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Abstract

We discuss in this article a novel method for the numerical solution of the two-dimensional
elliptic Monge—Ampere equation. Our methodology relies on the combination of a time-
discretization by operator-splitting with a mixed finite element based space approximation
where one employs the same finite-dimensional spaces to approximate the unknown function
and its three second order derivatives. A key ingredient of our approach is the reformulation
of the Monge—Ampere equation as a nonlinear elliptic equation in divergence form, involving
the cofactor matrix of the Hessian of the unknown function. With the above elliptic equation
we associate an initial value problem that we discretize by operator-splitting. To enforce
the pointwise positivity of the approximate Hessian we employ a hard thresholding based
projection method. As shown by our numerical experiments, the resulting methodology is
robust and can handle a large variety of triangulations ranging from uniform on rectangles to
unstructured on domains with curved boundaries. For those cases where the solution is smooth
and isotropic enough, we suggest also a two-stage method to improve the computational
efficiency, the second stage being reminiscent of a Newton-like method. The methodology
discussed in this article is able to handle domains with curved boundaries and unstructured
meshes, using piecewise affine continuous approximations, while preserving optimal, or
nearly optimal, convergence orders for the approximation error.

Keywords Fully nonlinear elliptic partial differential equations - Monge—Ampére
equations - Operator-splitting method - Finite element approximations - Mixed finite
element methods - Tychonoff regularization - Variational crimes

1 Introduction

Let £2 be a bounded domain of R2. The Dirichlet problem for the canonical Monge—Ampére
equation reads as
detD?u = f in £2,

1
u=gonas2, M
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D2y being the Hessian matrix of u, that is D%y = 3)2:14 81214 2 , the functions f and g

ax19x2  9x2
being given. If f > 0, problem (1) is a prototypical fully nonlinear elliptic boundary value
problem. The existence and regularity properties of the solutions to fully nonlinear elliptic
problems have been discussed in [2,10,25], a particular attention being given to the canonical
Monge—Ampere equation in [31]. As shown in, e.g., [3,9,18,24,35], the Monge—Ampere
equation has a wide range of applications, differential geometry, optimal transportation,
physics and mechanics among them.

Starting with [39] various numerical methods have been developed for the numerical solu-
tion of fully nonlinear elliptic boundary problems, problem (1) being the most investigated
by far. The fast multiplication of these methods during the last decade has made keeping track
of all of them an almost impossible task. Several of them have been reported in [18], but a
visit to Google Scholar has become a must to have a more complete view. Focusing on those
approaches with which we have some familiarity, we will classify them roughly into two fam-
ilies. The methods of the first family treat a finite difference or finite element approximation
of the equation under consideration (possibly coupled to a regularization procedure as done
in [19,20]; see also [18]); such methods, and the iterative solution of the resulting discrete
problems, are discussed in, e.g., [1,4-6,22,23,34,43]. Another approach is to reformulate the
nonlinear elliptic problem as an optimization one; this can be done via least-squares or via
the introduction of a well-chosen augmented Lagrangian algorithm. Such optimization based
methods are discussed in e.g. [8,11-16,28-30,35].

The method discussed in this article concerns problem (1) specifically. It relies on: (i)
An equivalent divergence formulation of (1). (ii) An initial value problem associated with a
mixed variant of the above divergence formulation. (iii) The time discretization by operator-
splitting of the above initial value problem. (iv) An eigenvalue projection algorithm to enforce
the pointwise positive semi-definiteness of the approximate Hessian at each time step. (v)
A mixed finite element implementation of the above methodology. Also for those problems
where the solution of (1) is sufficiently smooth and isotropic, we propose a two-stage strategy
to speed up the convergence: during the first stage, the dynamical system (flow) we consider is
associated with du /d¢, while during the second stage we use d(Su)/dz¢, S being a well-chosen
elliptic operator, giving to this second stage a Newton-like flavor.

As reported in, e.g., various chapters of [30] (see also the references therein), operator-
splitting methods have a long history for providing efficient solution methods for a large
variety of problems modeled by partial differential equations and inequalities. Fully nonlinear
elliptic equations are no exceptions: To the best of our knowledge, the first publication
making use of an operator-splitting method for the solution of a fully nonlinear elliptic
problem is the celebrated article [3] by J.D. Benamou and Y. Brenier on the solution of the
Monge—Kantorovich optimal mass transfer problem by the alternating direction method of
multipliers (ADMM), a particular operator-splitting method. The solution of (1) by another
ADMM algorithm is discussedin [11,13,14,16,29,30]. The numerical solution of the Monge—
Ampere equation for domains with a curved boundary is one of the objectives of this article.
Actually, one discussed in [6,21,32,33] efficient methods to achieve that goal. In particular,
the methods in [21,32] are (among other things) mesh-free variants of the wide stencil finite
difference methods developed by A. Oberman and his collaborators (see, e.g., [22,38] and
the references therein). Solution methods for the Monge—Ampere equation on two and three-
dimensional domains with curved boundaries are discussed also in [7,8]. Albeit relying on
continuous piecewise affine approximations, like the methods in this article, the methods
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discussed in [7,8] are more complicated to implement, and less robust and flexible than the
quite simple and modular ones described in the following sections.

This article is organized as follows: In Sect. 2, we reformulate (1) as an elliptic problem in
divergence form with which we associate an initial value problem whose time-discretization,
by operator-splitting, is discussed in Sect. 3. The finite element implementation of the above
operator-splitting method is discussed in Sect. 4. The two-stage strategy we mentioned above
is discussed in Sect. 5. In Sect. 6 we present the results of numerical experiments. These
results validate the methodology discussed in the preceding sections, including the two-
stage strategy described in Sect. 5; they also show that problem (1) is solvable on domains
with curved boundaries, using piecewise affine approximations associated with unstructured
triangulations.

The main goal of this article was to access the possibility of solving a large variety of
test problems, some of them quite singular, using continuous piecewise affine finite element
approximations, associated with possibly unstructured meshes on domains with a curved
boundary, while preserving good accuracy properties. The results of the many numerical
experiments we have performed are promising and suggest further investigations and appli-
cations: among them, accelerating the convergence of our algorithm being an important
objective, the two-stage method introduced in Sect. 5 (a Newton-like method) being just a
first step in that direction. Actually, preliminary promising results suggest that the method-
ology introduced in the present article can be generalized to three dimensional problems,
obstacle problems for the Monge—Ampere operator (like those discussed in [42]) and to the
Gaussian curvature equation det D%u = K(1 + |Vu|»)'*t9/2 withd = 2 or 3, K (the given
curvature) being a positive function.

2 A Divergence Formulation of Problem (1) and an Associated Initial
Value Problem

Pu __Pu
. . ax2 dx10 .
Let us denote by cof (D%u) the matrix-valued function a;iu ;;lu 2 |. One can easily

T 0x10x ax?
show that problem (1) is equivalent to
—V - (cof (D?u) Vu) +2f =0in £, @
u=gonas2.

Similarly, one can also easily show that (2) characterizes formally u as being either a
minimizer or a maximizer of the functional I over the space V, where

I(v) = / (cof (Dzv)) Vv Vvdx + 6/ fvdx and V, = {v|v smooth, v = g on 0£2}.
2 2

Assume that u is solution of (1), (2). Since the symmetric matrix-valued functions DZu
and cof (D?u) are either point-wise positive definite or negative definite in the neighborhood
of u, one can easily show that functional / is either convex or concave in the neighborhood
of u, justifying using a well-initialized descent type method to compute the solutions of (1),
(2); this can be achieved via the time integration of an initial value problem associated with
(2). To partly overcome the nonlinear coupling between u and its second order derivatives
we introduce a matrix-valued function p verifying the linear relation p = D?u. Problem (2)
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is clearly equivalent to the following system of partial differential equations:

u=gonas2, 3)
p—D%u=0.

{—v - (cof (p)Vu) +2f = 0in £,

To handle those situations where inf ,c; f(x) = 0, or for the solution of obstacle problems
for the Monge—Ampere operator (as those considered in [42]), we found that one is on the
safe side if one considers the following variant of (3), obtained by regularization:

u=gonas2, )
p—D%u=0,

:—v [l + cof (p)) Vu] +2f = 0in 2,

& being a small positive number (of the order of 42 in practice, & being the space discretization
step). In order to solve (4), we associate with it the following initial value problem (flow in
the dynamical system terminology):

B — V- [(eI+ cof (p)) Vu] +2f = 0in 2 x (0, +00),
u=gonaf2 x (0,400),

4y (p—D%u) =0in2 x (0, +00),

u(0) = uo, p(0) = po,

(&)

with y a positive constant [above and below, ¢ (¢) denotes the function x — ¢ (x, 1)].

