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Abstract
We study a posteriori error analysis for the space-time discretizations of linear parabolic
integro-differential equation in a bounded convex polygonal or polyhedral domain. The
piecewise linear finite element spaces are used for the space discretization, whereas the time
discretization is based on the Crank–Nicolson method. The Ritz–Volterra reconstruction
operator (IMA J Numer Anal 35:341–371, 2015), a generalization of elliptic reconstruction
operator (SIAM J Numer Anal 41:1585–1594, 2003), is used in a crucial way to obtain opti-
mal rate of convergence in space. Moreover, a quadratic (in time) space-time reconstruction
operator is introduced to establish second order convergence in time. The proposed method
uses nested finite element spaces and the standard energy technique to obtain optimal order
error estimator in the L∞(L2)-norm. Numerical experiments are performed to validate the
optimality of the error estimators.

Keywords Parabolic integro-differential equations · Finite element method · Ritz–Volterra
reconstruction · Crank–Nicolson method · A posteriori error estimate

1 Introduction

Themain objective of this article is to study a posteriori error analysis of the Crank–Nicolson
finite element method for the linear parabolic integro-differential equations (PIDE) of the
form
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ut (x, t) + Au(x, t) =
∫ t

0
B(t, s)u(x, s)ds + f (x, t), (x, t) ∈ � × (0, T ],

u(x, t) = 0, (x, t) ∈ ∂� × (0, T ],
u(x, 0) = u0(x), x ∈ �. (1.1)

Here, � ⊂ R
d (d ≥ 1) is a bounded convex polygonal or polyhedral domain with boundary

∂�, and ut (x, t) = ∂u
∂t (x, t) with T < ∞. Further, A is a self-adjoint, uniformly positive

definite, second-order linear elliptic partial differential operator of the form

Au = −∇ · (A∇u),

and the operator B(t, s) is of the form

B(t, s)u = −∇ · (B(t, s)∇u),

where “∇” denotes the spatial gradient. A = {ai j (x)} and B(t, s) = {bi j (x; t, s)} are two
d × d matrices assumed to be in L∞(�)d×d in space variable. Moreover, the elements of
B(t, s) are assumed to be at least twice differentiable with respect to s and once with respect
to t . Furthermore, we assume the initial function u0(x) is in H2(�) ∩ H1

0 (�) and the source
function f (x, t) is assumed to be in L2(0; T ; L2(�)). Under the regularity assumptions on
f (x, t), u0(x) as prescribed above and

max
�̄×{0≤s≤t≤T }

∣∣∣∣ ∂

∂x
bi, j (x; t, s)

∣∣∣∣ < ∞,

the problem (1.1) admits a unique solution

u ∈ L2(0, T ; H2(�) ∩ H1
0 (�)) ∩ H1(0, T ; L2(�)).

We refer to Chapter 2 of [9] for further details on existence and uniqueness of the solution of
(1.1). For regularity results for such problems, one may refer to [27,31] and the references
therein.

Such problems and variants of them arise in various applications, such as heat conduction
in material with memory [13], the compression of poro-viscoelasticity media [14], nuclear
reactor dynamics [21] and the epidemic phenomena in biology [7].

While a posteriori error analysis of finite element methods for elliptic and parabolic prob-
lems are quite rich in the literature [1–5,8,10–12,15,17–19,28–30], relatively less progress
has been made in the direction of a posteriori error analysis of PIDE [23–25]. In order to
put the results of the paper into proper perspective, we give a brief account of the relevant
literature andmotivation for the present investigation. In the absence of thememory term, i.e.,
when B(t, s) = 0, a posteriori error analysis for linear parabolic problems have been inves-
tigated by several authors in [2–5,10,12,15,17,18,22,30]. In particular, for the fully discrete
Crank–Nicolson method for the heat equation, a continuous, piecewise linear approximation
in time is used to derive suboptimal (with respect to time steps) a posteriori error bounds in
[30] using the standard energy techniques. Subsequently, a continuous, piecewise quadratic
polynomial in time so-called the Crank–Nicolson reconstruction is then introduced in [2] to
restore the second order of convergence for the semidiscrete in time discretization of a gen-
eral parabolic problem. Later, the authors of [17] have introduced the reconstruction based
on approximations on one time level (two-point reconstruction) as in [2], and the recon-
structions based on approximations on two time levels (three-point reconstruction) to derive
error bounds in the L2(H1)-norm. Recently in [3], an elliptic reconstruction technique in
conjunction with the energy arguments are used to derive optimal order a posteriori error
estimate for the Crank–Nicolson method in the L∞(L2)-norm for parabolic problems.
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Since PIDE (1.1) may be thought of as a perturbation of parabolic equation, an attempt
has been made to extend a posteriori error analysis of parabolic problems [3] to PIDE (1.1).
We wish to emphasize that such an extension is not straightforward due to the presence of
the Volterra integral term in (1.1). In this paper we derive a posteriori bounds for PIDE
in the L∞(L2)-norm of the error for the fully discrete Crank–Nicolson approximations.
The optimality in space hinges essentially on the Ritz–Volterra reconstruction operator [23],
whereas a quadratic (in time) space-time reconstruction operator is introduced to establish
an a posteriori error estimator with second-order convergence in time. It is important to note
that choice of such a quadratic space-time reconstruction operator (see 3.4) is non-trivial and
heavily problem dependent. Note that in [24], the a posteriori error estimates were derived
for the fully discrete Crank–Nicolson approximations in the L2(H1)-norm. However, the
analysis presented therein does not require Ritz–Volterra reconstruction as we require this
reconstruction to get optimality in the L2-norm in space. And consequently a quadratic
reconstruction in time is enough to obtain optimality in the L2(H1)-norm as compared to a
space-time quadratic reconstruction (as introduced in this article). We have used the nested
refinement on finite element spaces to avoid further complications due to the presence of
the Volterra integral term which memorizes the jumps over all element edges in all previous
space meshes.

To the best of authors’ knowledge no article is available in the literature concerning a
posteriori error analysis of the Crank–Nicolson method for PIDE in the L∞(L2)-norm. Our
main concern is on the theoretical aspect of a posteriori analysis of the method and to show
numerically that the derived estimators are computable which exhibit optimal asymptotic
behaviour. Qualitative behaviour of the obtained estimator is shown in Sect. 5, however, the
development of different adaptive algorithms is out of the scope of this article.

The rest of the paper is organized as follows. We begin by introducing some standard
notations and preliminary materials in Sect. 2. The development of a quadratic space-time
reconstructions for PIDE appears in Sect. 3. In Sect. 4, we give a posteriori error analysis
for the fully discrete Crank–Nicolson finite element method and derive error estimate in the
L∞(L2)-norm. Finally, numerical results are presented in Sect. 5.

2 Notations and Preliminaries

Given a Lebesgue measurable set ω ⊂ R
d , we denote by L p(ω), 1 ≤ p ≤ ∞, the Lebesgue

spaces with corresponding norms ‖ · ‖L p(ω). When p = 2, the space L2(ω) is equipped
with inner product 〈·, ·〉ω and the induced norm ‖ · ‖L2(ω). Whenever ω = �, we omit the
subscripts of ‖.‖L2(ω) and 〈·, ·〉ω. For an integer m > 0, we use the standard notation for
Sobolev spaces Wm,p(ω) with 1 ≤ p ≤ ∞. The norm on Wm,p(ω) is defined by

‖u‖m,p,ω =
(∫

ω

∑
|α|≤m

|Dαu|pdx
)1/p

, 1 ≤ p < ∞

with the standard modification for p = ∞. When p = 2, we denote Wm,2(�) by Hm(�)

and the norm by ‖ · ‖m . The function space H1
0 (�) consists of elements from H1(�) that

vanishes on the boundary of �, where the boundary values are to be interpreted in the sense
of trace.

Let a(·, ·) : H1
0 (�) × H1

0 (�) → R be the bilinear form corresponding to the elliptic
operator A defined by
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a(φ, ψ) := 〈A∇φ,∇ψ〉 ∀ φ,ψ ∈ H1
0 (�).

Similarly, let b(t, s; ·, ·) be the bilinear form corresponding to the operator B(t, s) defined
on H1

0 (�) × H1
0 (�) by

b(t, s;φ(s), ψ) := 〈B(t, s)∇φ(s),∇ψ〉 ∀ φ(s), ψ ∈ H1
0 (�).

Let Bs(t, s) and Bss(t, s) be obtained by differentiating B(t, s) partially with respect to s
once and twice, respectively. Then we define bs(t, s; ·, ·) and bss(t, s; ·, ·) to be the bilinear
forms corresponding to the operators Bs(t, s) and Bss(t, s) defined on H1

0 (�) × H1
0 (�) by

bs(t, s;φ(s), ψ) := 〈Bs(t, s)∇φ(s),∇ψ〉 ∀ φ(s), ψ ∈ H1
0 (�)

and

bss(t, s;φ(s), ψ) := 〈Bss(t, s)∇φ(s),∇ψ〉 ∀ φ(s), ψ ∈ H1
0 (�).

We assume that the bilinear form a(·, ·) is coercive and continuous on H1
0 (�), i.e.,

a(φ, φ) ≥ α‖φ‖21 and |a(φ, ψ)| ≤ β‖φ‖1‖ψ‖1 ∀ φ,ψ ∈ H1
0 (�) (2.1)

with α, β ∈ R
+.

