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Abstract
The dispersive behavior of the recently proposed energy-conserving discontinuous Galerkin
(DG) method by Fu and Shu (Optimal energy-conserving discontinuous Galerkin methods
for linear symmetric hyperbolic systems, 2018. arXiv:1804.10307) is analyzed and compared
with the classical centered and upwindingDG schemes. It is shown that the new scheme gives
a significant improvement over the classical centered and upwinding DG schemes in terms
of dispersion error. Numerical results are presented to support the theoretical findings.

Keywords Discontinuous Galerkin method · Energy conserving · Dispersion analysis

1 Introduction

The quest for stable and accurate schemes for systems of hyperbolic conservation laws has
occupied researchers for several decades and continues to this day [1,2] with active research
into finite difference methods, finite volume methods, spectral methods and a variety of finite
element Galerkin schemes. The current consensus seems to be that discontinuous Galerkin
(DG) schemes [6] are the most promising, although they too have their drawbacks even
if one restricts attention to linear hyperbolic systems. In this setting, one wishes to have
numerical schemes which are able to propagate discrete waves at, or near to, the same speed
at which continuous waves are propagated by the original hyperbolic system. The dispersive
and dissipative behavior of a numerical scheme compared with that of the original system is
of considerable interest and had been widely studied [3–5,8,9,11].

This paper is devoted to a dispersion analysis of the recently proposed energy-conserving
DG method [10]. We shall focus on the continuous-in-time semidiscrete scheme. The dis-
persion analysis for the fully discrete scheme is the subject of ongoing work. To fix ideas,
we consider the following one-way wave equation with unit wave speed:
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ut + ux = 0, x ∈ R, t > 0, (1.1)

for suitable initial data. To begin with, we confine our attention to uniform partitions of R
consisting of cells of size h > 0, whose nodes are located at the points h(Z+1/2). Denote the
j th cell I j = (( j −1/2)h, ( j +1/2)h), and let V N

h denote the space of piecewise continuous
polynomials of degree N on the partition:

V N
h = {

v ∈ L2(R) : v|I j ∈ PN (I j ), ∀ j ∈ Z
}
, (1.2)

where PN (I j ) denotes the set of polynomials of degree up to N ≥ 0 defined on the cell
I j . For any function p ∈ V N

h , we let p−
j−1/2 and p+

j−1/2 be the values of p at the node
x j−1/2 = ( j−1/2)h, from the left cell, I j−1, and from the right cell, I j , respectively. In what
follows, we employ [[p]]| j−1/2 = p+

j−1/2 − p−
j−1/2 and {{p}}| j−1/2 = 1

2 (p
+
j−1/2 + p−

j−1/2)

to represent the jump and the mean value of p at each node.
The DG method for (1.1) reads as follows: Find the unique function uh = uh(t) ∈ V N

h
such that

∫

I j
(uh)tvhdx −

∫

I j
uh(vh)xdx + ûhv

−
h | j+ 1

2
− ûhv

+
h | j− 1

2
= 0, (1.3)

holds for all vh ∈ V N
h and all j ∈ Z. The classical upwinding DG method, denoted by (U),

uses numerical fluxes chosen to be

ûh | j− 1
2

= {{uh}}| j− 1
2

+ 1

2
[[uh]]| j− 1

2
,

while the centered DG method, denoted by (C), uses numerical fluxes given by

ûh | j− 1
2

= {{uh}}| j− 1
2
.

The method (U) is energy dissipative in the sense that

1

2

d

dt

∫

R

u2hdx = −
∑

j∈Z

1

2
([[uh]])2| j−1/2 ≤ 0, (1.4)

while the method (C) is energy-conservative

1

2

d

dt

∫

R

u2hdx = 0.

Despite being energy conserving, the centered flux scheme (C) is seldom used in practice
owing to the reduced stability properties of the scheme compared with the upwinding scheme
(U), c.f. [7]. For this reason, the scheme (U) is often preferred and the lack of energy conser-
vation tolerated. Expression (1.4) shows that if the jump terms [[uh]]| j− 1

2
are non-zero then

energy will be dissipated and, importantly, that there is nomechanismwhereby the dissipated
energy can be regained by the scheme.

Recently, Fu and Shu [10] proposed an energy-conserving discontinuous Galerkin (DG)
method for linear symmetric hyperbolic systems, and gave an optimal a priori error estimate
for the method in one dimension, and in multi-dimensions on tensor-product meshes. Numer-
ical evidence presented in [10] suggests that the scheme is optimally convergent on general
triangular meshes, and has superior dispersive properties of the new DG method compar-
ing with the (energy dissipative) upwinding DG method (U) and the (energy conservative)
centered DG method (C) translating into improved accuracy for long time simulations.
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Themethod of Fu and Shu is unusual in that it begins at the continuous level by introducing
an auxiliary advection equation (with the opposite wave speed to that in the equation for u),
to obtain the following (decoupled) system:

ut + ux = 0, x ∈ R, t > 0, (1.5a)

φt − φx = 0, x ∈ R, t > 0, (1.5b)

with initial condition u(x, 0) = u0(x) and φ(x, 0) = 0. Obviously the solution φ is identi-
cally zero. However, this will not be the case for the DG approximation [10] of the system,
where the (non-zero) approximation of the second equation is exploited to obtain energy
conservation at the discrete level.