Before discussing (in Sect. 3) the time discretization of problem (5), we will address two
important issues, namely: (i) The choice of y, and (ii) the choice of ug and pg. Concerning
y, the idea is to pick a value so that p(#) evolves in time roughly like u(¢). Taking advantage
of the fact that p and cof (p) have the same eigenvalues, we suggest taking

y = Bho (e + V),

where Aq is the smallest eigenvalue of operator —V2in H& (£2), a is the lower bound of
function f, and B is a constant of the order of 1. Assuming that we are looking for the convex
solutions of (1), several possibilities (not exclusive of each other) do exist in order to force
this convexity property. The simplest one is a proper choice of ug and pg in (5). Following the
discussion in [28,29], we suggest taking for u( the solution of the following Poisson problem

V2ug =21/ f in 2, up = g on 92, (6)

with A(> 0) of the order of 1. Concerning pg, an obvious choice is pg = D2ug, a simpler
alternative being po = A/ f L

Remark 1 A natural variant of (5) is obtained by replacing 38—? by — %V2u. We did not
pursue in that direction for two main reasons: (i) ‘;—”t‘ is much better suited than —%Vzu
for the numerical solution of obstacle problems for the Monge—Ampere operator (like those
discussed in [42]), and (ii) the numerical experiments we performed showed that the the two-
stage method discussed in Sect. 5 is as fast and, in general, more robust than the methodology

based on —%v%.
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3 On the Time Discretization of System (5) by Operator-Splitting

The structure of system (5) suggests using operator-splitting for its time-discretization.
Among the many possible operator-splitting schemes (see, e.g., [30] for further informa-
tion on operator-splitting methods) we advocate the particular Lie scheme described below,
where Az(> 0) is a time-discretization step and " = nAt:

u’ =ug, p° = po. (7

Forn > 0, {u", p"} — {u”+1/2, p"“‘l/z} N {u”'H, p”‘H} as follows
Fractional Step 1: Solve

Qu — V. [(eT+cof (p") Vu] +2f =0in 2 x (1", "+1),
u=gond x (", "),

W —0in 2 x (1", "),

u(")y=u", p@")=p",

®)

and set un+l/2 — u(tn+l) , pn+l/2 — pn.
Fractional Step 2: Solve

ou _n; n n+l
p—t_OmQx(t,t ),

‘;—l; +yp=yD?u" /2 in 2 x (", "), 9
u (tn) — un+1/27 p (tn) — pn+1/2’

and set
un+l — M”+1/2, pn+1 — P+ [p (thrl)] , (10)

where in (10), P+ denotes a projection operator (to be defined in Sect. 4.5) on the convex cone
of the symmetric positive semi-definite 2 x 2 matrices, the projection being done pointwise.
Scheme (7)—(10) is first-order accurate at most, and semi-constructive since we still have to
solve the sub-initial value problems (8) and (9). There is no difficulty with (9) since it has a
closed form solution. To time-discretize (8), we advocate just taking one step of the backward
Euler scheme. The resulting scheme (of the Markchuk—Yanenko type) reads as follows (using
a more compact notation):

u’ = uo, p° = po. (1)

Forn >0, {u", p"} — {u"*!, p"*!} as follows

un+Al;un _v. [(81 + cof (pn)) Vun-H] + 2f =0in £, (12)
"t =g onds,
pn-‘rl =P, [e—yAtpn + (1 _ e—yAt) D2un+1]. (13)

If the matrix-valued function p” is positive semi-definite, then (12) is a formally well-
posed elliptic boundary value problem.

@ Springer



6 Journal of Scientific Computing (2019) 79:1-47

() (b)

Fig. 1 Four meshes for two different domains used in the numerical experiments. a A regular mesh on the
unit square. b A (highly) symmetric mesh on the unit square. ¢ An isotropic unstructured mesh on the unit
square. d An isotropic unstructured mesh on a half-unit disk

(@)

4 On the Finite Element Implementation of the Operator-Splitting
Scheme

4.1 Synopsis

The equivalent divergence formulations (2) and (3) of problem (1) strongly suggest employing
space approximations based on variational principles. To achieve such a goal, we are going to
use finite element spaces consisting of functions which are globally continuous and piecewise
affine on triangulations of £2. Asin, e.g., [8,29] (see also the references therein), we are going
to use a mixed finite element method, relying basically on the same finite dimensional spaces
to approximate u, its three second order derivatives, and the entries of the matrix-valued
function p.

4.2 The Basic Finite Element Spaces

We follow the presentations in [8,14,26,29]: Assuming that £2 is a polygonal domain of R?
(or has been approximated by such a domain), we introduce a family (7},);, of triangulations
of £2, like the ones in Fig. 1; usually, one denotes by % the length of the largest edge(s) of 7j,.

The first finite element space we introduce is the finite dimensional space V), defined by

Vh:{v|v€C0(S_2),v|T6P1,VT€771}, (14)

where P is the space of the polynomials of two variables of degree < 1. Let us denote by
X', the set of the vertices of the triangles of 7;; we have then X), = {Q j}jvil Next, we
associate with each vertex Q; the (shape) function w ;, uniquely defined by:

wj € Vi, wi(Qj) =1, w;j(Qr) =0,Vk=1,..., Np, k # J.

The set B, = {w; }jvil is a vector basis of the space V},; it verifies v = Zjvil v(Qj)wj, Vv €
Vi, implying that dim Vj, = N,. We observe that the support of the basis function w; is the
union of those triangles of 7, which have Q; as a common vertex.

Assuming that g € C%(3£2), we define Vgn, an affine subspace of Vj,, by
Ven = {vlv € Vi, v(Q)) = g(Q),VQ; € £, N 382} . Note thatif g = 0, then V,, = Vop,
where Vy, = {v|v € V, v =0 o0n 082} (= Vi N HOI(.Q)) .

In Sect. 4.3 below, we are going to address the approximation of 8%u/ Bx%, 3%u/ 8x% and
921 /dx19x>, an important issue indeed.
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4.3 Finite Element Approximation of the Three Second Order Derivatives

Unlike the collocation methods discussed in [7,8,29], the values taken on 02 by the discrete
second order derivatives affect the approximate solutions. From that point of view, enforcing
(as done in [7,8,29]) these discrete derivatives to vanish on 052 leads to large approximation
errors on the solutions of problem (12), a consequence of the poor approximation of cof (p”)
in the neighborhood of d£2. To overcome this difficulty, several approaches are available. We
will focus on two of them. The starting point of the first one is to observe that the Divergence
Theorem implies:

Vi,j=1,2,Yv e H*(2),

92 dv 9 dv 9
Jo aX[aI;, wdx = —3 [g [axv a)lf; a;j ﬁ] dx (15)
Vw € Hy ().
This suggests approximating a)?,za’; by Dl i (v) verifying
Vi,j=1,2,Vv € Vp, ljh(v) eV
2 _ v 3 v 3
fQ Dijh(v)wdx =2 f(z [a;, a;clj + axvj a;l,)]dx (16)

Yw € Vo,

The finite dimensional problem (16) being undetermined, additional relations are required in
order to force solution uniqueness. We suggest imposing (approximately)

d
n ”h(v) =0onods2. (17)
Among the various options available to impose (17), the one we selected reads as

/ VD},(v) - Vugdx =0, ¥k = Nop + 1,..., N, (18)
)
where in (18): (i) Noy = dim Voy. (i) {Qu}p ny, 41 = Zh N 052, Tp = {Qc}| being the
set of the vertices of 7j,. (iii) wy is the basis (shape) function of V), associated with Qy. (iv)
wi = support of wy is the union of those triangles of 7, which have Qj as acommon vertex;
|wy | will denote the area of wy.

The rationale behind (18) is easy to understand: we have (Green’s formula)

B
/ —wwkd(B.Q) :/ V2 yrwrdx +/ V- Vurdx, Vi € H2(2). (19)
dopnae OM o ok
Suppose now that Y is harmonic (that is V21// = 0), then relation (19) reduces to
oY
/ —wkd(as?) f Vi - Vwgdx. (20)
dopna On -

Albeit the function Dl (V) is piecewise harmonic only (being piecewise affine), we used
(20) to impose (17), explaining where (18) comes from. It is clear that replacing the above
homogeneous Neumann boundary condition by (18) is a typical example of variational crime
(in the sense of [44]). The numerical experiment results reported in Sect. 6 will validate a
regularized variant of the approach we just described, based essentially on relations (16)
and (18). Indeed, numerical experiments performed with (16), (18) show that the quality of
the approximation deteriorates as 47 — 0, unless £2 is a rectangle and that one uses regular
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triangulations like the one shown in Fig. 1a. To overcome the above difficulty, we advocate
(inspired by [7,8,29]) the simple (Tychonoff) regularization procedure where one replaces
system (16), (18) by:

Vi,j=1,2,Yv eV, D?jh(v) €V,

c ZTeT/k IT| [; Vijh(u) - Vupdx + [, Dizjh(v)wkdx
' 2D

_ _1 dv dwg Qv dwg _
=—5 wk[ + ]dx,Vk—l,...,N(]h,

x; dx; dx; dx;

o VDl.zjh(v) -Vwgdx = 0,Vk = Nop + 1, ..., Np,

where in (21), C is a positive constant of the order of 1, ’Z;lk being the set of those triangles
of 7, which have Q; as a common vertex.

Remark 2 Suppose that one uses the trapezoidal rule to approximate the L?(£2)-inner prod-
ucts in (21), then the above system reduces to

Vi, j=1,2,Yv € Vy, D}, (v) € Vi,
C Y rert IT1 [ VD, () - Vurdx + 44 DZ, (00)

=3, [ i dx Yk =1, Non,

TXI' 3Xj W 3X,‘

(22)

o VD) - Vurdx = 0,Vk = Nop +1,..., Ny
System (22) being simpler than system (21) from a matrix point of view, it is the one we
have used for those computations relying on (18). The practical use of (22) to define discrete
second order derivatives requires this finite dimensional variational problem to be well-posed.
We will prove it is true in the particular case where 7j, being isotropic one replaces (22) by

Vi,j=1,2,Vv e Vh,ijh(v) eV,

Ch? [, VD%, (v) - Vurdx + 44 D2, (v)(Qp) .

=—3Ju [*’—”awk +3—“a“’k]dx,v1<: I,.... Non,

axi 3Xj 9Xj 3,\”,‘

o VDl.zjh(v) -Vwgdx =0,Vk = Nop, + 1, ..., Np.

Theorem 1 Suppose that in (23), the function v is given in Vy,. Then the associated linear
system providing Dizj 5, (V) has a unique solution.