Further, we assume that the bilinear forms b(t, s; ·, ·), bs(t, s; ·, ·) and bss(t, s; ·, ·) are
continuous on H1

0 (�), i.e.,

|b(t, s;φ(s), ψ)| ≤ γ ‖φ(s)‖1‖ψ‖1 ∀ φ(s), ψ ∈ H1
0 (�), (2.2)

|bs(t, s;φ(s), ψ)| ≤ γ ′‖φ(s)‖1‖ψ‖1 ∀ φ(s), ψ ∈ H1
0 (�), (2.3)

and

|bss(t, s;φ(s), ψ)| ≤ γ ′′‖φ(s)‖1‖ψ‖1 ∀ φ(s), ψ ∈ H1
0 (�) (2.4)

with γ, γ ′, γ ′′ ∈ R
+.

The weak formulation of the problem (1.1) may be stated as follows: Find u : [0, T ] →
H1
0 (�) such that
∫

�

utφ dx + a(u, φ) =
∫ t

0
b(t, s; u(s), φ) ds +

∫
�

f φ dx ∀φ ∈ H1
0 (�), t ∈ (0, T ],

u(·, 0) = u0. (2.5)

Remark The stability properties for the continuous problem (1.1) can be found in [20] and
[27].

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ] with τn := tn − tn−1 and
In := (tn−1, tn]. For t = tn, n ∈ [0 : N ], we set f n(·) = f (·, tn). Let (Tn)n∈[0:N ] be a
family of conforming triangulations of the domain �. Let hn(x) = diam(K ), where K ∈
Tn and x ∈ K denote the local mesh-size function corresponds to each given triangulation
Tn . Let Sn denote the set of internal sides of Tn representing edges in d = 2 or faces in d = 3,
and En := ∪E∈Sn E denotes the union of all internal sides.

Each triangulation (Tn), for n ∈ [1 : N ], is a refinement of a macro-triangulation T0 of
the domain � that satisfies the same conformity and shape-regularity assumptions during
refinements (cf. [6]). We assume the following admissible criteria on Tn (cf. [15]):

• The refined triangulation is conforming.
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• The shape-regularity of an arbitrary refinement depends only on the shape-regularity of
the macro-triangulation T0.

We shall allow only nested refinement of the space meshes at each time level t = tn, n ∈
[0 : N ]. Associated with these triangulations, we consider the finite element spaces:

V
n := {φ ∈ H1

0 (�) : φ|K ∈ P1 ∀K ∈ Tn},
where P1 is the space of polynomials in d variables of degree atmost 1. Also, define the space
V
0 ⊕ V

1 ⊕ . . . ⊕ V
n by Xn .

Let Pn
0 : L2(�) → V

n be the L2 projection operator and is given by

〈Pn
0 w,χn〉 = 〈w,χn〉 ∀χn ∈ V

n .

Throughout this paper, the following notation will be used. For n = 1, 2, . . . , N ,

∂vn := vn − vn−1

τn
, ∂̄vn = Pn

0 ∂vn := vn − Pn
0 vn−1

τn
,

tn−1/2 := tn + tn−1

2
and vn−1/2 := vn + vn−1

2
.

Let σ n be the quadrature rule used to approximate the Volterra integral term. In order to
be consistent with the Crank–Nicolson scheme, we use the trapezoidal rule given by

σ n(y) :=
n−2∑
j=0

τ j+1

2

(
y(t j ) + y(t j+1)

)+ τn

4

(
y(tn−1) + y(tn−1/2)

)

≈
∫ tn−1/2

0
y(s)ds. (2.6)

Representation of the bilinear forms. For a function v ∈ V
n , we can represent the bilinear

form a(·, ·) as
a(v, φ) = 〈Aelv, φ〉 + 〈J1[v], φ〉En ∀φ ∈ H1

0 (�), (2.7)

where

〈Aelv, φ〉 =
∑
K∈Tn

〈−div(A∇v), φ〉K ∀φ ∈ H1
0 (�)

is the regular part of the distribution −div(A∇v) and

J1[v]|E (x) = [A∇v]E (x) := lim
ε→0

(A∇v(x + ενE ) − A∇v(x − ενE )) · νE (2.8)

is the spatial jump of the field A∇v across an element side E ∈ Sn , where νE is a unit normal
vector to E at the point x .

Similarly, for all φ ∈ H1
0 (�), we represent the bilinear form b(tn, s; ·, ·) as

∫ tn

0
b(tn, s; v(s), φ)ds =

〈∫ tn

0
Bel(tn, s)v(s)ds, φ

〉
+
〈∫ tn

0
J2[v(s)]ds, φ

〉
En

, (2.9)

whereBel(tn, s)v(s) is the regular part of the distribution−div(B(tn, s)∇v(s)) and is defined
as

〈Bel(tn, s)v(s), φ〉 :=
∑
K∈Tn

〈−div(B(tn, s)∇v(s)), φ〉K ∀φ ∈ H1
0 (�),
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and J2[v(s)] is the spatial jump of the field −div(B(tn, s)∇v(s)) across an element side
E ∈ Sn as defined in (2.8) with B(tn, s) replacing A.

We define the fully discrete operators An : H1
0 (�) → V

n and Bn−r (s) : H1
0 (�) → V

n ,
0 ≤ r < 1, by

〈Anw,χn〉 = a(w, χn) ∀χn ∈ V
n

and
〈Bn−r (s)w(s), χn〉 = b(tn−r , s;w(s), χn) ∀χn ∈ V

n, s ∈ In .

The fully discrete Crank–Nicolson scheme may be stated as follows: Given U 0 = P0
0 u(0),

find Un ∈ V
n, n ∈ [1 : N ] such that

∫
�

∂Unφndx + a(Un−1/2, φn)

= σ n(b(tn−1/2;U , φn)) +
∫

�

f n−1/2φndx ∀φn ∈ V
n, (2.10)

where

σ n(b(tn−1/2;U , φn)) =
n−2∑
j=0

τ j+1

2

{
b(tn−1/2, t j ;U j , φn) + b(tn−1/2, t j+1;U j+1, φn)

}

+τn

4

{
b(tn−1/2, tn−1;Un−1, φn) + b(tn−1/2, tn−1/2;Un−1/2, φn)

}
.

Further, since

〈Bn−1/2(t j )U
j , φn〉 = b(tn−1/2;U j , φn) ∀φn ∈ V

n, 0 ≤ n ≤ N ,

we define σ n(Bn−1/2U ) through

〈σ n(Bn−1/2U ), φn〉 = σ n(b(tn−1/2;U , φn) ∀φn ∈ V
n . (2.11)

Let U be a continuous, piecewise linear approximation in time defined for all t ∈ In by

U (t) := ln(t)U
n + ln−1(t)U

n−1, (2.12)

where

ln(t) := (t − tn−1)

τn
and ln−1(t) := (tn − t)

τn
. (2.13)

Following [23], we recall the definition of Ritz–Volterra reconstruction operator below.

Definition 2.1 (Ritz–Volterra reconstruction) We define the Ritz–Volterra reconstruction
Rn

wv(t) ∈ H1
0 (�), 0 ≤ n ≤ N , t ∈ [0, T ] of v(t) ∈ H1

0 (�) to be a solution of the fol-
lowing elliptic Volterra integral equation in the weak form

a(Rn
wv(t), χ) = 〈gn, χ〉 +

∫ tn

0
b(tn, s;Rn

wv(s), χ)ds ∀χ ∈ H1
0 (�), (2.14)

where gn is given by

gn = Anv(t) −
∫ tn

0
Bn(s)v(s)ds, v ∈ H1

0 (�).
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Remark The Ritz–Volterra reconstruction is well defined (please refer to the definition 3.2
of [23]) and it is motivated by the Ritz Volterra projection introduced by Lin et al. [16] in the
context of a priori analysis for PIDE. The Ritz–Volterra reconstruction is the partial right
inverse of the Ritz Volterra projection operator (cf. [23]). Note that theGalerkin orthogonality
type property holds for the Ritz–Volterra reconstruction:

a(Rn
wv(t) − v(t), φn) −

∫ tn

0
b(tn, s; (Rn

wv − v)(s), φn) = 0 ∀φn ∈ V
n . (2.15)

Further, we use the following compatibility condition:

Rn
w

∣∣∣
Xn−1

= Rn−1
w . (2.16)

We use the following definitions in the subsequent error analysis. For t ∈ In , we now
define the Ritz–Volterra reconstructions of U (t) by

RwU (t) := ln−1(t)Rn−1
w Un−1 + ln(t)Rn

wU
n, (2.17)

where ln−1(t) and ln(t) are given by (2.13). Now, set

ω̂(t) :=
∫ t

0
B(t, s)∇RwU (s)ds. (2.18)

For t ∈ In , let ω̂I (t) be the linear interpolant associated with the integral vectors ω̂(tn−1) and
ω̂(tn) and be given by

ω̂I (t) := ln−1(t)ω̂(tn−1) + ln(t)ω̂(tn). (2.19)

Further, let

Û(t) :=
∫ t

0
B(t, s)U (s)ds, t ∈ In . (2.20)

For t ∈ In , let ÛI ,1(t) be the linear interpolant associate with the integrals Û(tn) and Û(tn−1):

ÛI ,1(t) := ln−1(t)Û(tn−1) + ln(t)Û(tn), (2.21)

and let ÛI ,2(t) be the linear interpolant associate with that of the integral Û(tn−1/2)

ÛI ,2(t) := Û(tn−1/2) + (t − tn−1/2)
d

dt
Û(t)

∣∣
t=tn

:= Û(tn−1/2) + (t − tn−1/2)Yn, (2.22)

where

Yn = d

dt
Û(t)

∣∣
t=tn

. (2.23)

For n ∈ [0 : N ], we define the inner residual

Rn(U ) := AnUn − AelU
n −

∫ tn

0
Bn(s)U (s)ds +

∫ tn

0
Bel(tn, s)U (s)ds, (2.24)

and the jump residual

Jn[U ] := J1[Un] −
∫ tn

0
J2[U (s)]ds (2.25)

with R0(U ) := A0U 0 − AelU 0 and J0[U ] := J1[U 0].
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Modified Crank–Nicolson scheme for PIDE It is known fact that during refinements the
discrete Laplace operator�n

h on the finer mesh Tn when applied to coarse grid functionUn−1

leads to the oscillatory behaviour of the solution for the parabolic problem (cf. [3]). This is due
to the presence of term �n

hU
n−1 which exhibits oscillations in the classical Crank–Nicolson

scheme for the parabolic problems. Since PIDE may be thought of as the perturbation to the
parabolic problem (when B(t, s) = 0, PIDE is same as parabolic problem), it is therefore
natural to expect the same oscillatory behaviour for the classical Crank–Nicolson approxi-
mation to the PIDE (1.1). Therefore, a modified Crank–Nicolson scheme is considered and
analyzed.