The DG method [10] for (1.5) reads as follows: Find the unique function (uh, φh) =
(uh(t), φh(t)) ∈ V N

h × V N
h such that

∫

I j
(uh)tvhdx −

∫

I j
uh(vh)xdx + ûhv

−
h | j+ 1

2
− ûhv

+
h | j− 1

2
= 0, (1.6a)

∫

I j
(φh)tψhdx +

∫

I j
φh(ψh)xdx − φ̂hψ

−
h | j+ 1

2
+ φ̂hψ

+
h | j− 1

2
= 0, (1.6b)

holds for all (vh, ψh) ∈ V N
h × V N

h and all j ∈ Z, where ûh and φ̂h denote the numerical
fluxes

ûh | j− 1
2

= {{uh}}| j− 1
2

+ 1

2
α[[φh]]| j− 1

2
, (1.7a)

φ̂h | j− 1
2

= {{φh}}| j− 1
2

+ 1

2
α[[uh]]| j− 1

2
. (1.7b)

The constant in the numerical fluxes (1.7) is chosen to be α = 1 in [10], and we denote
the corresponding DG method by (A). However, in this article, we will also consider the
following choice

α =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
4
3 if N = 0,

√
N (2N+3)

(N+1)(2N+1) if N is odd,
√

(N+1)(2N+1)
N (2N+3) if N > 0 is even,

(1.8)

anddenote the correspondingDGmethodby (A*).This choice ofα is obtainedusing symbolic
calculation (up to degree N = 17), aiming at minimizing the dispersion error (see Table 1
below).

Each of methods (A) and (A*) are energy conservative [10] with respect to the following
modified energy:

1

2

d

dt

∫

R

(u2h + φ2
h)dx = 0. (1.9)

Of course, this does not mean that the individual energy
∫
R
u2hdx and

∫
R

φ2
hdx are conserved

in isolation. One way to view the scheme (1.6) is to regard the auxiliary variable φh as a
temporary store for collecting energy dissipated in (1.6a) which is then reinjected back into
the equation for uh through the flux term [[φh]] j− 1

2
in (1.7a), still resulting in the overall energy

of the system being conserved as shown by (1.9). More interesting is that this exchange of
energy in uh and φh also seems to render methods (A) and (A*) superior to the method (U)
and (C) in terms of numerical dispersion, as we shall see in Sect. 2.
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Section 3 contains a summary of the main results from our dispersion analysis in Sect. 4,
and an explanation of the numerical results on uniform meshes conducted in Sect. 2. Con-
clusions are drawn in Sect. 5.

2 Illustration of Dispersive Behavior of the DG Schemes

In this section we carry out a simple numerical comparison of the above mentioned four
DG methods. We consider Eq. (1.5) on the unit interval I = [0, 1] with periodic boundary
conditions, and take the initial condition u0(x) = sin(ωx) with frequency ω = 2π . Hence
the true solution is u(x, t) = sin(2π(x − t)). Since we are primarily interested in the spatial
discretisation, we use a sufficiently high-order time discretization so as to render the temporal
error negligible compared with the spatial error.

Numerical results for the four DG methods mentioned above with polynomial degree
N = 0 on 20 uniform cells at time T = 20, with polynomial degree N = 1 on 10 uniform
cells at time T = 200, and with polynomial degree N = 2 on 4 uniform cells at time
T = 300 are presented in Figs. 1, 2 and 3 respectively. One observes from these figures
that the dissipative behavior of method (U), whilst the method (C) exhibits large phase error
compared with method (A), which in turn is inferior to method (A*).

For the N = 0 case, we also compare the numerical approximations obtained at different
times for the four methods in Fig. 4. It is striking that method (A*) at time T = 1500 enjoys
a similar accuracy to that of method (C) at time T = 5 and method (A) at time T = 20. In
Sect. 3 we will give a theoretical explanation for these observations.

We also compare the numerical approximations obtained at time T = 40 using methods
(A) and (A*) for N = 0 on uniform and non-uniform meshes consisting of 20 cells in Figs. 5
and 6, respectively. The non-uniform mesh is obtained by applying a uniformly distributed
10% random perturbation of the nodes in an uniform mesh. Comparing the results on the
uniform mesh with the corresponding results on the non-uniform mesh, we observe a similar
phase error in the physical variable uh in both cases. However, in the non-uniform case we

Fig. 1 Numerical solution uh at time T = 20. Solid line: numerical solution. Dashed line: exact solution.
N = 0, 20 uniform cells
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Fig. 2 Numerical solution uh at time T = 200. Solid line: numerical solution. Dashed line: exact solution.
N = 1, 10 uniform cells

Fig. 3 Numerical solution uh at time T = 300. Solid line: numerical solution. Dashed line: exact solution.
N = 2, 4 uniform cells

observe a larger amount of energy leakage from the physical variable uh to the auxiliary
variable φh for both methods (A) and (A*), which is larger for method (A*).

