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Abstract
The phase retrieval problem is a fundamental problem in many fields, which is appealing
for investigation. It is to recover the signal vector x̃ ∈ C

d from a set of N measurements
bn = |f∗n x̃|2, n = 1, . . . , N , where {fn}Nn=1 forms a frame of C

d . Existing algorithms usually
use a least squares fitting to the measurements, yielding a quartic polynomial minimization.
In this paper, we employ a new strategy by splitting the variables, and we solve a bi-variate
optimization problem that is quadratic in each of the variables.An alternating gradient descent
algorithm is proposed, and its convergence for any initialization is provided. Since a larger
step size is allowed due to the smaller Hessian, the alternating gradient descent algorithm
converges faster than the gradient descent algorithm (known as theWirtinger flow algorithm)
applied to the quartic objective without splitting the variables. Numerical results illustrate
that our proposed algorithm needs less iterations than Wirtinger flow to achieve the same
accuracy.
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1 Introduction

Let f (x) ∈ L2(Rd). It is well known that the map f �→ ̂f , where ̂f denotes the Fourier
transform of f , is an isometry in L2(Rd) and hence f can be uniquely reconstructed from
̂f . In many applications such as X-ray crystallography, however, we can only measure the
magnitude | ̂f | of the Fourier transform. This raises the following question: Is it still possible
to reconstruct f from | ̂f |? This is the classic phase retrieval problem.

The phase retrieval problem has a natural generalization to finite dimensional Hilbert
spaces. Such an extension has important applications in imaging, optics, communication,
audio signal processing and more [10,15,16,19,24]. It is in this finite Hilbert space setting
that phase retrieval has become one of the growing areas of research in recent years.

LetH be a (real or complex) Hilbert space of finite dimension. Without loss of generality
we identify H with H

d where H = R or H = C. A set of elements F = {fn} in H is called a
frame if it spans H. Given this frame any vector x ∈ H can be reconstructed from the inner
products {〈x, fn〉}. Often it is convenient to identify the frameF with the corresponding frame
matrix F = [f1, f2, . . . , fN ]. The phase retrieval problem in H is:

The Phase Retrieval Problem Let F = {fn} be a frame in H. Can we reconstruct any
x ∈ H up to a unimodular scalar from {|〈x, fn〉|},and if so, how?

F is said to be phase retrievable (PR) if the answer is affirmative. There is an alternative
formulation. Consider the equivalence relation ∼ on H: x1 ∼ x2 if there is a constant b ∈ H

with |b| = 1 such that x1 = bx2. Let H := H/ ∼. We shall use x to denote the equivalent
class containing x. For any given frame F = {fn : 1 ≤ n ≤ N } in H define the map
MF : H−→R

N+ by

MF (x) = [|〈x, f1〉|2, . . . , |〈x, fN 〉|2]T . (1.1)

The phase retrieval problem asks whether an x ∈ H is uniquely determined by MF (x), i.e.
whetherMF is injective on H.

Many challenging and fundamental problems in phase retrieval remain open. For example,
for phase retrieval inC

d it is still unknownwhat is theminimal number of vectors needed for a
set of vectorsF to be phase retrievable. A challenging problem of very practical importance is
the computational efficiency of phase retrieval algorithms. So far the existing phase retrieval
algorithms can be loosely divided into four categories: (A) Using frames with very large
N , in the order of N ≥ O(d2), (B) Convex relaxation algorithms using random frames,
(C) Non-convex optimization with a quartic [8,21], Poisson log likelihood [11] or quadratic
[12,20,25–27] objective functions with random frames, and (D) Constructing special frames
F that allow for fast and robust phase retrieval reconstruction of x.

The first category is based on the fact that each |〈x, fn〉|2 is a linear combination of
monomials x∗

i x j . The reconstruction of x can be attained by solving for these monomials,
provided that there are enough equations, i.e. N is large enough.Wewill need N ≥ 1

2d(d+1)
in the real case and N ≥ d2 in the complex case. The reconstruction then becomes solving a
system of linear equations if we treat all monomials as independent variables. One can also
obtain robustness results under such framework. The weakness of this approach is that when
d is large the number of variables and the number of measurements needed will explode,
making it generally impractical and slow. Several constructions for special frames were
designed (e.g. [3]) with which one can compute x efficiently (“painless reconstruction”). But
this does not reduce the number of required measurements.
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The second category of methods employs convex relaxation techniques like those of
compressive sensing [2,6,7,9,13,23]. By considering X = xx∗ we can rewrite the map MF
as

MF (X) = [x∗A1x, . . . , x∗ANx]T = [tr(A1X), . . . , tr(ANX)]T (1.2)

whereAn = fnf∗n .ObviouslyMF is a linearmap fromC
d×d toR

N . Thus, the original problem
is now a linear equation MF (X) = b subject to the constraints X ≥ 0 and has rank 1. This
type of problems is not convex and cannot be solved efficiently in general. Nevertheless, when
random frames are used, it was shown in [9] that with high probability if N ≥ O(d log d)

then phase retrieval is equivalent to solving the following convex optimization

min
X

tr(X) subject to X ≥ 0, MF (X) = b. (1.3)

The bound was later improved to N ≥ O(d) [7]. The robustness of the method was also
proved. This convex relaxation method, called PhaseLift, solves (1.3) using semi-definite
programming. It can be done with reasonable efficiency for small d (typically up to about
d = 1000 on a PC). Several refinements and variations of PhaseLift have also being proposed,
e.g. PhaseCut and MaxCut [6,23] for Fourier measurements with random masks. However,
all of them employ semi-definite programming with unknown matrices O(d)×O(d), which
for larger d becomes slow and impractical. To avoid large unknown matrices in ‘lifting’ and
semidefinite programming, some convex relaxation methods operate in the natural domain of
the signal (i.e., R

d or C
d ) to relax each measurement equation |a∗

nx|2 = bn to an inequality
|a∗

nx|2 ≤ bn . Let a0 ∈ C\{0} be a non-vanishing correlation with x in the sense that

|a∗
0x| ≥ δ‖a0‖2‖x‖2, δ ∈ (0, 1).

Solving the signal x can be obtained by solving the following

max
x∈Cd

Re(a∗
0x), subject to |〈an, x〉| ≤ bn, n = 1, . . . , N , (1.4)

where Re(·) is the real part of complex value. Geometric conditions are characterized for the
success of phase retrieval through (1.4), which holds true with high probability if random
frames are used [2,13].

