides, a dissipative scheme for this equation is also presented and the
Hamiltonian stability is given. The main structure of this part is guided by the study for the
LDG method to the CH equation in [20].

3.1 The LDG Schemes for the�CH Equation

In this part, we apply the LDGmethod to theμCHequation (1.1)which iswritten in following
equivalent form

μ(u) − uxx = q, (3.1)

qt + f (u)x = 1

2
(u2)xxx − 1

2

(
(ux )

2)
x , (3.2)

with the initial condition

u(x, 0) = u0(x), (3.3)

and periodic boundary conditions

u(x, t) = u(x + L, t), (3.4)

where L is the measure of one period in the x direction and f (u) = 2μ(u)u.
To define the local discontinuous Galerkin method, we further rewrite (3.1) as a first-order

system
{

μ(u) − rx = q,

r − ux = 0.
(3.5)
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Assume that q is known and u is to be solved, then we can formulate the LDG method
for (3.5) as follows: Find uh, rh ∈ Vh such that, for all test functions χ, φ ∈ Vh ,

μ(uh)
∫

I j
χdx +

∫

I j
rhχxdx − (

r̂hχ
−)

j+ 1
2

+ (
r̂hχ

+)
j− 1

2
=
∫

I j
qhχdx, (3.6)

∫

I j
rhφdx +

∫

I j
uhφx − (

ûhφ
−)

j+ 1
2

+ (
ûhφ

+)
j− 1

2
= 0. (3.7)

The “hat” terms in (3.6)–(3.7) appeared in the cell boundary terms are the so-called “numerical
fluxes”, which are single-valued functions defined on the nodes and should be designed to
ensure the stability of the numerical schemes. For Eq. (3.5), we take the alternating fluxes
such that

r̂h = r−
h , ûh = u+

h . (3.8)

For (3.2), we can also rewrite it into a first-order system
⎧
⎪⎨

⎪⎩

qt + f (u)x − px + B(r)x = 0,

p − (b(r)u)x = 0,

r − ux = 0.

(3.9)

where B(r) = 1
2r

2 and b(r) = B ′(r) = r . Now the LDG method for this system can be
formulated as: Find qh, ph, rh ∈ Vh such that, for all test functions η,ψ, ζ ∈ Vh ,
∫

I j
(qh)tηdx −

∫

I j
( f (uh) − ph + B(rh))ηxdx

+
((

f̂ − p̂h + B̂(rh)
)

η−)

j+ 1
2

−
((

f̂ − p̂h + B̂(rh)
)

η+)

j− 1
2

= 0, (3.10)
∫

I j
phψdx +

∫

I j
b(rh)uhψxdx −

(
b̂(rh )̃uhψ

−)

j+ 1
2

+
(
b̂(rh )̃uhψ

+)

j− 1
2

= 0, (3.11)

∫

I j
rhζdx +

∫

I j
uhζxdx − (

ŭhζ
−)

j+ 1
2

+ (
ŭhζ

+)
j− 1

2
= 0. (3.12)

We choose the numerical fluxes in (3.10)–(3.12) as follows

p̂h = p−
h , ŭh = u+

h , B̂(rh) = B(r−
h ), b̂(rh) = B(r+

h ) − B(r−
h )

r+
h − r−

h

, ũh = u+
h , (3.13)

and the numerical flux f̂ (u−
h , u+

h ) is Lipschitz continuous in both arguments and consistent
( f̂ (u, u) = f (u)). Choices of the monotone numerical fluxes f̂ , which is non-decreasing in
the first argument and non-increasing in the second argument, inDGmethods for conservation
laws can be found in [6]. In our paper, two different schemes are presented by the numerical
flux f̂ being chosen as the following two scenarios.

• For a conservative scheme, we choose

f̂ (u−
h , u+

h ) = 1

2

(
f (u−

h ) + f (u+
h )
)
. (3.14)

Since μ(u) is conserved, we can simplify the numerical flux as f̂ (u−
h , u+

h ) = 2μ0{uh},
where μ0 = μ(u).
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• For a dissipative scheme, the monotone numerical flux f̂ is chosen as the Lax-Friedrichs
flux

f̂ (u−
h , u+

h ) = 1

2
( f (u−

h ) + f (u+
h ) − α(u+

h − u−
h )), α = max

uh
| f ′(uh)|. (3.15)

For simplification, f̂ (u−
h , u+

h ) can be chosen as the upwind flux based on the constant
μ0 = μ(u).

Remark 3.1 We remark that the choices of the fluxes in (3.8) and (3.13) are not unique.
The cardinal rule of choosing is that we must take the fluxes from opposite sides for each
of the following couples: r̂h and ûh , p̂h and ŭh , B̂(rh) and ũh . Here we list a sequence of
possible choices of the numerical fluxes (using m̂ and n̂ as the representation notations): for
all j = 1, . . . , N

m̂ j+ 1
2

= {m} j+ 1
2

+ θ([m]) j+ 1
2
,

n̂ j+ 1
2

= {n} j+ 1
2

− θ([n]) j+ 1
2
,

where θ is a constant. Particularly, θ taking ± 1
2 leads to the alternating fluxes and θ = 0 to

the central fluxes.

3.1.1 Algorithm Flowchart (I)

This section shows some details about the implementation of the numerical method.

• From (3.6)–(3.7) with the fluxes (3.8), we can obtain the relationships among uh , rh and
qh in the matrix form

Aμuh + Brrh = Aqh, (3.16)

Arh + Buuh = 0. (3.17)

where rh , qh and uh are the vectors containing the degrees of freedom for rh , qh and uh ,
respectively. And the matricesAμ,Br ,A andBu are the corresponding discrete operators
in the scheme (3.6)–(3.7). We can deduce that

Duh = Aqh, (3.18)

where D = Aμ − BrA−1Bu .
• Then from (3.10)–(3.12) equipped with the corresponding fluxes (3.13) and (3.14), we

get the LDG discretization of the residue − f (u)x + 1

2
(u2)xxx − 1

2
((ux )

2)x as follows

A(qh)t = res(uh). (3.19)

• Combining (3.18) and (3.19), we get

D(uh)t = res(uh). (3.20)

• Finally, we can utilize a time discretization method to solve

(uh)t = D−1res(uh). (3.21)
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3.2 Hamiltonian Stability and Conservative Properties

In this part, we turn to establish the conservation of two invariants E0 and E1 of our numerical
schemes designed for the μCH equation. Recall the definitions of E0 and E1

E0(u) =
∫ 1

0
udx, E1(u) = μ(u)2 +

∫ 1

0
u2xdx .

Here we replace the unit circle S1 by the interval [0, 1] in R. We further define the discrete
analogs to these two invariants of the LDG schemes

Eh
0 (uh) =

∫ 1

0
uhdx, Eh

1 (uh) = μ(uh)
2 +

∫ 1

0
r2h dx . (3.22)

Proposition 3.2 Let uh be the solution of the scheme (3.6)–(3.7) and (3.10)–(3.12) equipped
with numerical fluxes (3.8), (3.13) in addition to (3.14) or (3.15). Then the discrete versions
of Hamiltonian invariants Eh

0 and Eh
1 satisfy

• The conservative scheme with numerical flux (3.14) for the μCH equation preserves the
invariants Eh

0 and Eh
1

d

dt

(
μ(uh)) = 0,

d

dt

(
μ(uh)

2 +
∫ 1

0
r2h dx

) = 0. (3.23)

• The dissipative scheme with numerical flux (3.15) for the μCH equation preserves only
the invariant Eh

0 yet keeps Eh
1 stability

d

dt

(
μ(uh)) = 0,

d

dt

(
μ(uh)

2 +
∫ 1

0
r2h dx

) ≤ 0. (3.24)

Proof First, we consider the properties of Eh
0 for both schemes. For (3.6), we first take the

time derivative and obtain

μ(uh)t

∫

I j
χdx +

∫

I j
(rh)tχxdx − (

(̂rh)tχ
−)

j+ 1
2

+ (
(̂rh)tχ

+)
j− 1

2
=
∫

I j
(qh)tχdx .

(3.25)

Since (3.25), (3.7) and (3.10)–(3.12) hold for any test functions in Vh , then by choosing

χ = 1, η = 1, φ = 0, ψ = 0, ζ = 0,

we can get two valid equations

μ(uh)t |I j | − ((̂rh)t ) j+ 1
2

+ ((̂rh)t ) j− 1
2

=
∫

I j
(qh)t dx,

∫

I j
(qh)t dx −

(
f̂ − p̂h + B̂(rh)

)

j+ 1
2

+
(
f̂ − p̂h + B̂(rh)

)

j− 1
2

= 0,

where |I j | = ∫
I j
1dx . Considering the periodic boundary condition, and summing up both

equations over all cells, we obtain the conservation of Eh
0 for both schemes

μ(uh)t = 0.
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Next, we turn to the analysis about Eh
1 . Take the test functions in (3.25), (3.7) and (3.10)–

(3.12) as follows

χ = uh, φ = (rh)t , η = uh, ψ = −rh, ζ = ph . (3.26)

Summing up these equations (3.25), (3.7) and (3.10)–(3.12), we obtain

μ(uh)t

∫

I j
uhdx +

∫

I j
(rh)t rhdx −

∫

I j
f (uh)(uh)xdx + (

f̂ u−
h

)
j+ 1

2
− (

f̂ u+
h

)
j− 1

2

+
∫

I j
(phuh)xdx − (

p̂hu
−
h + ŭh p

−
h

)
j+ 1

2
+ (

p̂hu
+
h + ŭh p

+
h

)
j− 1

2

−
∫

I j
(B(rh)uh)xdx +

(
B̂(rh)u

−
h + b̂(rh )̃uhr

−
h

)

j+ 1
2

−
(
B̂(rh)u

+
h + b̂(rh )̃uhr

+
h

)

j− 1
2

+
∫

I j
(uh(rh)t )xdx − (

(̂rh)t u
−
h + ûh(r

−
h )t

)
j+ 1

2
+ (

(̂rh)t u
+
h + ûh(r

+
h )t

)
j− 1

2
= 0.