We mention that the results presented in Figs. 4, 5 and 6 are not peculiar to the lowest
order case and numerical evidence (not reported in this article) indicate a similar behavior
on both uniform and non-uniform meshes for N = 1 and N = 2.

3 Main Results on the Dispersion Analysis

In this section we provide a theoretical explanation for the improved dispersive behavior of
methods (A) and (A*) compared with methods (U) and (C).
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Fig. 4 Numerical solution uh at different times. Solid line: numerical solution. Dashed line: exact solution.
N = 0, 20 uniform cells

Fig. 5 Numerical solution at time T = 40 for methods (A). Left: uh ; Right: φh . Solid line: numerical solution.
Dashed line: exact solution. First row: uniform mesh; Second row: non-uniform mesh. N = 0, 20 cells

A key feature of the Eq. (1.5) is the existence of non-trivial, spatially propagating solutions
for each given temporal frequency ω,

u(x, t) = e−iωtU (x), φ(x, t) = e−iωt�(x), (3.1)

whereU (x) = eikx and �(x) = e−ikx with k = ω the wavenumber. The functionsU and �

satisfies a Bloch-wave condition

U (x + h) = λ+U (x), �(x + h) = λ−�(x), x ∈ R, h ∈ R, (3.2)

where λ± = e±ikh are the Floquet multipliers.
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Fig. 6 Numerical solution at time T = 40 for method (A*). Left: uh ; Right: φh . Solid line: numerical solution.
Dashed line: exact solution. First row: uniform mesh; Second row: non-uniform mesh. N = 0, 20 cells

3.1 TheMain Results

In order to study the dispersive behavior of the discrete schemes, we seek the non-trivial
discrete Bloch wave solutions of the DG scheme (1.6) in the form

uh,N (x, t) = e−iωtUh,N (x), φh,N (x, t) = e−iωt�h,N (x), (3.3)

where Uh,N ,�h,N ∈ V N
h satisfy a discrete Bloch wave condition

Uh,N (x + h) = λh,NUh,N (x), �h,N (x + h) = λh,N�h,N (x), x ∈ R, h ∈ R, (3.4)

and where λh,N is the discrete Floquet multiplier.
The relative accuracy Rh,N of the Floquet multiplier approximation is defined by

Rh,N = λ+ − λh,N

λ+ = eikh − λh,N

eikh
. (3.5)

The leading order terms in Rh,N for each of the four DG methods described in Sect. 1
are listed in Table 1. The results quoted for the methods (U) and (C) are special cases of the
general result proved in [3, Theorem 2], whilst the results for the method (A) are special cases
of the general result that will be proved here in Theorem 4.3 and Remark 4.4. The results
for the method (A*) were obtained using algebraic manipulation for particular choices of
polynomial degree N from 0 up to degree 17.

The results given in Table 1 show that the accuracy of method (A) is of (2N + 3)-th order
in ωh and, as such, is always superior to the accuracy of methods (U) and (C) both in terms
of the order of convergence and the magnitude of the coefficient of the leading term in the
error. The method (A*) is better still, providing (2N + 5)-th order of convergence in ωh.

Let Re(·) and Im(·) be the real and imaginary parts of a complex number, respectively. We
now examine the dissipation and dispersion errors of the schemes in the low-wavenumber
limit where kh � 1. Let kh,N be the discrete wavenumber that satisfy

eikh,N h = λh,N , Re(kh,Nh) ∈ [−π, π], (3.6)
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Table 1 Leading terms of the relative error Rh,N in the approximation of the Floquet multiplier for the DG
methods (U), (C), (A), and (A*)

DegreeMethod (U) Method (C) Method (A) Method (A∗)

0 	2

2 + i 	3

3 −i 	3

6 −i 	3

24 −i 	5

180

1 	4

72 + i 	5

270 i 	3

48 −i 	5

1,080 −i 53	7

302,400

2 	6

7200 + i 	7

42,000 −i 	7

16,800 −i 	7

252,000 −i 41	9

63,504,000

N ≥ 1 CN
[
1 + i (2N+2)	

(2N+1)(2N+3)

]
	2N+2 iCN

⎧
⎪⎨

⎪⎩

− N+1
2N+3	2N+3, N even

2N+1
N+1 	2N+1, N odd

−i CN 	2N+3

(2N+1)(2N+3) −i EN 	2N+5

(2N+1)2N+2

	 = ωh. CN = 1
2

[
N !