The third category of methods is non-convex optimization methods. We optimize non-
convex functions that penalize the error of nonlinear equations |〈x, fn〉|2 = bn , n = 1, . . . , N .
In general, such optimization problems are very difficult to solve, because the non-convex
objective may have numerous local minima. Surprisingly, when random frames are used,
these non-convex optimization problems are not as difficult as they appear, and many results
are available on their performance guarantee by specific numerical solvers. In [20,27], an
alternating minimization algorithm is applied to solve

min
x,p∈Cd

1

N

N
∑

n=1

(

〈x, fn〉pn − √

bn
)2

s.t. |pn | = 1, n = 1, . . . , N , (1.5)

where p represents the missing phases. In other words, the algorithm alternates between
estimating the missing phase information and the candidate solution. It was proved that the
alternating minimization algorithm [20] converges linearly to the underlying true solution up
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to a unimodular scalar. Some other methods consider the non-linear fittings to the measure-
ments equation and solve

min
x∈Cd

1

N

N
∑

n=1

∣

∣|〈x, fn〉|2 − bn
∣

∣

p
. (1.6)

In [12], they consider (1.6) with p = 1 as a composite optimization problem and linearize
|〈x, fn〉|2 − bn locally. In [8], a Wirtinger gradient flow algorithm is applied to solve (1.6)
with p = 2, and it was proven that the algorithm is guaranteed to converge to the global
minimizer of (1.6) when the algorithm is initialized by the so-called spectral initialization
and the frame is random Gaussian or Fourier with random masks. To further improve the
efficiency and robustness to noise, variants of the Wirtinger flow algorithm are proposed in,
e.g., [11,29], and their convergence to the correct solution are provided. More recently, it is
revealed in [21] that the objective in (1.6) with p = 2 actually has no spurious local minima
if F is a random Gaussian frame with N ≥ O(d log3 d). Therefore, there are many other
efficient algorithms that may be able to find the global minimizer of (1.6). Besides (1.5) and
(1.6), we can also use the amplitude-based cost function and solve

min
x∈Cd

1

N

N
∑

n=1

(

|〈x, fn〉| − √

bn
)2

. (1.7)

Wang et al. [26] introduced an orthogonal-promoting initialization, which is followed by
truncated generalized gradient descent iterations. Though non-convex algorithms have a
better computation performance than convex ones, they still assume random frames for their
performance guarantee, which may be impractical in real applications.

In the fourth category one strives to build special frames with far fewer elements but which
still allow for fast and robust reconstruction. In [1] a deterministic graph-theoretic construc-
tion of a frame with Cd measurements was obtained. This is the few known deterministic
construction that uses only O(d) measurements and can robustly reconstruct all x ∈ C

d , at
least in theory. Unfortunately the constant C is very large, so again computationally it would
be impractical for large d . In [17] a highly efficient phase retrieval scheme using a small
number of random linear combinations of Fourier transform measurements is developed. It
uses O(d log d) measurements to guarantee robustness with high probability, and achieves
the computational complexity of O(d log d). In numerical tests it easily performed robust
phase retrieval for d = 64,000 in seconds on a laptop. A drawback is that it is robust only in
the probabilistic sense; for a given x there is a small probability that the scheme will fail.

In this paper we develop an algorithm for phase retrieval that is both highly efficient and
works for very general measurement matrices. Our algorithm is based on the ideas of convex
relaxation in PhaseLift and the alternating minimization algorithm used for low rank matrix
completion. By splitting the variables, our algorithm solves a bi-variant optimization problem
whose objective is quadratic in one of the variables with the other fixed. We shall present
both theoretical and numerical results, and discuss its efficient implementation.

2 Rank-OneMinimization for Phase Retrieval

Let X = {xx∗ : x ∈ H
d}. As we noted in (1.2), F = {fn}Nn=1 in H

d is phase retrievable if
and only if the map

MF (X) = [x∗A1x, . . . , x∗ANx]T = [f1X f∗1 , . . . , fN X f∗N ]T (2.1)
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is an injective map from X to R
N , where An = fnf∗n . In the PhaseLift scheme the phase

retrieval problem of solving for MF (X) = b subject to the constraints X ≥ 0 and has rank
1 (equivalent to X ∈ X ) is being relaxed to solving the convex problem (1.3)

min
X

tr(X) subject to X ≥ 0, MF (X) = b.

This relaxation yields the same solution to the original phase retrieval problem with high
probability provided that the measurement frame matrix F is a Gaussian random N × d
matrix with N = O(d) for some unspecified constant, or the DFT matrix with random
masks.

Still the drawback is that the measurement matrices are restricted to some specific types,
which may or may not be practical for any given application. The optimization requires the
use of semi-definite programming,which is slow in general and impractical for phase retrieval
for large dimensions. Here we propose a new approach that resolves these difficulties.

The main idea is to relax the requirement X ∈ X to simply rank(X) = 1. In other words
we drop the requirement that X is Hermitian and positive semi-definite. Thus we consider
solving the problem

MF (X) = [f1Xf∗1 , . . . , fNXf∗N ]T = b subject to rank(X) = 1, (2.2)

or alternatively, given that noise might be present, solving the following problem:

min
X

‖MF (X) − b‖ subject to rank(X) = 1. (2.3)

Observe that in general the solution to (2.3) is not unique. If X is a solution then so is X∗. To
account for this ambiguity we shall useRd(H) to denote the set of d × d rank-one matrices
with the equivalence relation X ≡ X∗. We shall also let Sd(H) denote the set of d × d
Hermitian rank-one matrices with entries in H.

Theorem 2.1 For F = {fn}Nn=1 ⊂ H
d and X ∈ Md(H) let

MF (X) = [f1Xf∗1 , . . . , fNXf∗N ]T .

(A) For a generic F ⊂ H
d , MF is injective on Rd(H) if N ≥ 4d − 1 for H = R, or if

N ≥ 8d − 3 for H = C.
(B) For a generic F ⊂ H

d , MF is injective on Sd(H) if N ≥ 2d + 1 for H = R, or if
N ≥ 4d − 1 for H = C.

Proof We shall identify F = {f1, f2, . . . , fN } with its frame matrix F whose columns are
{fn}. Consider the set of all 3-tuples

A := {(F,X,Y)}
where X,Y ∈ Rd(H) or X,Y ∈ Sd(H) are distinct and satisfy MF (X) = MF (Y). We
follow the technique in [4] of local dimension counting to prove our theorem.

