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Abstract
In this work we present a new model of BGK type for polyatomic gases. The model incor-
porates the different relaxation rates of translational, rotational and/or vibrational modes
characterizing polyatomic molecules using a BGK-type equation, and additional relaxation
equations for the temperatures associated to each internal energy mode. We construct an
efficient numerical scheme which is implicit in the relaxation terms, and test the model and
the scheme on several problems, confirming the Asymptotic Preserving properties of the
scheme, and comparing the results provided by the model with experimental and DSMC
simulations, carried out on the full Boltzmann polyatomic equation.

Keywords Kinetic models · Polyatomic gas · Multi-temperature · BGKmodel · AP schemes

1 Introduction

We propose a simple model based on the BGK equation, extended to include polyatomic
gases. The energy of a monoatomic gas, in the absence of an external field, is stored entirely
in the kinetic energy of its molecules. In a polyatomic gas, energy is stored not only in the
molecule speed, but also in their internal rotational and vibrational modes. The state of a
monoatomic molecule can be completely described by the trajectory of a point in a phase
space composed of the different space directions available, and the corresponding directions
ofmotion. The passage frommonoatomic to polyatomic gases implies that additional degrees
of freedom should be considered, because now the state of each molecule is given not only
by its position and speed, but also by its rotational and vibrational modes. Thus, the number
of dimensions for the state space of a polyatomic molecule increases with the complexity of
the molecule.

The evolution of a polyatomic gas in non equilibrium conditions is clearly extremely
important in applications. In many cases, for instance, air can be modelled as a gas composed
of biatomic molecules. However, most kinetic models deal with the case of a monoatomic
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gas. The extension to the polyatomic case has been studied especially in the context of the
full Boltzmann equation, see for example the classic text by Cercignani, [13].

The structure of the Boltzmann equation is extremely complex, and its complexity nat-
urally increases for polyatomic gases. Thus, there is a strong interest to develop simplified
models for non equilibrium flows of polyatomic molecules, especially with the purpose of
developing effective and fast numerical methods, to accurately compute solutions of interest
for engineering applications.

A simplified kinetic model which is particularly effective in scientific computing is the
BGK model, [9]. BGK is derived from Boltzmann equation, assuming that the relaxation to
equilibrium is very fast, or that the flow is close to equilibrium. However, it is known that
BGK provides good approximations to rarefied flows even in non equilibrium conditions,
see the recent [17], or [2,26]. The more refined ES-BGK model moreover provides correct
estimates for the Prandtl number, and, as standard BGK, can be proven to satisfy entropy
decay, [4]. The popularity of BGK-like models is due to the fact that they provide the correct
asymptotic limits, but can also model effectively moderately non-equilibrium regimes.

The standard BGK model applies to a monoatomic gas. In the polyatomic case, it is
necessary to take into account the internal degrees of freedom of polyatomic molecules. The
collisions between molecules cannot be considered as elastic, because they result not only in
kinetic energy exchanges between the molecules, but they also involve exchanges between
rotational and vibrational energies. Polyatomic corrections to kinetic models can be found
in [10] or [14]. Here we are more interested in the extension of BGK models to include
polyatomic effects, see [27], or [11] for an extension to the polyatomic case of the ES-BGK
model. A possible alternative is [23], which is used in [26] and [17], which, however, does
not guarantee the positivity of the distribution function.

Unlike previousmodels,we consider aBGKoperatorwhich relaxes on a localMaxwellian,
depending on different temperatures. This is coupled with a scalar relaxation equation that
drives the temperatures associated to the different degrees of freedom towards a global tem-
perature. The scalar equation is obtained imposing total energy conservation. We prove an
H-theorem for this model, which guarantees that the model satisfies the second principle of
thermodynamics, and that all temperatures remain positive throughout the evolution of the
gas (§2). We simplify the model considering an aggregate description of the dependence on
the internal energy degrees of freedom, based on reduced distribution functions in the spirit
of [15]. Next, in §3, we derive an Asymptotic Preserving scheme, in the sense of [16]. In this
fashion, the numerical solution will capture the correct asymptotic. The scheme is based on
[21], and is implicit in the relaxation terms. The properties of the scheme and of the model are
studied in §3, where we study the solution of typical shock tube problems, for different γ -law
gases, close to the hydrodynamic regime. Then, we consider the shock structure, showing the
effect of the different collision frequencies characterizing the internal and the translational
modes. We close with two-dimensional problems, derived from aerospace applications.

The collision operator of the BGK model describes a relaxation towards a local
Maxwellian, determined by the density, the macroscopic local speed and temperature. To
take into account polyatomic effects, we include a multiple step relaxation, assuming that the
different energy degrees of freedom relax with different speeds. This means that we assume
that the expected kinetic energies of the different degrees of freedom are represented by dif-
ferent temperatures, each relaxing with its own characteristic rate towards a final equilibrium
temperature T . This approach has already been used by [27], but the model described here
has a simpler structure. We note that the evolution of different temperatures appears also in
experimental data, [24], and DSMC simulations [26].
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2 Kinetic Models for Polyatomic Gases

The model we study is based on the BGK approach. The standard BGK model for a
monoatomic gas can be written as

∂ f

∂t
+ ξ · ∇x f = 1

τ

(
M f − f

)
, (1)

where M f is the equilibrium distribution function in dimensionless form computed from
macroscopic quantities. In the monoatomic case, it is expressed as

M f (x, ξ , t) = ρ(x, t)
(2πT (x, t))3/2

exp
(

− |ξ − U(x, t)|2
2T (x, t)

)
.

The macroscopic quantity τ is the relaxation time that depends on local and global variables,
namely the local density and temperature, but also the reference viscosity μ0 at the reference
temperature T0, the reference density ρ0, the specific gas constant R and the characteristic
length of the problem L:

1

τ
=

√
RT0ρ0L

μ0
ρT 1−δ = 1

Kn∞
ρT 1−δ, (2)

where δ is the exponent of the viscosity law of the gas, and Kn∞ is the Knudsen number in
reference conditions.

The macroscopic quantities (the density ρ , the velocity U and the total energy E) char-
acterizing the flow can be recovered from the moments of f :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ =
∫

R3
f dξ

ρU =
∫

R3
ξ f dξ

E =
∫

R3

|ξ |2
2

f dξ

(3)

In the following section, we describe the extension we propose to the polyatomic case.