(2N+1)!
]2

for N ≥ 1. EN , up to four digits accuracy, is given in Table 2 for N ≤ 17

which approximates the true wavenumber k. For kh � 1, the relative error satisfies

Rh,N = eikh − eikh,N h

eikh
≈ i(k − kh,N )h. (3.7)

Hence, Table 1 shows that the dispersion error is

Re
(
(k − kh,N )h

) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CN(2N+2)
(2N+1)(2N+3) (hk)

2N+3, for method (U),

−CN(N+1)
2N+3 (hk)2N+3, for method (C), even N ,

CN(2N+1)
N+1 (hk)2N+1, for method (C), odd N ,

− CN
(2N+1)(2N+3) (hk)

2N+3, for method (A),

− EN
(2N+1)2N+2 (hk)

2N+5, for method (A*),

and the dissipation error for method (U) is

Im
(
(k − kh,N )h

) ≈ CN(hk)2N+2,

whilst the dissipation error for methods (C), (A), and (A*) vanishes since the discrete wave
number kh,N is a real number (due to the fact that |λk,N | = 1 for these methods; see
Remarks 4.5 and 4.8).

3.2 Explanation of Results Presented in Fig. 4

Now, let us apply the above results (for N = 0) in Table 1 to explain the numerical results
obtained in Fig. 4. For 	 = ωh � 1, the numerical solution obtained from each of the DG
methods will satisfy

uh(x, t) ≈ sin(ωhx − ωt)

at the nodes, and the relative error Rh,N ≈ i(ω − ωh)h. Table 1 then implies

ωh ≈ ω + i
	2

2h
= 2π + i

π2

10
for method (U),

ωh ≈ ω + 	3

6h
= 2π + π3

300
for method (C),
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ωh ≈ ω + 	3

24h
= 2π + π3

1, 200
for method (A),

ωh ≈ ω + 	5

180h
= 2π + π5

900, 000
for method (A*),

where h = 1/20, and 	 = ωh = π/10. In particular, the maximum value of the solution
at time T = 1 for method (U) will, thanks to numerical dissipation, not be unity but will
instead take a value close to

e− π2
10 ×1 ≈ 0.37,

which is in close agreement with the top left figure of Fig. 4. The phase lag for method (C)

at time T = 5 will be close to 	3

6h × 5
ω

≈ 0.08, while for method (A) at time T = 20 will be

close to 	3

24h × 20
ω

≈ 0.08, and for (A*) at time T = 1500 will be close to 	5

180h × 1500
ω

≈ 0.08.
All of these predictions are in close agreement with results in Fig. 4.

4 Dispersion Analysis: The Eigenvalue Problem

In this section, we provide proofs of the dispersion analysis of the semi-discrete scheme (1.6)
leading to the results stated in Table 1. We closely follow the analysis in [3] and begin by
seeking a non-trivial bloch-wave solution of the form

uh(x, t) = e−iωt
∑

m∈Z
λmU (x − mh), (4.1a)

φh(x, t) = e−iωt
∑

m∈Z
λm�(x − mh), (4.1b)

whereU ,� ∈ V N
h . Denoting 	 = ωh, and transforming the domain over which the scheme

(1.6) is posed to the reference interval [−1, 1], we obtain the following eigenvalue problem
which determines the value of the discrete Floquet multiplier λ: FindU ,� ∈ PN and λ ∈ C

such that

− 1

2
i	(U , v) + (U ′, v) + 1

2

(
λU (−1) −U (1) + α

(
λ�(−1) − �(1)

))
v(1)

+ 1

2

(
U (−1) − λ−1U (1) − α

(
�(−1) − λ−1�(1)

))
v(−1) = 0 (4.2a)

1

2
i	(�,ψ) + (�′, ψ) + 1

2

(
λ�(−1) − �(1) + α

(
λU (−1) −U (1)

))
ψ(1)

+ 1

2

(
�(−1) − λ−1�(1) − α

(
U (−1) − λ−1U (1)

))
ψ(−1) = 0, (4.2b)

for all v,ψ ∈ PN . Here (·, ·) indicates the L2-inner product on the reference interval [−1, 1].
As usual, the condition under which the eigenvalue problemwill possess non-trivial solutions
reduces to an algebraic equation for λ, which we now proceed to identify.

4.1 Notation and Preliminaries

We denote the differential operators

L±(v) := ∓1

2
i	v + v′, (4.3)
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and recall from [3] the following polynomial functions of degree N :



1,±
N (s) =

N∑

m=0

(±i	)m
(2N + 1 − m)!

(2N + 1)! P(N−m,N−m+1)
m (s), (4.4a)



2,±
N (s) =

N∑

m=0

(±i	)m
(2N + 1 − m)!