Let H
d+ denote the set of vectors of H

d whose the first nonzero entry is real and positive.
Note that any d × d rank-one matrix Z can be written uniquely as Z = afg∗ where a ∈ H,
f, g ∈ H

d+ and ‖f‖ = ‖g‖ = 1. Under this factorization Z ∈ Sd(H) if and only if f = g and
a ∈ R.

To prove the theorem there are 4 cases to be considered, with H = R or C and X,Y ∈
Rd(H) or Sd(H). We deal with each case. Due to the similarity of the arguments we shall
skip some redundant details.
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Case 1 H = R and X,Y ∈ Rd(R).
In this case, because X,Y are distinct in Rd(R) each equality fnXf∗n = fnYf∗n yields a

nontrivial constraint in the form of a quadratic polynomial equation for the (real) entries of
fn . Furthermore, for different n the entries fn are independent variables. Thus viewing the
entries of F as points in R

Nd , for any distinct X,Y ∈ Rd(R), those satisfying the constraint
MF (X) = MF (Y) is a real algebraic variety of co-dimension Nd − N . By the unique
factorization X = afg∗ discussed above each X has 2d − 1 degrees of freedom. The same
2d − 1 degree of freedom holds also for Y. Thus the projection of A = {(F,X,Y)} to the
first component has local dimension everywhere at most Nd − N + 2(2d − 1). Suppose that
N ≥ 4d − 1. Then this local dimension has

Nd − N + 2(2d − 1) ≤ Nd − 1 < Nd.

In other words, a generic F ∈ R
N×d is not a projection of an element in A to the first

component. Thus for a generic F with N ≥ 4d − 1 the mapMF is injective on Rd(R).

Case 2 H = R and X,Y ∈ Sd(R).
All arguments from Case 1 carry over to this case, except in the counting of degrees of

freedom for X and Y. Because now X = aff∗ there are exactly d degrees of freedom for X.
The same holds true for Y. Thus the projection of A = {(F,X,Y)} to the first component
has local dimension everywhere at most Nd − N + 2d . Suppose that N ≥ 2d + 1. Then this
local dimension has

Nd − N + 2d ≤ Nd − 1 < Nd.

In other words, a generic F ∈ R
N×d is not a projection of an element in A to the first

component. Thus for a generic F with N ≥ 2d + 1 the mapMF is injective on Sd(R).

Case 3 H = C and X,Y ∈ Rd(C).
The main arguments from Case 1 carry to this case with slight modifications. A key

difference is that we now view F as a point in R
2Nd . Each constraint fnXf∗n = fnYf∗n where

X,Y ∈ Rd(C) are distinct now yields an independent nontrivial real quadratic equation for
the real variables Re(fn), Im(fn). Each X = afg∗ with a ∈ C, f, g ∈ H

d+ and ‖f‖ = ‖g‖ = 1
has 2+(2d−2)+(2d−2) = 4d−2 real degrees of freedom. The same holds for Y . Thus the
projection ofA = {(F,X,Y)} to the first component has real local dimension everywhere at
most 2Nd − N + 2(4d − 2). Suppose that N ≥ 8d − 3. Then this real local dimension has

2Nd − N + 2(4d − 2) ≤ 2Nd − 1 < 2Nd.

In other words, a generic F ∈ C
N×d is not a projection of an element in A to the first

component. Thus for a generic F with N ≥ 8d − 3 the map MF is injective on Rd(C).

Case 4 H = C and X,Y ∈ Sd(C).
All arguments from Case 3 carry to this case, except in the counting of degrees of freedom

for X and Y . Because now X = aff∗ where a ∈ R, f ∈ H
d+ and ‖f‖ = 1 there are exactly

1 + 2d − 2 = 2d − 1 real degrees of freedom for X . The same holds true for Y. Thus the
projection ofA = {(F,X,Y)} to the first component has real local dimension everywhere at
most 2Nd − N + 2(2d − 1). Suppose that N ≥ 4d − 1. Then this local dimension has

Nd − N + 2(2d − 1) ≤ Nd − 1 < Nd.

In other words, a generic F ∈ C
N×d is not a projection of an element in A to the first

component. Thus for a generic F with N ≥ 4d − 1 the mapMF is injective on Sd(C). ��
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We can now reformulate the phase retrieval problem into two alternative optimization
problems. Each rank-one matrix X can be written as X = xy∗ for some x, y ∈ H

d , although
this representation is not unique. We have

Theorem 2.2 LetF = {fn}Nn=1 be vectors inH
d such thatMF is injective onRd(H). Let x0 ∈

H
d(H) and b = MF (x0x∗

0) = [|〈f1, x0〉|2, . . . , |〈fN , x0〉|2]T . Then any global minimizer
(x̂, ŷ) = argminx,y∈Hd

∥

∥MF (xy∗) − b
∥

∥ (2.4)

must satisfy x̂ = cx0 and ŷ = x0/c with c �= 0.

Proof The result follows trivially from the injectivity ofMF (X)onRd(H). Clearly if x̂ = cx0
and ŷ = x0/c with c �= 0, then x̂ŷ∗ = x0x∗

0 which gives the global minimizer. Conversely,
the global minimizer must haveMF (xy∗) = b. The injectivity now implies that x̂ŷ∗ = x0x∗

0.
Thus x̂ = cx0 and ŷ = x0/c for some c �= 0. ��

The above minimization problem is not convex so solving for the global minimum is very
challenging. Such is the case for solving the phase retrieval problem in general. The advantage
of the above formulation is that it allows us to use the popular alternating minimization
technique used for many other applications such as low rank matrix completion, see e.g.
[14,18,22,28] the references therein. In the alternating minimization algorithm, we first pick
an initial x1 and minimize ‖MF (x1y∗) − b‖ with respect to y to obtain y1. This step is
a standard �2-minimization and is linear problem. From y1 we then update x to x2 via
minimizing ‖MF (xy∗

1) − b‖. This process is iterated to yield a sequence xky∗
k . Often the

sequence converges to the desired result.
The drawback of the above setup is that because there is no penalty for x and y, when noise

is added to the measurement vector b, the stability and robustness is harder to analyze. It also
requires, at least in theory, almost twice as many measurements as the minimally required
number for phase retrieval. A better alternative is to replace x = y by a least square quadratic
penalty ‖x − y‖2 and add a regularization term to the previous minimization problem. Let
λ > 0 and

Eλ,b(x, y) = ∥

∥MF (xy∗) − b
∥

∥

2 + λ‖x − y‖2. (2.5)

Below we study the consequences of minimizing this function. In particular, we wish to
establish certain robustness properties.