2.1 A BGK BasedModel

The idea is to add additional energy degrees of freedom in the expression of the Maxwellian
distribution function. This is done increasing the dimensions d of the space of microscopic
speeds. We treat these additional variables as microscopic velocities, so that their expected
value at themacroscopic scale is zero, implying that they do not contribute to themacroscopic
velocity of the gas. However, we can associate an internal energy to the effect of these vari-
ables on the distribution function, computing their second moment. Moreover, we consider
a general case where the energy is not equally distributed between the energy degrees of
freedom.

First,we state the notation thatwill be used throughout. Letn be the number of translational
degrees of freedom (which usually coincides with the number of space dimensions) and r
be the number of the rotational and vibrational degrees of freedom, mimicking the internal
structure of the molecule, with d = n+ r . Denote by η ∈ R

d the vector of all energy degrees
of freedom, and of these ξ ∈ R

n will be used to single out the translational degrees of
freedom (then η = ξ for the BGK model of a monoatomic gas). Further, η ∈ R

d will be the
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macroscopic value on which the equilibrium function is centred (the macroscopic velocityU
in the case of the monoatomic BGK model), λ ∈ R

d is the vector of the coefficients giving
the distribution of the energy between the degrees of freedom (this coincides with 1/2T in the
case of the monoatomic BGK model for each of the three translational degrees of freedom).

In this model, hence, we propose to explicitly model the dynamics of the additional rota-
tional, vibrational and other degrees of freedom. In other approaches, like in [3], these degrees
of freedom are all lumped in the internal energy. In particular, compared to [3], the main dif-
ference here is in the mechanism of relaxation of the internal and translational temperature to
the equilibrium temperature. In our approach, the relaxation is explicitly ensured at macro-
scopic level in the source term of the transport equation for the rotational temperature. In [3],
thanks to the consistency of the stress tensor with the third order moment of the Gaussian
equilibrium function, the relaxation of the internal temperature to the equilibrium tempera-
ture is implicitly enforced. This would not be feasible in the present BGK model. However,
the main advantage of our model with respect to [3] is that it is much cheaper since BGK
type models are less costly than ES-BGK type models.

The polyatomic BGK model we propose reads:

∂ f

∂t
+ ξ · ∇x f = 1

τ

(
M f − f

)

M f (x, η, t) = ρ(x, t)
∏

k=1,d

(λk

π

)1/2
exp

(
− (λk(ηk − ηk)

2
)
. (4)

For simplicity, we state the model for the particular case of bi-atomic molecules, which can
be easily extended to more complex polyatomic gases. Here we will have three translational
and two rotational degrees of freedom. Considering the same temperature for similar degrees
of freedom in the case of a diatomic gas, we have:

λ =
(

1

2

,

1

2

,

1

2

,

1

2�
,

1

2�

)T

. (5)

The evolution of λ is governed by the equation of energy conservation. This closure equa-
tion is obtained by the relaxation of the local Maxwellian M f to the equilibriumMaxwellian,

∂M f

∂t
+ ξ · ∇xM f = 1

Zrτ

(
Meq − M f

)

Meq(x, η, t) = ρ(x, t)
(2πTeq(x, t))d/2 exp

(
− |η − η|2

2Teq(x, t)

)
(6)

Here, Zr is a parameter that accounts for the fact that the rotational collision frequency is a
priori different from the translational collision frequency, thus the relaxation time towards a
common temperature Teq is governed by a different characteristic time Zrτ with respect to
the relaxation time τ appearing in the evolution of f . We choose for Zr , the model given in
[18] :

Zr = Z∗
r

1 + (π3/2/2)
√
T̃ /T t + (π + π2/4)(T̃ /T t)

(7)

where the constants Z∗
r and T̃ depends on the gas. For N2 over a temperature range from

30K to 3000K, Z∗
r = 23 and T̃ = 91.5K.
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Multiplying the kinetic equation (6) by
∏

k=n+1,d ηk and integrating in phase space, we
obtain the evolution equation for the rotational energy,

∂

∂t
(ρ�) + ∂

∂x
(ρU�) = ρ

Zrτ
(Teq − �),

which can be simplified using mass conservation to give:

∂t� + U · ∇� = 1

Zrτ
(Teq − �). (8)

The system is then closed imposing that total energy is conserved in (4) and (6). From this,
the internal energy is obtained:

ρeint =
∫

Rr

1

2

d∑
k=1

(ηk − ηk)
2 f (9)

= 1

2
ρ

d∑
k=1

1

2λk
(10)

= 1

2
ρ(n
 + m�) = d

2
ρTeq , (11)

where we recall that n and m are respectively the number of translational and rotational
degrees of freedom and n + m = d .

The full model in the case of a diatomic gas reads then:
⎧⎪⎨
⎪⎩

∂ f

∂t
+ ξ · ∇x f = 1

τ

(
M f − f

)

∂t� + U · ∇� = 1

Zrτ
(Teq − �)

(12)

where M f (x, ξ , η, t) = ρ

(2π
)n/2(2π�)m/2 exp
(

− |ξ − U|2
2


− |η̂|2
2�

)
where η̂ contains

only the rotational energy degrees of freedom which have a zero mean value.
Compared to [18], the proposed model has a lower computational cost since we introduce

only one equilibrium distribution function which represents a very costly part in a numerical
code.

3 Properties of the Polyatomic Model

In the following, we derive several important properties for the polyatomic BGK model
introduced in the previous section.

3.1 Moments

In this model, density, momentum and total energy are conserved

ρ =
∫

Rd
f dη =

∫

Rd
M f dη (13)

ρη =
∫

Rd
η f dη =

∫

Rd
ηM f dη (14)
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E =
∫

Rd

|η|2
2

f dη =
∫

Rd

|η|2
2

M f dη. (15)

However, the partial moments are not conserved. Considering the same ordering for the
microscopic velocities we used above, we find

n

2
ρTt =

∫

Rd

1

2

n∑
k=1

(ηk − ηk)
2 f dη and

n

2
ρ
 =

∫

Rd

1

2

n∑
k=1

(ηk − ηk)
2M f dη (16)

m

2
ρTr =

∫

Rd

1

2

d∑
k=n+1

(ηk − ηk)
2 f dη and

m

2
ρ� =

∫

Rd

1

2

d∑
k=n+1

(ηk − ηk)
2M f dη.