Taking F(u) = ∫ u f (τ )dτ , we have

μ(uh)t

∫

I j
uhdx +

∫

I j
(rh)t rhdx + � j+ 1

2
− � j− 1

2
+ � j− 1

2
= 0, (3.27)

where the function� j+ 1
2
, which will disappear for the reason of periodic boundary condition

when summing up over all cells, are given by

� j+ 1
2

= (−F(u−
h ) + f̂ u−

h + p−
h u

−
h − ( p̂hu

−
h + ŭh p

−
h )

−B(r−
h )u−

h + B̂(rh)u
−
h + b̂(rh )̃uhr

−
h + (r−

h )t u
−
h − (

(̂rh)t u
−
h + (̂uh(r

−
h )t )

))

j+ 1
2

,

and the extra term � is given by

� j− 1
2

= ([F(uh)] − f̂ [uh] − [phuh] + p̂h[uh] + ŭh[ph]
+[B(rh)uh] − b̂(rh )̃uh[rh] − B̂(rh)[uh] − [(rh)t uh] + (̂rh)t [uh] + ûh[(rh)t ]

)

j− 1
2

.

On account of the choices of the numerical fluxes in (3.8) and (3.13) and applying some
algebraic manipulation, we have

−[phuh] + p̂h[uh] + ŭh[ph] = 0,

[B(rh)uh] − b̂(rh )̃uh[rh] − B̂(rh)[uh] = 0,

−[(rh)t uh] + (̂rh)t [uh] + ûh[(rh)t ] = 0.

Now the extra term � j− 1
2
becomes

� j− 1
2

= ([F(uh)] − f̂ [uh] j− 1
2
). (3.28)

• Conservative scheme

We first consider the conservative scheme with the numerical flux f̂ (u−
h , u+

h ) = 1
2 ( f (u

−
h ) +

f (u+
h )). Noticing that μ(uh)t = 0, namely μ(uh) is a constant in time evolution denoted by

μ0, then f̂ (u−
h , u+

h ) = 2μ0{uh} and this leads to
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� j− 1
2

= ([F(uh)] − f̂ [uh]
)
j− 1

2
=
∫ u+

h

u−
h

( f (s) − f̂ (u−
h , u+

h ))ds

=
∫ u+

h

u−
h

2μ0sds − μ0
(
(u+

h )2 − (u−
h )2

) = 0.

Summing up the equalities (3.27), and noticing
∑N

j=1

∫
I j
uhdx = μ(uh), then we obtain the

desired result (3.23) for the conservative scheme.

• Dissipative scheme

Besides, the dissipative schemewith numerical flux f̂ chosen as (3.15) has the only difference
in the term� j− 1

2
comparing to the conservative scheme.By themonotonicity and consistency

of the Lax-Friedrichs flux, we have

� j− 1
2

= ([F(uh)] − f̂ (u−
h , u+

h )[uh]
)
j− 1

2

=
∫ u+

h

u−
h

(
f̂ (s, s) − f̂ (s, u+

h ) + f̂ (s, u+
h ) − f̂ (u−

h , u+
h )
) ≥ 0.

This alteration gives rise to some dissipative Eh
1 property of this scheme

d

dt

(
μ(uh)

2 +
∫ 1

0
r2h dx

) ≤ 0.

�	
Remark 3.3 On account of the conservation of Eh

0 , the essence of the conservation of E
h
1 is

Eh
1 =

∫ 1

0
r2h dx, (3.29)

which indicates the L2 energy of the numerical approximation to ux .

Remark 3.4 There is another equivalent form of the CH or μCH equation

mt + umx + 2mux = 0, (3.30)

wherem = u−uxx (for the CH equation) orm = μ(u)−uxx (for theμCH equation). Based
on this form, Liu andXing present a fully-discrete invariant preservingDGmethod for theCH
equation in [12]. The semi-discretization of their method can preserve the invariants spatially
by choosing the central fluxes. We remark that this semi-discrete scheme can also be adapted
to the μCH equation via almost the same procedures given in [12] except the last step of
solving u fromm. In the implementation of the scheme for theμCHequation, if we choose the
central fluxes, the matrix D = Aμ − BrA−1Bu in (3.18), which is generated by the operator
A = μ− ∂2x , will be singular without some essential restricts on the degree of polynomial of
Vh and the number of cells in Th . This phenomenon also appears in the numerical experiments
for the conservative LDG scheme for the μDP equation in next section, and therein we will
give some detailed information about it.

3.3 Error Estimates of the LDGMethod

In this subsection, we show the procedure to get the error estimates of our conservative and
dissipative LDG schemes for the μCH equation.
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3.3.1 Notations and Auxiliary Results

In this part, we introduce some notations and assumptions to be used and some auxiliary
results to be cited later in this paper. We would define some projections and present certain
interpolation and inverse properties for the finite element spaces.
• Notations and assumptions We will denote by C a positive constant independent of h,
which may depend on the solution of the μCH equation considered in this paper. Besides,
the constant C may have a different value in each occurrence for the sake of facility. In this
part, the exact solution of the problem to be considered is assumed to be sufficiently smooth
equipped with the periodic boundary conditions. The time evolution about the problem is
also bounded as 0 ≤ t ≤ T for a fixed T. Consequently, the exact solution is bounded too.
• Projection and interpolation properties In the following, we will introduce the standard L2

projection of a function ω with k + 1 order bounded derivatives into the finite element space
Vh , denoted by P; i.e., for each j ,

∫

I j
(Pω(x) − ω(x))v(x)dx = 0 f or ∀v ∈ Pk(I j ), (3.31)

and the special projection P± into Vh , satisfying that: for each j and ∀v ∈ Pk−1(I j ),
∫

I j
(P+ω(x) − ω(x))v(x)dx = 0, and P+ω(x+

j− 1
2
) = ω(x j− 1

2
), (3.32)

∫

I j
(P−ω(x) − ω(x))v(x)dx = 0, and P−ω(x−

j+ 1
2
) = ω(x j+ 1

2
). (3.33)

For both projections mentioned above, authors in [26] generalized the following results
from [5] as follows

‖ωe‖ + h‖ωe‖∞ + h
1
2 ‖ωe‖�h ≤ Chk+1, (3.34)

where ωe = Pω−ω or ωe = P±ω−ω. The positive constant C depends only on ω, namely
it is independent of h. �h denotes the set of boundary points of all cells I j belonging to the

mesh grid, and the norm ‖u‖�h =
√

1
N

∑N
j=1 ‖u‖2

L2(∂ I j )
.

• Inverse propertiesWe show several inverse properties of space Vh which will be utilized in
the following error estimates. For anyωh ∈ Vh , there exists a positive constantC independent
of ωh and h, such that

(i)‖∇ωh‖ ≤ Ch−1‖ωh‖, (ii)‖ωh‖�h ≤ Ch− 1
2 ‖ωh‖, (iii)‖ωh‖∞ ≤ Ch− 1

2 ‖ωh‖.
(3.35)

3.3.2 The Main Error Estimates Result

Inwhat follows,wegive themain error estimates of the semi-discreteLDGnumerical schemes
for the μCH equation. Both conservative and dissipative schemes are considered here, and
the same results are obtained.

Theorem 3.5 Let u be the exact solution of the problem (3.1)–(3.2), which is smooth enough
with bounded derivatives. Let uh be the numerical solution of the conservative or dissipative
semi-discrete LDG scheme (3.6)–(3.8) and (3.10)–(3.13) equipped with numerical fluxes
(3.8) and (3.13) in addition to (3.14) or (3.15), and denote the corresponding numerical
error by er = r − rh, where r = ux is defined by (3.5). For a regular partition of I = [0, 1],
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we assume the finite element space Vh defined in (2.1) with kth-order piecewise polynomial,
then for sufficiently small h, the following error estimate holds for both schemes

‖r − rh‖2 ≤ Ch2k, (3.36)

where the constant C depends on the terminal time T , k, ‖u‖k+1, ‖r‖k+1, and the bound of
| f ′|. Here ‖u‖k+1 and ‖r‖k+1 are the maximum over 0 ≤ t ≤ T of the standard Sobolev
(k + 1) norm in space.

Remark 3.6 In the Example 5.1 of Sect. 5, we see that the kth-order accuracy in (3.36) is
optimal for k ≥ 1. Moreover, recall the definition of the Hamiltonian energy E1(u) in (1.8)
and the conservation of μ(u) and μ(uh), then we recognize that the error estimate presented
above is exactly the error equipped with the H1

μ-norm. Although we could not get the error
estimate for u−uh , the numerical results in Example 5.1 verify the optimal convergence rate
O(hk+1) for ‖u − uh‖.
• The error equation Now we need to put forward the proof of Theorem 3.5. It is necessary
to obtain the error equation first.

Replacing uh by the exact solution u in the scheme (3.6)–(3.7) and (3.10)–(3.12), the
equations can also hold. Recalling the facts that μ(u)t = 0 and μ(uh)t = 0, then it is easy
to get the error equation: for any test functions χ, φ, η, ψ, ζ ∈ Vh ,
∫

I j
((q − qh)t (χ + η) + (r − rh)φ + (p − ph)ψ + (r − rh)ζ ) dx

−
∫

I j
(r − rh)tχxdx + (

(rt − (̂rh)t )χ
−)

j+ 1
2

− (
(rt − (̂rh)t )χ

+)
j− 1

2

+
∫

I j
(u − uh)φxdx − (

(u − ûh)φ
−)

j+ 1
2

+ (
(u − ûh)φ

+)
j− 1

2

+
∫

I j
(p − ph)ηxdx − (

(p − p̂h)η
−)

j+ 1
2

+ (
(p − p̂h)η

+)
j− 1

2

+
∫

I j
(u − uh)ζxdx − (

(u − ŭh)ζ
−)

j+ 1
2

+ (
(u − ŭh)ζ

+)
j− 1

2

−
∫

I j
(B(r) − B(rh))ηxdx +

((
B(r) − B̂(rh)

)
η−)

j+ 1
2

−
((

B(r) − B̂(rh)
)

η+)

j− 1
2

+
∫

I j
(b(r)u − b(rh)uh)ψxdx −

((
b(r)u − b̂(rh )̃uh

)
ψ−)

j+ 1
2

+
((

b(r)u − b̂(rh )̃uh
)

ψ+)

j− 1
2

−
∫

I j
( f (u) − f (uh))ηxdx + (

( f (u) − f̂ )η−)
j+ 1

2
− (

( f (u) − f̂ )η+)
j− 1

2
= 0.