To that end, the modified Crank–Nicolson scheme for PIDE (1.1) is defined as follows:
For 1 ≤ n ≤ N , find Un ∈ V

n such that

∂̄Un + 1

2
AnUn + 1

2
Pn
0 A

n−1Un−1 − Pn
0 (σ n(Bn−1/2U )) − Pn

0 f n−1/2 = 0, (2.26)

where σ n(Bn−1/2U ) is defined through (2.11).

3 Quadratic (in Time) Space-Time Reconstructions for PIDE

It is noteworthy that by spitting the error e = u − U = (u − RwU ) + (RwU − U ) yields
optimal bounds for the PIDE (1.1) in L∞(L2)-norm in case of the backward Euler scheme
(cf. [23]). Here, u denotes the exact solution of the PIDE (1.1), U is defined by (2.12) and
RwU is given by (2.17). The optimality in space hinges essentially on the Ritz–Volterra
reconstructionRwU ofU . But, in order to recover the second order convergence in time for
the Crank–Nicolson scheme, we need to reconsider a reconstruction of RwU in time. The
precise properties of such a space-time reconstruction Û are:

• Û should be chosen such that the error (u − Û ) in the energy argument should lead to
optimal estimates in both space and time, and

• Û − RwU = O(τ 2).

Thus, a natural choice for such a reconstruction Û is that it should be quadratic in time
as RwU is linear in nature (see definition (2.17)). Moreover, Û should be continuous and
Û (tn) = Rn

wU
n ∀n = 1, . . . , N .

The rest of this section is devoted to introduce a space-time reconstruction Û . For this,
we need some notations which will prove to be convenient for the error analysis in Sect. 4.
Let � : [0, T ] → H1

0 (�) be defined by

�(t) := ln−1(t)P
n
0 A

n−1Un−1 + ln(t)AnUn − Pn
0 (σ n(Bn−1/2U )), t ∈ In . (3.1)

Define F̂ : [0, T ] → H1
0 (�) by

F̂(t) := �(t) − Pn
0 ϕ(t), t ∈ In, (3.2)

where ϕ(t) := Î f (t). Here, Î is a piecewise linear interpolant chosen such that

Î ( f ) ∈ P1(In), Î ( f )(tn−1) = f n−1 and Î ( f )(tn−1/2) = f n−1/2. (3.3)
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We now define the quadratic space-time reconstruction Û : [0, T ] → H1
0 (�) as follows:

Û (t) := Rn−1
w Un−1 − Rn

w

∫ t

tn−1

F̂(s)ds

+ (t − tn−1)
Rn

wPn
0 U

n−1 − Rn−1
w Un−1

τn
, t ∈ In . (3.4)

We note that Û is quadratic in time as F̂ is linear in time. This definition is motivated by the
fact that Û (t) satisfies the following relation:

Ût (t) + Rn
w F̂(t) = Rn

wPn
0 U

n−1 − Rn−1
w Un−1

τn
. (3.5)

It follows from (3.4) that

Û (tn−1) = Rn−1
w Un−1

and

Û (tn) = Rn
wPn

0 U
n−1 − Rn

wτn

[
Pn
0 An−1Un−1 + AnUn

2
− Pn

0 f n−1/2 − Pn
0 σ n(Bn−1/2U ))

]

= Rn
wU

n,

where we have used (2.26) and the integral is evaluated using the mid-point rule. The terms
Rn−1

w Un−1 and (t − tn−1)(Rn
wPn

0 U
n−1 − Rn−1

w Un−1)/τn in the definition (3.4) act as cor-
rector terms required to establish the continuity of Û with RwU at the nodal points tn .

Using the above notations, the modified Crank–Nicolson scheme can be rewritten in the
following compact form

∂̄Un + �n−1/2 = Pn
0 f n−1/2. (3.6)

In view of (3.2)

∂̄Un + Fn−1/2 = 0, (3.7)

where Fn−1/2 := F̂(tn−1/2).

4 Error Analysis

In this section, we shall derive a posteriori error estimate for the error e := u −U .
Main ideas and notations We decompose the error e as:

e := ρ̂ + σ + ε, (4.1)

where ρ̂ := u−Û denotes the parabolic error,σ := Û−RwU denotes the time reconstruction
error and ε := RwU −U denotes the Ritz–Volterra reconstruction error.

The basic idea of obtaining the a posteriori error estimate can now be summarised as
follows: (i) optimal order a posteriori error estimates for the Ritz–Volterra reconstruction
error ε in standard norms like L2 and H1 are contained in [23]; (ii) the parabolic error ρ̂

satisfies a variant of the original PIDE (1.1) with a right hand side that can be controlled a
posteriori in an optimal way; (iii) the time reconstruction Û is chosen in such a way that the
difference Û − RwU can be estimated a posteriori and will be of O(τ 2).

We now recall from [26] the following interpolation error estimates.
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Proposition 4.1 Let �n : H1
0 (�) → V

n be the Scott-Zhang interpolation operator of
Clément type. Then, for sufficiently smooth ψ and finite element polynomial space of degree
1, there exist constants C1, j and C2, j depending only upon the shape-regularity of the family
of triangulations such that for j ≤ 2

‖h− j
n (ψ − �nψ)‖ ≤ C1, j‖ψ‖ j ,

and
‖h1/2− j

n (ψ − �nψ)‖En ≤ C2, j‖ψ‖ j .

Below we shall summarize the notations of the various a posteriori error estimates to be
developed in the subsequent error analysis.

L∞(L2(Ä)) a Posteriori Error Estimates

For n = 1, . . . , N , we define the following estimators.
The Ritz–Volterra reconstruction error estimators

ηRV H1
n (v) := C1hn‖Rn(v)‖ + C2h

1/2
n ‖Jn[v]‖En (4.2)

and

ηRV L2
n (v) := C3h

2
n‖Rn(v)‖ + C4h

3/2
n ‖Jn[v]‖En , (4.3)

where Rn(v) and Jn[v] are given by (2.24) and (2.25), respectively and v ∈ V
n . Moreover,

the constants Ci , i = 1, . . . , 4 appeared in different estimators are positive constants depend
upon the interpolation constants and the final time T .
η
T ,Rec1
n and η

T ,Rec2
n are the time reconstruction error estimators and are defined by

ηT ,Rec1
n := τ 2n

[
ηRV L2
n (Wn) + ‖Wn‖

]
(4.4)

and

ηT ,Rec2
n := βτ 2n√

30α

[
ηRV H1
n (Wn) + ‖Wn‖1

]
, (4.5)

where ηRV H1
n (Wn) and ηRV L2

n (Wn) are given by (4.2) and (4.3), respectively and Wn is an
a posteriori quantity given by

Wn :=
[
1

2
∂̄AnUn − Pn

0

(
f n−1/2 − f n−1

)
τn

]
. (4.6)

η
T ,QL
n is the time estimator, which captures quadrature error and linear approximation errors,

is defined by

ηT ,QL
n := C5

[
θn + ‖ÛI ,1(t) − Û(t)‖ + ‖Û(t) − ÛI ,2(t)‖

]
, (4.7)

where Û(t), ÛI ,1(t) and ÛI ,2(t) are given by (2.20), (2.21) and (2.22), respectively, C5 =
max

{
γ ′′
4 ,

γ ′
2 , 1

}
and θn is given by

θn :=
n∑
j=1

τ 2j

[
τ j‖�nU j‖ + τ j‖�n∂U j‖

]
. (4.8)
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The spatial mesh change estimator ηSM
n and the spatial estimator ηS

n are defined by

ηSM
n := C6C�

(
τ̂n

τn

)[
h2n‖∂Rn(U )‖ + h3/2n ‖∂Jn[U ]‖En +

n∑
j=0

ηRV L2
j (U )

]
(4.9)

and

ηS
n := τn

2
ηRV L2
n (Wn), (4.10)

where ηRV L2
n (U ), ηRV L2

n (Wn) are given by (4.3) and τ̂n = max
1≤ j≤n

τ j .C� andC6 are regularity

constants.

ηT L
n :=

(
1

τn

∫ tn

tn−1

‖ω̂(t) − ω̂I (t)‖2dt
)1/2

(4.11)

is the linear interpolation error estimator for the Volterra integral term, where ω̂(t) and ω̂I (t)
are given by (2.18) and (2.19), respectively.

ηM
n := C1,1hn

[
1√
3
‖(Pn

0 − I )An−1Un−1‖ + ‖(Pn
0 − I )σ n(Bn−1/2U )‖

+ τ−1
n ‖(Pn

0 − I )Un−1‖
]

(4.12)

is the mesh change estimator.