Proof The proof is very simple once we introduce the space M, (C V) defined by

Np

N, _
My=3pneVy,u= Z Mk W s (Mk)kiNOhH e RNi—Now 1 (24)
k=Nop+1

We clearly have

Vib=Vorh ® Mpand u € My < p|r =0,YT € Tj suchthat 0T N 92 = <. (25)
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Next, we denote by (-, -)oy, the inner-product over Vj, defined by

Nj,

1
@, whon = 3 ) loelv(Qw(Qp), (26)

k=1

where (Qk),ivi | = 2. We have then VOJ;l = M), for the inner product defined by (26).
In order to prove that (23) is well-posed, it is sufficient to show that

p €V,
Ch* [, Vp-Vuwrdx + L p(00) =0.Vk=1,.... N, =p=0. (@27
fwk Vp-Vwrdx =0,Vk = Noj, + 1, ..., Np,

The variational system in the left part of (27) is equivalent to

p € Vy,
Ch? [, Vp - Vvdx + (p, v)on = 0, Vv € Vop, (28)
JoVp-Vudx =0,Yu € M.

It follows from (25) that p = po + p1 with pg € Vo, and p; € M}, the above decomposition
being unique. We have (po, p1)on = 0 and [from (28)] f_q Vp-Vpidx = 0. Taking v = po
in (28), the above two relations imply

[ 19pPa -+ (o, pojon = 0. (29)

Q
It follows from (29) that pg = 0 and Vp = V(po + p1) = Vp1 = 0. Function p;
is thus a constant, but since p;(Qx) = 0,Vk = 1, ..., Ny, this constant is 0, implying
p=po+p =0. ]

Remark 3 We recall that 4 is the length of the largest edge(s) of 7j,. Denote by /i, the length
of the smallest edge(s) of 7j,. If the ratio i /hyin ~ 1 (a situation we already considered in
Remark 2), then one can advantageously replace theterm C ) . T |T| f T VD2, (v)-Vwrdx

ijh
in (22) by the following simpler one ¢ fwk VDizj 5 (V) - Vwgdx, with 1 a positive parameter
of the order of 4.

Remark 4 Suppose that £2 = (0, 1) and that the triangulation 7}, is of the same type as the
one in Fig. 1a. Suppose also that 1 = 11?, I being an integer greater than 1. In this particular
case, we have X, = {Q;;|Qij = (ih, jh),0 < i,j < I+ 1}and ) o, = {Qi;|Qij =
(ih, jh), 1 <i,j < I}, implying that N, = (I 4 2)? and No;, = I°. Suppose that C = 0 in
(22) or (23), then if 1 < i, j < I, the relations giving D,%lh(v)(Qij)(l < k,l < 2) reduce to
simple finite difference formulas, exact for the polynomials of degree < 2. These formulas
can be found in [29] pages 390 and 391. O

Although proving good convergence results, particularly if problem (1) has a smooth
solution, the variational crime at the basis of relations (22) and (23) was leaving us uncom-
fortable. When using models (4), (5) to solve the Monge—Ampere equation (1), one can expect
increased robustness (possibly at the expense of accuracy) if one uses smooth approximation
of p. Suppose that ¥/ € H?(£2) and consider (with & > 0) the following well-posed elliptic
linear variational problem
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P € Hy (),
Yy 3 Yy 3
szfoj-V(]bdx—f—fgpqu&dx:—zf |: v ¢ +l£

dx,Y¢ € Hy(£2).
ax; dx; axjaxi] Ve < Ho(60)

(30)
Function pfj verifies
21// )
lim p¢, = in L°(£2), 31
SE)I})I?,/ 8xi8xj n ( ) ( )
and s
2 Y
—eV pz] +pz] dx;0x; in £2, (32)
pfj =0on d$2

(in the sense of distributions). From the convexity of £2, it follows from (32) that pfj S

H(} (£2) N H3(2) (C C 0(.(_2)). Discrete variants of the above regularization method were
applied in [7,8] to the solution of the Monge—Ampere equation in dimensions two and three.
The numerical results reported in [7,8] show that the least-squares collocation method dis-
cussed there has no problem to accommodate the boundary condition pfj = O on 952, unlike
the divergence formulation (2) of the Monge—Ampere equation we employ in this article. In
order to overcome this difficulty, we suggest introducing a correcting step, namely

2
;sV Pz,"'l’z]—l’l, in §2, 33)
i =0onds?,
whose variational formulation reads as
B € H'(9), )
e [o VP;; - Védx + [ b;dx = [ pjddx, V¢ € H'(2).
Function pl verifies limg_,¢ pl] aj 5’; in L2(£2), and ﬁfj € H*(£2). These properties are

at the foundation of our second approach concerning the approximation of the second order

derivatives. Suppose that v € V},; one proceeds as follows to compute the discrete analogue
Uh(v) of Bx Bx (I=i,j=2:

Solve:

Dij € Von,
ov dwy v dwg
C T Vi -Vwrd |l .. :_l/ Ittt ST dx,
Lreg 1T fr Vi - Virdx + 5 pij (00 2 o LOx; 0x; - dxj 0x; *

Vk=1,..., Nop,

(35)
and then
l/h(v) € Vp,
C Y reqt IT1 f; VDZ, () - Vurdx + 151D%, 0)(Q0) = 1 pij (00, (36)
Vk=1,..., Ny,

C being of the order of 1. Anticipating on the numerical results reported in Sect. 6, we
would like to mention the following facts concerning the two approaches we presented
concerning the approximation of the second order derivatives: Although resting on more
solid mathematical foundations the second approach is less accurate than the first one if the
Monge—-Ampere problem under consideration has smooth enough solutions. However, the
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second approach is more robust in the sense it can handle non-smooth situations more easily
than the first one [typical examples in that direction being provided by problems (1) where
f is not a function, but a positive measure (a Dirac’s one for example)].

Remark 3 still applies for the approximation of the second order derivatives defined by
relations (35), (36).

Remark5 When implementing the double regularization approach associated with relations
(32), (33), it makes sense (and is even tempting) to replace ¢ in (32) [resp. (33)] by n; of
the order of h2tY (resp., n2 of the order of h2=7) with y (> 0) not too large. Numerical
experiments done with y = 1/4,1/3 and 1/2 showed that for some test problems the
introduction of a positive y may improve convergence. However since we found examples
where it has the opposite effect, we decided to stay with y = 0.

4.4 Finite Element Implementation of the Operator-Splitting Scheme (11)-(13)

Let us recall that the set X, of the vertices of 7 interior to £2 has been ordered so that
Yon = {Qk},]:’i”l and X = Yo, U {Qk},lcvi Noj+1- In the sequel, we will denote by Qy the

space {qlq € (Vi)>*%, q=q"}.
4.4.1 Implementation of Scheme (11)-(13)

A fully discrete analogue of scheme (11)—(13) reads as

u® = uon (€ Ven) , p° = pon (€ Qu). (37)
Forn >0, {u", p"} — {u"*!, p"*'} as follows:
Solve
un+1 e Vgh,
[ u"vdx + At [, (eI + cof (p")) Vu" ! - Vvdx (38)

= [ou"vdx —2At [, frvdx,Yv € Vop,

and compute p"*! via

Vk=1,..., Ny, one has p"*2(Qy) = e " p" (Q)

_ D}, (u™™) (Qu) D3y, (u" 1) (Q1)

+ 1— y At 114 12h , (39)
(1= )<D%2h (1) (Q6) Dy (u*1) (0

"0 = Py [p"2(00)].

where in (38), f5(> 0) is a continuous approximation of f, and where in (39), the discrete
second order derivatives of u"*! are computed using the methods discussed in Sect. 4.3,
operator P, being defined in Sect. 4.5. The initialization of scheme (37)—(39) and the solution
of the discrete variational problem (38) will be discussed in Sects. 4.4.2 and 4.4.3, respectively.

4.4.2 Initialization of Scheme (37)-(39)

Our starting point will be problem (6) defining uo. The most natural discrete analogue of
problem (6) is given by

uop € Vgh,/ Vuop - Vodx = —2)»/ v frnvdx, Vv € Vyy. (40)
2 2
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From a practical point of view, we advocate using the trapezoidal rule to compute (approxi-
mately) the integral |, o v/ fnvdx. We obtain then (using notation from previous sections):

1
/Q\/ﬁvdw 3 T2 o;1\ fir(@)v(2)). (41)

If £2 is a rectangle and the triangulation we employ is of the Fig. 1a type, we advocate using
finite differences and a fast Poisson solver to compute ug;, from (6). The solution of (40)
for more general domains and/or triangulations 75, will be (briefly) discussed in Sect. 4.4.3.
Once ugp, has been computed, we use the methods discussed in Sect. 4.3 to define po;, by

N 2 2
_ Dllh(MOh) D]z;,(”Oh)) i|
Por kE=1 Py [(szh(”%) D2, (on) (Qk) | wg. (42)

An alternative to (42) is to define po, by pon = A Z,](Vi 1V Jn(Qp)L, a discrete analogue of
po = A/ fL

4.4.3 On the Solution of Problems (38) and Related Linear Variational Problems

What follows is fairly classical (see, for example Appendix 1 of [26] and Chapter 5 of [27],
and the references therein). Problems (38) and (40) are particular cases of the following finite
dimensional linear variational problem (of the Dirichlet type):

¥ e Vgh,a/ Yodx +/ MV - Vodx :/ frodx,N¢ € Vo, (43)
2 2 2

where in (43), a is a non-negative constant, M is a piecewise affine uniformly positive definite
symmetric matrix-valued function, f* being a given continuous function. From the positivity
of M, problem (43) has a unique solution. We will return on the matrix M positivity issue in
Sect. 4.5.

Using the trapezoidal rule to approximate the first and third integrals in (43), the above
problem takes the following formulation:

U € Ven. Vo € Von § X024 lor | /(@09 (1) 4
+ [ MVY - Vodx = LN |wy| £*(0D(0).