(2N + 1)! P(N−m+1,N−m)
m (s), (4.4b)

where P(p,q)
m (s) denotes the Jacobi polynomial of type (p, q) and degree N . Elementary

calculation [3] yields that

L+

1,+
N = − (i	)N+1

2

(N + 1)!
(2N + 1)! P

(0,1)
N (s), (4.5a)

L+

2,+
N = − (i	)N+1

2

(N + 1)!
(2N + 1)! P

(1,0)
N (s), (4.5b)

L−

1,−
N = − (−i	)N+1

2

(N + 1)!
(2N + 1)! P

(0,1)
N (s), (4.5c)

L−

2,−
N = − (−i	)N+1

2

(N + 1)!
(2N + 1)! P

(1,0)
N (s), (4.5d)

and standard properties of the Jacobi polynomials reveal that

(L+

1,+
N , 1) = − (L−


2,−
N , 1) = N !

(2N + 1)! (−i	)N+1, (4.5e)

(L+

2,+
N , 1) = − (L−


1,−
N , 1) = − N !

(2N + 1)! (i	)N+1. (4.5f)

Let 1F1 be the confluent hypergeometric function defined by the series

1F1(a, b, z) =
∞∑

m=0

(a)m

(b)m

zm

m! , (4.6)

where (a)0 = 1, and (a)m = a(a + 1) · · · (a + m − 1) denotes the Pochhammer’s notation.
To further simplify notation, we denote

F±
N = 1F1(−N ,−2N − 1,±i	), (4.7a)

F±
N+1 = 1F1(−N − 1,−2N − 1,±i	), (4.7b)

�N = (F−
N )2 + (F+

N )2 + (F−
N+1)

2 + (F+
N+1)

2

F−
N F+

N+1 + F+
N F−

N+1

, (4.7c)

ZN = (F−
N )2 − (F+

N )2 + (F−
N+1)

2 − (F+
N+1)

2

F−
N F−

N+1 − F+
N F+

N+1

. (4.7d)

It is elementary to show that



1,+
N (−1) = 


2,−
N (1) = F−

N+1 − (−i	)N+1 N !
(2N + 1)! , (4.8a)



1,+
N (1) = 


2,−
N (−1) = F+

N , (4.8b)



2,+
N (−1) = 


1,−
N (1) = F−

N , (4.8c)
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2,+
N (1) = 


1,−
N (−1) = F+

N+1 − (i	)N+1 N !
(2N + 1)! . (4.8d)

It is also easy to verify that �N is a real number and ZN is a purely imaginary number for
	 ∈ R. Finally, we denote the constants

λ±
N = 1

2
(�N ±

√
�2

N − 4), (4.9a)

and

μ±
N = 1

2
(ZN ∓

√
Z2
N + 4), (4.9b)

corresponding to the pairs of roots of the quadratic equations λ2 − �Nλ + 1 = 0, and
μ2 − ZNμ − 1 = 0, respectively.

4.2 Conditions for an Eigenvalue. Case˛ = 1

We first consider the case α = 1 in the numerical fluxes (1.7), which corresponds to method
(A). Our main result for the eigenvalue problem (4.2) in this case is summarized as follows:

Theorem 4.1 There exists a non-trivial Bloch wave solution of the form (4.1) for the scheme
(1.6) with numerical fluxes (1.7) with α = 1 if and only if λ = λ±

N with λ±
N given in (4.9a).

Proof The proof is elementary and follows a similar path to [3, Lemma 3]. We assume the
polynomial degree N ≥ 1 (the lowest order case N = 0 can be verified easily as a special
case).

We shall prove that λ = λ±
N are the only two eigenvalues of the problem (4.2). To this

end, let λ be an eigenvalue of (4.2) with α = 1, with (U ,�) ∈ PN × PN corresponding
(non-trivial) eigenfunctions. Equation (4.2a) implies that

(L+U , v) = 0, ∀v = (1 − s)(1 + s)w, with w ∈ PN−2.

Since L+U ∈ PN , we have

L+U ∈ span{P(1,1)
N , P(1,1)

N−1 } = span{P(0,1)
N , P(1,0)

N },
which implies

L+U = ã+P(0,1)
N + b̃+P(1,0)

N ,

where ã+, b̃+ ∈ C are constants to be determined. Using the fact that L+ : PN → PN is
one-to-one along with (4.5), we get

U = a+

1,+
N + b+


2,+
N . (4.10)

Similar, we have

� = a−

1,−
N + b−


2,−
N , (4.11)

with a−, b− ∈ C constants to be determined. Now, taking v = 1 − s and ψ = 1 − s in
Eq. (4.2) and adding, we get

0 = (L+U , 1 − s) + (L−�, 1 − s) = 2(−i	)N+1 N !
(2N + 1)! (a

+ − (−1)Na−),
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which implies that

a− = (−1)Na+.