Define

B j (u − uh, q − qh, p − ph, r − rh;χ, φ, η, ψ, ζ )

=
∫

I j
((q − qh)t (χ + η) + (r − rh)φ + (p − ph)ψ + (r − rh)ζ ) dx

−
∫

I j
(r − rh)tχxdx + (

(rt − (̂rh)t ) χ−)
j+ 1

2
− (

(rt − (̂rh)t ) χ+)
j− 1

2
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+
∫

I j
(u − uh)φxdx − (

(u − ûh)φ
−)

j+ 1
2

+ (
(u − ûh)φ

+)
j− 1

2

+
∫

I j
(p − ph)ηxdx − (

(p − p̂h)η
−)

j+ 1
2

+ (
(p − p̂h)η

+)
j− 1

2

+
∫

I j
(u − uh)ζxdx − (

(u − ŭh)ζ
−)

j+ 1
2

+ (
(u − ŭh)ζ

+)
j− 1

2
, (3.37)

H j ( f ; u, uhη) =
∫

I j
( f (u) − f (uh))ηxdx − (

( f (u) − f̂ )η−)
j+ 1

2
+ (

( f (u) − f̂ )η+)
j− 1

2
,

(3.38)

and

R j (b, B; r , u, rh, uh; η,ψ)

=
∫

I j
(B(r) − B(rh)) ηxdx −

((
B(r) − B̂(rh)

)
η−)

j+ 1
2

+
((

B(r) − B̂(rh)
)

η+)

j− 1
2

−
∫

I j
(b(r)u − b(rh)uh)ψxdx +

((
b(r)u − b̂(rh )̃uh

)
ψ−)

j+ 1
2

−
((

b(r)u − b̂(rh )̃uh
)

ψ+)

j− 1
2

. (3.39)

Summing over j , the error equation becomes

N∑

j=1

B j (u − uh, q − qh, p − ph, r − rh;χ,ψ, η,ψ, ζ )

=
N∑

j=1

(
H j ( f ; u, uh; η) + R j (b, B; r , u, rh, uh; η,ψ)

)
, (3.40)

for all χ, φ, η, ψ, ζ ∈ Vh .
Denoting

s = P+u − uh, se = P+u − u, (3.41)

ξ = Pq − qh, ξ e = Pq − q, (3.42)

v = P p − ph, ve = P p − p, (3.43)

δ = Pr − rh, δe = Pr − r , (3.44)

and taking the test functions

χ = −s, φ = δt , η = s, ψ = −δ, ζ = v,

we obtain the important energy equality

N∑

j=1

B j (s − se, ξ − ξ e, v − ve, δ − δe;−s, δt , s,−δ, v)

=
N∑

j=1

(
H j ( f ; u, uh; s) + R j (b, B; r , u, rh, uh; s,−δ)

)
. (3.45)
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• Proof of the main result. In this part, we will follow the ideas of [20] to give the main proof
of Theorem 3.5. We shall analyze each term of the error equation (3.45), and some proofs of
following lemmas will be given in “Appendix A”.

Firstly, under the condition that the mean of the exact solution, namely μ(u), is conserva-
tive and the property of L2 projection, we can verify the fact that themeanμ(uh) andμ(P+u)

are also conservative quantities. The proof of this lemma will be given in “Appendix A.2”.

Lemma 3.7 Under the assumption of conservation of μ(u), the mean of the numerical solu-
tion μ(uh) and the L2 projection μ(P+u) are also conservative; In other words, the errors
s = P+u − uh, se = P+u − u and u − uh satisfy

μ(s)t ≡ 0, μ(se)t ≡ 0, μ(u − uh)t ≡ 0. (3.46)

As for the left-hand side of the energy equation (3.45), we give the following lemma, and
the proof will be shown in “Appendix A.3”.

Lemma 3.8 Under the discussion in Lemma 3.7, the following equation holds
N∑

j=1

B j (s − se, ξ − ξ e, v − ve, δ − δe;−s, δt , s,−δ, v) =
∫ 1

0
δtδdx −

N∑

j=1

(
(̂ve + δ̂et )[s]

)
j+ 1

2
.

(3.47)

We then rewrite the right-hand side of the energy equation (3.45) into the following forms
N∑

j=1

H j ( f ; u, uh; s) =
N∑

j=1

∫

I j
( f (u) − f (uh))sxdx +

N∑

j=1

(( f (u) − f ({uh}))[s]) j+ 1
2

+
N∑

j=1

(
( f ({uh}) − f̂ )[s]) j+ 1

2
, (3.48)

N∑

j=1

R j (b, B; r , u, rh , uh; s,−δ) =
N∑

j=1

∫

I j
(B(r) − B(rh))sxdx

+
N∑

j=1

((B(r) − B(r−
h ))[s]) j+ 1

2

+
N∑

j=1

∫

I j
(b(r)u − b(rh)uh)δxdx

+
N∑

j=1

(
(b(r)u − b̂(rh)u

+
h )[δ]

)

j+ 1
2

, (3.49)

where we apply the periodic boundary conditions and recall the average notation for uh as
{uh} = 1

2 (u
+
h + u−

h ).
The difference between the conservative and dissipative scheme only exits in the choices

of numerical flux f̂ which is reflected in the termH j , yet the same estimate results forH j of
both schemes are given in the following lemma. The proof will be given in “Appendix A.4”.

Lemma 3.9 Suppose that the interpolation property (3.34) is satisfied; then we obtain the
estimates for (3.48) with the numerical flux f̂ chosen as (3.14) or (3.15)

N∑

j=1

H j ( f ; u, uh; s) ≤ C‖s‖2 + Ch2k . (3.50)
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The estimates for R j in (3.49) are given in the following lemma, and as for the proof of
this lemma, we refer the reader to Lemma 4.6 in [20].

Lemma 3.10 Suppose that the interpolation property (3.34) is satisfied, then we have the
following estimates for (3.49)
∣
∣
∣
∣
∣
∣

N∑

j=1

R j (b, B; r , u, rh, uh; s,−δ)

∣
∣
∣
∣
∣
∣

≤
N∑

j=1

(|b′(r)u{δe}[δ]| + |b(r)(δe)−[s]|) j+ 1
2

+ 1

2
‖s‖2 + C‖δ‖2 + Ch2k+2. (3.51)

Now it is the time to present the final error estimates (3.36). Combining (3.40), (3.47),
(3.50) and (3.51), we obtain

∫ 1

0
δtδdx ≤

N∑

j=1

(
(v̂e + δ̂et )[s]

)
j+ 1

2

+
N∑

j=1

(|b′(r)u{δe}[δ]| + |b(r)(δe)−[s]|) j+ 1
2

+ C‖s‖2 + Ch2k + C‖δ‖2.

By Young’s inequality and the interpolation property (3.34), we can obtain

N∑

j=1

(
(v̂e + δ̂et )[s]

)
j+ 1

2
≤ Ch2k + ‖s‖2,

N∑

j=1

(|b′(r)u{δe}[δ]| + |b(r)(δe)−[s]|) j+ 1
2

≤ Ch2k + ‖δ‖2 + ‖s‖2,

then the inequality becomes
∫ 1

0
δtδdx ≤ C

(‖s‖2 + ‖δ‖2)+ Ch2k . (3.52)

Till now, we have deduced a preliminary form for the final error estimate. We need some
auxiliary tools to deal with the inequality (3.52).

Firstly, we introduce the Poincaré-Friedrichs inequality for W p,1(Th) functions (here we
take p = 2 for our finite element space Vh) from Chapter 10 of [3]

‖w‖ ≤ C

⎛

⎜
⎝

∣
∣
∣
∣

∫

I
wdx

∣
∣
∣
∣+ ‖wx‖ +

⎛

⎝h−1
N∑

j=1

([w])2
j+ 1

2

⎞

⎠

1
2
⎞

⎟
⎠ , (3.53)

for any w ∈ H1(Th). Here the positive constant C depends only on Th . Noticing that s ∈
Vh ⊆ H1(Th), together with μ(s) = 0 in Lemma 3.7, we obtain

‖s‖ ≤ C

⎛

⎜
⎝‖sx‖ +

⎛

⎝h−1
N∑

j=1

([s])2
j+ 1

2

⎞

⎠

1
2
⎞

⎟
⎠ . (3.54)
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Secondly, to deal with (3.54), we refer the reader to the conclusion (4.17) in [15], which
says

‖sx‖ +
√
c0h−1

⎛

⎝
N∑

j=1

([s])2
j+ 1

2

⎞

⎠

1
2

≤ C‖δ‖ + Chk+1, (3.55)

where the c0 is a positive constant from the inverse properties (3.35), and C is independent
of h but maybe depends on c0.

Combining (3.52), (3.54) and (3.55), then we can obtain the desirable inequality for both
conservative and dissipative schemes

1

2

d

dt

(∫ 1

0
δ2dx

)

≤ C‖δ‖2 + Ch2k . (3.56)

Finally, Theorem 3.5 follows by implementing (3.56) with the Gronwall’s inequality.

4 The �-Degasperis–Procesi Equation

In this section, by using the notations and preliminary materials given in Sect. 2, we turn
to construct and analyze the LDG schemes for the μDP equation (1.2). We shall design
a general form of the LDG method for the μDP equation and introduce the conservative
and dissipative schemes by choosing different numerical fluxes. The Hamiltonian stability,
conservative properties and error estimates for both two schemes for the μDP equation are
all given in following parts.