Lemma 2.3 LetF = {fn}Nn=1 be a frame inH
d . LetX ∈ Md(H). Then ‖MF (X)‖1 ≤ C‖X‖∗

where ‖X‖∗ denotes the nuclear norm ofX, and C is the upper frame bound ofF , i.e. C is the
largest eigenvalue of FF∗ where F = [f1, . . . , fN ] is the frame matrix for F . Furthermore,
this C is optimal.

Proof Assume that X = vv∗ for some v ∈ H
d and ‖v‖ = 1. Then ‖X‖∗ = 1

‖MF (X)‖1 =
N

∑

n=1

|〈fn, v〉|2 ≤ C‖v‖2 = C .

Note that here this constantC is the best possible since it can be achieved by taking v to be an
eigenvector of FF∗ corresponding to its largest eigenvalue. Now assume thatX is Hermitian.
Then we may write X as

X =
d

∑

j=1

λ jv jv∗
j
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where {v j } is an orthonormal basis for H
d . Thus

‖MF (X)‖1 ≤
d

∑

j=1

|λ j |‖MF (v jv∗
j )‖1 ≤ C

d
∑

j=1

|λ j | = C‖X‖∗.

For a non-Hermitian X, let Y = 1
2 (X + X∗). Then ‖Y‖∗ ≤ ‖X‖∗, and

‖MF (X)‖1 = ‖MF (Y)‖1 ≤ C‖Y‖∗ ≤ C‖X‖∗.

��

For a phase retrievable setF = {fn}Nn=1 inH
d we sayMF satisfies the c-stability condition

if for any x, y ∈ H
d we have

∥

∥MF (xx∗) − MF (yy∗)
∥

∥ ≥ c‖xx∗ − yy∗‖∗. (2.6)

Theorem 2.4 Let F = {fn}Nn=1 be phase retrievable in H
d . Let x0 ∈ H

d(H) and b =
MF (x0x∗

0) = [|〈f1, x0〉|2, . . . , |〈fN , x0〉|2]T . Then
(A) Any global minimizer

(x̂, ŷ) = argminx,y∈Hd Eλ,b(x, y)

must satisfy x̂ŷ∗ = x0x∗
0 , or equivalently x̂ = ŷ = cx0 for some |c| = 1.

(B) Let b′ ∈ H
d such that ‖b− b′‖ ≤ ε. Assume thatMF satisfies the c-stability condition

for some c > 0. Then any x, y ∈ H
d such that Eλ,b′(x, y) ≤ δ2 must satisfy

∥

∥zz∗ − x0x∗
0

∥

∥∗ ≤ 1

c

( C

4λ
δ2 + δ + ε

)

, (2.7)

where z = 1
2 (x + y) and C is the upper frame bound of F .

Proof Part (A) is rather straightforward. Note that Eλ,b(x0, x0) = 0, so we must have
Eλ,b(x̂, ŷ) = 0. It follows that x̂ = ŷ. Hence MF (x̂x̂∗) = b = MF (x0x∗

0). The fact
that F is phase retrievable now implies x̂x̂∗ = x0x∗

0.
To prove part (B), we have λ‖x−y‖2 ≤ δ2. Thus ‖x−y‖ ≤ δ/

√
λ. LetZ = 1

2 (xy
∗+yx∗).

Clearly MF (Z) = MF (xy∗). Furthermore one checks easily that

zz∗ − Z = 1

4
(x − y)(x − y)∗.

Hence ‖zz∗ − Z‖∗ = 1
4‖x − y‖2 ≤ δ2

4λ . It follows that

‖MF (zz∗) − MF (x0x∗
0)‖ = ‖MF (xx∗) − b‖

≤ ‖MF (zz∗) − MF (Z)‖ + ‖MF (Z) − b′‖ + ‖b′ − b‖
≤ ‖MF (zz∗) − MF (Z)‖1 + ‖MF (Z) − b′‖ + ‖b′ − b‖

≤ C
δ2

4λ
+ δ + ε.

The c-stability condition now implies (2.7) immediately. ��

123



136 Journal of Scientific Computing (2019) 79:128–147

3 AlternatingMinimization Algorithm

From the formulation in the previous section, the phase retrieval problem is solved robustly
by finding a global minimizer of Eλ,b in (2.5). This section is devoted to fast algorithms
for solving such a minimization problem. In Sect. 3.1, we introduce a fast alternating gra-
dient descent algorithm for minx,y Eλ,b(x, y). In Sect. 3.2, we prove the convergence of the
proposed algorithm.

3.1 Alternating Gradient Descent Algorithm

Since λ and b are fixed during the minimization procedure, we drop the subscripts in Eλ,b
for simplicity. That is, we solve

argmin
x,y

E(x, y), (3.1)

where

E(x, y) = 1

N

N
∑

n=1

|x∗fnf∗n y − bn |2 + λ‖x − y‖2. (3.2)

Since the first term in E(x, y) is quadratic in both x and y, Eq. (3.1) is a non-convex optimiza-
tion. However, when one of the variables x or y is fixed, E(x, y) is quadratic with respect to
the other variable. Therefore, it is natural to solve (3.1) by an alternating scheme.

We use the following alternating gradient descent algorithm: Fixing x, we minimize
E(x, y) with respect to y by one step of gradient descent, and vice versa. More precisely, we
define, for k = 0, 1, 2, . . .,

{

xk+1 = xk − αk∇xE(xk, yk),
yk+1 = yk − βk∇yE(xk+1, yk),

(3.3)

where αk and βk are step sizes. Since E is a real-valued function with complex variables, the
gradients ∇xE and ∇yE in (3.3) are in the sense of Wirtinger gradient [8].

Since the gradient descent is applied to only one of the variables x and y, the correspond-
ing Hessian matrix has a much smaller norm than the Hessian of E with respect to (x, y).
Consequently, a much larger step size is allowed in the alternating gradient descent than the
standard gradient descent for minimizing (3.2). This leads to a faster convergence. The alter-
nating gradient descent algorithm is also faster than the Wirtinger flow (WF) [8] algorithm,
where G(x) = 1

N

∑N
n=1(|f∗n x|2 − bn)2 is minimized via a gradient flow. As explained in

Appendix A, in the real case, when the iterates x and y are sufficiently close, our proposed
alternating gradient descent algorithm is 1.5 times faster than the WF algorithm in terms of
the decreasing of the objective function value.