(17)

Thus the model must provide the time evolution not only of the distribution function, but also
of all partial temperatures. This is the task of the evolution equation for � in (12), which,
together with the conservation of total energy, is enough to provide the time evolution of all
temperatures involved in the model.

3.2 Positivity

In this section, we show that the model preserves the positivity of the distribution function
and of all partial temperatures in the space homogeneous case. In this case, the model reduces
to

∂t f = 1

τ
(M f − f ) (18)

∂t� = 1

Zrτ
(Teq − �) (19)

with f0 and �0 as positive initial conditions for f and � respectively. Since in the space
homogeneneous case, the total energy is a constant, we also have ∂t Teq = 0. Moreover, mass
is conserved. Thus, if at the initial time, the density is positive, the Maxwellians M f and Meq

remain positive.
Multiplying the first equation of the homogeneous model (18) by et/τ , we get

∂t
(
et/τ f

) = 1

τ
M f e

t/τ

which, integrating between 0 and t , yields

f (ξ , η, t) = f0(ξ , η) e−t/τ + 1

τ

∫ t

0
es/τ M f (ξ , η, s) ds.

Provided the initial condition satisfies f0 ≥ 0,M f remains positive, and the previous equation
implies f ≥ 0.

We use the same technique to prove the preservation of positivity for all partial temper-
atures. We multiply the equation for the rotational temperature (19) by et/(Zr τ). Since the
equilibrium temperature Teq is constant,

�(t) = �0 e
−t/(Zr τ) + Teq(1 − e−t/(Zr τ)), (20)

which proves that the rotational equilibrium temperature remains positive, provided�0 ≥ 0.
A similar argument shows the positivity of 
, again if 
 ≥ 0 at the initial time.
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3.3 TheH Theorem

One of the most important properties of the Boltzmann equation is that it respects the H
theorem, which governs the evolution towards equilibrium of the solution. It means that
the second principle of the thermodynamics is satisfied. To be valid, our model should also
respect this theorem.

Let us define the H-function as:

H( f ) =
∫

Rd
f log f dη + Zr

∫

Rd
M f logM f dη (21)

H-theorem Let f be the solution of the polyatomic model (1). Consider an isolated gas
enclosed in a domain �x such that:

∫

∂�x

∫

Rd
(ξ − ub) · e f log f dηdS = 0,

where ub is the velocity of the boundaries of � and e is the outward pointing normal to ∂�x.
Assume that Zr > 0, and that the initial temperatures are well prepared, in the sense that
Tr (0) = �(0). Suppose further that, at the initial time, f (., ., t = 0) ≥ 0, then

dH

dt
� 0

for all time, where H [ f ] = ∫
�x

Hdx. Moreover
dH

dt
= 0, if and only if f = Meq.

Proof We prove the theorem for the space homogeneous case. The general case then follows
from the proof of the H-theorem for the standard BGKmodel, [3]. Since density, momentum
and total energy are conserved, the equation for the rotational energy can be rewritten as

∂t M f = 1

Zrτ
(Meq − M f ). (22)

Let us multiply Eq. (18) by (1 + log f ) and integrate over the space of all microscopic
velocities �η. Then multiply (22) by Zr (1+ logM f ), integrate in velocity space and add the
two results. We obtain:

dH
dt

= 1

τ

∫

Rd
(M f − f )(1 + log f )dη + 1

τ

∫

Rd
(Meq − M f )(1 + logM f )dη.

Since the first moment of M f , f and Meq coincide, the right hand side can be rewritten as

dH
dt

= 1

τ

∫

Rd
− ( f − M f

) (
log f − logM f

)
dη

︸ ︷︷ ︸
A

+ 1

τ

∫

Rd

(
Meq − f

)
logM f dη

︸ ︷︷ ︸
B

(23)

The term A is clearly negative, due to the convexity of the log function.Wecontinue evaluating
the sign of B. To this end, we subtract the quantity

∫
(Meq − f ) logMeq , which is zero, due to

conservation of mass, momentum and total energy. The integrals can be explicitly calculated,
and we find

B =
∫

Rd
(Meq − f ) log

M f

Meq
dη = 1

4
ρ log

T n+m
eq


n�m

[
n

(
1

Teq
− 1




)
(Teq − Tt )

+m

(
1

Teq
− 1

�

)
(Teq − Tr )

]
.
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Conservation of total energy implies that (n +m)Teq = nTt +mTr , thus B can be rewritten
as

B = −1

4
ρ log

T n+m
eq


n�m

[
n
1



(Teq − Tt ) + m

1

�
(Teq − Tr )

]
.

Conservation of total energy implies also that Teq can be written as a convex combination of

 and�, as Teq = n

n+m
+ m
n+m�. Using the convexity of the log, we have (n+m) log Teq ≥

n log
 + m log�. Further, we substitute n(Teq − Tt ) = −m(Teq − Tr ), obtaining

sign(B) = −sign

[
(Teq − Tr )

(
1

�
− 1




)]
.

Now, multiply (18) by η2 and integrate over velocity space, to obtain the evolution equation
for Tr :

∂tρmTr = 1

τ
(mρ� − mρTr ) .

Eliminate the density through mass conservation, substitute the exact expression for the
rotational temperature � from (20), and integrate the resulting linear non homogeneous
ODE, finding

Tr (t) = Tr (0)e
−t/τ + Zr

1 − Zr

[
e−t/(Zr τ) − e−t/τ

]
(Teq − �0) + Teq(1 − e−t/τ ).

Let us choose a well-prepared initial condition for the relaxation rotational temperature �0,
namely �0 = Tr (0). Rearranging terms, we find

Teq − Tr (t) = 1

1 − Zr
e−t/τ

(
1 − Zre

− t
τ

1−Zr
Zr

)
(Teq − �0).

If we suppose that Zr �= 1, one easily finds

sign(Teq − Tr (t)) = sign(Teq − �0), (24)

and the same holds if Zr → 1. In fact, in this case the model reduces to the standard BGK
model with d degrees of freedom. Using again (20), we have


(t) − �(t) = n + m

n
e−t/(Zr τ)(Teq − �0).