4.1 The LDG Schemes for the�DP Equation

Recall the rewritten form of the μDP equation in (1.11)

ut + uux + 3μ(u)(A−1
μ u)x = 0, (4.1)

where Aμ is invertible. By introducing the auxiliary variables q and v, we once again rewrite
this form into the following first-order system

ut + f (u)x + 3μ(u)q = 0, (4.2)

q − vx = 0, (4.3)

μ(v) − qx = u, (4.4)

with the initial and periodic boundary conditions

u(x, 0) = u0(x), (4.5)

u(x, t) = u(x + L, t), (4.6)

where L is the length of one period and f (u) = 1

2
u2. Now we present a general form of the

LDG schemes of (4.2)–(4.4): Find uh ∈ Vh , s.t. for all test functions γ , φ and ψ
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∫

I j
(uh)tγ dx + 3μ(uh)

∫

I j
qhγ dx

−
∫

I j
f (uh)γxdx + (

f̂ (uh)γ
−)

j+ 1
2

− (
f̂ (uh)γ

+)
j− 1

2
= 0, (4.7)

∫

I j
qhφdx +

∫

I j
vhφxdx − (

v̂hφ
−)

j+ 1
2

+ (
v̂hφ

+)
j− 1

2
= 0, (4.8)

μ(vh)

∫

I j
ψdx +

∫

I j
qhψxdx − (

q̂hψ
−)

j+ 1
2

+ (
q̂hψ

+)
j− 1

2
=
∫

I j
uhψdx . (4.9)

Two different schemes are induced by the numerical fluxes in (4.7)–(4.9) which are chosen
as the following two scenarios

• The conservative numerical scheme

v̂h = {vh}, q̂h = {qh}, f̂ = 1

6

(
(u+

h )2 + u+
h u

−
h + (u−

h )2
)
, (4.10)

• The dissipative numerical scheme

v̂h = {vh} − β[vh], q̂h = {qh} + β[qh], f̂ (uh)

= 1

2

(
f (u−

h ) + f (u−
h ) − α(u+

h − u−
h )
)
, (4.11)

where α = max
uh

| f ′(uh)| and β = sign(μ(uh)).

Here the choice of f̂ in the conservative scheme stems from the work of [2] and the flux f̂
in the dissipative scheme is the Lax-Friedrichs flux aforementioned in (3.15).

Remark 4.1 We remark that the fluxes v̂h and q̂h in the dissipative scheme depends on the sign
of μ(uh). For example, when μ(uh) > 0, the numerical fluxes are actually the alternating
fluxes v̂h = v−

h and q̂h = q+
h . Furthermore, like the discussion in Remark 3.1, we can also

choose v̂h and q̂h in a larger range as follows

v̂h = {vh} − β(θ)[vh], q̂h = {qh} + β(θ)[qh],
where β(θ) = sign(μ(uh))θ and θ ≥ 0 is a parameter. To achieve a compact stencil as it
was done in [27], we would like to use the numerical fluxes as in (4.11) with setting θ = 1.

4.1.1 Algorithm Flowchart (II)

This section shows some details about implementation of these two numerical schemes. And
the matrices A and Aμ below have the same meanings as in Algorithm flowchart (I).

• By (4.8)–(4.9) and the fluxes v̂h and q̂h defined in (4.10), we can obtain the relationships
in matrix sense

Aqh + Bvvh = 0, (4.12)

Aμvh + Bqqh = Auh, (4.13)

where vh , qh and uh are the vectors containing degrees of freedom for vh , qh and uh ,
respectively. And we state that different choices of numerical fluxes, q̂ and v̂, result in
different matrices, Bv and Bq . Manipulate these two equalities then we can obtain vh , qh
as follows

vh = D−1Auh, (4.14)
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qh = −A−1Bvvh . (4.15)

where D = Aμ − BqA−1Bv .
• Next, by the virtue of the equation (4.7) equipped with f̂ and necessary data of qh which

can be expressed by uh deduced in last step, we can further get the LDG discretization
of the residual (− f (u)x − 3μ(u)q) as follow

A(uh)t = res(uh). (4.16)

• Finally, we apply a temporal discretization to solve

(uh)t = A−1res(uh). (4.17)

Remark 4.2 We remark that the matrix Aμ which is formed by term μ(u) in the μDP (or
μCH) equation performs on solving linear system not as well as the mass matrixA generated
in the DP (or CH) equation. The mass matrix A possesses some nice properties, such as
good condition number and invertibility, which are beneficial for the coefficient matrix D
while the singular matrix Aμ only provides necessary degrees of freedom to determine the
uniqueness of numerical solution uh . This fact will cause some undesired phenomena when
applying the central fluxes to v̂h or q̂h . In detail, by choosing central fluxes, coefficient matrix
D is nonsingular only under essential assumptions of the order of Pk polynomial being even
and the number of cells being odd, and we will show this phenomenon in the numerical
experiments in Sect. 5.

4.2 Hamiltonian Stability and Conservative Properties

In this part, we turn to study the performance of our schemes on the H0 and H1 invariants.
Recall the definitions of the first two Hamiltonian invariants in (1.10)

H0(u) =
∫ 1

0
udx, H1(u) =

∫ 1

0
u2dx, (4.18)

here the unit circle S is replaced by the interval [0, 1]. In fact, these two quantities represent
the mean and L2-norm of the numerical solution in each period. The choices of flux f̂ in
(4.10) and (4.11) can result in different conclusions about the conservation of the discrete
versions of the Hamiltonian invariants.

Proposition 4.3 Let uh be the numerical solution to the LDG scheme (4.7)–(4.9) equipped
with numerical fluxes in (4.10) or (4.11). Then the discrete versions of Hamiltonian invariants
of uh, H0(uh) and H1(uh), satisfy the following properties in the time evolution

• The conservative scheme with numerical fluxes (4.10) for the μDP equation preserves
both invariants H0 and H1

d

dt
μ(uh) = 0,

d

dt

(∫ 1

0
u2hdx

)

= 0. (4.19)

• The dissipative scheme with numerical fluxes (4.11) for the μDP equation preserve only
H0 but still keeps the L2 stability

d

dt
μ(uh) = 0,

d

dt

(∫ 1

0
u2hdx

)

≤ 0. (4.20)
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Proof Take the test functions in (4.7)–(4.9) as follows

γ = uh, φ = 1, ψ = 3μ(uh)qh, (4.21)

then we can obtain three equations
∫

I j
(uh)t uhdx + 3μ(uh)

∫

I j
qhuhdx −

∫

I j
f (uh)(uh)xdx + (

f̂ u−
h

)
j+ 1

2
− (

f̂ u+
h

)
j− 1

2
= 0,

3μ(uh)

(

μ(vh)

∫

I j
qhdx +

∫

I j
qh(qh)x − (

q̂hq
−
h

)
j+ 1

2
+ (

q̂hq
+
h

)
j− 1

2
−
∫

I j
uhqhdx

)

= 0,

∫

I j
qhdx − (̂vh) j+ 1

2
+ (̂vh) j− 1

2
= 0.

By summing up all the cells I j , we immediately get the truth: μ(qh) = 0. Then combining
the first two equations above, we obtain a simplified equality

1

2

d

dt

(∫

I
u2hdx

)

+
N∑

j=1

([F(uh)] − f̂ (uh)[uh]
)
j− 1

2
−

N∑

j=1

3μ(uh)

([
1

2
q2h

]

− q̂h[qh]
)

j− 1
2

= 0,

(4.22)

where F(u) = ∫ u f (τ )dτ .
Next, based on the two choices of numerical fluxes in (4.10) and (4.11), we discuss the

H1 energy stability in following two cases.

• Conservative scheme

In fact, we can rewrite the form of f̂ in (4.10) with an essential expression

f̂ (uh) = 1

3

(
1

2
(u+

h )2 + 1

2
(u+

h u
−
h ) + 1

2
(u−

h )2
)

= [F(uh)]
[uh] , (4.23)

when the jump [uh] �= 0. Besides, notice the transformation: [1
2
q2] = {q} · [q], then we

realize that the numerical fluxes in (4.10) induce the following equalities

[F(uh)] − f̂ (uh)[uh] = 0, (4.24)

μ(uh)(
1

2
[q2h ] − q̂h[qh]) = 0. (4.25)

We can prove that the conservative scheme can preserve the L2-norm of solution uh by
substitute (4.24) and (4.25) into (4.22)

1

2

d

dt

(∫

I
u2hdx

)

= 0. (4.26)

• Dissipative scheme

If we choose the numerical flux f̂ as the Lax-Friedrichs flux and apply the alternative numer-
ical fluxes as q̂h = {qh} + β[qh] with β = sign(μ(uh)), then we subsequently get two
inequalities at each node

[F(uh)] − f̂ (uh)[uh] ≥ 0, (4.27)

μ(uh)

(
1

2

[
q2h
]− q̂h[qh]

)

= −1

2
|μ(uh)|[qh]2 ≤ 0, (4.28)
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where thefirst inequality follows from themonotonicity and consistencyof theLax-Friedrichs
flux

[F(uh)] − f̂ (uh)[uh] =
∫ u+

u−

(
f (τ ; τ) − f̂ (u−; u+)

)
dτ ≥ 0.

Substituting the above inequalities (4.27) and (4.28) into (4.22), we finally obtain the L2

stability of the dissipative scheme

1

2

d

dt

(∫

I
u2hdx

)

≤ 0. (4.29)

Now, we complete the proof of the H1 energy analysis for both two schemes.
As to the conservation of H0, we just retake the test function γ = 1 in (4.7) and sum up

over j along with the periodic boundary condition, then it is easy to get
∫

I
(uh)t dx + 3μ(uh)μ(qh) = 0. (4.30)

Substitute μ(qh) = 0 into the above equality, then the conclusion comes out

d

dt
μ(uh) = 0. (4.31)

This result adapts to both the conservative and dissipative schemes for the μDP equation. �	

4.3 Error Estimates of the LDGMethod

In this part, two different error estimates of the conservative and dissipative schemes for the
μDP equation mentioned in previous part are given. The framework of these two proofs are
so similar that we would like to complete the analysis of the conservative scheme first and
give the essential supplements for the dissipative scheme subsequently.