ηD,1
n := 1

τn

∫ tn

tn−1

‖ f (t) − ϕ(t)‖dt (4.13)

and

ηD,2
n := 2C1,1hn max

{
‖(I − Pn

0 ) f n−1‖, ‖(I − Pn
0 ) f n−1/2‖

}
(4.14)

are the data approximation error estimators, where ϕ(t) := Î f (t) and Î is given by (3.3).
To prove the main result of this section, we shall first prove estimates for the Ritz–Volterra

reconstruction error ε and the parabolic error ρ̂.

A Posteriori Error Estimates for�

Below, we state the following a posteriori error estimates for the Ritz–Volterra reconstruction
error. For a proof, we refer to Lemma 4.2 of [23].

Lemma 4.2 (Ritz–Volterra reconstruction error estimates) For any v ∈ V
n, the following

estimates hold:

‖Rn
wv − v‖1 ≤ ηRV H1

n (v)

and

‖Rn
wv − v‖ ≤ ηRV L2

n (v),

where ηRV H1
n (v) and ηRV L2

n (v) are given by (4.2) and (4.3), respectively.

Next we proceed to estimate ρ̂(t) which is a cumbersome task.
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A Posteriori Error Estimates for �̂(t)

Lemma 4.3 (A posteriori error estimate for the parabolic error) For each m ∈ [1 : N ], the
following estimate holds for ρ̂(t):(

max
t∈[0,tm ] ‖ρ̂(t)‖2 + α

4

∫ tm

0
‖ρ̂(t)‖21dt

)1/2

≤
[
‖ρ̂(t0)‖2 + C7

m∑
n=1

τn

(
ηT ,Rec2
n

)2]1/2 +
(

�2
1,m + �2

2,m

)1/2

,

where �2
1,m and �2

2,m are the total estimators corresponding to the parabolic error ρ̂(t) and
are defined by

�2
1,m :=

(
C7

m∑
n=1

τn

[
ηT ,QL
n + ηS

n + ηSM
n + ηD,1

n

])2

(4.15)

and
�2

2,m := 4(C7)
2

α

m∑
n=1

τn

[
ηM
n + ηT L

n + ηD,2
n

]2
. (4.16)

The estimators η
T ,Rec2
n , ηT ,QL

n , ηS
n , η

SM
n , ηD,1

n , ηM
n , ηT L

n and η
D,2
n are given by (4.5), (4.7),

(4.10), (4.9), (4.13), (4.12), (4.11) and (4.14), respectively.Moreover, C7 is a positive constant
independent of the discretization parameters but depends upon the final time T .

The proof of the above lemma in turn depends on several auxiliary results which we shall
discuss in detail below. We shall use the notation ρ(t) for the error u(t) − RwU (t) in the
subsequent error analysis. We begin with the following error equation for ρ̂(t).

Lemma 4.4 For t ∈ In, n ∈ [1 : N ] and for each φ ∈ H1
0 (�), we have the following error

equation for ρ̂(t):

〈ρ̂t , φ〉 + a(ρ, φ) −
∫ t

0
b(t, s; ρ(s), φ)ds = 〈G, φ〉, (4.17)

where G is defined by

〈G, φ〉 := 〈G1, φ〉 + (t − tn−1/2)〈Yn, φ〉
with

〈G1, φ〉 := 〈
(Pn

0 − I )
{
ln−1(t)An−1Un−1 − σ n(Bn−1/2U ) − τ−1

n Un−1} , φ
〉

+〈(Rn
w − I )(F̂(t) − Fn−1/2), φ〉 + 〈ÛI ,1(t) − Û(t), φ〉 + 〈ω̂(t) − ω̂I (t),∇φ〉

+ 〈Û(t) − ÛI ,2(t), φ〉 +
〈∫ tn−1/2

0
Bn−1/2U (s)ds − σ n(Bn−1/2U ), φ

〉

+〈F̂(t) − �(t) + f (t), φ〉 − 〈
τ−1
n

[
(Rn

w − I )Un − (Rn−1
w − I )Un−1] , φ〉

and Yn is given by (2.23).

Proof For t ∈ In and ∀φ ∈ H1
0 (�), we first multiply (3.5) by φ and integrate over �. Then,

subtract the resulting equation from (2.5) to obtain

〈ρ̂t (t), φ〉 + a(u(t), φ) −
∫ t

0
b(t, s; u(s), φ)ds

= 〈 f , φ〉 + 〈Rn
w F̂(t), φ〉 − τ−1

n 〈Rn
wPn

0 U
n−1 − Rn−1

w Un−1, φ〉.
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Using (2.17)–(2.19) and (2.14), we obtain

〈ρ̂t (t), φ〉 + a(ρ(t), φ) −
∫ t

0
b(t, s; ρ(s), φ)ds

= −ln−1(t)

[
〈An−1Un−1, φ〉 −

〈∫ tn−1

0
Bn−1(s)U (s)ds, φ

〉]

− ln(t)

[
〈AnUn, φ〉 −

〈∫ tn

0
Bn(s)U (s)ds, φ

〉]
+ 〈 f (t), φ〉 + 〈Rn

w F̂(t), φ〉
− τ−1

n 〈Rn
wPn

0 U
n−1 − Rn−1

w Un−1, φ〉 + 〈ω̂(t) − ω̂I (t),∇φ〉,
which together with (3.1) and (2.20)–(2.22) yields

〈ρ̂t (t), φ〉 + a(ρ(t), φ) −
∫ t

0
b(t, s; ρ(s), φ)ds

= 〈
(Pn

0 − I )
{
ln−1(t)An−1Un−1 − σ n(Bn−1/2U )

}
, φ
〉+ 〈ÛI ,1(t) − Û(t), φ〉

+ 〈Û(t) − ÛI ,2(t), φ〉 +
〈∫ tn−1/2

0
Bn−1/2U (s)ds − σ n(Bn−1/2U ), φ

〉

+ (t − tn−1/2)〈Yn, φ〉 + 〈 f (t), φ〉 + 〈ω̂(t) − ω̂I (t),∇φ〉
+ 〈Rn

w F̂(t) − �(t), φ〉 − τ−1
n 〈Rn

wPn
0 U

n−1 − Rn−1
w Un−1, φ〉. (4.18)

For the last two terms on the right hand side of (4.18), an application of (2.26) yields

〈Rn
w F̂(t) − �(t), φ〉 − τ−1

n 〈Rn
wPn

0 U
n−1 − Rn−1

w Un−1, φ〉
= 〈(Rn

w − I )(F̂(t) − Fn−1/2), φ〉 + 〈F̂(t) − �(t), φ〉
− τ−1

n 〈(Rn
w − I )Un − (Rn−1

w − I )Un−1, φ〉 − τ−1
n 〈Pn

0 U
n−1 −Un−1, φ〉. (4.19)

Thus, the error equation (4.17) for ρ̂(t) now follows from (4.18) and (4.19). ��
In view of the error equation obtained in the Lemma 4.4, the following lemma presents a

clear picture of the terms to be estimated in order to obtain a bound on ρ̂(t).

Lemma 4.5 The following estimate holds for ρ̂(t)

max
t∈[0,tm ] ‖ρ̂(t)‖2 + α

2

∫ tm

0

[
2‖ρ(t)‖21 + ‖ρ̂(t)‖21

]
dt ≤ ‖ρ̂(0)‖2 + C7Im,

where

Im :=
m∑

n=1

(
IT ,1
n + IT ,2

n + IM,3
n + IS,4

n + IS,5
n + ID,6

n

)

:= I1
m + I2

m + I3
m + I4

m + I5
m + I6

m

with

IT ,1
n :=

∫ tn

tn−1

‖ρ̂(t) − ρ(t)‖21dt, (4.20)

IT ,2
n :=

∫ tn

tn−1

[ ∣∣∣∣
〈∫ tn−1/2

0
Bn−1/2U (s)ds − σ n(Bn−1/2U ), ρ̂(t)

〉∣∣∣∣
+
∣∣∣
〈
ÛI ,1(t) − Û(t), ρ̂(t)

〉∣∣∣+
∣∣∣
〈
Û(t) − ÛI ,2(t), ρ̂(t)

〉∣∣∣
+ ∣∣〈ω̂(t) − ω̂I (t),∇ρ̂(t)

〉∣∣
]
dt, (4.21)
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IM,3
n :=

∫ tn

tn−1

[∣∣∣
〈
(Pn

0 − I )
{
ln−1(t)An−1Un−1 − σ n(Bn−1/2U )

− τ−1
n Un−1

}
, ρ̂(t)

〉∣∣∣
]
dt, (4.22)

IS,4
n :=

∫ tn

tn−1

∣∣∣
〈
(Rn

w − I )(F̂(t) − Fn−1/2), ρ̂(t)
〉∣∣∣dt, (4.23)

IS,5
n := τ−1

n

∫ tn

tn−1

∣∣∣
〈
(Rn

w − I )Un − (Rn−1
w − I )Un−1, ρ̂(t)

〉∣∣∣dt (4.24)

and

ID,6
n :=

∫ tn

tn−1

∣∣∣
〈
F̂(t) − �(t) + f (t), ρ̂(t)

〉∣∣∣dt . (4.25)

Proof Set φ = ρ̂(t) in (4.17) to obtain

1

2

d

dt
‖ρ̂(t)‖2 + a(ρ(t), ρ̂(t)) =

∫ t

0
b(t, s; ρ(s), ρ̂(t))ds + 〈G, ρ̂(t)〉.