Finally, since the temperatures are positive, substituting (24) and the previous result in the
expression for B, we have

sign(B) = −sign2(Teq − �0),

which proves that the entropy production is negative.

Clearly, if f = M f = Meq , then
dH
dt

= 0. On the other hand, we have proved that

dH
dt

is composed of two terms which are the integrals of two non positive functions. The

first integral, A in (23) is zero if and only if f = M f , while the second term is zero if

and only if f = Meq , in both cases due to the convexity of the log. Thus, if
dH
dt

= 0,

then f = M f = Meq . This proves that at the final equilibrium f is a Maxwellian, with all
temperatures equal to Teq . 
�
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Remark 1 Well prepared temperatures. If the initial temperatures are not well prepared,
the expression for T − Tr (t) becomes slightly more complicated:

Teq − Tr (t) =
[
Teq − Tr (0) + 1

1 − Zr

(
1 − e− t

τ
1−Zr
Zr

)
(Teq − �0)

]
e−t/τ .

To prove the entropy decay we need to assume that sign(Teq − Tr (0)) = sign(Teq − �0).
Thus, the theorem can be generalized to include this condition.

3.4 The ReducedModel

Let D be the number of space dimensions, while d is, as before, the total number of energy
degrees of freedom, that is the distribution function f depends on D+d independent variables,
plus time. This makes the problem extremely complex from a computational point of view,
due to its high dimensionality. However, it is possible to reduce the number of dimensions
of the distribution function with Chu’s reduction, [15].

In the standard BGK model, Chu’s reduction can be applied whenever the distribution
function f depends only on r < D degrees of freedom in space. Then it is possible to rewrite
the kinetic equation using only r degrees of freedom, also in the microscopic velocity space.
For example, in a two dimensional problem in space, the number of independent variables
can be reduced to four plus time (two in space and two in microscopic velocity).

We review Chu’s reduction, outlining how it is applied to the present case. In the case of
a bi-atomic molecule, we will apply the reduction to aggregate the internal energy degrees
of freedom. Let us consider the case in which we want to reduce the m rotational degrees of
freedom, while the system has n translational degrees of freedom, with n + m = d . Let us
label the indices pertaining to the translational and the rotational degrees of freedom as 1 to
n = d − m and d − m + 1 to d , respectively. Correspondingly, the microsocopic velocities
will be labelled as (ξ1, . . . , ξn, η1, . . . , ηm) = (ξ , η). We introduce two reduced distribution
functions such that:

f1(x, ξ , t) =
∫

Rm
f (x, ξ , η, t) dη (25)

f2(x, ξ , t) =
∫

Rm

1

2

m∑
l=1

η2l f (x, ξ , η, t) dη (26)

The model reduces to a system of two equations:

∂ f1
∂t

+ ξ · ∇x f1 = 1

τ

(
M f1 − f1

)

∂ f2
∂t

+ ξ · ∇x f2 = 1

τ

(
M f2 − f2

)
(27)

where the reduced Maxwellians are expressed as:

M f1(x, ξ , t) =
∫

Rm
M f (x, ξ , η, t) dη

M f2(x, ξ , t) =
∫

Rm

1

2

m∑
l=1

η2l M f (x, ξ , η, t) dη. (28)
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Their analytical expressions can be calculated by recalling that the value ηk on the reduced
dimensions is zero:

M f1 = ρ

n∏
k=1

(λk

π

)1/2
exp

(
− λk(ηk − ηk)

2
)

= ρ

(2π
)n/2 exp
(

− (ξ − U)2

2


)
(29)

M f2 =
d∑

k=d−m+1

1

4λk
M f1 = m�

2
M f1 . (30)

Equation (8) is also needed to close the system. The total temperature Teq needed in (8) is
obtained from the total internal energy of the system, which is given by

d

2
ρTeq =

∫

Rn

1

2
(ξ − U)2 f1 dξ +

∫

Rn
f2 dξ . (31)

The coupled system (27), together with (8) and the coupling condition (31) is equivalent to
(12), but the unknowns f1 and f2 depend only on x , ξ and t .

In 1D and 2D problems in space, we cannot reduce the residual translational degrees
of freedom together with the rotational degrees of freedom, because otherwise, the model
would not allow to recover the translational and rotational temperatures from the reduced
distribution functions.Only the equilibrium temperature could be computed in that case, since
the first distribution function f1 would have a portion of the translational energy while the
second reduced distribution function f2 would contain the remaining part of the translational
energy, along the reduced spatial dimensions, together with the rotational energy. It would
then be impossible to extract the contribution of the different temperatures, from the variance
of f2.

For 1D and 2D problems, we can still reduce the dimensions of the translational degrees
of freedom, to 1 and 2 dimensions respectively, provided we apply Chu’s reduction in two
steps. We introduce one more distribution function, giving the translational energy along
the reduced dimensions. Thus, the first reduced distribution function f1 will contain all
information about density, momentum, and the translational energy corresponding to the
degrees of freedom remained in the reduced model, the second distribution function f2 will
be used to account for the rest of the translational energy, while the third one f3 will give
the rotational energy. In 3D, there is no need of the second distribution function, and then
we will use only the two reduced distributions f1 and f2, as described previously. If f1, f2,
f3 are the reduced distribution functions in 1D or 2D (with M1, M2, M3 their corresponding
equilibrium functions). Let r be the number of the degrees of freedom retained in the model,
and D be the number of space dimensions, then

f1 =
∫

Rd−r
f

d∏
k=r+1

dηk and M1 = ρ

r∏
k=1

(λk

π

)1/2
exp

(
− λk(ηk − ηk)

2
)

f2 =
∫

Rd−r

1

2

D∑
l=r+1

η2l f
d∏

k=r+1

dηk and M2 =
D∑

k=r+1

1

4λk
M1

f3 =
∫

Rd−r

1

2

d∑
l=D+1

η2l f
d∏

k=r+1

dηk and M3 =
d∑

k=D+1

1

4λk
M1 (32)
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Again, Eq. (8) is also needed to close the system. The total temperature Teq appearing in (8)
is obtained from the total internal energy of the system, which now is given by

d

2
ρTeq =

∫

Rr

1

2

r∑
k=1

(ηk − ηk)
2 f1

r∏
k=1

dηk +
∫

Rr
f2

r∏
k=1

dηk +
∫

Rr
f3

r∏
k=1

dηk . (33)

For more complex molecules, this procedure can be extended quite easily. The reduced
model would then consist of one more kinetic equation for each set of degrees of freedom
resulting in the same partial temperature, together with one more macroscopic evolution
equation for each partial temperature.