4.3.1 Notations and Auxiliary Results

Other than the notations and tools mentioned in the previous Sect. 3.3.1, more special tools
are useful in our following estimates of the conservative scheme. We list them here.
•Global projection and interpolation property. In consideration of the central flux p̂h = {ph}
in the energy conservative scheme, we need to introduce a global L2 projection of ω with
k + 1 continuous derivatives into the finite element space Vh , denoted by P�; i.e.,

∫

I j
P�w(x)vhdx =

∫

I j
w(x)vhdx, ∀vh ∈ Pk−1(I j ),

{P�w} = {w}, at x j+ 1
2
, j = 1, 2, . . . , N , (4.32)

This special global projection mentioned above is described in [13], which states that the
existence and optimal approximation property of this projection can be obtained under the
assumptions on the polynomial degree k being even and the number of cells N of the partition
Th being odd. And the authors in [9] give the detailed description about the approximation
property as follow

Lemma 4.4 Assume that u is sufficiently smooth and periodic. Further assume that k ≥ 0
is even and the number of cells N of the partition Th is odd. Then, the projection operator
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P� is well-defined and possesses the following approximation properties: for s = 0, 1 and
p = 2,∞, there holds

‖u − P�u‖Ws,p(I j ) ≤ Ch1−s
j

⎛

⎜
⎝
∑

Ii∈T N
h

hki ‖u‖Ws+1,∞(Ii ) +
∑

Ii∈Th\T N
h

hk+1
i ‖u‖Ws+2,∞(Ii )

⎞

⎟
⎠ ,

(4.33)

for a constant C independent of I j , where T N
h is the set of cells whose length differs from at

least one of its immediate neighbors.

We remark that for an uniform mesh, the number of cells at least one of whose immediate
neighbors have different lengths is zero and so the estimate (4.33) become optimal. And in
our paper, we just use this ideal uniform mesh for projection P�.

4.3.2 The Main Error Estimates Result

In what follows, we give the main error estimates of the semi-discrete LDG schemes for the
μDP equation.

Theorem 4.5 Let u be the exact solution of the μDP equation (4.1), which is smooth enough
with bounded derivatives. Let uh be the numerical solutions of the semi-discrete LDGschemes
(4.7)–(4.9) equipped with the numerical fluxes (4.10) or (4.11), and denote the corresponding
numerical errors by eu = u − uh. For a regular partition of I = [0, 1] with N cells, we
assume the finite element spaces Vh defined in (2.1) with kth-order piecewise polynomial
where k ≥ 1. For sufficiently small h and assuming that ‖uh(0) − u(0)‖ = O(hk+1), the
following two error estimates hold

• The numerical solution uh of the dissipative LDG scheme (4.7)–(4.9) equipped with the
numerical fluxes (4.11) satisfies

‖u − uh‖2 ≤ Ch2k+1, (4.34)

• Further assume that k is even, N is odd and the partitions Th is uniform, then the
numerical solution uh of the conservative LDG scheme (4.7)–(4.9) along with (4.10)
satisfies

‖u − uh‖2 ≤ Ch2k, (4.35)

where the constant C depends on the terminal time T , k, μ(u) and ‖u‖k+1. Here ‖u‖k+1 is
the maximum over 0 ≤ t ≤ T of the standard Sobolev (k + 1) norm in space.

4.3.3 The Error Equation

In what follows, we just simply assume β = sign(μ(uh)) = 1 in (4.11), and this indicates
that the numerical flux q̂h = q+

h in the dissipative scheme. And the other case withμ(u j ) < 0
can be easily proven following the analog strategy.
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Recognize that the weak formulation (4.7)–(4.9) is also available when replacing uh by
u, then we can get the error equation
∫

I j
(u − uh)tγ dx + 3μ0

∫

I j
(q − qh)γ dx −

∫

I j
(u − uh)ψdx

+
∫

I j
(q − qh)ψxdx − (

(q − q̂h)ψ
−)

j+ 1
2

+ (
(q − q̂h)ψ

+)
j− 1

2

−
∫

I j
( f (u) − f (uh))γxdx + ((

f (u) − f̂ (uh)
)
γ −)

j+ 1
2

− ((
f (u) − f̂ (uh)

)
γ +)

j− 1
2

= 0,

here we use the constant μ0 = μ(uh) on account of it being a conserved quantity. Then we
divide the error equation into two parts

B j (u − uh, q − qh; γ,ψ) =
∫

I j
(u − uh)tγ dx + 3μ0

∫

I j
(q − qh)γ dx −

∫

I j
(u − uh)ψdx

+
∫

I j
(q − qh)ψxdx − (

(q − q̂h)ψ
−)

j+ 1
2

+ (
(q − q̂h)ψ

+)
j− 1

2
,

(4.36)

and

H j ( f ; u, uh; γ ) =
∫

I j
( f (u) − f (uh))γxdx − (

( f (u) − f̂ (uh))γ
−)

j+ 1
2

+ (
( f (u) − f̂ (uh))γ

+)
j− 1

2
. (4.37)

Now we denote

s = Pu − uh, se = Pu − u, (4.38)

σ = P̃q − qh, σ e = P̃q − q, (4.39)

ω = Pv − vh, ωe = Pv − v, (4.40)

here the new notation P̃ can be choose as P� and P+ for the conservative and dissipative
schemes, respectively. Then the error equation becomes

N∑

j=1

B j (s − se, σ − σ e; γ,ψ) =
N∑

j=1

H j ( f ; u, uh; γ ). (4.41)

Taking the test functions

γ = s, ψ = 3μ0σ, (4.42)

we can get the important energy equality

N∑

j=1

(
B j (s, σ ; s, σ ) − B j (s

e, σ e; s, σ )
) =

N∑

j=1

H j ( f ; u, uh; s). (4.43)

4.3.4 Proof of the Main Result

In this part, we follow ideas of the proof for the μCH equation in previous section to analyze
each term of the energy equation (4.43). And for the sake of textual coherence, we would like
to keep our mind on the analysis of the conservative scheme, and supplement the residual
proof for the dissipative-scheme subsequently.
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• Error estimates for the conservative scheme

For the first term in the LHS of (4.43), we reuse the similar technology in the verification
of the conservation laws in Proposition 4.3, to obtain

N∑

j=1

B j (s, σ ; s, σ ) =
N∑

j=1

∫

I j
st sdx . (4.44)

As to the second term of LHS in (4.43), we have

B j (s
e, σ e; s, σ )

=
∫

I j
set sdx + 3μ0

∫

I j
σ esdx − 3μ0

∫

I j
seσdx +

∫

I j
σ eσxdx − (

σ̂ eσ−)
j+ 1

2
+ (

σ̂ eσ+)
j− 1

2

=
∫

I j
set sdx − 3μ0

∫

I j
seσdx +

∫

I j
σ eσxdx

+ 3μ0

∫

I j
σ esdx + (

σ̂ e[σ ]) j+ 1
2

− (
σ̂ eσ+)

j+ 1
2

+ (
σ̂ eσ+)

j− 1
2
. (4.45)

BecauseP is a local L2 projection and P̃ = P� in (4.39) have the property that σ e = P�q−q
is locally orthogonal to all polynomials of degree up to k − 1, we have

∫

I j
set sdx − 3μ0

∫

I j
seσdx +

∫

I j
σ eσxdx = 0.

By virtue of the special definition of {P�q} = {q} at the nodes and the flux σ̂ e = {P�q}−{q}
in the conservative scheme, we also get

(
σ̂ e[σ ]) j+ 1

2
= 0. (4.46)

Thus the equality (4.45) becomes

B j (s
e, σ e; s, σ ) = 3μ0

∫

I j
σ esdx − (

σ̂ eσ+)
j+ 1

2
+ (

σ̂ eσ+)
j− 1

2
.

Combine the above equation with (4.44), sum up over j , and take into consideration the
periodic boundary condition, then we finally obtain

N∑

j=1

(
B j (s, σ ; s, σ ) − B j (s

e, σ e; s, σ )
) =

∫ 1

0
st sdx − 3μ0

∫ 1

0
σ esdx . (4.47)

To deal with the nonlinearity of the flux f (u) in the RHS of (4.43), we make the a priori
assumption first: for arbitrary t� ∈ (0, T ],

h−1‖s(t)‖L∞(0,1) + ‖sx (t)‖L∞(Th) ≤ 1, ∀ t ∈ [0, t�]. (4.48)

Thenwe introduce the result of Proposition 3.3 in [2] under the a priori assumptionmentioned
above

∣
∣
∣
∣
∣
∣

N∑

j=1

H j ( f ; u, uh; s)
∣
∣
∣
∣
∣
∣
≤ C‖s‖2 + Chk‖s‖. (4.49)

We remark that the a priori assumption validates for t ∈ [0, T ] automatically when k ≥ 2
and the initial condition satisfies ‖uh(0) − u(0)‖ = O(hk+1) as h ↓ 0 and the mesh size h
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is sufficiently small with an upper boundary h0 depending on u and T . We refer the reader
to the detailed discussion about this conclusion in [2].

Combining (4.47) and (4.49), we can get
∫ 1

0
st sdx ≤ 3μ0

∫ 1

0
σ esdx + C‖s‖2 + Chk‖s‖. (4.50)

We already know that μ0 is a constant, thus we can get the following error estimates

1

2

d

dt

∫ 1

0
s2dx ≤ C‖s‖2 + Ch2k . (4.51)

Finally, under assumptions on the polynomial degree k being even and the number of cells
in an uniform mesh being odd, we get the desired error estimate

‖u − uh‖2 ≤ Ch2k . (4.52)

Till now we complete the error analysis of the conservative scheme.