We use the identity

a(ρ(t), ρ̂(t)) = 1

2
a(ρ(t), ρ(t)) + 1

2
a(ρ̂(t), ρ̂(t)) − 1

2
a(ρ̂(t) − ρ(t), ρ̂(t) − ρ(t))

to have

1

2

d

dt
‖ρ̂(t)‖2 + 1

2
a(ρ(t), ρ(t)) + 1

2
a(ρ̂(t), ρ̂(t))

= 1

2
a(ρ̂(t) − ρ(t), ρ̂(t) − ρ(t)) + 〈G, ρ̂(t)〉

+
∫ t

0
b(t, s; ρ(s), ρ̂(t))ds.

We use the coercivity of a(·, ·), and continuity of a(·, ·), b(t, s; ·, ·) along with the Cauchy–
Schwarz and Young’s inequalities, and integrate the resulting equation from tn−1 to tn to
obtain

1

2

{
‖ρ̂(tn)‖2 − ‖ρ̂(tn−1)‖2

}
+ α

2

∫ tn

tn−1

‖ρ(t)‖21dt + α

4

∫ tn

tn−1

‖ρ̂(t)‖21dt

≤ β

2

∫ tn

tn−1

‖ρ̂(t) − ρ(t)‖21dt + C8(T )

∫ tn

tn−1

∫ t

0
‖ρ(s)‖21dsdt +

∫ tn

tn−1

|〈G1, ρ̂(t)〉|dt,

where we have used the fact that∫ tn

tn−1

(t − tn−1/2)dt = 0.

We apply Gronwall’s lemma and take sum from n = 1 : m to obtain the desired result with
C7 = max{βCG(T ), 2CG(T )}, where CG(T ) = exp(T ) is a Gronwall’s constant. ��

Now,weproceed to estimate the terms appeared inLemma4.5.Webeginwith by providing
a posteriori error bounds on the time discretization error.
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Lemma 4.6 (Time error estimators) The following a posteriori bounds hold for the time
discretization error terms I1

m and I2
m:

I1
m ≤

m∑
n=1

τn

(
ηT ,Rec2
n

)2
(4.26)

and

I2
m ≤

m∑
n=1

τn max[0,tm ] ‖ρ̂(t)‖ηT ,QL
n +

m∑
n=1

τ
1/2
n ηT L

n

(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

, (4.27)

where η
T ,Rec2
n , ηT ,QL

n and ηT L
n are given by (4.5), (4.7) and (4.11), respectively.

Proof We know that

ρ̂(t) − ρ(t) = −(Û (t) − RwU (t)). (4.28)

Thus, to estimate the term I T ,1
n , we have to first estimate Û (t) − RwU (t).

Using (2.17), (3.5) and (3.7), we have

Ût (t) − (RwU )t (t) = Rn
w

[
Fn−1/2 − F̂(t)

]
.

We integrate from tn−1 to t and use the fact that Û (t) coincides with RwU (t) at t = tn−1 to
obtain

Û (t) − RwU (t) = −Rn
w

∫ t

tn−1

{
F̂(s) − Fn−1/2

}
ds. (4.29)

Using (3.1), (3.2) and the identity ln−1(t) + ln(t) = 1, t ∈ In , we have

F̂(t) − Fn−1/2 = �(t) − �(tn−1/2) − Pn
0 [ϕ(t) − ϕ(tn−1/2)]

= 2(t − tn−1/2)Wn, (4.30)

where Wn is given by (4.6).
Substituting (4.30) in (4.29), we obtain

Û (t) − RwU (t) = (tn − t)(t − tn−1)Rn
wWn . (4.31)

Using the coercivity and the continuity of the bilinear form a(·, ·), it follows that
α‖ρ̂(t) − ρ(t)‖21 ≤ a(ρ̂(t) − ρ(t), ρ̂(t) − ρ(t))

≤ (tn − t)(t − tn−1)β‖Rn
wWn‖1‖ρ̂(t) − ρ(t)‖1,

where we have used (4.28) and (4.31).
Thus, using (4.2) we deduce that

‖ρ̂(t) − ρ(t)‖1 ≤ β(tn − t)(t − tn−1)

α

[
ηRV H1
n (Wn) + ‖Wn‖1

]
. (4.32)

Finally, with an aid of (4.32), we obtain

IT ,1
n :=

∫ tn

tn−1

‖ρ̂(s) − ρ(s)‖21ds ≤ β2τ 5n

30α2

[
ηRV H1
n (Wn) + ‖Wn‖1

]2
. (4.33)

Thus, the first inequality (4.26) follows by taking summation over n and using (4.5).
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Next, to prove the inequality (4.27), we first note that

IT ,2
n :=

∫ tn

tn−1

[∣∣∣
〈 ∫ tn−1/2

0
Bn−1/2U (s)ds − σ n(Bn−1/2U ), ρ̂(t)

〉∣∣∣+
∣∣∣〈ÛI ,1(t) − Û(t), ρ̂(t)〉

∣∣∣

+
∣∣∣〈Û(t) − ÛI ,2(t), ρ̂(t)〉

∣∣∣+ ∣∣〈ω̂(t) − ω̂I (t),∇ρ̂(t)〉∣∣
]
dt,

:=
∫ tn

tn−1

[
|J1| + |J2| + |J3| + |J4|

]
dt .

We start with estimating the term J1. A standard Trapezoidal rule argument for a sufficiently
smooth function g(s) yields

∫ b

a
g(s)ds − (b − a)

2
(g(a) + g(b)) = 1

2

∫ b

a
(s − a)(s − b)g′′(s)ds.

If we define

ψ2 j (s) :=
{

(s − t j−1)(s − t j ) for s ∈ [t j−1, t j ] and 1 ≤ j ≤ n − 1,
(s − t j−1)(s − t j−1/2) for s ∈ [t j−1, t j−1/2] and j = n,

then ∫ t j

t j−1

g(s)ds − τ j

2
[g(t j ) + g(t j−1)] = 1

2

∫ t j

t j−1

ψ2 j (s)g
′′(s)ds (4.34)

and ∫ tn−1/2

tn−1

g(s)ds − τn

4
[g(tn−1) + g(tn−1/2)] = 1

2

∫ tn−1/2

tn−1

ψ2n(s)g
′′(s)ds. (4.35)

Using (2.6), (2.12), (4.34) and (4.35), we obtain∫ tn−1/2

0
〈Bn−1/2(s)U (s)ds, ρ̂(t)〉 − 〈σ n(Bn−1/2U ), ρ̂(t)〉

= 1

2

〈
n−1∑
j=1

∫ t j

t j−1

ψ2 j (s)
d2

ds2
{
Bn−1/2(s)U (s)

}
ds

+
∫ tn−1/2

tn−1

ψ2n(s)
d2

ds2
{
Bn−1/2(s)U (s)

}
ds, ρ̂(t)

〉

= 1

2

〈
n−1∑
j=1

∫ t j

t j−1

ψ2 j (s)

{
d2(Bn−1/2(s))

ds2
U (s) + 2d(Bn−1/2(s))

ds

d(U (s))

ds

}
ds

+
∫ tn−1/2

tn−1

ψ2n(s)

{
d2(Bn−1/2(s))

ds2
U (s) + 2d(Bn−1/2(s))

ds

d(U (s))

ds

}
ds, ρ̂(t)

〉

≤ 1

2

{ n−1∑
j=1

τ 2j

[
γ ′′

2
τ j

(
‖�nU j−1‖ + ‖�nU j‖

)
+ 2γ ′τ j‖�n∂U j‖

]

+ τ 2n

[
γ ′′

2
τn

(
‖�nUn−1‖ + ‖�nUn‖

)
+ 2γ ′τn‖�n∂Un‖

]}
‖ρ̂(t)‖

≤ γ̄ θn‖ρ̂(t)‖, (4.36)

where θn is given by (4.8) and γ̄ = max

{
γ ′′
4 ,

γ ′
2

}
.
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Thus, in view of (4.36) we have the following bound on J1

|J1| ≤ γ̄ θn‖ρ̂(t)‖.
Moreover, an application of Cauchy–Schwarz inequality gives

|J2| ≤ ‖ÛI ,1(t) − Û(t)‖‖ρ̂(t)‖,
|J3| ≤ ‖Û(t) − ÛI ,2(t)‖‖ρ̂(t)‖

and

|J4| ≤ ‖ω̂(t) − ω̂I (t)‖‖∇ρ̂(t)‖.
We now combine the bounds on |J1|, |J2|, |J3| and |J4| to obtain

IT ,2
n ≤

∫ tn

tn−1

[
γ̄ θn + ‖ÛI ,1(t) − Û(t)‖ + ‖Û(t) − ÛI ,2(t)‖

]
‖ρ̂(t)‖dt

+
(∫ tn

tn−1

‖ω̂(t) − ω̂I (t)‖2dt
)1/2(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

.

Thus,

IT ,2
n ≤ τn max[0,tm ] ‖ρ̂(t)‖ηT ,QL

n + τ
1/2
n ηT L

n

(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

,

where η
T ,QL
n , ηT L

n are given by (4.7), (4.11), respectively and C5 := max{γ̄ , 1}. The desired
estimate now follows by taking summation over n. ��

The next lemma gives information on the a posteriori contributions due to mesh change.

Lemma 4.7 (Mesh change estimate)We have the following bound on the mesh change error
term I3

m:

I3
m ≤

m∑
n=1

τ
1/2
n ηM

n

(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

, (4.37)

where ηM
n is given by (4.12).