Since the set {wk},ivﬁ”l is a vector basis of Vo, and ¥ = Zf\iﬁf v(Qn) + Z;ih/vo,,ﬂ g(Q0),

it follows from (44) that the vector { W(Qk)},?[i”l is clearly the solution of the following
[equivalent to (44)] linear system [where ¥ denotes ¥ (Qx)]:

5 lox] Y + Z;v:olf (fwkﬁa)[ MVuwy - ledx> ¥

= Llond 100 = X1 (foyo MV - Vwndz) g0, (49)
k=1,..., Nop.

Since, in practice, & is small compared to the diameter of §2, the matrix associated with
the linear system (45) is sparse. Moreover, this matrix is symmetric positive definite, these
properties following from the uniform positivity of the symmetric matrix-valued function
M. One can solve thus the linear system (45) by a sparse Cholesky solver, or a diagonally
preconditioned conjugate gradient algorithm. An user friendly alternative is to use one of
those MATLAB (or other library) programs which decides by itself which linear solver
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is the more appropriate to the linear system under consideration. Matrix M (resp., vector
Vwy) being piecewise affine (resp., piecewise constant) the various integrals in (45) can be
computed exactly by the trapezoidal rule.

The above comments concerning problems (38) and (40) apply also to the linear problems
(22), (23) and (35), (36) we used in Sect. 4.3 to compute the discrete second order partial
derivatives.

4.5 Enforcing the Local Positive Semi-definiteness of p by Eigenvalue Projection

In relations (10), (13), (39) and (42) we made use of P4 a (kind of) projection operator
mapping the space of the 2 x 2 symmetric real matrices onto the convex cone of the 2 x 2
positive semi-definite symmetric real matrices. Suppose that A is a 2 x 2 symmetric real
matrix. From the symmetry of A there exists a 2 x 2 orthogonal matrix S such that A = SAS™!

with A = <)E)l )f) ), A1 and A2 being the two eigenvalues of matrix A. Operator Py is defined
2
AF 0 R
by P (A) =S ( (; A+> S~ with A" = max(0, A;), Vi =1, 2.
2

5 A Two-Stage Convergence Acceleration Strategy

In this section, we propose a simple strategy to speed up the convergence to steady states of
scheme (11)—(13). Instead of (5), we consider the following initial value problem

— WTAELEMVU) . [l + cof (p)) V] +2f = 01in £2 x (0, +00),
u=gonds2 x (0, 400),

P 4y (p—D%u) =0in2 x (0, +00),

u(0) = uy, p0) =p1,

where 7 is (as is ¢) an artificial time. In (46), M is a time independent matrix-valued function,
which is supposed to be reasonably close to cof (D?u), u being the convex solution of problem
(1) (assuming that such a solution does exist). Scheme (11)-(13) can be easily modified to

W in (12) by

n+l _ . n
_v. [(81+M)V (u)]
AT

Compared to (12), the above preconditioning allows the use of a larger time step At, typically
of the order of 1 if y &~ 1, and u; and p; are well-chosen. If convergence takes place, we
expect that lim,_, ; o, u" = u. To guarantee convergence, a proper choice of {uy, p1} is in
order: a simple way to achieve that goal is to proceed as follows:

(46)

accommodate (46): we just have to replace

(i) Start iterating with scheme (11)—(13) for a small value of Az, then stop time-stepping
after a sufficiently (but not too) large number of time steps, denoting by {u, p1} the pair
produced by scheme (11)—(13) (further details will be given in Sect. 6).

(i) Take for M the matrix-valued function cof(D?u;), and using {u1, p1} as initializer,
switch until convergence to the variant of scheme (11)-(13) associated with the initial
value-problem (46).

The reader will notice the Newton-like flavor of the above two-stage strategy. Its conver-
gence is discussed in the PhD dissertation of the second author. It is shown in particular that
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if M is close to cof (D?u), where u is solution to problem (1), large values of At can be used,
leading to fast convergence properties.

6 Numerical Experiments
6.1 Generalities

In this section we will apply the computational methods discussed in Sects. 3-5, to the
numerical solution of test problems, some of them without smooth solutions or no solution
at all. The associated domains §2 will be the unit square (0, D2 (as expected), and the
disk of radius 1/2, centered at (1/2, 1/2). In Fig. 1a, b, c, d, we visualized finite element
triangulations of these two domains. The mesh in Fig. 1a will be called a regular mesh,
while the mesh on Fig. 1b will be called a symmetric mesh (it has five symmetries, while the
mesh in Fig. 1a has three symmetries ‘only’). We will say that the meshes in Fig. 1c, d are
unstructured, although they are quite isotropic.

We use DistMesh [40] to generate the meshes shown in Fig. 1c, d. As expected (from the
experiments reported in [8]), of all the triangulations we tested, those as the one in Fig. la are
the only ones not requiring a regularization of the discrete second order derivatives in rela-
tion (22) or (23) to produce accurate results, when applied to the solution of test problems
with smooth solutions. However, for poorly smooth or non-smooth problems, regulariza-
tion improves significantly the performances of our methods, even for meshes of Fig. la
type.

One of our goals with the first two test problems we are going to consider was to test
the performances of the original one-stage algorithm (11)—(13) (actually of a finite ele-
ment variant of it), and compare them with those of the two-stage algorithm discussed
in Sect. 5. In all of our tests, without specification, we use C = 1 in (23), (35) and
(36). We took ¢ = h%, 8 = 1/4 and Ar = 2h% in the discrete analogue of algo-
rithm (11)—(13). In the first stage of the two-stage algorithm we used ID2u" —p"| < 1
as the criterion to switch to stage 2 (above, we defined the matrix-function norm || - ||
by

Np
1
ISI? =3 D _lexl IS0, vS € Qu,

k=1

the matrix norm of S(Qy) being the Frobenius one). In stage 2, we used At = 8k and took,
typically, [|u"T! — u"|» < 1077, as stopping criterion (| - ||2 being a trapezoidal rule based
approximation of the canonical Ly-norm). When using only the discrete analog of scheme
(11)—(13) we used a stopping criterion like the one used for stage 2, but with a smaller tol-
erance (h° seems to be a reasonable choice), in order to compensate that Az (= 2h?) is quite
small.

Remark 6 A smaller stopping criterion can be used for stage 2, but this is not necessary since
(as visible on Fig. 2) the L, and L, distances to the exact solution do not decrease anymore
past some value of n; this appears clearly on Fig. 2b, c, d.
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Fig.2 (Test problem (47), « = 1): graphs of the computed solutions obtained via the two-stage strategy with
relations (23) and related convergence behavior for: a a unit square regular mesh (A = 1/80), b a unit square
symmetric mesh (2 = 1/80), ¢ a unit square unstructured mesh (2 = 1/80), d a half unit disk triangulation
(h =1/80)
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6.2 A Polynomial Example

The first test problem we consider reads as

detD?u = 256 in £2,
47)

u(xy, x2) =8 [a (=2’ + L (- %)2] = LV(x1, x2) € 382,

with @« > 1, 2 being either the unit square (0O, 1)2 or the disk of radius 1/2 centered at
(1/2, 1/2). Clearly, the exact convex solution of problem (47) is given by

1\? 1 1\2
uxy, x2)=8lalxi—=) +—|x—= —1,V(x1,x2) € 052.
2 o 2

The first problem (47) we considered was the one associated with « = 1, correspond-
ing clearly to an isotropic solution. On Table 1, we have reported some of the results we
obtained when applying the two-stage algorithm to the solution of problem (47), the second
order derivatives being approximated by (23). For various values of 4 we have shown: (i)
The number of iterations (time steps) necessary to achieve convergence. (ii) The value of
lu™ ' — u"||5 at convergence. (iii) The L, and L, approximation errors and the associated
convergence rates (roughly of the order of two, which is generically optimal for the contin-
uous piecewise affine approximations of the solution of a second order elliptic problem). In
addition, we have reported on the 8th column of Table 1, a discrete L,-norm of the gradient
of the function u"¢ — u where n. denotes the number of time steps necessary to achieve
convergence (1, can be found in the second column of Table 1). For all tests with 7 = 1/160,
we set ¢ = h and the stopping criterion |[D?*u" — p"|| < 10 for stage-one and stopping
criterion [t — u™|» < 1073 for stage-two.

Actually, further explanations are in order: indeed, we defined ||V (u"¢ — u)||2 by

Nj
1
[V (@ =)l = |5 D lonlI9neme (Qa) = V(i) 2
k=1
with
ne 1 ne
Vau" Q) = oo Do ATI(Ve™) Iz,

TeTy

Thk being, as in Sect. 4.3, the set of those triangles of 7;, which have Qj as a common vertex.
The (classical) averaging procedure associated with the definition of V,u"(Qy) acts as a
low pass filter, explaining the higher than one convergence rates reported in the 9" column
of Table 1. Let us define by A7y, g = 1,2 and 3, the three vertices of triangle T'; defining
V(" —u)ll2 by

v @ —a)l,= |5y

TeT), g=1

2
Vue|r — Vu (Arg)

would lead to rates of convergence equal to one for the gradient approximation.