• Error estimates for the dissipative scheme

Now we turn to supplement the analogous analysis of the dissipative scheme for the μDP
equation. Based on the structure of proof mentioned above, we alter the choice of numerical
fluxes in scheme (4.7)–(4.9) by the dissipative ones (4.11) and replace the global L2 projection
P� in (4.39) by the local projection P+ defined in (3.32). Consequently these changes cause
some essential modifications in the process of error analysis:

(i) The term B j (s, σ ; s, σ ) estimated in (4.44) is no more a conservative one

N∑

j=1

B j (s, σ ; s, σ ) ≤
∫ 1

0
st sdx,

and this fact can be easy obtained via the analogous analysis referring to (4.27), (4.28)
and (4.29) in the proof of L2 stability of the dissipative scheme.

(ii) The simultaneous alternation of fluxes and projection of in the dissipative scheme keeps
the equality (4.46) still valid

(
σ̂ e[σ ]) j+ 1

2
= 0. (4.53)

(iii) The choice of the Lax-Friedrichs flux f̂ will result in a different analysis about the
term

∑N
j=1 H j ( f ; u, uh; s) in (4.43), yet Xu and Shu in [20] have already constructed

the estimates for it

N∑

j=1

H j ( f ; u, uh; s)

≤ −1

4
α( f̂ ; uh)[s]2 + (C + C�(‖s‖∞ + h−1‖eu‖2∞))‖s‖2

+ (C + C�h
−1‖eu‖2∞)h2k+1,

whereC� is a positive constant depending on themaximumof | f ′′| and the non-negative
functionα( f̂ ; uh) is the important quantity ofmeasuring the difference between numer-
ical flux f̂ and the physical flux f , which is in detail described in [26].
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Combine these above modifications together and apply some manipulations, we get
∫ 1

0
st sdx + 1

4
α( f̂ ; uh)[s]2

≤ 3μ0

∫ 1

0
σ esdx + (

C + C�

(‖s‖∞ + h−1‖eu‖2∞
)) ‖s‖2 + (

C + C�h
−1‖eu‖2∞

)
h2k+1,

≤ (
C + C�

(‖s‖∞ + h−1‖eu‖2∞
)) ‖s‖2 + (

C + C�h
−1‖eu‖2∞

)
h2k+1 + Ch2k+2.

(4.54)

Taking account of the positive property of α( f̂ ; uh), the Young’s inequality and the a priori
assumption with k ≥ 1, we can further get the following inequality

1

2

d

dt

∫ 1

0
s2dx ≤ C(‖s‖2) + Ch2k+1. (4.55)

Finally, we obtain the error estimate of this dissipative scheme for the μDP equation

‖u − uh‖2 ≤ Ch2k+1.

Here assumptions about the parity of order of polynomial, number of cells and the uniform
mesh can be omitted.

5 Numerical Results

In what follows, we give several numerical examples for each μ-version equation. Accuracy
experiments for smooth travelling waves and simulations for peakon solutions are succes-
sively presented and validated for both μCH and μDP equations. Besides, the explicit total
variation diminishing (TVD) Runge–Kutta method in [14], also known as strong stability
preserving (SSP) Runge–Kutta method in [8], is utilized as the temporal discretization in
following experiments. As we know, for the purpose of maintaining the conservative prop-
erty of the fully discrete scheme, it is better to choose a conservative time discretization
method, such as the midpoint method used in [2,12]. While the nonlinear terms in both two
equations make it not very efficient in the performance of computing. Thus we choose the
explicit Runge–Kutta methods, with the time step �t = 0.1�x . The numerical scheme will
be verified available in that the numerical results are convergent in a sequence of successive
mesh refinement and the concerned conservation of invariants keeps numerically even in the
peakon solutions.

In [11], a class of multi-peakons solutions for both μCH and μDP equations and a series
of multi-shocks solutions for the μDP equation are given via explicit expressions. For the
sake of facility and concision, we list here these expressions in advance.

Firstly, we introduce themulti-peakons waves for both equations. The exact solutions with
M peaks take the form of

u(x, t) =
M∑

i=1

pi (t)g(x − qi (t)), (5.1)

where g(x) is the Green’s function given by

g(x) = 1

2
x(x − 1) + 13

12
, for x ∈ [0, 1), (5.2)
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and is extended periodically to R, namely

g(x − x ′) = (x − x ′)2

2
− |x − x ′|

2
+ 13

12
, f or x ∈ [x ′, x ′ + 1), (5.3)

where x ′ denotes a translation of one periodic interval. The variables pi (t) and qi (t) depend
on time t and they evolve according to

q̇ i =
M∑

j=1

p j g(q
i − q j ), ṗi = −(λ − 1)

M∑

j=1

pi p j g
′(qi − q j ),

here λ is defined in (1.4) and theμCH andμDP are cases λ = 2 and λ = 3, respectively. And
the value zero is assigned to the otherwise undetermined derivative g′(x). In other words,

g′(x) :=
{
0, x = 0,
x − 1

2 , 0 < x < 1.
(5.4)

Secondly, we list the expressions of multi-shocks solutions for the μDP equation

u =
M∑

i=1

(
pi g(x − qi ) + si g

′(x − qi )
)

. (5.5)

The components in above equation evolve according to

q̇ i = u(qi ),

ṗi = 2(si {uxx (qi )} − pi {ux (qi )}),
ṡi = −si {ux (qi )}, (5.6)

where

{ux (qi )} =
N∑

j=1

p j g
′(qi − q j ) +

N∑

j=1

s j ,
{
uxx (q

i )
}

=
N∑

j=1

p j ,

and g′(x) is defined by (5.4).

5.1 The�CH Equation

In this part, numerical experiments are designed to show the accuracy and capability of the
conservative and dissipative schemes for the μCH equation

μ(u)t − uxxt = −2μ(u)ux + 2uxuxx + uuxxx . (5.7)

As mentioned before, the difference between these two schemes for the μCH only exists in
the choice of numerical flux for the term f (u) = 2μ(u)u. In fact, this different choices
cause very small influence on numerical results in that f (u) with constant μ(u) is no
more a nonlinear term. We will see this phenomenon in the numerical sense in following
experiments.
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Example 5.1 Smooth periodic waves for μCH

In [10], the authors present that the smooth travelling waves are of the form u(x, t) =
φ(x − ct) where φ is a solution of the ODE

φxx = 2μ0(M − φ)(φ − m)

c − φ
. (5.8)

The constant M , m and c in (5.8) can be set under the condition m < c < M which brings
about a smooth periodic traveling wave φ(x − ct) with min

x∈R φ(x) = m and max
x∈R φ(x) = M .

Here we choose M = 1.5, m = 0.5, and c = 2. It leads to a smooth periodic travelling wave
with period = 2.73321849515629 and

μ0 = μ(φ) =
∫ period

0
φ(x)dx = 2.55499933801271.

The ODE can be evolved from an initial condition for φ

φ(0.796433828683979) = 1, (5.9)

which can be computed by setting θ = π
2 in (6.10) in [10]. Then we can get a high-precision

numerical solution of (5.8) by utilizing the fourth-order Runge–Kutta method with 40,000
points. We apply the conservative and dissipative LDG schemes discussed in Sect. 3.1 to test
this smooth solution of the μCH equation. The L2 and H1

μ errors and orders of accuracy
for both two schemes at time t = 0.5 are showed in Table 1. For the error computation in
our paper, we just split each element into uniform 20 subintervals and compute the discrete
L2/H1

μ norm on these points. In the process of implementation, periodic boundary conditions
and uniform meshes are used. The numerical results show that the numerical schemes with
Pk elements give a (k + 1)th order of accuracy for u in the L2-norm, and kth order in H1

μ

norm. That is the fact that H1
μ norm of u − uh is equivalent to ‖r − rh‖ for the reason of

μ(u−uh) = 0. This illustrates that ourmethod is numerically optimal foru and r .Meanwhile,
as we analyzed before, these two schemes have a really tiny difference from each other on
account of the linearization of f (u) = 2μ(u)u with the operator μ, and the experiment here
verifies this judgment: the numerical solutions for both schemes in Table 1 are close to each
other in acceptable error ranges. For the conservative scheme, people usually expect accuracy
reduction with odd order polynomials, but the optimal convergence rate has been found for
our conservative scheme. This may be caused by the degeneration of the “nonlinear” term
f (u) = 2μ(u)ux to “linear” term for the conservation of μ(u). Also, it is found that the P0

case achieves some superconvergence than expected.

Example 5.2 Periodic one-peakon solution for μCH

Referring to the explicit expression (5.1) of the peakon solution, we take one peak with
M = 1, and set the initial data as

p1(0) = 0.1, q1(0) = 0.

For x ∈ [0, 1] and the solution will be extended periodically to R. We implement both
the conservative scheme and the dissipative one to simulate the peakon solution of the μDP
equation. The P4 polynomial element, fourth order TVDRunge–Kuttamethod and a partition
with N = 160 cells are used in the process of computation. The Fig. 1, containing the peak
profiles at time t = 0, 1, 5, 10, 15 clearly shows us that these two schemes can simulate the
periodic one-peakon solution well. The differences, |E0(t) − E0(0)| and |E1(t) − E1(0)|,
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Table 1 Example 5.1, accuracy test for the μCH equation (5.7) with exact smooth solution (5.8)