4 Numerical Methods

We present the space and time discretization in the 1D case, so that we can also illustrate
how the reduced system (32) is discretized in velocity space, enforcing exact conservation
also at the discrete level. The extension to multidimensional cases is straightforward, since
Cartesian grids are chosen to take advantage of easy parallelization.

4.1 Velocity Space Discretization

Weconsider a bi-atomic gas, in 1D in space. Thus d = 5 (total number of degrees of freedom),
m = 2 (number of rotational degrees of freedom), and r = 1, i.e. only one degree of freedom
in space is retained, out of D = 3. By construction, the reduced distribution function f1 and
the reduced Maxwellian M1 satisfy:

∫

Rr
M1

(
1
ξ

)
dξ =

(
ρ(x, t)
ρ(x, t)U(x, t)

)
=
∫

Rr
f

(
1
ξ

)
dξ .

This is an essential property to ensure conservation of mass and momentum. Conservation
of energy is more complicated. We recover the equilibrium temperature Teq from (33)

d

2
ρTeq =

∫

Rr

1

2
(ξ − U)2 f1 dξ +

∫

Rr
f2 dξ +

∫

Rr
f3 dξ .

With this information, we find the rotational temperature � from (8) and the transla-
tional temperature as 
 = Teq − �, with which we construct the Maxwellian M1 =
ρ/(2π
)r/2exp(−(ξ − U)2/(2
).

In the discrete case, a grid must be introduced in velocity space and integrals are evaluated
by quadrature. Thus, conservation of mass, momentum and energy must be enforced at the
discrete level. Let 〈., .〉 denote the quadrature rule on Rr . Based on the work of Cabannes et
al. [12] on entropic Maxwellian states, Mieussens proved in [19] that a discrete Maxwellian
can be expressed as M̃ f = exp(α · m(ξ)), such that:

〈M̃ f (ξ),m(ξ)〉 =
⎛
⎝

ρ

ρU
E

⎞
⎠ = 〈 f (ξ),m(ξ)〉, with m(ξ) =

⎛
⎝

1
ξ

1
2 (ξ)2

⎞
⎠

at the discrete level, where we have used the same symbol for the discrete moments of f ,
with a slight abuse of notation. The discrete Maxwellian distribution function M̃ f can then
be computed as the solution of the non-linear algebraic system above solved with a Newton-
Raphson algorithm. The details of this algorithm can be found in [8] or [6] in the case of the
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standard BGKmodel. A local grid technique to reduce the cost associated to the discretization
in velocity as in [7] can also be applied.

To adapt it to our polyatomic model under its reduced form, it is enough to compute the
total discrete energy as

E = 〈1
2
(ξ)2 f1〉 + 〈 f2〉 + 〈 f3〉.

Then the total discrete internal energy is given by

d
2ρTeq = E − 1

2ρU.

Next, substitute the discrete Teq into the temperature Eq. (8), to find the corresponding
translational temperature 
. Finally, we solve the non linear algebraic system

〈exp(α · m(ξ))〉 =
⎛
⎝

ρ

ρU
m


⎞
⎠ , with m(ξ) =

⎛
⎝

1
ξ

1
2 (ξ − U)2

⎞
⎠ ,

where ρ = 〈 f1〉 and ρU = 〈ξ f1〉, and m is the number of rotational degrees of freedom.
We use a uniform velocity grid symmetric with respect to 0 and such that f is negligi-

ble outside the grid. Hence, the trapezoidal quadrature rule is used, because it has spectral
accuracy for smooth and periodic functions on a uniform grid. In 1D:

Gv = (ξ j ) j=−n..n with ξ j = j�ξ

For multidimensional cases, the same discretization is independently performed in all direc-
tions.

4.2 Space Discretization

The physical space x is discretized with N cells of size �x such that N�x = xout − xin , xin
and xout being the boundaries of the domain. Let�i be the i-th space cell. The kinetic equation
is solved with a finite volume scheme, while the equation on the rotational temperature is
solved with a finite difference method.

∂ fi, j
∂t

(t) + ξ j ·
∫

∂�i

f (x, ξ j , t)n∂�i dσ = 1

τi
((M f )i, j − fi, j ), (34)

where fi, j = 1

|�i |
∫
�i

f (x, ξ j , t) dx and (M f )i, j = 1

|�i |
∫
�i

M f (x, ξ j , t) dx , while taui

is the relaxation time evaluated at the center of the cell �i : note that this is enough up to
second order accuracy. Here, σ is the integration variable representing a surface element.

Since a uniform Cartesian grid is considered, the equation in 1D can be simply rewritten
in terms of fluxes at each numerical interface (between two cells):

∂ fi, j
∂t

(t) + 1

�x

(
Fi+ 1

2 , j − Fi− 1
2 , j

)
= 1

τi
((M f )i, j − fi, j ), (35)

where Fi+ 1
2 , j is the numerical flux between the cell �i and the cell �i+1, at the velocity grid

node ξ j and can be defined with an upwind discretization as

Fi+ 1
2 , j = max(0, ξ j ) f

l
i+1/2, j + min(0, ξ j ) f

r
i+1/2, j , (36)
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with f r and f l the values of f on the two sides of the interface and ξ j the first component
of the microscopic velocity. The numerical expression of the distribution functions f l , f r

depends on the reconstruction used at the numerical interface. For a first order reconstruction,
f li+1/2 = fi and f ri+1/2 = fi+1. For second order accuracy, a MUSCL reconstruction with
slope limiters (MinMod for example) is employed. Dropping the velocity index j , we have

⎧⎪⎨
⎪⎩

f li+1/2 = fi + 1

2
MinMod( fi+1 − fi , fi − fi−1)

f ri+1/2 = fi+1 − 1

2
MinMod( fi+1 − fi , fi+2 − fi+1)

(37)

The second equation for the transport and the relaxation of the rotational temperature is
solved with a finite different scheme with upwind fluxes:

∂t�i = Teq i − �i

Zrτ
− 1

�x

(
Ui + |Ui |

2
(�i − �i−1) + Ui − |Ui |

2
(�i+1 − �i )

)
. (38)

Again, this formula can be easily extended to second order accuracy.