Table 2 is the variant of Table 1 associated with the second order derivative approximations
defined by relations (35) and (36). The results reported in Table 2 suggest faster convergence
of the iterative method, but lower orders of convergence for the approximation errors as
h — 0. Since our method converges faster and the second order derivatives are smoother
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Table 1 (Test problem (47), « = 1): (i) number of iterations needed for the convergence of the two-stage
algorithm. (ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regular meshes
of the unit square. (b) Symmetric meshes of the unit square. (¢) Unstructured isotropic meshes of the unit
square. (d) Unstructured isotropic meshes of the half-unit disk. Relations (23) have been used to approximate
the second order derivatives. (In (a), h = Ax| = Axp)

h Iterations  [u"t! — u” llo Lo error Rate L error Rate ||[V(u"¢ —u)|, Rate
(a)
1710 20 437x 1078 389 x 107 7.06 x 1074 3.76 x 107!
120 22 569 x 1078 1.00x107% 196 1.80 x 107% 1.97 1.33 x 107! 1.50
1/40 48 8.61x 1078  255x 1075 197 456x 107> 198 4.71x 1072 1.50
1/80 135 939x 1078 643x107% 199 1.15x 1075 199 1.67 x 1072 1.50
1/160 295 9.86x 1072 1.61 x 1070 2.00 2.87x107% 2.00 5.89 x 1073 1.50
(b)
1710 17 449 %1078 7.89 x 1073 1.40 x 1072 1.95x 107!
120 25 938x107%  198x1073 1.99 351x1073 2.00 6.90 x 1072 1.50
1/40 53 7.67x 1078 494x107* 200 8.79x 107% 200 2.44x 1072 1.50
1/80 148 9.18 x 1078 123 x10™* 2,00 2.19x107% 2.00 8.61 x 1073 1.50
1/160 265 9.64x 1072  3.09x 1075 199 547x107> 2.00 3.04x 1073 1.50
(©)
1710 21 6.16 x 1078 433 x 1073 1.50 x 1072 359 x 1071
120 21 7.06 x 1078 968 x107% 2,18 4.64x1073 1.69 1.17x 107! 1.61
1/40 46 826x 1078 226x 107 210 130x 1073 1.84 429 x 1072 1.45
1/80 110 986 x 1078 7.61x1075 157 518 x10™* 132 1.68 x 1072 135
1/160 212 9.94x107%  520x 1075 055 3.18x10™% 0.70 1.26 x 1072 0.42
(d)
1710 20 515x 1078 1.93x 1073 1.23 x 1072 326 x 107!
120 20 749 x 1078 647 x107% 158 2.95x 1073 2.06 9.44 x 1072 1.79
1/40 44 941 x 1078 116 x 107% 248 832x10™% 1.83 3.32x 1072 151
1/80 102 935x 1078  3.09x1075 191 2.74x107% 1.60 1.10 x 1072 1.59
1/160 143 994x 1072  3.12x107° —  219x107% 032 1.03x 1072 0.09

with relations (35) and (36), a very small stopping criterion is not necessary. Here we use
D2y — p"|l < 10 for stage-one and lu" Tt — u"|| < 10~ for stage-two.

On Fig. 2, we have visualized the approximate solutions produced by the two-stage algo-
rithm, the discrete second order derivatives being defined by relations (23). We clearly see
that the L, and Lo, approximation errors reach a plateau for n large enough, implying that
the actual approximation errors have been reached.

In Table 3, we have reported the CPU time necessary for the two-stage algorithm to solve
problem (47), with @ = 1, for the same types of meshes and space discretization steps that
in Table 1, relations (23) being used to approximate the second order derivatives.

Remark 7 We would like to emphasize that the main goals of this article were: (i) Investigate

the possibility of solving the Dirichlet problem for the Mong—Ampére equation using con-
tinuous piecewise affine finite element approximations, well-suited to domain with curved
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Table 2 (Test problem (47), « = 1): (i) number of iterations needed for the convergence of the two-stage
algorithm. (ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regular meshes
of the unit square. (b) Symmetric meshes of the unit square. (¢) Unstructured isotropic meshes of the unit
square. (d) Unstructured isotropic meshes of the half-unit disk. Relations (35) and (36) have been used to
approximate the second order derivatives. (In (a), h = Ax] = Axp)

h Iterations [u"t! —u"|y Ly error Rate Lo error Rate ||V(u¢ —u)|» Rate
(a)
120 11 789 x 1075 251 x 107! 2.94 x 1071 1.65 x 100
1/40 27 848 x 1075 1.28x 1071 097 1.50x 10! 097 1.16 x 10° 0.51
1/80 62 990 x 107> 653 x 1072 097 7.67x 1072 097 8.11x 107! 0.52
1/160 182 932x 1077 336x1072 096 3.90x1072 098 5.69 x 107! 0.51
(b)
120 17 536 x 1075 2.24 x 107! 2.60 x 1071 1.55 x 100
140 31 8.19x 1075  1.15x 1071 096 1.29x 107! 1.01 1.06 x 10° 0.55
1/80 81 899x 1070  582x1072 098 643x 1072 1.00 7.27 x 107! 0.54
1/160 265 9.17x 1075 298 x1072 097 322x1072 1.00 5.02x 107! 0.53
©
120 14 848 x 1075 248 x 107! 2.94 x 1071 1.65 x 100
140 27 872x 1075  126x 107! 098 1.49x 10! 098 1.14 x 10° 0.53
1/80 63 845x 1075  637x 1072 098 7.55x 1072 098 7.99x 107! 0.51
1/160 196 9.13x 1077 324x1072 098 3.62x1072 1.06 5.56x 107! 0.52
(d)
120 10 552x 107 250 x 107! 3.20 x 107! 1.69 x 100
140 27 844 x 1075  140x 10~' 0.84 1.70x 10~ 091 1.27 x 10° 0.41
1/80 60 857x 1070  733x 1072 093 8.66x 1072 097 9.03x 107! 0.49
1/160 172 973 x 1075 371x1072 098 438x1072 098 6.20x 107! 0.54

Table 3 (Test problem (47), « = 1): CPU times for the two-stage algorithm with regularization (23) and the
four types of meshes shown in Fig. 1, the values of / being those in Table 1. (a) Unit square regular meshes.
(b) Unit square symmetric meshes. (c) Unit square isotropic unstructured meshes. (d) Half-unit disk isotropic
unstructured meshes

Mesh CPU time (s)

h=1/10 h=1/20 h =1/40 h=1/80
(a) 0.92 1.38 5.81 69.00
(b) 1.01 2.12 11.98 249.89
(c) 0.93 1.39 6.35 58.92
(d) 0.88 1.27 5.35 47.20

boundaries. (ii) Use a simple operator-splitting based method, to solve the discrete Monge—
Ampere problems. Privileging simplicity versus sophistication, our goal was not at this stage
to develop fast solution methods, although the two-stage algorithm (a Newton-like method) is
a step in that direction. There is no doubt that CPU times can be improved by using dedicated
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Table 4 (Test problem (47), « = 1): comparison between the discrete analogue of the one-stage algorithm
(11)—(13) and its two-stage variant. These comparisons have been done for Fig. 1a (regular) and b (symmetric)
types of meshes: (i) one-stage algorithm and regular mesh. (ii) two-stage algorithm and regular mesh. (iii)
one-stage algorithm and symmetric mesh. (iv) two-stage algorithm and symmetric mesh. Relations (23) have
been used to approximate the second order derivatives. In (i) and (i), h = Ax| = Axp

h Iterations L, error Lo error
@) 1/80 254 6.46 x 107° 1.16 x 1073
(ii) 1/80 135 6.43 x 107° 1.15 x 1073
(iii) 1/80 211 1.18 x 1074 2.54 x 107%
(iv) 1/80 148 1.24 x 1074 2.19 x 107%
or 0
\\ two-stage L2 1 )\ RN two-stage L2
-2 ----two-stage L ----two-stage L
original L, 2r original L,
4T -~~~ original L 3t ----original L _

log(error)
log(error)
&

0 50 100 150 200 250 300 0 50 100 150 200 250

number of iterations number of iterations
(a) (b)

Fig.3 (Test problem (47), « = 1): convergence histories of the L, and Lo approximation errors: a regular
mesh for (= Ax; = Axp) = 1/80. b Symmetric mesh for 2 = 1/80. Relations (23) have been used to
approximate the second order derivatives. We observe that the various errors reach a plateau for n sufficiently
large

linear solvers more efficient than the more general ones picked by MATLAB, with the user
out the loop. O

In Table 4 we have compared the results obtained by the discrete analogue of algorithm
(11)—(13) and by its two-stage variant, the meshes being like those in Fig. 1(a) (regular) and
(b) (symmetric). These results show the significantly faster convergence of the two-stage
algorithm, and the higher accuracy obtained with the regular mesh. We have visualized on
Fig. 3 the results of Table 4; the plateaus reached by the L, and L, approximation errors as
n increases appear clearly on this figure.

Suppose that one takes ¢ = 0 in the discrete analogue of (12), C = 0 in (23), and uses a
mesh of Fig. 1a type to solve the discrete Monge—Ampere problem. The solution of problem
(47) being a polynomial function of degree 2, it follows from Remark 4 that the relations
giving the discrete second order derivatives are exact at the vertices of 7}, interior to §2. Since
%Dzu = 0 on 0£2, one expects to reach machine precision for a sufficiently large number
of time steps. The results visualized in Fig. 4 show that this prediction is verified. These
results have been obtained using the one-stage algorithm with Ar = A%, h being equal to
1/40; they show indeed that both the L, and L, approximation errors converge to 0 with
machine precision.
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Fig.4 (Test problem (47), or.

a = 1): histories of the Ly and ™
Lo approximation errors for the 1A - L error
one-stage algorithm with ¢ = 0 2

in (12), C = 0in (23), and Ao CXew o [ L, ermor

At = h? (regular mesh on the
unit square, i = 1/40)
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Fig. 5 (Test problem (47), @ = 5): histories of the L, and Lo approximation errors for the one-stage and
two-stage algorithms. a Regular mesh on the unit square with 2 = 1/40. b Symmetric mesh with 2 = 1/40.
Relations (23) have been used to approximate the second order derivatives. For the two-stage algorithm we
used y = 1 and At = 8/ in the discrete analogue of (46)

Increasing « in (47) increases, as expected, the anisotropy of the solution to the problem. A
consequence of this phenomenon is that beyond o = 5 there is no gain at using the two-stage
algorithm, as shown by the numerical comparisons we performed. This appears clearly on
Fig. 5 where we have visualized the convergence histories of the one-stage and two-stage
algorithms, when applied to the solution of problem (47) with « = 5.