The initialization of our proposed algorithm is obtained via a spectral method, which
is the same as that in the Wirtinger flow algorithm [8]. When fn , n = 1, . . . , N , follow
certain probability distributions (e.g., Gaussian), the expectation of Y = 1

N

∑N
n=1 bnfnf

∗
n

has a leading principal eigenvector x̃. Therefore, we choose x0 = y0 = z0, where z0 is the
leading principal eigenvector of Y. For completeness, Algorithm 1 lists how to calculate the
initial guess for our proposed algorithm.
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Algorithm 1: Initialization.
Input: Observations bn, n = 1, · · · , N .
Output: Initial guess x0 = y0 = z0.

1 Set

θ2 = d

∑

n bn
∑

n ‖fn‖2 ,

where fn ∈ C
d , n = 1, · · · , N is the sampling vectors;

2 z0 is the eigenvector corresponding to the largest eigenvalue of

Y = 1

N

N
∑

n=1

bnfnf∗n

and ‖z0‖ = θ .

3.2 Convergence

In this section, we will show the convergence of the alternating gradient descent algorithm
(3.3). More precisely, for any initial guess, we prove that algorithm (3.3) converges to a
critical point of E .

We first present a lemma, which shows the coercivity of E .

Lemma 3.1 If F is of full rank, i.e., rank(F) = d, then the function E(x, y) is coercive, i.e.,
E(x, y) → ∞ as ‖(x, y)‖ → ∞.

Proof Since F is of full row rank, there exists a constant C1 such that, for any x,

‖|F∗x|2‖ = ‖F∗x‖24 ≥ C0‖F∗x‖2 ≥ C1‖x‖2.
Also, there exists a constant C2 such that, for any x and z,

‖(F∗x) ◦ (F∗z)‖ ≤ ‖F∗x‖‖F∗z‖ ≤ C2‖x‖‖z‖,
where ◦ is the componentwise product.

Let ‖(x, y)‖ = M . If ‖x‖ ≤ M
2 , then ‖y‖ ≥

√
3M
2 and

E(x, y) ≥ λ‖x − y‖2 ≥ λ(
√
3 − 1)2M

4
.

Similarly, if ‖y‖2 ≤ M
2 , then E(x, y) ≥ λ(

√
3−1)2M
4 . Otherwise, both ‖x‖2 > M

2 and ‖y‖2 >
M
2 . Define z = y − x. In this case, if ‖z‖ ≤ C1M

4C2
, then

E(x, y) ≥ 1

N

N
∑

n=1

|x∗fnf∗n y − bn |2 = 1

N
‖(F∗x) ◦ (F∗(x + z)) − b‖2

≥ 1

N
(‖|F∗x|2‖ − ‖b‖ − ‖(F∗x) ◦ (F∗z)‖)2

≥ 1

N
(C1‖x‖2 − ‖b‖ − C2‖x‖‖z‖)2

= 1

N
(‖x‖(C1‖x‖ − C2‖z‖) − ‖b‖)2 ≥ 1

N
(M2/8 − ‖b‖)2,
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otherwise E(x, y) ≥ λ‖z‖2 ≥ λC2
1M

2

16C2
2
. In all the cases, as M → ∞, the lower bounds

approach infinity. ��

Now we can prove the convergence of (3.3).

Theorem 3.2 Assume rank(F) = d. Then, for any initial guess (x0, y0), the sequence
{(xk, yk)}k generated by (3.3) with a suitable step size converges to a critical point of E.

Proof For simplicity, we assume αk = βk = γ for all k. The proof with variant step sizes can
be done similarly. Since E(x, y) is a quadratic function with respect to x, Taylor’s expansion
gives

E(xk+1, yk)

= E(xk, yk) +
[

xk+1 − xk
xk+1 − xk

]∗ [∇xE(xk, yk)
∇xE(xk, yk)

]

+ 1

2

[

xk+1 − xk
xk+1 − xk

]∗ [∇2
xxE(xk, yk) ∇2

xxE(xk, yk)
∇2
xxE(xk, yk) ∇2

xxE(xk, yk)

] [

xk+1 − xk
xk+1 − xk

]

= E(xk, yk) − 2γ ‖∇xE(xk, yk)‖2 + γ 2∇xE(xk, yk)∗∇2
xxE(xk, yk)∇xE(xk, yk)

= E(xk, yk) − 2γ
(

‖∇xE(xk, yk)‖2 − γ

2
∇xE(xk, yk)∗∇2

xxE(xk, yk)∇xE(xk, yk)
)

.

(3.4)

Similarly, because E(x, y) is a quadratic function with respect to y, by Taylor’s expansion,
we obtain

E(xk+1, yk+1) = E(xk+1, yk) − 2γ
(‖∇yE(xk+1, yk)‖2

−γ

2
∇yE(xk+1, yk)∗∇2

yyE(xk+1, yk)∇yE(xk+1, yk)
)

. (3.5)

By Lemma 3.1, the level set S = {(x, y) : E(x, y) ≤ E(x0, y0)} is a bounded closed
set. Therefore, the continuous functions ∇2

xxE(x, y) and ∇2
yyE(x, y) are bounded on S. Let

M > 0 be the bound, i.e.,

‖∇2
xxE(x, y)‖ ≤ M, ‖∇2

yyE(x, y)‖ ≤ M, ∀ (x, y) ∈ S.

Suppose (xk, yk) ∈ S. Choose γ ∈ (0, 2/M), so that (3.4) and (3.5) implies that
E(xk+1, yk+1) ≤ E(xk, yk) and

E(xk, yk) − E(xk+1, yk+1)

= E(xk, yk) − E(xk+1, yk) + E(xk+1, yk) − E(xk+1, yk+1)

≥ ζ(‖∇xE(xk, yk)‖2 + ‖∇yE(xk+1, yk)‖2)
= ζ

γ
(‖xk+1 − xk‖2 + ‖yk+1 − yk‖2) (3.6)

with ζ = 2γ
(

1 − γ M
2

)

. Therefore, (xk+1, yk+1) ∈ S. Thus, by induction, (xk, yk) ∈ S and

(3.6) hold for all k as long as γ ∈ (0, 2/M).
Summing (3.6) over k from 0 to +∞, we obtain

E(x0, y0) − lim
k→+∞ E(xk, yk) ≥ ζ

+∞
∑

k=0

(‖∇xE(xk, yk)‖2 + ‖∇yE(xk+1, yk)‖2).
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Because E(xk, yk) ≥ 0 is monotonically nonincreasing according to (3.6), its limit exists
and is finite, which implies

limk→+∞ ‖∇xE(xk, yk)‖ = limk→+∞ ‖xk+1 − xk‖ = 0,

limk→+∞ ‖∇yE(xk+1, yk)‖ = limk→+∞ ‖yk+1 − yk‖ = 0.