4.3 Time Discretization

The time discretization is performed with an IMEX scheme [5] for the kinetic model and the
macroscopic equation. The convective part of the equation is integrated explicitly and the
relaxation part implicitly. In this way, the constraint on the time step only comes from the
convective part of the equation.

In the following, we drop the indices i, j denoting the space and velocity location of the
variables. For simplicity, we focus on the D dimensional reduced model defined in (27), with
the Maxwellians defined in (28). The time integration for a ν-stages IMEX Runge-Kutta
scheme applied to each kinetic equation composing this model is

f n+1
L = f nL − �t

ν∑
k=1

ω̃kξ∇x f
(k)
L + �t

τ

ν∑
k=1

ωk

(
M (k)

fL
− f (k)

L

)

f (k)
L = f nL − �t

k−1∑
l=1

Ãk,lξ∇x f
(l)
L + �t

τ

k∑
l=1

Ak,l

(
M (l)

fL
− f (l)

L

)
,

(39)

where L = 1, 2 denotes one of the two distribution functions, A and Ã are ν × ν matrices,
with Ãi,s = 0 if s ≥ i and Ai,s = 0 if s > i . These coefficients are derived from the double
Butcher’s tableaux:

Ã
ω̃T

A
ωT

in which all coefficients composing the IMEX scheme satisfy the correct coupling conditions,
guaranteeing the correct accuracy, see [5,20] All the quantities until stage k − 1 are known
so the equation for stage k becomes:

f (k)
L = τ

Ak,k�t + τ

(
f nL − �t

k−1∑
l=1

Ãk,lξ∇x f
(l)
L + �t

τ

k−1∑
l=1

Ak,l(M
(l)
fL

− f (l)
L )

)

+ Ak,k�t

τ + Ak,k�t
M (k)

fL

(40)

123



1906 Journal of Scientific Computing (2019) 78:1893–1916

where f (k)
L , L = 1, 2 can be computed immediately, provided one knows the Maxwellian

M (k)
fL

at the stage k. In fact, all other quantities involved, which have been gathered in the
first parenthesis, are known from previous stages. In the case of a classical BGK model
the Maxwellian at the stage k, M (k)

f can be computed using the macroscopic variables at
the previous stages, see [21]. Here, the evaluation of the Maxwellian is again slightly more
complicated, because the different temperatures are not completely defined from the kinetic
model.

Computing discrete moments of the second equation in (39), one finds
⎛
⎝

ρ(k)

ρ(k)U(k)

E (k)

⎞
⎠ =

⎛
⎝

ρn

ρnUn

En

⎞
⎠− �t

k−1∑
l=1

Ãk,l〈
⎛
⎝

ξ

ξ ⊗ ξ
1
2 ξξ2

⎞
⎠∇x f

(l)
1 +

⎛
⎝
0
0
ξ

⎞
⎠∇x f

(l)
2 〉 (41)

because the conservation of mass, momentum and total energy, enforced at the discrete level,
implies that the moments of the relaxation term is exactly zero. Thus, mass, momentum and
the equilibrium temperature Teq can be computed at the time level (k) from quantities known
from the previous stages. Note, in particular, that for a first order scheme, with a single time
level, we would have that macroscopic quantities remain constant during the relaxation step.

The IMEX step is applied also to (8):

�(k) = �n − �t
k−1∑
l=1

Ãk,lU∇x�
(l) + �t

Zrτ

k∑
l=1

Ak,l

(
Teq

(l) − �(l)
)

. (42)

Since T (k)
eq is already known, one can easily compute�(k), 
(k) and complete the construction

of M (k)
f1

and M (k)
f2
. Substituting this information in (40), one obtains f (k)

L , L = 1, 2 solving a
linear algebraic equation. Note that it is crucial that conservation holds exactly at the discrete
level, to ensure that the macroscopic variables do not depend on relaxation. Once all the
stages have been computed, the value of f n+1

L , L = 1, 2 can be found from the first equation
in (39), while �n+1 is given by

�n+1 = �n − �t
ν∑

k=1

ω̃kU∇x�
(k) + �t

τ

ν∑
k=1

ωk

(
Teq

(k) − �(k)
)

(43)

AsymptoticPreserving-theorem The IMEX scheme defined in (39), (42), (43) is Asymptotic
Preserving in the sense of [16], namely, as τ → 0, it becomes an explicit discretization of
the limiting Euler equations.

Proof We extend the proof appearing in [22]. As τ → 0, the system is projected on equi-
librium, namely from Eq. (39) f (k)

L → M (k)
fL
, and from Eq. (42) �(k) → T (k)

eq . Thus both
Maxwellians M fL depend on the same temperature Teq . Then the equation for the moments
(41) is closed by the Maxwellians, namely,

⎛
⎝

ρ(k)

ρ(k)U(k)

E (k)

⎞
⎠ =

⎛
⎝

ρn

ρnUn

En

⎞
⎠− �t

k−1∑
l=1

Ãk,l∇x〈
⎛
⎝

ξ

ξ ⊗ ξ
1
2 ξξ2

⎞
⎠M (l)

f1
+
⎛
⎝
0
0
ξ

⎞
⎠M (l)

f2
〉 (44)

The quadratures in the right hand side can be calculated explicitly. In particular, since all
temperatures coincide in the limit τ → 0, the energy equation becomes

〈
1
2 ξξ2M (l)

f1
+ ξM (l)

f2

〉
= 1

2ρ
(l)(U(l))2 + p(l)U(l) + 1

2 (n + m)ρ(l)U(l)T (l)
eq ,
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wherewe recall that n andm are the number of translational and rotational degrees of freedom,
respectively. Since n+m = d , we see that we obtain a discretization of the energy flux in the
Euler equation, for which the flux is 1

2ρU
2+(p+ρe)U, with e internal energy per unit mass.