Proof The orthogonality property of Pn
0 now leads to

∫ tn

tn−1

{〈
(Pn

0 − I )
(
ln−1(t)An−1Un−1 − σ n(Bn−1/2U ) − τ−1

n Un−1
)
, ρ̂(t)

〉}
dt

=
∫ tn

tn−1

{〈
(Pn

0 − I )
(
ln−1(t)An−1Un−1−σ n(Bn−1/2U )−τ−1

n Un−1
)
, ρ̂(t)−�n ρ̂(t)

〉}
dt .

An application of the Cauchy–Schwarz inequality yields

IM,3
n ≤ C1,1hn

{(∫ tn

tn−1

l2n−1(t)dt
)1/2‖(Pn

0 − I )An−1Un−1‖

+ τ
1/2
n ‖(Pn

0 − I )σ n(Bn−1/2U )‖
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+ τ
−1/2
n ‖(Pn

0 − I )Un−1‖
}(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

≤ τ
1/2
n ηM

n

( ∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

,

where ηM
n is given by (4.12). Taking summation over n we complete the proof. ��

The next lemma captures contributions due to the spatial discretizations.

Lemma 4.8 (Spatial error estimates) The following a posteriori error bound holds on the
spatial discretization error term I4

m:

I4
m ≤

m∑
n=1

τn max[0,tm ] ‖ρ̂(t)‖ηS
n , (4.38)

where ηS
n is given by (4.10). Moreover, the error bound holds for I5

m corresponds to the
spatial discretization error due to mesh change:

I5
m ≤ max

t∈[0,tm ] ‖ρ̂(t)‖
m∑

n=1

τnη
SM
n , (4.39)

where ηSM
n is given by (4.9).

Proof Using (4.30) and (4.3), we have

∫ tn

tn−1

∣∣∣
〈
(Rn

w − I )(F̂(t) − Fn−1/2), ρ̂(t)
〉∣∣∣dt ≤ τ 2n

2
max[0,tm ] ‖ρ̂(t)‖ηRV L2

n (Wn).

Hence, we obtain

IS,4
n ≤ τn max[0,tm ] ‖ρ̂(t)‖ηS

n , (4.40)

where ηS
n is given by (4.10) and the estimate (4.38) follows by taking the summation over n.

Next, to estimate IS,5
n as given in (4.24), we exploit the orthogonality property of the

Ritz–Volterra reconstructions. We use the standard duality technique here.
For t ∈ (0, T ), let ψ ∈ H2(�) ∩ H1

0 (�) be the solution of the following elliptic problem
in the weak form

a(χ,ψ(t)) = 〈χ, ρ̂(t)〉, ∀χ ∈ H1
0 (�) (4.41)

satisfying the following regularity estimate:

‖ψ(t)‖2 ≤ C�‖ρ̂(t)‖, (4.42)

where the constant C� depends on the domain �.
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Setting χ = Rn
wU

n − Rn−1
w Un−1 − Un + Un−1 in (4.41) and using (2.14), (2.7) and

(2.9), we obtain

〈Rn
wU

n − Rn−1
w Un−1 −Un +Un−1, ρ̂(t)〉

= a(Rn
wU

n − Rn−1
w Un−1 −Un +Un−1, ψ(t) − �nψ(t))

−
∫ tn

0
b(tn, s; (Rn

wU −U )(s), ψ(t) − �nψ(t))ds

+
∫ tn−1

0
b(tn−1, s; (Rn−1

w U −U )(s), ψ(t) − �nψ(t))ds

+
∫ tn

0
b(tn, s; (Rn

wU −U )(s), ψ(t))ds −
∫ tn−1

0
b(tn−1, s; (Rn−1

w U −U )(s), ψ(t))ds

=
〈
AnUn −

∫ tn

0
Bn(s)U (s)ds − AelU

n +
∫ tn

0
Bel(tn, s)U (s)ds, ψ(t) − �nψ(t)

〉

−
〈
An−1Un−1 −

∫ tn−1

0
Bn−1(s)U (s)ds − AelU

n−1

+
∫ tn−1

0
Bel(tn−1, s)U (s)ds, ψ(t) − �nψ(t)

〉

+
〈∫ tn

0
J2[U (s)]ds − J1[Un] −

∫ tn−1

0
J2[U (s)]ds + J1[Un−1], ψ(t) − �nψ(t)

〉
�n

+
∫ tn

0
b(tn, s; (Rn

wU −U )(s), ψ(t))ds −
∫ tn−1

0
b(tn−1, s; (Rn−1

w U −U )(s), ψ(t))ds.

We now use (2.24) and (2.25) together withRn(U ) −Rn−1(U ) = τn∂R
n(U ) and Jn[U ] −

Jn−1[U ] = τn∂J
n[U ] to obtain

∣∣〈Rn
wU

n − Rn−1
w Un−1 −Un +Un−1, ρ̂(t)〉∣∣

≤ τn‖∂Rn(U )‖‖ψ(t) − �nψ(t)‖ + τn‖∂Jn[U ]‖�n‖ψ(t) − �nψ(t)‖En
+
∣∣∣∣
∫ tn

0
b(tn, s; (Rn

wU −U )(s), ψ(t))ds −
∫ tn−1

0
b(tn−1, s; (Rn−1

w U −U )(s), ψ(t))ds

∣∣∣∣.
(4.43)

For the last term in the above, we use the fact

b(tn, s; (Rn
wU −U )(s), ψ(t)) := 〈(Rn

wU −U )(s),B∗(tn, s)ψ(t)〉, (4.44)

where B∗(tn, s) is the formal adjoint of the operator B(tn, s) and then apply the Cauchy–
Schwarz inequality together with ‖B∗(tn, s)ψ(t)‖ ≤ CB∗

1
‖ψ(t)‖2 to obtain

∣∣∣
∫ tn

0
b(tn, s; (Rn

wU −U )(s), ψ(t))ds −
∫ tn−1

0
b(tn−1, s; (Rn−1

w U −U )(s), ψ(t))ds
∣∣∣

≤
∣∣∣
∫ tn

0
〈(Rn

wU −U )(s),B∗(tn, s)ψ(t)〉ds

−
∫ tn−1

0
〈(Rn−1

w U −U )(s),B∗(tn−1, s)ψ(t)〉ds
∣∣∣

≤
∥∥∥
∫ tn

0
(Rn

wU −U )(s)
∥∥∥‖B∗(tn, s)ψ(t)‖ds
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+
∥∥∥
∫ tn−1

0
(Rn−1

w U −U )(s)
∥∥∥‖B∗(tn−1, s)ψ(t)‖ds

≤ 2CB∗
1

{∥∥∥
n∑
j=1

∫ t j

t j−1

(
l j−1(s)(R j−1

w U j−1−U j−1)+l j (s)(R j
wU

j −U j )

)
ds
∥∥∥
}
‖ψ(t)‖2

≤ CB∗
1

{
τ̂n

n∑
j=1

ηRV L2
j (U ) + τ̂n−1

n−1∑
j=0

ηRV L2
j (U )

}
‖ψ(t)‖2

≤ 2CB∗
1
τ̂n

{ n∑
j=0

ηRV L2
j (U )

}
‖ψ(t)‖2, (4.45)

where τ̂n = max
1≤ j≤n

τ j and we used (2.16). Using (4.45) in (4.43) and applying Proposition 4.1

with C6 = max
(
2CB∗

1
, 1
)
, we obtain

∣∣〈Rn
wU

n − Rn−1
w Un−1 −Un +Un−1, ρ̂(t)〉∣∣

≤ C6‖ψ‖2
{
τ̂n

(
h2n‖∂Rn(U )‖ + h3/2n ‖∂Jn[U ]‖En +

n∑
j=0

ηRV L2
j (U )

)}
. (4.46)

Combining (4.24) and (4.46), we arrive at

IS,5
n ≤ C6τ

−1
n

∫ tn

tn−1

‖ψ(t)‖2dt
{
τ̂n

(
h2n‖∂Rn(U )‖ + h3/2n ‖∂Jn[U ]‖En +

n∑
j=0

ηRV L2
j (U )

)}

≤ max
t∈In

‖ρ̂(t)‖τnηSM
n ,

where we have used (4.9) and the regularity result (4.42). Summing from n = 1 : m, the
desired result is obtained. ��

The data approximation error is estimated in the following lemma.

Lemma 4.9 (Data approximation error estimate) The following bound holds on the data
approximation error term I6

m

I6
m ≤

m∑
n=1

{
τnη

D,1
n max

t∈[0,tm ] ‖ρ̂(t)‖ + τ
1/2
n ηD,2

n

(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2}

, (4.47)

where η
D,1
n and η

D,2
n are given by (4.13) and (4.14).

Proof In view of (3.1) and (3.2), we have

ID,6
n :=

∫ tn

tn−1

∣∣∣
〈
F̂(t) − �(t) + f (t), ρ̂(t)

〉∣∣∣dt =
∫ tn

tn−1

∣∣∣
〈
f (t) − Pn

0 ϕ(t), ρ̂(t)
〉∣∣∣dt

≤
∫ tn

tn−1

∣∣∣
〈
f (t) − ϕ(t), ρ̂(t)

〉∣∣∣dt +
∫ tn

tn−1

∣∣∣
〈
(I − Pn

0 )ϕ(t), ρ̂(t)
〉∣∣∣dt

:= J1 + J2.

Using the Cauchy–Schwarz inequality, we obtain

J1 ≤ max
t∈[0,tm ] ‖ρ̂(t)‖

∫ tn

tn−1

‖ f (t) − ϕ(t)‖dt .
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For J2, we use orthogonality property of Pn
0 to have

J2 =
∫ tn

tn−1

∣∣∣
〈
(I − Pn

0 )ϕ(t), ρ̂(t)
〉∣∣∣dt =

∫ tn

tn−1

∣∣∣
〈
(I − Pn

0 )ϕ(t), ρ̂(t) − �n ρ̂(t)
〉∣∣∣dt

≤ C1,1hn

∫ tn

tn−1

‖(I − Pn
0 )ϕ(t)‖‖ρ̂(t)‖1dt

≤ 2C1,1hnτ
1/2
n max

{
‖(I − Pn

0 ) f n−1‖, ‖(I − Pn
0 ) f n−1/2‖

}(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

.