This, together with the continuity of ∇xE , ∇yE , and the norm function, means that any
clustering point of {(xk, yk)}k is a critical point of E(x, y).

It remains to prove that {(xk, yk)}k is convergent,which is doneby checking that {(xk, yk)}k
is a Cauchy sequence. Since E(x, y) is a real-valued polynomial function, it belongs to a
semi-algebraic set. By [5, Theorem 3], there exists a differentiable and concave functionψ(t)
such that

ψ ′(E(xk, yk) − E(x̂, ŷ)) ·
∥

∥

∥

∥

[∇xE(xk, yk)
∇yE(xk, yk)

]∥

∥

∥

∥

≥ 1 (3.7)

for any k and for any critical point (x̂, ŷ) of E . Since ψ(t) is concave, by the inequalities
(3.6) and (3.7), we have

ψ(E(xk, yk) − E(x̂, ŷ)) − ψ(E(xk+1, yk+1) − E(x̂, ŷ))

≥ ψ ′(E(xk, yk) − E(x̂, ŷ))(E(xk, yk) − E(xk+1, yk+1))

≥ ζ

γ

‖xk+1 − xk‖2 + ‖yk+1 − yk‖2
√

‖∇xE(xk, yk)‖2 + ‖∇yE(xk, yk)‖2
.

(3.8)

Furthermore,

‖∇xE(xk, yk)‖ = 1

γ
‖(xk+1 − xk)‖ (3.9)

and

‖∇yE(xk, yk)‖ =
∥

∥

∥

∥

∇yE(xk, yk) − ∇yE(xk+1, yk) + 1

γ
(yk+1 − yk)

∥

∥

∥

∥

≤ ∥

∥∇yE(xk, yk) − ∇yE(xk+1, yk)
∥

∥ + 1

γ
‖yk+1 − yk‖

≤ M ′ ‖xk+1 − xk‖ + 1

γ
‖yk+1 − yk‖ ,

(3.10)

where M ′ = sup(x,y)∈S ‖∇2
xyE(x, y)‖ that is finite. Plugging (3.9) and (3.10) into (3.8) gives

ψ(E(xk, yk) − E(x̂, ŷ)) − ψ(E(xk+1, yk+1) − E(x̂, ŷ))

≥ C
(‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

)1/2
,

where C = ζ
γ M ′+1 . Summing it over k, we get

+∞
∑

k=0

(‖xk+1 − xk‖2 + ‖yk+1 − yk‖2
)1/2

≤ 1

C

(

ψ(E(x0, y0) − E(x̂, ŷ)) − lim
k→∞ ψ(E(xk, yk) − E(x̂, ŷ))

)

.

The right hand side is finite, as ψ is smooth and limk→∞ E(xk, yk) is finite. This verifies
that {(xk, yk)}k is a Cauchy sequence, and therefore it is convergent. ��
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4 Numerical Implementation

In this section, we present some numerical experiments to evaluate the proposed alternating
gradient descent algorithm and compare it with some others [8,11–13,20,25–27]. As demon-
strated in Sect. 4.2 on synthetic data and Sect. 4.3 on real image data, our proposed algorithm
is more efficient in the sense that a smaller number of iterations are required to achieve the
same recovery accuracy.

4.1 Experiment Setup

The initialization of our proposed algorithm is described in Algorithm 1, which is done by
50 iterations of the power method. In WF algorithm [8], the step size in τ th iteration is
chosen heuristically and experimentally as μ̃τ = min(1 − e−τ/τ̃0 , μ̃max ), with τ̃0 = 330
and μ̃max = 0.2 or 0.4. This choice of step size is the most efficient according to our test.
Parameter λ is a trade-off between the fitting to the equations and the penalty of distance of u
and v. Theoretically, as long as λ > 0, the global minimizer of (3.2) is x = y = x̂, where x̂ is
the underlying true solution. In other words, any choice of λ > 0 will give the true solution.
However, the choice of λ will affect the speed of our algorithm. Larger λ will keep x and y
closer, and smaller λ will make the fitting error smaller. In the early stage of our algorithm,
we want to decrease the fitting error with x and y close. So we choose a relatively larger λ.
As the iteration goes on, both x and y are close to the true solution, and we want the fitting
error to decrease faster. Thus, a smaller λ is chosen. Following this principle, we choose an
exponentially decay λ in our experiments. Thus, the step size of our method is also chosen
in the form as μτ = min(1 − e−τ/τ0 , μmax ) and the tuning parameter λτ = λ0e−ξτ . The
parameters τ̃0, τ0, μ̃max μmax , λ0 and ξ will be specified later.

Throughout the test, we consider complex signals only and mainly focus on the Gaussian
model and the coded diffraction (CDF) model. In the Gaussian model, we collect the data
bn = |f∗n x|2 with the sampling vectors distributed as Gaussian model, that is,

fn
i.i.d.
∼

{N (0, I/2) + iN (0, I/2), if fn ∈ C
d ,

N (0, I), if fn ∈ R
d ,

whereN (0,V) is the real mean-zero Gaussian distribution with covariance matrix V. In the
CDF model, we acquire the data via

bp,q = |x∗ap,q |2, with 0 ≤ q ≤ d − 1, 1 ≤ p ≤ L,

with ap,q = Gpfq , where f∗q is the qth row of the d × d discrete Fourier Transform
(DFT) matrix and Gp is a diagonal matrix with i.i.d. diagonal entries gp(0), gp(1), . . .,

gp(d − 1) randomly drawn from
{

±
√
2
2 , ±

√
2
2 i

}

with probability 1
5 for each element, and

{

±√
3, ± √

3i
}

with probability 1
20 for each element.

4.2 Synthetic Data

In this subsection, we test the algorithms on synthetic data. Following [8], we are interested
in the two signals described below:
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– Random low-pass signals The true signal x̃ ∈ C
d is generated by

x̃[t] =
M/2
∑

k=−(M/2−1)

(rk + i jk)e
2π i(k−1)(t−1)/d

where M = d
8 , and rk and jk are i.i.d. obeying the standard normal distribution.

– Random Gaussian signals The true signal x̃ ∈ C
d is a random complex Gaussian vector

with i.i.d. entries of the form

x̃[t] =
d/2
∑

k=−(d/2−1)

(rk + i jk)e
2π i(k−1)(t−1)/d ,

where rk and jk are i.i.d. normal distribution N (0, 1
8 ).