6.3 A Smooth Exponential Example

In this section, we consider the following Monge—Ampere problem

detD?u = 64 (1 +2r2) ¢ in 2,

2
u=4e" — %, on 052,

(43)

with r = /(x; — 1/2)2 + (x2 — 1/2)2, £2 being either the unit square (0, 1) or the open
disk of radius 1/2 centered at (1/2, 1/2). We recall that if function ¢ is radial with respect to
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Table5 [Test problem (48)]: (i) number of iterations necessary for the convergence of the two-stage algorithm.
(ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regular meshes of the
unit square. (b) Symmetric meshes of the unit square. (c) Unstructured isotropic meshes of the unit square. (d)
Unstructured isotropic meshes of the half-unit disk. Relations (23) have been used to approximate the second
order derivatives. (In (a), h = Ax|; = Axp)

h Iterations  [u"t! — u” lo Ly error Rate L error Rate ||[V(u"¢ —u)|, Rate
(a)
1710 11 530 x 1078 1.64 x 1072 3.75 x 1072 359 x 107!
120 25 948 x 1078 495x1073 1.73 1.07x1072 1.81 1.23 x 107! 1.55
1/40 55 829x 1078 128 x 1073 195 2.67x1073 2.00 4.23x 1072 1.54
1/80 149 928x 1078  325x107* 198 659x 1074 202 1.46x 1072 1.53
1/160 208 9.66 x 1072 822x 1077 198 1.63x107% 209 5.12x 1073 151
(b)
1710 17 8.07x 1078 243 x 1072 5.04 x 1072 2.24 x 107!
120 30 7.06 x 1078 833 x 1073 1.54 1.60 x 1072 1.06 8.14 x 1072 1.46
140 68 776 x 1078 270 x 1073 1.63 4.76 x 1073 1.75 3.02 x 1072 1.43
1/80 219 9.04x 1078  831x107™* 170 137x1073 1.80 1.13x 1072 1.42
1/160 277 9.93x 1072  236x107% 1.82 3.74x107% 1.87 4.09x 1073 1.47
(©)
1710 13 6.65x 1078 1.70 x 1072 4.07 x 1072 3.45 x 107!
120 25 743x 1078 550x 1073 1.63 1.14x 1072 1.84 1.06x 107! 1.70
1/40 54 986 x 1078 139x 1073 198 3.13x1073 1.86 3.71 x 1072 1.51
1/80 146 858 x 1078  357x107* 196 8.04x10™* 1.96 1.40 x 1072 1.41
1/160 225 991 x 1072 930 x 1070 1.94 2.66x107% 160 8.96x 1073  0.64
(d)
1710 10 415x 1078 1.14x 1072 293 x 1072 281 x 1071
120 24 632x 1078 325x1073 181 7.54x1073 196 7.34x 1072 1.94
140 51 848 x 1078 8.85x 10™* 1.88 2.09x 1073 1.85 2.44 x 1072 1.59
1/80 130 935x 1078 246x107% 1.85 6.00x107% 1.80 7.97 x 1073 1.61
1/160 127 968 x 1072  730x 1075 175 230x107% 138 635x1073 033

(1/2,1/2), then det D2 = £2" implying that the function u defined by u = (4er2 - g) 5
is an exact convex solution to problem (48). We have reported on Table 5: (i) The number of
iterations needed to have convergence of the two-stage algorithm, using ||+ —u" ||, < 1077
as stopping criterion, and (ii) various approximation errors. These results were obtained with
& = h?, the discrete second order derivatives being defined by (23). The orders of convergence
of the approximation errors are not optimal but significantly higher than 1, the symmetric
meshes having-as expected-the lowest orders of convergence. It is worth noticing that the
unstructured isotropic meshes used on the disk give orders of convergence almost as good as
those produced by the symmetric meshes on the unit square. For all tests with 2 = 1/160, we
set & = h and the stopping criterion [D>u” — p”|| < 10 for stage-one and stopping criterion
lu"t — w1, < 1078 for stage-two.
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Fig.6 [Test problem (48)]: convergence histories of the Ly and Lo approximation errors: a regular mesh for
h = 1/40.b Symmetric mesh for 7 = 1/40. We observe that the various errors reach a plateau for n sufficiently
large. Relations (23) have been used to approximate the second order derivatives. (Ina h = Ax; = Axp)

Table 6 [Test problem (48)]: CPU times for the two-stage algorithm and the four types of meshes shown
in Fig. 1, the values of / being those in Table 5. (a) Unit square regular meshes. (b) Unit square symmetric
meshes. (c) Unit square unstructured meshes. (d) Half-unit disk unstructured meshes

Mesh CPU time (s)

h=1/10 h=1/20 h =1/40 h=1/80
(a) 0.82 1.46 6.57 66.33
(b) 1.01 2.38 15.04 363.98
(c) 0.86 1.51 7.33 77.24
(d) 0.77 1.37 6.03 59.39

In Fig. 6 we have compared the convergence histories of the one-stage and two-stage
algorithms, when applied to the solution of problem (48). The comments we did, in Sect. 6.2,
about Fig. 3 (concerning the solution of problem (47) with o = 1) still apply here.

In Table 6, we have reported the CPU time necessary for the two-stage algorithm to solve
problem (48), for the same types of meshes and space discretization steps than in Table 5,
relation (23) being used to approximate the second order derivatives.

In Table 7, we have compared the results obtained by the discrete analogue of algorithm
(11)—(13) and by its two-stage variant, the meshes being like those in Fig. 1a, b with relations
(23). These results show the significantly faster convergence of the two-stage algorithm. The
above results, combined with those reported in Sect. 6.2, strongly suggest that for problems
with smooth isotropic solutions the two-stage algorithm is clearly faster than the one-stage
one.

Finally, we have reported in Table 8, various convergence results obtained when com-
bining the two-stage algorithm with the approximation of the second order derivatives
defined by (35), (36). We use stopping criterion D2y — p"|l < 10 for stage-one and
lu™*t! — u||, < 10~* for stage-two, the same criterions as those for Table 2. Comparing
with the results in Table 5 the following conclusions can be drawn: (i) The algorithms based on
approximation (35), (36) of the second order derivatives are (roughly) twice faster than those
based on approximation (23). (ii) Approximation (23) leads to higher orders of accuracy for
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Table 7 [Test problem (48)]: comparison between discrete analogue of the one-stage algorithm (11)—(13) and
its two-stage variant. These comparisons have been done for meshes as in Fig. 1a (regular) and b (symmetric): (i)
one-stage algorithm and regular mesh. (ii) two-stage algorithm and regular mesh. (iii) one-stage algorithm and
symmetric mesh. (iv) two-stage algorithm and symmetric mesh. Relations (23) have been used to approximate
the second order derivatives. In (i) and (i), h = Ax] = Axp

h Iterations L, error Lo error
@) 1/80 284 3.17 x 10~4 6.39 x 107%
(i) 1/80 149 3.25 x 1074 6.59 x 1074
(iii) 1/80 419 7.90 x 1074 1.34 x 1073
(iv) 1/80 219 8.31 x 10~4 137 x 1073

Table8 [Test problem (48)]: (i) number of iterations necessary for the convergence of the two-stage algorithm.
(ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regular meshes of the
unit square. (b) Symmetric meshes of the unit square. (c) Unstructured isotropic meshes of the unit square. (d)
Unstructured isotropic meshes of the half-unit disk. Relations (35) and (36) have been used to approximate
the second order derivatives. (In (a), h = Ax| = Axp)

h Iterations [u"t! —u"|y Lj error Rate Lo error Rate ||V(u"¢ —u)||l» Rate
(a)
120 17 6.77x 1075 158 x 107! 1.89 x 107! 1.07 x 100
140 28 826 x 1075 8.08 x 1072 097 9.45x 1072 1.00 7.50 x 10! 0.51
1/80 75 930 x 1075 4.11x 1072 098 4.67x1072 1.02 5.16 x 10! 0.54
1/160 248 936x 1077 213x1072 095 234x1072 1.00 3.57 x 107! 0.53
(b)
120 17 972x 1073 1.40 x 107! 1.67 x 107! 1.03 x 100
140 36 881x 1070  7.19x 1072 096 8.09x 1072 1.05 6.90 x 10~! 0.58
1/80 105 950 x 107> 3.65x 1072 098 3.86x 1072 1.07 4.63 x 107! 0.58
1/160 379 9.19x 1075 1.88x 1072 096 2.03x1072 093 3.15x 107! 0.56
©
120 17 634x 1075 157 x 107! 1.90 x 107! 1.09 x 100
140 28 840x 1070  7.92x1072 099 935x 1072 1.02 7.43x 107! 0.55
1/80 76 933x 107> 401x1072 098 457x1072 1.03 5.08x10~1 055
1/160 272 933x 1077 205x1072 1.00 222x1072 1.04 3.49x 107! 0.54
(d)
120 16 782x 107 157 x 107! 2.03 x 1071 1.10 x 100
1/40 30 7.67x 107> 898 x 102 081 1.10x10~! 0.88 8.29 x 107! 0.41
1/80 70 8.69x 1070  471x 1072 093 5.61x1072 097 587x10"! 050
1/160 228 9.95x 1075 242x 1072 096 289 x 1072 096 4.01 x 107! 0.55

the approximation errors. Further numerical experiments will show that for most non-smooth
problems, the algorithms relying on (35), (36) are faster and more accurate than those based
on (23).