N Dissipative scheme Conservative scheme

L2 Error Order H1
μ error Order L2 error Order H1

μ error Order

P0

10 1.8779e−01 – 7.4790e−01 – 9.8314e−02 – 6.9597e−01 –

20 9.4577e−02 0.9895 3.9228e−01 0.9310 2.8210e−02 1.8012 3.1496e−01 1.1438

40 4.7836e−02 0.9834 1.9349e−01 1.0196 7.4335e−03 1.9241 1.4070e−01 1.1625

80 2.4220e−02 0.9819 9.4650e−02 1.0316 1.8869e−03 1.9781 6.4903e−02 1.1163

160 1.2215e−02 0.9875 4.6652e−02 1.0207 4.7355e−04 1.9944 3.1011e−02 1.0655

P1

10 1.8965e−02 – 2.0286e−01 – 1.9663e−02 – 2.2355e−01 –

20 5.2058e−03 1.8652 1.0581e−01 0.9391 5.2815e−03 1.8964 1.1183e−01 0.9992

40 1.3249e−03 1.9743 5.3963e−02 0.9714 1.3340e−03 1.9852 5.5565e−02 1.0091

80 3.3264e−04 1.9938 2.7313e−02 0.9824 3.3379e−04 1.9988 2.7722e−02 1.0031

160 8.3212e−05 1.9991 1.3749e−02 0.9903 8.3356e−05 2.0016 1.3852e−02 1.0009

P2

10 3.0757e−03 – 4.8825e−02 – 3.1012e−03 – 5.0042e−02 –

20 2.9183e−04 3.3977 6.2321e−03 2.9698 2.9340e−04 3.4019 6.3079e−03 2.9879

40 3.0741e−05 3.2469 1.2048e−03 2.3709 3.0800e−05 3.2519 1.2111e−03 2.3808

80 3.5111e−06 3.1302 2.3230e−04 2.3747 3.5133e−06 3.1320 2.3282e−04 2.3791

160 4.0894e−07 3.1020 4.2573e−05 2.4480 4.0902e−07 3.1026 4.2611e−05 2.4499

P3

10 1.5357e−04 – 2.0634e−03 – 1.5395e−04 – 2.0885e−03 –

20 1.2239e−05 3.6493 3.3285e−04 2.6321 1.2274e−05 3.6488 3.3556e−04 2.6378

40 7.8730e−07 3.9584 5.3099e−05 2.6481 7.8887e−07 3.9597 5.3407e−05 2.6515

80 4.4310e−08 4.1512 7.2458e−06 2.8735 4.4397e−08 4.1512 7.2797e−06 2.8751

160 2.7785e−09 3.9953 9.0301e−07 3.0043 2.7817e−09 3.9964 9.0548e−07 3.0071

Uniform meshes with N cells at time t = 0.5

describing the evolution of two invariants are showed in the last graph in Fig. 1. It shows that
E0(uh) and E1(uh) keep numerically conservative in both two schemes when simulating
one-peakon solution for the μCH equation.

Example 5.3 Periodic three-peakons solution for μCH

In this example, we take M = 3 in (5.1) to study the case of three-peakons solution to the
μCH equation (5.7) with the initial condition

u0(x) =
3∑

i=1

pi (0)g(x − qi (0)), (5.10)

where g, pi and qi , i = 1, 2, 3, are set as follows:

p1(0) = 0.1, q1(0) = 0.5, p2(0) = 0.08, q2(0) = 0.2, p3(0) = 0.12, q3(0) = 0.05.

The computational domain is [0, 1]. The P4 polynomial elements with N = 160 cells
is utilized in our numerical method. In Fig. 2, the numerical and exact solutions at t =
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Fig. 1 The one-peakon profiles and evolution E0(uh) and E1(uh) of the μCH equation. Periodic boundary
condition in [0, 1]. P4 elements and uniform mesh with N = 160 cells

0, 1, 5, 10, 15 are showed. The evolution of two Hamiltonian invariants, E0(uh) and E1(uh),
of the μCH equation is also displayed with t ∈ [0, 15]. It illustrates that the moving peaks
interaction can be described well by our numerical methods, and both the invariants can keep
conservative in the time evolution.
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Fig. 2 The three-peakons interaction, evolution of E0(uh) and E1(uh) of theμCHequation. Periodic boundary
condition in [0, 1]. P4 elements and uniform mesh with N = 160 cells

5.2 The�DP Equation

In this part, we turn to test the conservative and dissipative schemes for the μDP equation
(4.1)

ut + uux + 3μ(u)(A−1
μ u)x = 0,
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Table 2 Example 5.4, accuracy test for the μDP equation with sufficiently smooth solution

N Dissipative scheme Conservative scheme

L2 error Order L∞ error Order L2 error Order L∞ error Order

P0

11 2.0643e−01 – 3.4413e−01 – 2.3220e−02 – 3.4064e−02 –

21 1.3454e−01 0.6177 2.3035e−01 0.5791 7.7197e−03 1.5888 1.3505e−02 1.3348

41 7.8905e−02 0.7698 1.3865e−01 0.7324 2.2120e−03 1.8032 4.1389e−03 1.7062

81 4.3135e−02 0.8712 7.6670e−02 0.8547 5.8370e−04 1.9220 1.1339e−03 1.8679

161 2.2618e−02 0.9314 4.0385e−02 0.9248 1.4897e−04 1.9702 2.9178e−04 1.9584

P1

11 7.7703e−03 – 2.8610e−02 – – – – –

21 2.0347e−03 1.9332 6.8873e−03 2.0545 – – – –

41 5.1009e−04 1.9960 2.0135e−03 1.7742 – – – –

81 1.2807e−04 1.9938 5.4600e−04 1.8827 – – – –

161 3.2177e−05 1.9928 1.4075e−04 1.9558 – – – –

P2

11 7.0388e−04 – 3.7383e−03 – 1.7134e−03 – 6.4391e−03 –

21 9.4531e−05 2.8965 4.8204e−04 2.9552 9.9294e−05 4.1090 3.9912e−04 4.0120

41 1.2542e−05 2.9141 6.4311e−05 2.9060 1.2450e−05 2.9956 5.5058e−05 2.8578

81 1.6200e−06 2.9526 8.2482e−06 2.9629 1.6044e−06 2.9560 1.0268e−05 2.4228

161 2.0600e−07 2.9753 1.0503e−06 2.9732 2.0091e−07 2.9974 1.4368e−06 2.8372

P3

11 4.3209e−05 – 3.3676e−04 – – – – –

21 3.3349e−06 3.6956 2.6061e−05 3.6918 – – – –

41 2.3286e−07 3.8401 2.0015e−06 3.7027 – – – –

81 1.5264e−08 3.9313 1.3211e−07 3.9212 – – – –

161 1.0326e−09 3.8858 8.6995e−09 3.9247 – – – –

Uniform meshes with N cells at time t = 0.5

As we discussed previously, the essential differences between these two schemes are the
choices of numerical fluxes, as described in (4.10) and (4.11), respectively. We firstly devote
to verify the accuracy of both schemes. Then we apply several examples to verify their
capability on the multi-peakons and multi-shocks solutions.

Example 5.4 Smooth periodic waves for μDP

For the lack of smooth travelling examples for the μDP equation, we just use the smooth
initial condition as described in Example 5.1 to start evolving our numerical schemes for
the μDP equation. Here we take the parameters as before and apply the same skills to get a
high-precision numerical solution of the ODE (5.8). We apply the piecewise P4 polynomial,
the uniform mesh with N = 321 cells and the fourth-order TVD Runge–Kutta method
with the CFL number 0.05 in the dissipative scheme to get a sufficiently accurate numerical
simulation, which is regarded as a reference solution to the μDP equation in the process
of error computations. The L2 and L∞ errors and orders of accuracy for both schemes,
at time t = 0.5 are showed in Table 2. The periodic boundary conditions and uniform
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Fig. 3 The evolution of one-peakon solution for the μDP equation with initial data (5.11). Periodic boundary
condition in [0, 1]. P2 elements and uniform mesh with N = 81 cells

meshes are used in the implementation of both methods. The numerical results verify that
the dissipative LDG method for the μDP equation obtains the optimal order of accuracy,
which is better than the suboptimal order of accuracy k + 1

2 as illustrated in Theorem 4.34.
It is also found that the conservative scheme of P0 case achieves some superconvergence
than expected. However, the desired results of the conservative scheme are only obtained
with restrictions on the parity of order of Pk polynomial (k is even) and number of cells (N
is odd), which are assumptions declared in the error estimates for the conservative scheme
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Fig. 4 The interaction of two-peakon solution for theμDP equation with initial data (5.12). Periodic boundary
condition in [0, 1]. P2 elements and uniform mesh with N = 81 cells

in (4.35). In the process of implementation of the conservative scheme, we find the matrix
D = Aμ − BqA−1Bv , defined in Algorithm Flowchart 3.1.1, is invertible only in case of k
being even and N being odd. So we only display valid results of the conservative scheme in
Table 2.
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Fig. 5 The profiles of one-shockwave of theμDPequationwith initial data (5.13). Periodic boundary condition
in [0, 1]. P2 elements and uniform mesh with N = 161 cells

Example 5.5 Peakon solutions for μDP

Now we turn to verify the capability of the two LDG schemes for the μDP equation to
simulate the peakon solutions. Initializing the expression we mentioned in (5.1) by setting
parameters as follows

p1 = 0.333, q1 = −0.5, (5.11)

we get an example for the one-peakon wave of theμDP equation. The numerical simulations
with time t ∈ [0, 15] are depicted in Fig. 3. The evolution of two invariants, H0(uh) and
H1(uh), of the μDP equation is also showed together.

We also apply the initial condition settings as

p1 = 0.1, p2 = 0.08,

q1 = 0.4, q2 = 0.1, (5.12)

to validate the two-peakons interactive example for the μDP equation. The numerical results
and the evolution of H0(uh) and H1(uh) are depicted in Fig. 4. In both examples, P2 element,
an uniformmesh with N = 81 cells and the third order TVD Runge–Kutta method with CFL
number 0.1 are utilized. It illustrates that both conservative and dissipative schemes are
qualified to simulate the peakon solutions in a long time. And the invariants of uh keep
numerically conservative in both examples.