Therefore,

ID,6
n ≤ τnη

D,1
n max

t∈[0,tm ] ‖ ˆρ(t)‖ + τ
1/2
n ηD,2

n

(∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

,

where η
D,1
n and η

D,2
n are given by (4.13) and (4.14), respectively. Now, taking summation

over n, we obtain the desired result. ��
Proof of Lemma 4.3 Application of Lemmas 4.6–4.9 in Lemma 4.5 yields

max
t∈[0,tm ] ‖ρ̂(t)‖2 + α

2

∫ tm

0

(
2‖ρ(t)‖21 + ‖ρ̂(t)‖21

)
dt

≤ ‖ρ̂(0)‖2 + C7

{ m∑
n=1

τn

(
ηT ,Rec2
n

)2

+ max
t∈[0,tm ] ‖ρ̂(t)‖

m∑
n=1

τn

(
ηT ,QL
n + ηS

n + ηSM
n + ηD,1

n

)

+
m∑

n=1

τ
1/2
n

(
ηM
n + ηD,2

n + ηT L
n

)( ∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2}

,

We now use the following elementary fact to complete the proof. For a = (a0, a1, . . . , am),
b = (b0, b1, . . . , bm) ∈ R

m+1 and c ∈ R, if |a|2 ≤ c2 + a.b, then |a| ≤ |c| + |b|.
In particular for n = [1 : m], taking

a0 = max
t∈[0,tm ] ‖ρ̂(t)‖, an =

(
α

2

∫ tn

tn−1

‖ρ̂(t)‖21dt
)1/2

,

c =
(
‖ρ̂(t0)‖2 + C7

m∑
n=1

τn

(
ηT ,Rec2
n

)2)1/2
,

b0 = C7

m∑
n=1

τn

(
ηT ,QL
n + ηS

n + ηSM
n + ηD,1

n

)
, bn = C7(2τn/α)1/2

(
ηM
n + ηT L

n + ηD,2
n

)
,

we obtain the desired result. ��

TheMain Theorem

Now, we state the main result of this section concerning a posteriori error estimate for the
fully discrete Crank–Nicolson scheme in the L∞(L2)-norm.
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Theorem 4.10 (L∞(L2) a posteriori error estimate) Let u(t) be the exact solution of (1.1),
and let U (t) be as defined in (2.12). Then, for each m ∈ [1 : N ], the following error estimate
hold:

max
t∈[0,tm ] ‖u(t) −U (t)‖ ≤

[
‖ρ̂(t0)‖2 + C7

m∑
n=1

τn

(
ηT ,Rec2
n

)2]1/2 +
(

�2
1,m + �2

2,m

)1/2

+ max
0≤n≤m

ηRV L2
n (U ) + max

0≤n≤m
ηT ,Rec1
n ,

where η
T ,Rec2
n , ηRV L2

n (U ), η
T ,Rec1
n , �2

1,m and �2
2,m are given by (4.5), (4.3), (4.4), (4.15)

and (4.16), respectively. Moreover, the constants appeared in the a posteriori error bounds
are positive constants independent of the discretization parameters but depend upon the
interpolation constants and the final time T .

Proof In view of (4.1), we apply triangle inequality to have

‖u(t) −U (t)‖ ≤ ‖ρ̂(t)‖ + ‖σ(t)‖ + ‖ε(t)‖. (4.48)

For t ∈ In ,

‖ε(t)‖ = ‖ln−1(t)ε
n−1 + ln(t)ε

n‖ ≤ max
(
‖εn−1‖, ‖εn‖

)
.

Therefore, for t ∈ [0, tm], using Lemma 4.2, we have

‖ε(t)‖ ≤ max
n∈[0,m]

(
‖εn−1‖, ‖εn‖

)
≤ max

n∈[0,m] η
RV L2
n (U ). (4.49)

Also,

‖Û (t) − RwU (t)‖ ≤ (t − tn−1)(tn − t)‖Rn
wWn‖

≤ (t − tn−1)(tn − t)
[
‖(Rn

w − I )Wn‖ + ‖Wn‖
]

≤ ηT ,Rec1
n , (4.50)

where η
T ,Rec1
n is given by (4.4).

Finally, we use (4.48)–(4.50) and Lemma 4.3 to obtain the desired result. ��
Remarks (i) The estimator appeared in Theorem 4.10 is formally of optimal order. More-

over, in the absence of the memory term (i.e., B(t, s) = 0), the error estimator obtained
in Theorem 4.10 is similar to that for the parabolic problems [3]. Further, we note that the
estimator η

T ,QL
n , the contribution to the error from the approximation of the integral term, is

of O(τ 2). Thus, the a posteriori error bound in Theorem 4.10 generalizes the results of [3]
to PIDE.

(ii) The mesh change error term I3
m can alternatively be estimated as

I3
m ≤

m∑
n=1

τn max
t∈[0,tm ] ‖ρ̂(t)‖ηM,1

n ,

where η
M,1
n is given by

ηM,1
n = C1,1hn

{1
2
‖(Pn

0 − I )An−1Un−1‖ + ‖(Pn
0 − I )σ n(Bn−1/2U )‖

+ τ−1
n ‖(Pn

0 − I )Un−1‖
}
.
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This estimate for mesh change error will lead to an alternative a posteriori error estimate for
the main error e. In particular, the terms �2

1,m and �2
2,m in Lemma 4.3 take the form

�2
1,m :=

{
C7

m∑
n=1

τn

(
ηT ,QL
n + ηM,1

n + ηS
n + ηSM

n + ηD,1
n

)}2

and

�2
2,m := 4C2

7

α

m∑
n=1

τn(η
T L
n + ηD,2

n )2.

The corresponding changes take place in the Theorem 4.10.
(iii) The term

(
1

τn

∫ tn

tn−1

‖ω̂(t) − ω̂I (t)‖2dt
)1/2

(4.51)

appeared in Theorem 4.10 (see 4.11) is not a traditional a posteriori quantity, where ω̂(t)
and ω̂I (t) are given by (2.18) and (2.19), respectively. Since, the error in linear interpolation
is bounded as

‖ω̂(t) − ω̂I (t)‖ ≤ Cτ 2n max
t∈In

∥∥∥∥ d2

dt2
(ω̂(t))

∥∥∥∥ , t ∈ In,

where d2

dt2
(ω̂(t)) depends upon the quantities ∇ωt (t) and ∇ω(t). The term ‖∇ωt (t)‖ can be

estimated as

‖∇ωt (t)‖ ≤ ‖∇εt (t)‖ + ‖∇Ut (t)‖ ≤ 1

τn

(
‖∇εn‖ + ‖∇εn−1‖

)
+ ‖∇∂Un‖,

and for the term ‖∇ω(t)‖, we have
‖∇ω(t)‖ ≤ ‖∇ε(t)‖ + ‖∇U (t)‖

≤ ‖ln−1(t)∇εn−1 + ln(t)∇εn‖ + ‖ln−1(t)∇Un−1 + ln(t)∇Un‖
≤ max

(
‖∇εn−1‖, ‖∇εn‖

)
+ max

(
‖∇Un−1‖, ‖∇Un‖

)
.

This shows that (4.51) is now ameaningful a posteriori quantity by noting the fact that ‖∇εn‖
is bounded and is of O(h) (see Lemma 4.2). Taking τ ≈ h, it is easy to see that the term
(4.51) is of optimal order.

(iv) The a posteriori error analysis of the classical Crank–Nicolson scheme leads to one
additional term 1

2‖(Pn
0 − I )An−1Un−1‖ in the error bounds. However, it does not affect the

optimality of the main estimator.
(v) We have used P1 elements in the analysis, however there is no limitation on the finite

element space to be used.
(vi) The term τ̂n appearing in the Lemma 4.8 can be problematic in case of the time

adaptivity as it is defined globally. However, one can easily avoid such kind of term from the
final a posteriori error estimate as follows: In the proof of Lemma 4.8, instead of writing

{∥∥∥
n∑
j=1

∫ t j

t j−1

(
l j−1(s)(R j−1

w U j−1 −U j−1) + l j (s)(R j
wU

j −U j )

)
ds
∥∥∥
}
‖ψ(t)‖2

≤ 1

2

{
τ̂n

n∑
j=1

ηRV L2
j (U ) + τ̂n−1

n−1∑
j=0

ηRV L2
j (U )

}
‖ψ(t)‖2
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we could have written

{∥∥∥
n∑
j=1

∫ t j

t j−1

(
l j−1(s)(R j−1

w U j−1 −U j−1) + l j (s)(R j
wU

j −U j )

)
ds
∥∥∥
}
‖ψ(t)‖2

≤ 1

2

{ n∑
j=1

τ jη
RV L2
j (U ) +

n−1∑
j=0

τ jη
RV L2
j (U )

}
‖ψ(t)‖2

and the rest of the analysis follows subsequently. In doing so, we could have avoided the
term τ̂n and one can use the modified estimate for time adaptation.