@ Springer



24 Journal of Scientific Computing (2019) 79:1-47

6.4 A Popular Monge-Ampére Problem Without Classical Solution

The test problems we considered in Sects. 6.2 and 6.3 had exact, strictly convex classi-
cal solutions belonging to C%°(£2). Our goal in this section is to investigate the ability of
our methodology at handling a ’pathological’ (nevertheless very popular) Monge—Ampere
problem, namely
2 _ .

detD“u =11in $2, 49)

u=0o0nas2,
with £2 = (0, 1). Problem (49) (introduced in [11], to the best of our knowledge) is patho-
logical since, despite the simplicity of its data (making it the Monge—Ampere analogue of
the Dirichlet problem —V2u = 1in 2,u = 0 on 982, 2 still being the unit square), this
problem does not have smooth classical solutions. The non-existence of smooth solutions to
problem (49) is very simple to prove (see, e.g., [ 14] for details), the difficulty stemming, from
the non-strict convexity of £2 (and from the corners of §2). The non-existence of classical
solutions does not prevent problem (49) to have generalized solutions, viscosity solutions for
example. Actually, the approximation of the viscosity solutions to problem (49), and their
computation, has been thoroughly investigated in, e.g., [4,38]; this is fortunate since it will
allow qualitative and quantitative comparisons. The computational method we used to solve
problem (49) relies on the one-stage algorithm combined with the approximation (35), (36)
of the second order derivatives, the other combinations being slower and less accurate. Using
"1 — u"||y < 1078 as stopping criterion, we obtained the results reported and visualized
on Table 9 and Figs. 7 and 8 [in Table 9(a) h = Ax; = Ax,, while in Table (b) and (c), h
denotes the length of the mesh largest edge(s)].

As h — 0, the results from Table 9 and graphs of Figs. 7 and 8 indicate the convergence
of the approximate computed solutions to a convex function whose minimal value is close
to —0.183. The three types of meshes we employed share these convergence properties.
The graphs in Fig. 7 are qualitatively close to graphs reported in the literature (in references
[4,38], for example). Making quantitative comparisons is more difficult. Indeed the minimal
values reached by the solutions computed in [4] Section 5.3 on a 141 x 141 grid (the finest
one used in [4]) range from 0.2621 to 0.3024. Since the test problem considered in [4] was

detD?u = 1in fZ,u =1lon Bf),

with 2 = (—1, 1)2, corrections are needed (subtract 1 and divide by 4), leading to the range
[—0.184475, —0.17315] which contains definitely all the values reported in the 6th column
of Table 9 (which is gratifying in itself). Actually, there is more: Indeed, one can assume
reasonably that in Table 8 of [4] the most accurate approximation of the actual minimal value
is 0.2695. Two reasons for that statement are that: (i) The value 0.2695 has been obtained
with the finer mesh (141 x 141) and wider stencil (33 points) used in [4], and (ii) it has been
proved (see, e.g., [22]) that the associated method guarantees convergence to a viscosity
solution. After correction of the value 0.2695, one obtains — 0.182625, which is pretty close
to the value — 0.1831 reported in Table 9(a) for h = 1/120.

Remark 8 The above comparisons with the results in [4] suggest that our methodology pro-
duces approximate solutions converging to viscosity solutions if one uses (35), (36) to
approximate the second order derivatives. Albeit we do not know how to prove this con-
vergence result, it is not completely surprising since our method solves the regularized
Mong—Ampere equation
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Table 9 [Test problem (49)]: (i) second column—number of iterations of the one-stage algorithm necessary
to achieve convergence (approximation (35), (36) of second order derivatives). (ii) Fourth and fifth columns:
Discrete L,-norms of the consistency gap D% (up) — py,.- (iii) Minimal values of the computed solutions. (a)
Regular meshes of the unit square. (b) Symmetric meshes of the unit square. (c) Isotropic unstructured meshes
of the unit square. (In (a), h = Ax] = Axp)

h Tterations a1 = w), ID2u — p| ”Dzﬁ‘:ﬁl’"” Min value
(a)
120 222 7.73 x 1079 3.96 x 1077 1.72 x 1073 —0.1801
1/40 622 9.04 x 1072 2.83x 1073 737 x 1074 —0.1817
1/80 2468 9.82 x 1079 6.42 x 1073 1.28 x 1073 —0.1834
1/120 3247 9.90 x 1072 6.60 x 1072 1.07 x 1072 —0.1831
(b)
1/20 324 9.87 x 1072 7.82 x 1074 343 x 1074 —0.1793
1/40 1168 9.99 x 1072 5.87 x 1073 1.75 x 1073 —0.1812
1/80 3994 9.99 x 1077 3.40 x 1072 7.05 x 1073 —0.1831
1/120 8211 9.99 x 10~° 8.05 x 1072 1.36 x 1072 —0.1839
()
1/20 217 9.43 x 1079 3.49 x 1077 1.53 x 1073 —0.1797
1/40 625 8.75 x 1077 2.40 x 1073 7.06 x 1074 —0.1815
1/80 2492 9.99 x 1079 6.17 x 1073 1.28 x 1073 —0.1831
1/120 15,885 9.99 x 1079 1.20 x 1072 2.14 x 1073 —0.1837

) 2 . _
—EV u—detD°u=—1in 2, u =0o0n 952,

with & ~ h? after space discretization.

We mentioned above that the non-strict convexity of (0, 1)2 was explaining the non-
existence of smooth solutions to problem (49). In order to investigate the influence of
boundary corners we considered the following variant of problem (49)

detD?u = 1 in £2,

50
u=0o0nas2, (50)

where §2 is the (eye-shape) strictly convex domain defined by
2 ={{xp, 2} —x1(1 —x1) <x2 <x1(1 =x1),0 <x; <1},

and visualized in Fig. 9 (where we have also visualized one of the triangulations we
employed). We have reported on Table 10 and Figs. 10 and 11 numerical results obtained
by the one-stage algorithm, using approximations (35), (36) of the second order derivatives,
the stopping criterion still being [|u" ! — u"||, < 10~8. Comparing Tables 9 and 10 shows
several qualitative similarities, namely: (i) The number of iterations necessary to achieve
convergence of the one-stage algorithm is a fast increasing function of 1/A. (ii) The discrete
L?-norm of the consistency gap D%l (up) — pi increases with 1/h. These results suggest the
non-existence of a smooth convex solution to problem (50). We could have anticipated this
result. Suppose indeed that 1 is a convex solution to (50) belonging to C!(£2): it follows then
from the boundary conditions that
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Fig.7 [Test problem (49)]: graphs and contours of the computed solutions, using the one-stage algorithm and
relations (35), (36) to approximate the second order derivatives. a Regular mesh with 2 = 1/120. b Symmetric
mesh with 7 = 1/120. ¢ Unstructured isotropic mesh with 7 = 1/120. Ina h = Ax; = Axp)

Vu(0,0) -4 =0,Vu(,0) - 7— =0, (51)

where the unit vectors 4 (= (l/ﬁ, l/ﬁ)) and 7_(= (1/«/5, —1/«/5)) are tangent at
(0, 0) at the upper and lower parts of 92, respectively. Relations (51) imply Vu(0, 0) = 0.
Similarly, one can show that Vu(1, 0) = 0. The function u being convex and differentiable
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Fig. 8 [Test problem (49)]: graphs of the restrictions of the computed solutions to: a the line x| = 1/2
and b the line x; = xo, for h = 1/20, 1/40, 1/80, and 1/120 (one-stage algorithm using regular meshes,
and approximations (35), (36) of the second order derivatives). a, b Suggest the uniform convergence of the
approximate solutions to a strictly convex generalized solution of problem (49)

Fig.9 [Test problem (50)]: a
triangulation of the eye-shape
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Table 10 [Testproblem (50)]: (i) second column—number of iterations of the one-stage algorithm necessary to
achieve convergence (approximations (35), (36) of the second order derivatives). (ii) Fourth and fifth columns:
Discrete Ly-norms of the consistency gap D% (up) — pp- (iii) Minimal values of the computed solutions

2 7
h Iterations Nt — ), IDZu™ — p| ”Dlﬁfﬁw Min value
1/20 84 8.73 x 1079 1.05 x 1073 9.27 x 107° —0.0644
1/40 220 9.73 x 1072 6.34 x 1074 433 x 1074 —0.0598
1/80 829 9.53 x 1072 1.30 x 1073 734 x 1074 —0.0573
1/120 1766 9.93 x 1072 2.38 x 1073 1.17 x 1073 —0.0578

on the convex set §2, and vanishing on 92, the relation Vu (0, 0) = 0 implies that u = 0 on
£2, which implies in turn that det D%y = 0in £2, contradicting (50).