Similarly, take v = 1 + s and ψ = −(1 + s) in Eq. (4.2) and adding, we get

0 = (L+U , 1 + s) − (L−�, 1 + s) = −2(i	)N+1 N !
(2N + 1)! (b

+ + (−1)Nb−),

which implies that

b− = −(−1)Nb+.

Hence,

� = (−1)N (a+

1,−
N − b+


2,−
N ).

Without loss of generality, we assume that a+ = 1, and denote μ = b+/a+ = b+. Thus,
we have identified the eigenfunctions. In order to identify the eigenvalues, we choose test
function v = 1 − s, and v = 1 + s in Eq. (4.2a), respectively.

Using (4.8), elementary calculation yields that

U (−1) + �(−1) = (F−
N+1 + (−1)N F+

N+1) + μ(F−
N − (−1)N F+

N ), (4.12a)

U (−1) − �(−1) = (F−
N+1 − (−1)N F+

N+1) + μ(F−
N + (−1)N F+

N )

− 2(−i	)N+1 N !
(2N + 1)! , (4.12b)

U (1) + �(1) = (F+
N + (−1)N F−

N ) + μ(F+
N+1 − (−1)N F−

N+1)

− 2μ(i	)N+1 N !
(2N + 1)! , (4.12c)

U (1) − �(1) = (F+
N − (−1)N F−

N ) + μ(F+
N+1 + (−1)N F−

N+1). (4.12d)

Combing the above identities with (4.5e) and (4.5f), Eq. (4.2a) with v = 1− s reduces to an
algebraic equation for λ and μ

(F−
N+1 − (−1)N F+

N+1) + μ(F−
N + (−1)N F+

N )

− λ−1
(
(F+

N − (−1)N F−
N ) + μ(F+

N+1 + (−1)N F−
N+1)

)
= 0,

whilst Eq. (4.2a) with v = 1 + s gives a second algebraic equation

λ
(
(F−

N+1 + (−1)N F+
N+1) + μ(F−

N − (−1)N F+
N )
)

−
(
(F+

N + (−1)N F−
N ) + μ(F+

N+1 − (−1)N F−
N+1)

)
= 0.

Simplifying leads to the algebraic system

λ(F−
N+1 + μF−

N ) − (F+
N + μF+

N+1) = 0,

λ(F+
N+1 − μF+

N ) − (F−
N − μF−

N+1) = 0.

Eliminating μ then gives

λ2 − �Nλ + 1 = 0,

while eliminating λ gives

μ2 − ZNμ − 1 = 0,

123



Journal of Scientific Computing (2019) 79:209–226 221

with �N and ZN given in (4.7c) and (4.7d), respectively. Hence, λ = λ±
N , with the corre-

sponding μ = μ±
N given in (4.9). This completes the proof. 
�

Remark 4.2 (Matrix-vector form). Given a set of basis functions of PN , one can directly
formulate eigenvalue problem (4.2) in matrix-vector form

A(λ)x = 0,

where A(λ) ∈ R
2(N+1)×2(N+1) and x ∈ R

2(N+1). A non-trivial solution exists if and only if
the determinant of A(λ) vanishes. Theorem 4.1 shows that, after proper normalization,

det(A(λ)) = λ2 − �Nλ + 1. (4.13)

4.3 Properties of the Eigenvalues. Case˛ = 1

The next result characterises the solutions of the algebraic eigenvalue equation as approxi-
mations to the modes {λ+

N , λ−
N } ≈ {ei	, e−i	}. It will be shown that λ+

N approximates the
mode ei	 if sin(	) ≥ 0, while it approximates the mode e−i	 if sin(	) < 0. Thus, it is
convenient to define

λ±
N =

⎧
⎪⎪⎨

⎪⎪⎩

�N±
√

�2
N−4

2 if sin(	) ≥ 0,

�N∓
√

�2
N−4

2 if sin(	) < 0,

so that the algebraic eigenvalue λ+
N always approximates the positive mode ei	. We denote

the relative error

ρ±
N = e±i	 − λ±

N

e±i	
. (4.14)

It was shown in [3] in the case of upwinding scheme (U) and the centered flux scheme (C)
that the relative error ρ±

N is dictated by the remainder in certain Padé approximants of the
exponential. The following result shows that the accuracy of the same Padé approximants
dictates the error in the scheme (A):

Theorem 4.3 There holds

�N = 2 cos(	) + 2
N sin(	) + O(|EN |2), (4.15)

where 
N ∈ R is given by


N = Im(EN ) + Re(EN )
Im((F−

N )2ei	)

Re((F−
N )2ei	)

, (4.16)

and

EN = ei	 − [N + 1/N ]ei	
ei	

, (4.17)

with [N + 1/N ]ei	 = F+
N+1

F−
N

being the [N + 1/N ]-Padé approximant of ei	.
Moreover, there holds

ρ±
N = ±i
N + O(|EN |2). (4.18)
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Proof To ease the notation, we denote

HN = (F−
N )2ei	. (4.19)

We first obtain the estimate (4.15). By the definition of EN in (4.17), we have

F+
N+1 = F−

N ei	(1 − EN ),

and by definition of the constants in (4.7), we have

F+
N = Conj(F−

N ), F−
N+1 = Conj(F+

N+1).