123



1328 Journal of Scientific Computing (2019) 79:1294–1334

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

u
t=0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

u

t=1

LDG(csv)
LDG(dsp)
Exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.3

0.35

0.4

0.45

0.5

0.55

u

t=3
LDG(csv)
LDG(dsp)
Exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

u

t=5
LDG(csv)
LDG(dsp)
Exact

Fig. 6 Interaction of two-shocks solution of the μDP equation with initial data (5.14). Periodic boundary
condition in [0, 1]. P2 elements and uniform mesh with N = 161 cells

Example 5.6 Multi-shocks wave solutions for μDP

In this part, we pay attention to the different solutions withmulti-shocks for theμDP equation
with the initial settings in (5.5) as follows

• One shock

p1(0) = 0.333, q1(0) = 0.1, s1(0) = 0.1, (5.13)

• Two shocks

p1(0) = 0.3, q1(0) = 0.2, s1(0) = 0.4,

p2(0) = 0.1, q2(0) = 0.5, s2(0) = 0.2, (5.14)

• Three shocks

p1(0) = 1, q1(0) = 0.1, s1(0) = 0.12,

p2(0) = 0.8, q2(0) = 0.5, s2(0) = 0.8,

p3(0) = 0.12, q3(0) = 0.4, s3(0) = 0.2. (5.15)

Implement the conservative and dissipative schemes to solve the μDP equation with these
three initial conditions successively, then we can obtain the respective simulations displayed
in Figs. 5, 6 and 7. Other information about simulations is gathered as follows: the domain
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Fig. 7 Interaction of three-shocks solution of the μDP equation with initial data (5.15). Periodic boundary
condition in [0, 1]. P2 elements and uniform mesh with N = 321 cells

[0, 1], the P2 piecewise element and the third order TVD Runge–Kutta method with CFL
number 0.1. And we use N = 161 cells of uniform mesh for the one-shock and two-shocks
waves, yet a more refined mesh with N = 321 cells are applied for the three-shocks solution.
The TVB limiter in [6] is adopted to modify the shock solutions. In the experiments of one-
shock and two-shocks waves, the conservative and dissipative schemes simulate well for the
μDP equation. But for the three-shocks solution, the dissipative scheme performs slightly
better than the conservative one.

6 Conclusion

In this paper, we have developed a series of LDG schemes, including the conservative and
dissipative ones, for both the μ-Camassa–Holm and μ-Degasperis–Procesi equations. The
conservation of the Hamiltonian invariants for each equation has been analyzed and a priori
error estimates for the schemes have also been given. Several numerical examples in different
circumstances were shown to illustrate the accuracy and capability of these LDG schemes.
Besides, these LDG schemes inherit the nice properties of DG methods on the flexibility
for general geometry meshes, the hp-adaptivity, and excellent parallel efficiency. The LDG
method possesses a good potential in solving the μ-version equations and other similar
problems.
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A Appendix

A.1 Proof of the Equivalence of (1.2) and (1.11)

Proof Notice that

(Aμu)t = μ(u)t − uxxt

and

Aμ

((
1

2
u2
)

x

)

= −1

2
(u2)xxx = −3uxuxx − uuxxx

due to the periodicity, then (1.2) can be rewritten as

Aμ(ut ) + Aμ(uux ) + 3μ(u)ux = 0.

Apply the invertible operator A−1
μ to above equation and take into consideration of μ(u)

being a conservative quantity, then we have

ut + uux + 3μ(u)A−1
μ (ux ) = 0.

Comparing the above equation and our desired (1.11), it remains to check the following
claim:

A−1
μ (ux ) = (A−1

μ u)x .

Set v = A−1
μ u, in other word, u = Aμv = μ(v) − vxx . v is obviously periodic like u

and we know that μ(v) = μ(u), which means that μ(v) is also a conservative quantity. On
account of the periodicity and conservation, the mean value μ(v) = ∫ 1

0 vdx is a constant no
matter where and when, so we have μ(v)x = 0; furthermore, owing to the periodicity, we
also get μ(vx ) = 0.

Now we apply Aμ to A−1
μ (ux ) − (A−1

μ u)x , then

AμA
−1
μ (ux ) − Aμ(A−1

μ u)x

= ux − Aμ(vx )

= (Aμv)x − Aμ(vx )

= (μ(v)x − (vxx )x ) − (μ(vx ) − (vx )xx )

= μ(v)x − μ(vx )

= 0.

Thus we have proven the claim, and further completed the equivalence of (1.11)
and (1.2). �	

A.2 Proof of Lemma 3.7

Proof By the Proposition 3.2, we know

μ(uh)t = 0.

Then by the orthogonality of L2 projection,

se = (P+u − u) ⊥ P
k−1,

123



Journal of Scientific Computing (2019) 79:1294–1334 1331

so
∫

I
se · 1dx = 0.

Then we can get μ(se) = μ(P+u) − μ(u) = 0. In addition to the fact μ(u)t = 0, we have

μ(P+u)t = 0.

Taking consideration of the definitions of s and se, we easily get

d

dt
μ(s) ≡ 0,

d

dt
μ(se) ≡ 0.

�	

A.3 Proof of Lemma 3.8

Proof
N∑

j=1

B j (s − se, ξ − ξ e, v − ve, δ − δe;−s, δt , s,−δ, v)

=
N∑

j=1

B j (s, ξ, v, δ;−s, δt , s,−δ, v) −
N∑

j=1

B j (s
e, ξ e, ve, δe;−s, δt , s,−δ, v) (A.1)

By the same argument as that used for the stability in Proposition 3.2 and on account of the
results in Lemma 3.7, the first term of the right-hand side in (A.1) becomes

B j (s, ξ, v, δ;−s, δt , s,−δ, v) =
∫

I j
(δtδ)dx + � j+ 1

2
− � j− 1

2
,

where � = v−s− − v̂s− − s̆v− + δ−
t s

− − δ̂t s− − ŝδ−
t .

As to the second term of the right-hand side in (A.1), we have

B j (s
e, ξ e, ve, δe;−s, δt , s,−δ, v)

=
∫

I j
δeδt dx +

∫

I j
(δev − veδ)dx +

∫

I j
(δet sx + se(δt )x + vesx + sevx )dx

+ (
(̂ve + δ̂et )[s]

)
j− 1

2
+ (

ŝe[δt ]
)
j− 1

2
+ (s̆e[v]) j− 1

2
+ � j+ 1

2
− � j− 1

2
, (A.2)

where � = v̂es− − s̆ev− − δ̂et s
− − ŝeδ−

t . Because P is a local L2 projection, and P+,
although not a local L2 projection, does have the property that s −P+s is locally orthogonal
to all polynomials of degree up to k − 1, we have

∫

I j
δeδt dx +

∫

I j
(δev − veδ)dx +

∫

I j
(δet sx + se(δt )x + vesx + sevx )dx = 0.

Noticing the special interpolation property of the projection P+, we have

(̂se[δt ]) j− 1
2

+ (s̆e[v]) j− 1
2

= 0.

Then equation (A.2) becomes

B j (s
e, ξ e, ve, δe;−s, δt , s,−δ, v) = (

(̂ve + δ̂et )[s]
)
j− 1

2
+ � j+ 1

2
− � j− 1

2
.
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Combining the above equation with (A.1), summing over j , taking into account the periodic
boundary condition, we obtain the desired equality (3.47). �	

A.4 Proof of Lemma 3.9

For the proof of this lemma, we follow the idea of Lemma 3.4 and 3.5 in [19]. For f (u) =
2μ(u)u in the μCH equation (1.1), we have f ′′(u) = 0 and f ′′′(u) = 0, then we could
simplify the proof.

Proof Review the equality (3.48), and the estimates for every part in the right-hand side of
(3.48) is as following

• Conservative scheme

For the last term, if f̂ is chosen as (3.14), we get trivially

N∑

j=1

((
f ({uh}) − f̂

) [s]) j+ 1
2

= 0,

for the reason that f̂ = 1
2

(
f (u+

h ) + f (u−
h )
) = 2μ0(u

−
h + u+

h ) = f ({uh}).
• Dissipative scheme

Besides, when f̂ is chosen as the Lax-Friedrichs flux (3.15), via the fact [uh] = [uh − u] =
[se − s], we have

N∑

j=1

((
f ({uh}) − f̂

) [s]) j+ 1
2

= α

2

N∑

j=1

([uh][s]) j+ 1
2

= α

2

N∑

j=1

([se][s]) j+ 1
2

− α

2

N∑

j=1

([s][s]) j+ 1
2

≤ −α

2

N∑

j=1

([s]2) j+ 1
2

+ Ch2k+1,

where α = maxuh | f ′(uh)| ≥ 0.
For the other two terms

∑N
j=1

∫
I j

( f (u)− f (uh))sxdx+∑N
j=1 ( f (uh) − f (({uh}))[s])j+ 1

2
,

observing that f (u) = 2μ(u)u where μ(u) is conservative, denoting Cμ = 2μ(u), we can
obtain

f (u) − f (uh) = Cμ(s − se),

f (u) − f ({uh}) = Cμ({s} − {se}),
then

N∑

j=1

∫

I j
( f (u) − f (uh))sxdx +

N∑

j=1

( f (uh) − f (({uh}))[s]) j+ 1
2

=
N∑

j=1

∫

I j
Cμssxdx +

N∑

j=1

Cμ({s}[s]) j+ 1
2

−
⎛

⎝
N∑

j=1

∫

I j
Cμs

esxdx +
N∑

j=1

Cμ({se}[s]) j+ 1
2

⎞

⎠

= T1 + T2,
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where

T1 =
N∑

j=1

∫

I j
Cμssxdx +

N∑

j=1

Cμ({s}[s]) j+ 1
2
,

T2 = −
⎛

⎝
N∑

j=1

∫

I j
Cμs

esxdx +
N∑

j=1

Cμ({se}[s]) j+ 1
2

⎞

⎠ .

Making further analysis, we can get

T1 = Cμ

⎛

⎝
N∑

j=1

∫

I j

1

2
(s2)xdx +

N∑

j=1

(
s+ + s−

2
(s+ − s−)

)

j+ 1
2

⎞

⎠ = 0,

T2 = −Cμ

⎛

⎝
N∑

j=1

∫

I j
sesxdx +

N∑

j=1

({se}[s]) j+ 1
2

⎞

⎠

≤ Cμ‖se‖‖sx‖ + Cμ‖se‖�h‖s‖�h

≤ C‖s‖2 + Ch2k .

Combining them and we can get the conclusion of Lemma 3.9

N∑

j=1

H j ( f ; u, uh; s) ≤ C‖s‖2 + Ch2k .

�	
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