Moreover, we also recover the correct γ -law equation of state. In fact, since at equilibrium all
degrees of freedom are endowed with the same energy, because the Maxwellian is isotropic,
for each component i, i = 1, n,

p =< [(ξ − U)i ]2M f1 >= ρTeq

but also ρe = d
2ρTeq , thus p = ρe(γ − 1), with γ = 1 + 2/d . The first two equations in

(41) give respectively the conservation of mass and momentum. Thus, the equation for the
stages of the macroscopic moments become

⎛
⎝

ρ

ρU
E

⎞
⎠

(k)

=
⎛
⎝

ρn

ρnUn

En

⎞
⎠− �t

k−1∑
l=1

Ãk,l∇x

⎛
⎝

ρ

ρU ⊗ U + p
1
2ρU

2 + U(p + d
2ρTeq)

⎞
⎠

(l)

. (45)

Analogously, computing moments of the first equation in (39) for L = 1, adding the first
moment of the equation for f2, in the limit τ → 0, we obtain

⎛
⎝

ρ

ρU
E

⎞
⎠

n+1

=
⎛
⎝

ρ

ρU
E

⎞
⎠

n

− �t
ν∑

k=1

ω̃k∇x

⎛
⎝

ρ

ρU ⊗ U + p
1
2ρU

2 + U(p + d
2ρTeq)

⎞
⎠

(k)

. (46)

The last two equations are an explicit Runge Kutta discretization of the Euler equations, with
a ν stages explicit RK scheme, defined by the Butcher tableau given by the coefficients ω̃k

and Ãk,l . 
�

5 Numerical Results

Most numerical test cases are simulations of the flow of nitrogen (N2), which is a bi-atomic
gas with a viscosity coefficient ω = 0.72. In this section, P-BGK will denote the polyatomic
BGK model proposed in this work. First and second order numerical schemes in space are
used with a first order in time (for computational time reasons).

5.1 Sod Shock Tube

We start illustrating the effect of the Asymptotic Preserving property of the scheme. We
consider a shock tube problem, for a polyatomic gas. Here we will consider the reduced 1D
model, with a total of d degrees of freedom, with m = d − 3. Since τ is very small, the
temperatures are very close, irrespective of Zr . Here, the space [0,1] is discretized with 100
grid points. In velocity, the space goes to -10 to 10 and discretized with 50 grid points. Zr is
taken from the model (7) and τ = 10−5.

⎧⎨
⎩

ρl = 1
ul = 0
pl = 1

and

⎧⎨
⎩

ρr = 0.125
ur = 0
pr = 0.1

(47)

We show the results for several values of m, comparing with the exact hydrodynamic
solution of the Riemann problem, with the corresponding value of γ = 1 + 2

d . The results
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Fig. 1 Comparison between exact and P-BGK solutions for γ = 5/3. Density (left) and Temperature (right)
profiles. First and second order scheme
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Fig. 2 Comparison between exact and P-BGK solutions for γ = 7/5. Density (left) and Temperature (right)
profiles. First and second order scheme
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Fig. 3 Comparison between exact and P-BGK solutions for γ = 4/3. Density (left) and Temperature (right)
profiles. First and second order scheme
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Fig. 4 Comparison between exact and P-BGK solutions for γ = 9/7. Density (left) and Temperature (right)
profiles. First and second order scheme

appear in Figs. 1 (monoatomic case), 2 (bi-atomic molecule), but also in Fig. 3 (a polyatomic
moleculewith 2 rotational degrees of freedomand one vibrational) and Fig. 4 for a polyatomic
molecule with four internal degrees of freedom.

It is clear from the figures that the kinetic scheme provides indeed a discretized solution of
the Euler equations,with the correct value of γ . Note also the sharpening of the discontinuities
in the solution from the first to the second order scheme. This effect is particularly noticeable
on the contact discontinuity.

5.2 A Stationary Shock

The set up of this test consists of initial conditions resulting in a Mach 2.2 stationary shock
located in x = 0. The initial conditions are the following:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ρl = 1
ul = C

√
γ

pl = (ρl u2l − ρr u2r )
γ + 1 − ρr

ρl
(γ − 1)

2γ (
ρr
ρl

− 1)

and

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ρr = C
ur = √

γ

pr = pl

ρr
ρl

(γ + 1) − (γ − 1)

γ + 1 − ρr
ρl

(γ − 1)
(48)

with C a coefficient depending on the Mach number in the left state expressed as

C = 2 + M2(γ − 1)

(γ + 1)M2 . (49)

Here, M = 2.2 and it corresponds to the Mach number on the left side of the shock.
The relaxation time τ is chosen as τ = Kn = 10−3, which means that the flow will be in

equilibrium away from the shock, but within the shock, non equilibrium effects will still be
noticeable.

Figure 5a shows the equilibrium temperature for Kn = 10−3 and different values of Zr .
One can see that the shock structure is modified as Zr increases, slowing down the conver-
gence to equilibrium. In particular, the shock becomes more diffused and is not symmetric
with respect to x = 0. Figure 5b shows the different temperature profiles for Zr = 50, 100.
Around the shock, the energy is more concentrated in the translational degrees of freedom.
As Zr increases, the translational temperature increases and it is greater than the equilibrium
temperature, as also observed in [18]. After the shock the translational and the rotational
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Fig. 6 Density profiles obtained with DSMC, experiments and the P-BGK model. a M=2, bM=10

temperature both relax towards the equilibrium temperature, because the flow is close to
equilibrium (Fig. 6).

This test case emphasizes that non-equilibrium phenomena, can lead to awrong estimation
of the heat fluxes after a shock, when only the equilibrium temperature is taken into account.
In the case of a bi-atomic gas, the rotational temperature can be 2.5 times larger than the
equilibrium temperature (if the translational temperature is 0 then Teq = 2/5 ∗ Tr ) and
the translational temperature 1.6 times larger (if the rotational temperature is 0 then Teq =
5/3 ∗ Tt ), modifying drastically the heat flux.

5.3 Comparison with Experimental Results

We consider again a shock tube problem, resulting in a stationary shock. We consider M = 2
andM = 10 in Eqs. (48) and (49), in order to compare our resultswith [1]where experimental
and DSMC results are shown for stationary shocks with these Mach numbers. T tl , T tr , Trl ,
Trr are the initial translational and rotational temperature on the left and on the right of the
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Fig. 7 Translational and rotational normalized temperatures. T t∗ = (T t − T tl )/(T tr − T tl ) and Tr∗ =
(Tr − Trl )/(Trr − Trl )

shock. In practice, T tl = Trl and T tr = Trr . Here, to fit with the experimental set up of
Alsmeyer and simulate the same conditions, we take Kn = 0.662. It is not clear how the
parameter Zr is chosen so we just took it from the empirical expression (7).