Applying the above expressions to (4.7c) and simplifying, we get

�N = 2
cos(	)Re(HN ) − Re(HN ei	EN ) + 1

2Re(HN ei	E2
N )

Re(HN ) − Re(HNEN )
.

We then get the estimate (4.15) by performing a series expansion in EN � 1 of the above
right hand side.

Using the definition of λ±
N in (4.9a), we obtain

λ±
N = (cos(	) + 
N sin(	)) ± i(sin(	) − 
N cos(	)) + O(|EN |2)

= e±i	(1 ∓ i
N ) + O(|EN |2).
The estimate (4.18) now follows directly from definition (4.14). 
�
Remark 4.4 (Asymptotic behavior of the remainderρ+

N ). Series expansion in	 for the expres-

sion
Im((F−

N )2ei	)

Re((F−
N )2ei	)

reveals that

Im((F−
N )2ei	)

Re((F−
N )2ei	)

= 	

2N + 1

(

1 + CN

[
	

2N + 1

]2
+ O

([
	

2N + 1

]4))

,

with CN =
{
1/3 N = 0,

N
2N−1 N > 0.

Combing this estimate with (4.18), we obtain

ρ+
N = i

(
Im(EN ) + Re(EN )

	

2N + 1

)
+ O

(

Re(EN )

[
	

2N + 1

]3
+ |EN |2

)

. (4.20)

It remains to estimate EN . This was discussed in detail in [3, Section 3] in the cases where
	 � 1 and where N → ∞. In particular, [3, Corollary 1] gives that, for 	 � 1:

Re(EN ) = − 	2N+2

2

[
N !

(2N + 1)!
]2

+ O(	2N+4),

Im(EN ) = i	2N+3 N + 1

(2N + 1)(2N + 3)

[
N !

(2N + 1)!
]2

+ O(	2N+5).

Hence, for 	 � 1, we have

ρ+
N = −i DN	2N+3 + O(	2N+5), (4.21)

where DN =
⎧
⎨

⎩

1/24 N = 0,

1
2(2N+1)(2N+3)

[
(N )!

(2N+1)!
]2

N > 0.
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The behavior in the case when 	 is fixed and N → ∞ is more subtle. In particular, ρ+
N

passes through three distinct phases [3]:

(1) If 2N + 1 < 	 − C	1/3, ρ+
N oscillate but do not decay;

(2) If	−o(	1/3) < 2N +1 < 	+o(	1/3), ρ+
N decays algebraically at a rateO(N−1/3);

(3a) If N ,	 → ∞ in such a way that 2N + 1 = κ	 with κ > 1 fixed, then ρ+
N decays

exponentially:

ρ+
N ≈ ie−β(N+1/2)

(

1 −
√

1 − 1

κ2

)2

,

where β > 0 is given by

β = ln
1 +

√
1 − 1

κ2

1−
√
1 − 1

κ2

− 2

√

1 − 1

κ2 ;

(3b) If 2N + 1 � 	, then ρ+
N decays at a super-exponential rate:

ρ+
N ≈ −i

[
e	

2
√

(2N + 1)(2N + 3)

]2N+2 2	

(2N + 1)(2N + 3)
.

Remark 4.5 (Dissipation error for small 	). Series expansion of �N in 	 � 1 yields that

�N = 2 − 	2 + O(	4).

Hence, |�N | < 2 for 	 � 1, which implies that the two eigenvalues λ±
N are complex-

conjugates and have unitmodulus. In particular, thismeans thatmethod (A) is non-dissipative.

4.4 Conditions for an Eigenvalue. General˛

Now we consider the case with a general value of the parameter α in the numerical fluxes
(1.7). Our main result for the eigenvalue problem (4.2) in this case is summarised in the
following theorem.

Theorem 4.6 There exists a non-trivial Bloch wave solution of the form (4.1) for the scheme
(1.6) with numerical fluxes (1.7) if and only if λ is a root of the algebraic equation

1

λ2
det(M(λ)) = aN

(
λ + 1

λ

)2

+ bN

(
λ + 1

λ

)
+ cN = 0, (4.22)

where

aN = (−1)N (1 − α2)F−
N F+

N ,

bN = − (−1)N (1 − α2)(F−
N F−

N+1 + F+
N F+

N+1) + (1 + α2)(F+
N F−

N+1 + F−
N F+

N+1),

cN = 2(−1)N (1 − α2)(F−
N+1F

+
N+1 − F−

N F+
N )

− (1 + α2)((F−
N )2 + (F+

N )2 + (F−
N+1)

2 + (F+
N+1)

2),
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are real constants, and M(λ) is the matrix

M(λ) =

⎡

⎢⎢⎢⎢⎢
⎣

λF−
N+1 − F+

N λF−
N − F+

N+1 0 0

0 0 λF+
N+1 − F−

N λF+
N − F−

N+1

λ(−1)N −1 −αλ −α(−1)N

αλ(−1)N α −λ (−1)N

⎤

⎥⎥⎥⎥⎥
⎦

.