We first evaluate the effectiveness of our proposed algorithm in terms of the smallest N
required for successful phase retrieval. We use 100 trials for both the Gaussian and CDF
models. In each trial, we generate the random sampling vectors according to the Gaussian
or CDF model and stop the alternating iteration after 2500 iterations (1250 iterations for x
and 1250 iterations for y corresponding to our method). We declare it is successful if the
relative error of the construction dist(x̃, x̂)/‖x̃‖ < 10−5, where x̂ is the numerical solution
by our alternating minimization algorithm. The empirical probability of success is defined
as the average of success over 100 trials. We use d = 1000. In the Gaussian model, we
choose τ0 = τ̃0 = 330, μ̃max = 0.2, μmax = 0.4, λ0 = 30 and ξ = 0.15/330 for random
Gaussian signal, and τ0 = τ̃0 = 330, μ̃max = 0.2, μmax = 0.4, λ0 = 5 and ξ = 0.05/300
for the random low-pass signal. In the CDF model, we choose τ0 = τ̃0 = 330, μ̃max = 0.2,
μmax = 0.4, λ0 = 0.2 and ξ = 0.0015/330 for randomGaussian signal, and τ0 = τ̃0 = 330,
μ̃max = 0.2, μmax = 0.4, λ0 = 0.05 and ξ = 1.5/330 for the random low-pass signal. We
plot the empirical probability of success against the over sampling ratio N /d in Fig. 1. We
see that the minimum oversampling ratios for an almost 100% successful phase retrieval by
our algorithm are around 4.3 for the Gaussian model and 6 for the CDF model, which is
slightly better or the same as the requirement of the WF algorithm as reported in [8].

Next, we demonstrate the efficiency of our proposed algorithm in terms of computational
time. We compare our proposed algorithm with WF [8], AltMin [20], Kacz [27] and com-
posite optimization [12]. We use the complex Gaussian measurement model with N = 4.5d .
Figure 2a gives the plots of relative errors versus running time.We see that our proposed algo-
rithm is faster than all the other algorithms except AltMin. However, AltMin needs to solve
a least squares problem of coefficient matrix FT at each iteration. We implemented it by first
computing the pseudo inverse of FT and then multiplying directly the pseudo inverse to get a
least square solution at each iteration. Though it works very well in our setting d = 1000, it is
not scalable as the precomputing of the pseudo inverse is very time and memory consuming.
Moreover, we observe that our proposed algorithm can give 10−15 relative error for x and
y after about 135 s, but WF needs more than 200 s. This implies our algorithm needs less
computational time than the Wirtinger flow algorithm to get the same relative error.

Our proposed splitting scheme can be easily adapted to other cost functions fitting to the
nonlinear equations |f∗n x|2 = bn , n = 1, . . . , N . For example, we can split the variables in
the Poisson log likelihood error as follows

E(x, y) = −
N

∑

n=1

bn log(|f∗n x||f∗n y|) − |x∗fnf∗n y| + λ‖x − y‖2, (4.1)

123



142 Journal of Scientific Computing (2019) 79:128–147

N/d

0

10

20

30

40

50

60

70

80

90

100
P

ro
ba

bi
lit

y 
of

 S
uc

ce
ss

es

Gaussian signal
Low-pass signal

2 2.5 3 3.5 4 4.5 5 1 2 3 4 5 6 7 8 9 10 11

N/d

0

10

20

30

40

50

60

70

80

90

100

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss
es

Gaussian signal
Low-pass signal

(a) (b)

Fig. 1 The plot of the probability of success versus N /d. a Gaussian model and b coded diffraction model
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Fig. 2 The plot of the relative error versus the running time

and an alternating gradient descent algorithm can be applied for the numerical solution. We
compare the resulting algorithmwith truncatedWirtinger flow (TWF) [11], which minimizes
directly the Poisson log likelihood error by a truncated gradient descent. Figure 2b illustrates
the plots of relative errors versus running time of these two algorithms. By splitting variables,
our method is faster than TWF for Poisson model. Moreover, our splitting scheme can be
applied to the amplitude-based cost function (1.7) to get

E(x, y) = 1

2N

N
∑

n=1

(
√|x∗fn |

√|f∗n y| − √

bn
)2 + λ‖x − y‖2. (4.2)

Again, an alternating gradient descent algorithm is applied to solve (4.2). We compare this
algorithm with other algorithms that solve the amplitude equation, including the truncated
amplitude flow (TAF) [26] and reweighted amplitude flow (RAF) [25]. We also compare it
with FISTA algorithm to solve the PhaseMax [13] model, as it works on the relaxation of
the amplitude equation. Since PhaseMax needs at least about 7d measurements, we choose
N = 7d in this comparison. Figure 2c gives the relative errors and running time for the four
algorithms. We see our algorithm converges the fastest.
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Table 1 The relative errors

Method 100 125 150

The Naqsh-e Jahan Square. (L = 15, τ̃0 = 330, τ̃0 = 150, μ̃max = 0.4,μmax = 1, λ0 = 8000
and ξ = 0.001.)

WF 3.7097 × 10−4 6.1209 × 10−7 1.2521 × 10−9

Our 1.4927 × 10−4 5.9163 × 10−8 1.2817 × 10−11

The Stanford main quad. (L = 15, τ0 = 330, τ1 = 150, μ̃max = 0.4, μmax = 1, λ0 = 8000
and ξ = 0.001.)

WF 0.5608 9.9557 × 10−4 1.4987 × 10−6

Our 0.5310 1.4925 × 10−4 3.6023 × 10−8

The van Gogh’s painting f 458. (L = 15, τ̃0 = 330, τ0 = 100, μ̃max = 0.4, μmax = 0.5,
λ0 = 5000, ξ = 0.0015.)

WF 0.2178 0.0028 3.2730 × 10−6

Our 7.7887 × 10−4 1.6263 × 10−6 2.6466 × 10−8

The values bolded are the best results for the tests

Fig. 3 The recovered images for Naqsh-e Jahan Square, Esfahan

4.3 Real Image Data

We also test our algorithm for the CDF model on three real images in different sizes, namely,
the Naqsh-e Jahan Square in the central Iranian city of Esfahan (189×768×3), the Stanford
main quad (320×1280×3), and the van Gogh’s painting f 458 (281×369×3). Since those
are all color images, we run our proposed algorithm and WF algorithm on each of the RGB
channels. Let x denote the underlying true image and x̂ the solution by the algorithms. The
relative error is defined as ‖x̂− x‖/‖x‖ with ‖x‖2 = ∑

i, j,k |xi jk |2. Table 1 lists the relative
errors forWFwith 2n iterations andourmethodwithn iterations forx andn iteration forywith
n = 100, 125, 150. From the results in the table, we see that our proposed algorithm use less
iterations thanWFmethod to achieve the same relative error. In Figs. 3, 4 and 5, the recoveries
for the three real images are illustrated after 150 iterations for x and 150 iterations for y.