The results obtained with the P-BGKmodel are in good accordance with the experimental
and the DSMC results for the density profile. Both profiles fit well with the DSMC results.
Discrepancies can be observed in the temperature profiles, Fig. 7. It is apparent that the
translational temperature anticipates the shock for our model. It also affects the equilibrium
temperature since the energy is conserved and the rotational temperature does not compensate
the early increasing. However, the general behaviour and the peak are well captured. The
difference can be due to the uncertainty on the relaxation time for the rotational temperature,
and also to the need for a more refined approach, such as an ES-BGK extension of the present
model. The temperature profiles for M = 2 are not shown here since there are no data in [1]
for this Mach number.

5.4 Ringleb Flow

Now, we consider a 2D test for a bi-atomic gas close to the continuum regime, where we
can compare our results with 2D Euler solutions. We take τ close to zero (10−5), so that the
kinetic gas is close to equilibrium with Zr from (7).

In this test, we consider Ringleb flow, which is a 2D steady solution, where the analytical
solution can be calculated for Euler equations and will be used as a reference solution for the
kinetic model close to the hydrodynamic regime.

The Ringleb flow is potential, and the exact solution is obtained with the hodograph
method, [25]. Setting (θ ,V) such that u = V cosθ and v = V sinθ , the stream function is

given by � = sin θ

V
. The streamline equations are:
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Fig. 8 Equilibrium temperature
field for Ringleb flow
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with (for γ = 7/5, diatomic gas):

L = ln

(
3V

6 + 2
√
9 − 3V 2

)
−

√
9 − 3V 2(V 2 − 4)

V 2 − 3
, c2 = 1 − γ − 1

2
V 2, ρ = c

2

γ − 1 .

The computational domain is [-0.5,-0.1]×[-0.6,0] and the flow is solved between the two
streamlines �1 = 0.8 and �2 = 0.9. Since U · n = 0 on a streamline (with n the normal
to the streamline), any streamline can be considered as a solid boundary where the Euler
impermeability condition is enforced. The boundary conditions in inlet (y = −0.6) and
outlet (y=0) are supersonic and exactly imposed. The Knudsen number is set to 10−5, and
we take τ = Kn. The physical space is discretized with 256×384 points. The velocity space
goes from -14 to 14 and discretized with 21 grid points in each direction. First order schemes
are used.

Figure 8 shows the temperature field in the steady state Ringleb solution for the kinetic
solution. We also show the two streamlines delimiting the computational domain. Note that
there are no spurious effects at the boundary. The boundary conditions in fact are imposed
with the AP boundary condition from [8].

The convergence study towards the exact equilibrium solution is found in Fig. 9a, b for the
L1 and the L∞ norm of the error respectively. Convergence is studied under grid refinement
for the first order scheme, on a few macroscopic variables, namely, the two components of
the velocity, pressure and the sound speed.
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Fig. 9 Convergence towards the analytical Euler solution in L1 and L∞ norm. a L1 norm, b L∞ norm

Fig. 10 Equilibrium temperature

5.5 Blunt Body at M=5

We consider a Blunt body in a flow atM = 5 in 2D. The Blunt body has a radius of 0.01 units,
and the domain is [−0.05, 0] × [0, 0.05] discretized with 100 cells in each direction. The
reduced velocity field is [−14, 14]×[−14, 14] discretized with 33 cells in each direction. On
the Blunt body a diffuse boundary condition is imposed with T = 1 and U = 0 considering
the gas close to the wall at equilibrium (�w = 
w = 1). The Knudsen number in reference
condition is Kn = 10−3, while τ is given in (2) and the exponent of the viscosity law is set
to δ = 0.72 as for nitrogen. The coefficient Zr is calculated from the formula given in [18].

Figure 10 shows the solution for the equilibrium temperature.
The temperature profiles obtained with the polyatomic BGK model are plotted along the

stagnation line and compared with results from the literature. In particular, we superpose our
data with the DSMC and UGKS (Unified Gas Kinetic Scheme) from [18] for a bi-atomic
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Fig. 11 Temperature profiles for theBlunt body problem.Comparison betweenDSMC,UGKS, and the P-BGK
results. a Translational temperature. b Rotational temperature
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Fig. 12 Equilibrium temperature for the Blunt body problem. Comparison between DSMC, UGKS, and the
P-BGK results

molecule (Fig. 11). Finally, the equilibrium temperature can be found in Fig. 12. Again, note
that the results are indeed very close.

6 Conclusion

In this work, we have proposed a simple kinetic model for polyatomic molecules, based on
the BGK approach, in which it is possible to account for different relaxation rates along the
internal energy degrees of freedom of a single molecule.

The model can be reduced, grouping together similar degrees of freedom, extending the
technique of [15]. It introduces additional distribution functions to treat internal degrees
of freedom. However, the size of the phase space remains constant with respect to the
monoatomic BGK model. Moreover, we also extend the numerical scheme of [21], con-

123



Journal of Scientific Computing (2019) 78:1893–1916 1915

structing a scheme that has a stability restriction of CFL type, given only by the convective
terms of the equation, but not by the relaxation time. This permits to obtain an efficient
numerical method, which is still able to account for the different energy relaxation times.

We prove an H-theorem for this model, thus guaranteeing the convergence towards a
unique equilibrium state, determined by the initial conditions, for an isolated gas. We also
prove that the IMEX scheme proposed is Asymptotic Preserving, and thus converges to a
discretization of the correct hydrodynamic equations, as the relaxation time goes to zero.

The study is documented with several one and two-dimensional tests, which illustrate
the properties of the model and of the numerical scheme. We reproduce Riemann problems
for several values of the polytropic constant γ , we study the shock structure of a stationary
shock, and also more classical two dimensional problems from gas dynamics.

Future extensions of this work will concentrate on a ES-BGK extension of the present P-
BGK polyatomic model. The purpose is to represent more effectively, at moderate Knudsen
numbers, the viscous and thermal exchanges within the gas.
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