Proof The proof is similar to that of Theorem 4.1, and we only sketch the main differences.
Let λ be an eigenvalue of (4.2), with (U ,�) ∈ PN × PN the corresponding (non-trivial)
eigenfunctions. As before, using the fact that

(L+U , v) = (L−�, v) = 0, ∀v = (1 − s)(1 + s)w, with w ∈ PN−2,

we obtain

U = a+�
1,+
N + b+�

2,+
N , � = a−�

1,−
N + b−�

2,−
N .

The coefficients a± and b± must now satisfy the four algebraic equations corresponding
to choosing test functions in (4.2) of the form v = 1 ± s and φ = 1 ± s. This leads to
a 4 × 4 system of homogeneous linear equations for the vector x = [a+, b+, a−, b−]T .
By straightforward but tedious algebraic manipulation, we arrive at the system of equations
M(λ)x = 0, where M(λ) is defined above. 
�

Remark 4.7 (Spurious modes). Note that, in the case α = 1, the Eq. (4.22) is a linear function
for the variable z = λ + 1/λ, which results in two roots (approximating the two physical
modes e±i	). However, in the general case with |α| �= 1, the Eq. (4.22) is quadratic in
z leading to 4 roots. Two of these roots will approximate the physical modes e±i	, while
the remaining two roots correspond to spurious modes. The presence of spurious modes in
numerical schemes for wave equations is well-known: in [3] it was shown that the centered
DG method (C) also has a spurious mode. A precise characterisation of these eigenvalues
similar to the case α = 1 discussed in Sect. 4.3 for any |α| �= 1 is rather technical to derive
and is not pursued further here; see, for example, in [3] the discussion on central DG method
(α = 0).

Remark 4.8 (Dissipation error for small 	). When 	 � 1, we show in the following that,
if α /∈ {0,±1}, then two of the four roots of the Eq. (4.22) are complex-conjugate to each
other and have modulus 1, which approximate the physical modes e±i	, and the other two
are real, which are non-physical. Hence, the method is non-dissipative.

Denoting f (z) = aN z2 + bN z + cN , series expansion on 	 � 1 yields that

f (2) f (−2) = −64α2	2 + O(	4).

This implies that f (2) f (−2) < 0 for 	 ∈ R
+ small enough. Hence, the quadratic equation

f (z) = 0 has two real roots z1, z2, with |z1| < 2 and |z2| > 2. This implies that the four
roots of the Eq. (4.22) are determined by the following two quadratic equations:

λ + 1/λ = z1, or λ + 1/λ = z2.

Since |z1| < 2, the two roots of the equation λ + 1/λ = z1 are complex-conjugate to each
other with modulus 1. Since |z2| > 2, the two roots of the equation λ + 1/λ = z2 are real.
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Table 2 Coefficients EN up to four digits accuracy for N ≤ 17

Degree 0 1 2 3 4 5

EN 5.555e−03 1.419e−02 1.008e−02 9.693e−03 1.139e−02 1.474e−02

Degree 6 7 8 9 10 11

EN 2.023e−02 2.892e−02 4.261e−02 6.429e−02 9.886e−02 1.544e−01

Degree 12 13 14 15 16 17

EN 2.444e−01 3.912e−01 6.322e−01 1.030e+0 1.692e+0 2.796e+0

Remark 4.9 (Leading terms of the relative error ρ+
N for α in (1.8)). Remark 4.4 shows that the

leading term in the relative errorρ+
N is of order	2N+3 forα = 1. Intuitively, onemight expect

be able to get an even higher order leading term for the relative error through a judicious
choice of the parameter α. This was shown to be the case in [5] for DGmethods for two-wave
wave equations.

Symbolic manipulation for degree up to N = 17 demonstrates that, with α given (1.8),
the relative error enjoys an additional two orders of accuracy

ρ+
N = −i

EN

(2N + 1)2N+2 	2N+5 + O(	2N+7)

with the coefficient EN up to 4 digits accuracy given in Table 2 for N ≤ 17.

5 Conclusion

A dispersion analysis was presented for the energy-conserving DG method [10] for the
one-wave wave equation. Method with parameter α = 1 is shown to be superior to both
the upwinding DG method and centered DG method in terms of dispersion error, with the
leading term for the relative error ρN of order 	2N+3 for any polynomial degree N . A
judicious choice of the parameter α (1.8) gives method (A*) which was shown to enjoy a
leading term of order 	2N+5 for the error ρN .
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