5 Conclusion

In this paper,we introduce a fast rank-one alternatingminimizationmethod for phase retrieval.
We split variables in (1.6) and solve a bi-variate optimization problem (3.1)which is quadratic
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Fig. 4 The recovered images for the stanford image

Fig. 5 The recovered images for the van Gogh painting f 458

in each of the variables. We use an alternating gradient descent algorithm as the numerical
solver and give its convergence for any given initialization. Since a larger step size is allowed,
the alternating gradient descent algorithm converges faster than WF method. Numerical
results show that ourmethod outperforms some existingmethods, e.g.,WF andAltMinPhase.

For future work, it is interesting to study the performance guarantee of our alternating
gradient descent algorithm and the geometric landscape of the objective function in (3.1).
Moreover, our strategy of splitting the variables can be applied equally to other non-convex
optimizations such as (1.5) and (1.6). Preliminary numerical test suggests that this leads to
more efficient phase retrieval algorithms. We will investigate thoroughly the empirical and
theoretical performance of these splitting schemes in the future.

Acknowledgements The authors would like to thank Emmanuel Candès, Mo Mu and Aditya Viswanathan
for very helpful discussions.
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A Larger step size

In this appendix, we demonstrate that, when x and y are sufficiently close, our alternating
gradient descent algorithm is roughly 1.5 times faster than the WF algorithm in the real case.

To this end, we let E(x, y) be the function defined in (3.2). Choose λ = 0 and assume
xk ≈ yk . Then, by Taylor’s expansion, we obtain

E(xk+1, yk)

≈ E(xk , yk) + ∇xE(xk , yk)∗
[

xk+1 − xk
xk+1 − xk

]

+ 1

2

[

xk+1 − xk
xk+1 − xk

]∗
∇2
x E(xk , yk)

[

xk+1 − xk
xk+1 − xk

]

= E(xk , xk) − αk ‖∇xE(xk , yk)‖22 + α2
k

2
�

(

∇xE(xk , yk)∗
(

∑

n

fnf∗n yky∗
k fnf

∗
n

)

∇xE(xk , yk)

)

= E(xk , yk) − αk ‖(∇xE(xk , yk)‖22 + α2
k

2
∇xE(xk , yk)∗

(

∑

n

fnf∗n yky∗
k fnf

∗
n

)

∇xE(xk , yk)

= E(xk , yk) − αk

(

‖∇xE(xk , yk)‖22 − αk

2
∇xE(xk , yk)∗

(

∑

n

fnf∗n yky∗
k fnf

∗
n

)

∇xE(xk , yk)

)

(A.1)

The last equality hold because
∑

n fnf
∗
n yky

∗
k fnf

∗
n is Hermitian. We choose αk > 0. Therefore,

E(xk+1, yk) − E(xk, yk) ≤ 0 as long as

2

αk
≥ ∇xE(xk, yk)∗

(∑

n fnf
∗
n yky

∗
k fnf

∗
n

) ∇xE(xk, yk)

‖∇xE(xk, yk)‖22
,

which is guaranteed if

αk ≤ 2

‖ ∑

n fnf
∗
n yky

∗
k fnf

∗
n ‖2 .

To minimize E(xk+1, yk) − E(xk, yk), it is easy seen from (A.1) that αk is chosen as

αk = ‖∇xE(xk, yk)‖22
∇xE(xk, yk)∗

(∑

n fnf
∗
n yky

∗
k fnf

∗
n

) ∇xE(xk, yk)
.

In this case,

E(xk+1, yk) − E(xk, yk) ≈ − ‖∇xE(xk, yk)‖42
2∇xE(xk, yk)∗

(∑

n fnf
∗
n yky

∗
k fnf

∗
n

) ∇xE(xk, yk)
. (A.2)

Now we consider the WF algorithm, which minimizes G(x) = 1
N

∑N
n=1(|f∗n x|2 − bn)2.

Assume we have the same xk as in the alternating gradient descent algorithm, and the WF
algorithm generates the new iterates by

xk+1 = xk − δk∇xG(xk).

With the optimal choice of δk , an analogous analysis leads to

G(xk+1) − G(xk)

≈ −1

2

‖∇xG(xk)‖42
� (∇xG(xk)∗H11(xk)∇xG(xk)) + � (∇xG(xk)T H21(xk)∇xG(xk)

) , (A.3)
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where � denotes the real part, and

H11(xk) = 4
∑

n fnf
∗
n xkx

∗
k fnf

∗
n ,

H21(xk) = ∑

n

(

fnf∗n xkx∗
k fnf

∗
n + fnf∗n xkx∗

k fnf
∗
n

)

.

Since we assumed xk ≈ yk and λ = 0,

∇xG(xk) ≈ 2∇yE(xk, yk), (A.4)

which implies

� (∇xG(xk)∗H11(xk)∇xG(xk)
)

= ∇xG(xk)∗H11(xk)∇xG(xk)

≈ (

2∇yE(xk, yk)
)∗

(

4
∑

n

fnf∗n xkx∗
k fnf

∗
n

)

(

2∇yE(xk, yk)
)

≈ 16 · (∇yE(xk, yk)
)∗

(

∑

n

fnf∗n yky∗
k fnf

∗
n

)

∇yE(xk, yk).

(A.5)

Ifwe further assume all vectors involved are real, thenwe have H21(xk) = 2
∑

n fnf
∗
n xkx

∗
k fnf

∗
n

and

�
(

∇xG(xk)T H21(xk)∇xG(xk)
)

= ∇xG(xk)∗H21(xk)∇xG(xk)

≈ 8 · ∇yE(xk, yk)∗
(

∑

n

fnf∗n yky∗
k fnf

∗
n

)

∇yE(xk, yk).

(A.6)

Substituting (A.4), (A.5), and (A.6) into (A.3), we get

(G(xk+1) − G(xk)) ≈ 2

3
(E(xk+1, yk) − E(xk, yk))

This means that the alternating gradient descent algorithm is 1.5 times faster than Wirtinger
flow in terms of the decreasing of the objective.
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