5 Numerical Assessment

This section reports numerical results for a test problem to validate the derived estimators.
Our aim is to study the asymptotic behaviour of the error estimators presented in the Theorem
4.10 for a two dimensional test problem. Consider the PIDE (1.1) in a square domain � =
(0, 1)2 ⊂ R

2 with homogeneous Dirichlet boundary conditions and T = 0.1. We select the
coefficient matrices to be A = I and B(t, s) = exp(−π2(t − s))I . Then, the forcing term
f is calculated by applying the PIDE (1.1) to the corresponding u.
Our main emphasis here is to understand the asymptotic behaviour of the estimators

following which we perform numerical test on uniform meshes with uniform time-steps.
All computations have been carried out using MATLAB_R2015a. We choose a sequence
of space mesh-sizes (h(i) : i ∈ [1 : l]), to which we couple a sequence of time step-sizes
(τ(i) : i ∈ [1 : l]) with τ(i) ∝ h(i). Here, l denotes the number of runs. For each run,
the spatial mesh-size becomes the half of the previous mesh-size. The experiment is carried
out with P1 elements. Since the finite element spaces consist of P1 elements and the Crank–
Nicolson scheme is second-order accurate in time, the error in L∞(L2)-norm is O(h2 + τ 2)

so that we expect that parts of the main estimator should decrease with second order for
h ∝ τ . The exact and the finite element solutions are shown in Fig. 1, respectively.
For each run i ∈ [1 : l], we compute the following quantities of interest at the final time
point tN = T = 0.1:

Fig. 1 The first plot shows the exact solution and the second one corresponds to the Crank–Nicolson FEM
solution for the Example. The Crank–Nicolson FEM solution is computed using P1 elements with 2689 free
nodes at T = 0.1 corresponding to τ = 0.025

123



438 Journal of Scientific Computing (2019) 79:414–441

Table 1 The Ritz–Volterra reconstruction error estimator maxn∈[0:N ] ηRV L2
n (U ), its EOC and EI

l(runs) h τ maxn∈[0:N ] ‖e(tn)‖ maxn∈[0:N ] ηRV L2
n (U ) EOC E I S

1 0.0500 0.0500 1.9577 × 10−3 1.6897 × 10−2 − 8.63

2 0.0250 0.0250 0.4789 × 10−3 0.4332 × 10−2 1.96 9.05

3 0.0125 0.0125 0.1201 × 10−3 0.1096 × 10−2 1.98 9.13

Table 2 The time reconstruction error estimator maxn∈[0:N ] η
T ,Rec1
n , its EOC and EI

l(runs) h τ maxn∈[0:N ] ‖e(tn)‖ maxn∈[0:N ] η
T ,Rec1
n EOC E I T ,1

1 0.0500 0.0500 1.9577 × 10−3 5.5461 ×10−2 − 28.33

2 0.0250 0.0250 0.4789 × 10−3 1.5889 ×10−2 1.80 33.18

3 0.0125 0.0125 0.1201 × 10−3 0.4260 ×10−2 1.90 35.49

• The Ritz–Volterra reconstruction error estimator: maxn∈[0:N ] ηRV L2
n (U )

• The time reconstruction error estimators: maxn∈[0:N ] ηT ,Rec1
n and

(∑N
n=1 τn

(
η
T ,Rec2
n

)2)1/2.
For each quantities of interest we observe their experimental order of convergence (EOC).
The EOC is defined as follows: For a given finite sequence of successive runs (indexed by
i), the EOC of the corresponding sequence of quantities of interest E(i) (estimator or part
of an estimator) itself is a sequence defined by

EOC(E(i)) = log(E(i + 1)/E(i))

log(h(i + 1)/h(i))
,

where h(i) denotes the mesh-size of the run i . The value of EOC of an estimator indicates
its order.

In order to measure the quality of our estimator the estimated error is compared to the true
error so-called effectivity index (EI). We define the effectivity indices by

E I S = maxn∈[0:N ] ηRV L2
n (U )

maxn∈[0:N ] ‖e(tn)‖ , E I T ,1 = maxn∈[0:N ] ηT ,Rec1
n

maxn∈[0:N ] ‖e(tn)‖

E I T ,2 =
(∑N

n=1 τn
(
η
T ,Rec2
n

)2)1/2
maxn∈[0:N ] ‖e(tn)‖ , E I Total = ηTotaln

maxn∈[0:N ] ‖e(tn)‖ ,

where ηTotaln is the full estimator as shown in the Theorem 4.10. All the constants involved
in the estimators are taken to be equal to 1 except Gronwall’s constant which is taken to be
exp(T ). The effectivity index is to be understood only qualitatively in this paper as the main
emphasis is on observing asymptotic behaviour of the estimator.

From the Tables 1, 2, and 3, it is apparent that each individual estimator constituting
the total estimator have the optimal rate of convergence. Although, the Ritz–Volterra recon-
struction estimator maxn ηRV L2

n (U ), the time reconstruction estimators maxn∈[0:N ] ηT ,Rec1
n

and
(∑N

n=1 τn
(
η
T ,Rec2
n

)2)1/2 contribute same order of error, the time reconstruction estima-

tor maxn∈[0:N ] ηT ,Rec1
n seems dominant over other error estimators for prescribed choices of
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Table 3 The time reconstruction error estimator
(∑N

n=1 τn
(
η
T ,Rec2
n

)2)1/2, its EOC and EI

l(runs) h τ maxn∈[0:N ] ‖e(tn)‖
(∑N

n=1 τn
(
η
T ,Rec2
n

)2)1/2 EOC E I T ,2

1 0.0500 0.0500 1.9577 × 10−3 2.7950 ×10−2 − 14.28

2 0.0250 0.0250 0.4789 × 10−3 0.6980 ×10−2 2.00 14.58

3 0.0125 0.0125 0.1201 × 10−3 0.1733 ×10−2 2.00 14.44

Table 4 Behaviour of the
Ritz–Volterra reconstruction error
estimator maxn∈[0:N ] ηRV L2

n (U )

w.r.t. space for small time-step

l(runs) h τ maxn∈[0:N ] ηRV L2
n (U ) EOC

1 0.500 0.01 1.6744 × 10−2 −
2 0.250 0.01 0.4251 × 10−2 1.98

3 0.125 0.01 0.1062 × 10−2 2.00

Table 5 Behaviour of the time
reconstruction error estimator
maxn∈[0:N ] η

T ,Rec1
n w.r.t. time

for small spatial mesh size

l(runs) h τ maxn∈[0:N ] η
T ,Rec1
n EOC

1 0.01 0.0500 5.5580 × 10−2 −
2 0.01 0.0250 1.5896 × 10−2 1.81

3 0.01 0.0125 0.4261 × 10−2 1.90

Table 6 Behaviour of the time
reconstruction error estimator(∑N

n=1 τn
(
η
T ,Rec2
n

)2)1/2 w.r.t.

time for small spatial mesh size

l(runs) h τ
(∑N

n=1 τn
(
η
T ,Rec2
n

)2)1/2 EOC

1 0.01 0.0500 2.7977 × 10−2 −
2 0.01 0.0250 0.6982 × 10−2 2.00

3 0.01 0.0125 0.1733 × 10−2 2.01

(h, τ ) as shown in Tables 1, 2, and 3. Furthermore, the estimator maxn ηRV L2
n (U ) is observed

to be divided by 4 at each iteration when we took a small constant time-step and divide the
spatial mesh-size by 2 (see Table 4). Similarly, we observe that keeping the spatial mesh-size
small and constant, when the time-step is divided by 2, the estimators maxn∈[0:N ] ηT ,Rec1

n and(∑N
n=1 τn

(
η
T ,Rec2
n

)2)1/2 are divided by 4 (see Tables 5 and 6). Table 7 shows the behaviour
of the total estimator.

Further, a higher value of the effectivity index E I for different estimators constituting
the main estimator indicates that the present analysis can be improved in order to get better
reliable estimator whichmay lead to a better effectivity index.Moreover, for the development
of an efficient adaptive algorithm one has to trace down the constants carefully.

Concluding remarks Despite the importance of PIDE, and their variants in the modelling
of several physical phenomena, the topic of a posteriori analysis for such kind of equations
remains unexplored. In this paper, we have derived optimal order residual based a posteriori
error estimator for PIDE (1.1) in the L∞(L2)-norm for the fully discrete Crank–Nicolson
method. The Ritz–Volterra reconstruction operator [23] unifies a posteriori approach from
parabolic problems to PIDE.Moreover, for the optimality of the estimator, the linear approxi-
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Table 7 Behaviour of the total error estimator maxn∈[0:N ] ηTotaln

l(runs) h τ maxn∈[0:N ] ‖e(tn)‖ ηTotaln E I Total

1 0.0500 0.0500 1.9577 × 10−3 1.5213 × 10−1 77.71

2 0.0250 0.0250 0.4789 × 10−3 0.3854 × 10−1 80.49

3 0.0125 0.0125 0.1201 × 10−3 0.0971 × 10−1 80.91

mation of the Volterra integral term is found to be crucial. Computational results are provided
to illustrate that the estimator exhibits optimal rate of convergence which support our the-
oretical findings. The computability of the estimates with optimal asymptotic convergence
ensures that these estimates can be utilised for different space-time adaptive algorithms to
be developed. Thus, we believe that the work presented here gives a new direction for the
various space-time adaptive algorithms to be developed for the Crank–Nicolson scheme in
the L∞(L2)-norm for PIDE. However, the development of such adaptive algorithms is out
of scope of the current study and will be considered somewhere else.

There are many other important issues to be addressed in this direction. It is challenging
to study the problem of obtaining a posteriori error estimates with the constants appeared
in the bounds be independent of the final time T and hence, they can serve as long-time
estimates. Moreover, a posteriori error analysis for hyperbolic integro-differential equations
in the L∞(L2)-norm is an interesting research problem which will be reported elsewhere.
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