Figures 10 and 11 suggest uniform convergence to a strictly convex functionas 7 — 0,
the gradient of this solution being infinite on 92\ {{0, 0}, {1, 0}}.
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Fig. 10 [Test problem (50)]: graph and contours of the computed approximate solution (2 = 1/80)
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Fig. 11 [Test problem (50)]: graphs of the computed approximate solutions restricted to the lines xo = 0
(left), and x; = 1/2 (right) (h = 1/20, 1/40, 1/80, 1/120)

6.5 Test Problems with Singular Functions f

This subsection is dedicated to Monge—Ampere-Dirichlet problems, where function f in (1)
is singular (in the sense that sup, .o f(x) = 400). In that direction, the first problem we
consider is defined by

(52)

detD?u = % in £2,
u = 23—‘/§r3/2 onds2,

where 2 = (—1, 1)? and r = /(x; — 1)2 + (x2 — 1)2, implying that function f blows up
at the corner (1, 1). The strictly convex function u# defined by

24/2 _
u(xy, x2) = ?\[VMZ,V(Xl,xz) € £,

is an exact solution to problem (52). Very clearly, u ¢ C2%(£2). On the other hand, one can
easily verify that u € C'(£2) N W2*(£2),Vs € [1,4), making problem (52) an ’almost’
smooth one. To solve problem (52), we used the finite element analogue of the one-stage
algorithm (11)—(13) with ¢ = 2h2, the triangulations we employed being regular (as in
Fig. 1a), or symmetric (as in Fig. 1b). We used relations (23) to approximate the second order
derivatives with C = 2. We took ||u"T! — u"|» < 107> as stopping criterion. For this test
problem, & denotes the space discretization step Axj(= Ax»y).
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Fig. 12 [Test problem (52)]: graphs of the computed approximate solution and convergence histories (regular
triangulation with 7 = 1/64)
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Fig. 13 [Test problem (52)]: graphs of the computed solution and convergence histories (symmetric triangu-
lation with & = 1/64)

We have visualized on Fig. 12 (resp., Fig. 13) the graph of the computed approximate
solution, and the convergence histories of the residual lu" Y — u" ||, and of the L, and Lo
norms of the approximation error, Fig. 12 (resp., Fig. 13) being associated with the 7 = 1/64
regular (resp., 4 = 1/64 symmetric) triangulation.

In Table 11(a), we have reported results obtained on regular meshes by the method detailed
above, namely number of iterations necessary to achieve convergence and related approxima-
tion errors for various values of /. For comparison purpose, we have reported in Table 11(b)
the related results obtained in [43] on identical meshes by two solution methods, both relying
on those wide-stencil finite difference methods discussed in [22]. Comparing Table 11(a)
and (b) shows that (for this test problem at least) the method we employed to solve problem
(52) is significantly more accurate than the two methods discussed in [43] (however, for
this test problem and for the same meshes, they are less accurate and much slower than the
least-square/relaxation method discussed in [8]).

Remark 9 The methods discussed in [43] rely on accelerated gradient type algorithms a la
Nesteroy ([36,45]) whose convergence rate is O (1 /n2), n denoting the number of iterations.
Actually, the two methods discussed in [43] are also cascadic (in the sense that a first approx-
imate solution is computed on a coarse mesh, and then interpolated on a mesh twice finer,
in order to initialize an iterative method). Motivated by [36,43] (and by suggestions of our
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Table 11 [Test problem (52)]: number of iterations necessary to achieve convergence and associated approx-
imation errors on regular meshes for various mesh sizes. (a) Results obtained by the methodology discussed
in the current article. (b) Results obtained by the two methods discussed in [43] (M1 and M2 are the numbers
of iterations needed by the two methods discussed in [43] to achieve convergence)

h Iterations 1 — |, L, error Rate Lo error Rate
(a)
/16 106 9.69 x 107 9.23 x 1073 8.75 x 1073
132 311 9.83 x 107° 3.71 x 1073 131 3.59 x 1073 1.29
1/64 1115 9.96 x 107° 1.56 x 1073 1.25 1.79 x 1073 1.00
Grid size Lo error Rate Ml M2
(b)
16 x 16 2.50 x 1072 564 601
32 x 32 1.60 x 1072 0.64 585 651
64 x 64 1.10 x 1072 0.54 976 1037

colleague X.C. Tai) we applied the so-called Nesterov method (introduced by Polyak in [41])
to speed up the convergence of the algorithms considered in the present article. The improve-
ment it brings to these algorithms are marginal (if any). A possible explanation is that our
algorithms rely on implicit/explicit schemes, unlike the algorithms in [43], all related to fully
explicit schemes. O

The second problem we consider in this subsection is another classical test problem. It is
defined by

(

u=—+R2—r20ndsf.

where 22 =(0, 1), R>1/+/2, and r =/(x; — 1/2)2+(x, —1/2)2. The function u defined
by

2, _ R
{detD u = m mn .Q, (53)

u(xy, x) = —vV R? —r2, ¥(x1, x2) € 2,

is a strictly convex solution to problem (53), its graph being a part of the sphere of radius
R centered at (1/2,1/2,0). The above function u belongs to C°°(f2) if R > l/ﬁ. On the
other hand, u € CY(Q2) N W5(2),s € [1,4), if R = l/ﬁ, the vector-valued function
Vu being singular at the four corners of £2. Function u reaches its minimal value (—R) at
(1/2,1/2). We tested our methodology on the two particular cases of problem (53) associated
with R = +/2 (a smooth case) and R = 1 / /2 (a non-smooth case). For both values of R
we used: (i) Regular triangulations (like the one in Fig. 1a, with h(= Ax; = Ax») taking
the values 1/20, 1/40 and 1/80, and (ii) the fully discrete analogue of the one-stage algorithm
(11)=(13) with ¢ = h2. The results in Table 12(a) [resp., Table 12(b)] have been obtained
using approximation (23) [resp., (35), (36)] of the second derivatives, the stopping criterion
being "' —u” |2 < 10710 (resp., < 1073). These results show that the method relying on
(23) is second order accurate, while the other one is first order accurate. We observe also that
in Table 12(a) [resp., Table 12(b)] the minimal value of the computed solutions decreases
(resp., increases) with A, the convergence to the exact value (—=v2(= —1.41421 . ...), here)
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Table 12 (Test problem (53) with R = +/2): number of iterations needed for the convergence of the one-stage
algorithm, minimal value of the computed solutions, and associated L, and Lo norms of the approximation
errors. (a) Approximations (23) of the second order derivatives. (b) Approximations (35), (36) of the second
order derivatives. We used regular triangulations (with 7 = Ax; = Axp), as the one in Fig. 1a, to obtain these
results. We recall that the minimal value of the exact solution is —«/E(: —0.141421...)

h Iterations a1t — u||» Min L error Rate Lo error Rate
(a)

1/20 358 9.68 x 10~ —14138 199 x 10~* 4.08 x 1074

1/40 1161 955x 10711 —1.4141  5.06x 107> 1.98 1.03 x 1074 1.99

1/80 4505 997 x 10711 —14142  126x107° 201 254x 1075 202
(b)

120 290 9.01 x 1072 —1.4266  1.16 x 1072 1.38 x 1072

1/40 1050 991 x 1072  —14204 599%x1073 095 7.03x1073 097

1/80 3024 999x 1072  —14173 3.04x1073 099 356x 1073  0.98

Table 13 (Test problem (53) with R = l/ﬁ): number of iterations needed for the convergence of the
one-stage algorithm, minimal value of the computed solutions, and associated L, and L~ norms of the
approximation errors. (a) Approximations (23) of the second derivatives. (b) Approximations (35), (36) of the
second derivatives. We used regular triangulations (with 7 = Ax]; = Axjp), as the one in Fig. 1a, to obtain
these results. We recall that the minimal value of the exact solution is —1/ V2(= —0.707106. ..)

h Iterations Nt — ), Min L, error Rate Lo error Rate
(a)

1/20 142 980 x 1072  —0.7052  3.90 x 103 2.58 x 1072

1/40 489 992x 1072  —07065 1.70 x 1073 120 195x1072 040

1/80 1548 990 x 1072  —0.7069 654 x107% 138 143 x1072 045
(b)

120 145 829x 1077  —0.7382  3.24 x 1072 4.64 x 1072

1/40 539 993x 1072  —0.7225 158x 1072  1.04 267x1072  0.80

1/80 1846 995x107%  —0.7146  7.72x 1073 1.03 156 x 1072 0.78

being much faster for the first method. From the smoothness of the R = V2 solution, the
results reported just above were expected, including the clear superiority of the relation (23)
based method (Table 12).

Taking R =1/ V2 in (53) makes this problem non-smooth (and therefore more challeng-
ing) since Vu is singular at the four corners of §2. Taking [|u”"*! — u" ||, < 1073 as stopping
criterion, we obtained the results reported in Table 13(a) and (b).

Comparing Table 13(a) and (b) suggest the following: (i) The two one-stage methods we
employed, relying on either (23) or (35), (36) behave similarly as long as iterative properties
are concerned. (ii) The first method produces better approximation errors for the values
of h considered here, particularly for the discrete L, approximation error. Actually, the
convergence rates reported in the last column of Table 13(a) are close to those reported in
Section 5.4 of [4], for a closely related problem. (iii) We observe that in Table 13(a) [resp.,
Table 13(b)] the minimal value of the computed solutions decreases (resp., increases) with
h . We observed a similar behavior in Table 12. As we already mentioned, the numerical
solution of problem (53) with R = 1/\/5 is discussed in [4]; it is discussed also in [22,37].
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0 o

(a)

Fig. 14 (Test problem (53) with R = 1/+/2): graphs of the approximate solutions computed on a regular mesh
with 2 = 1/80. a Approximations (23) of the second order derivatives. b Approximations (35), (36) of the
second order derivatives

Table 14 [Test problem (54)]: (i) number of iterations needed for the convergence of the one-stage algorithm.
(ii) Approximations errors and orders of convergence. (a) Approximation (23) of the second order derivatives.
(b) Approximations (35), (36) of the second order derivatives

h Iterations a1 —un | Min L, error Rate Lo error Rate
(a)
1120 46 921 x 107  —0.4077  6.86 x 1072 921 x 1072
1/40 138 955x 107 —04394  485x1072 050  6.05x 1072  0.61
1/80 485 9.85x 107 —04597 336x1072 053  4.03x1072 059
1/160 1600 999 x 107 —04699  236x 1072 051 3.25x 1072 031
()
1720 33 230x 107  —0.5272  3.66 x 1072 5.88 x 1072
1/40 143 991 x 107 —0.5344 348x 1072 007 530x1072  0.15
1/80 500 984 x 107 —05296 283x1072 030 431x1072 030
1/160 1652 999 x 107%  —05186  1.93x 1072 055  331x1072 038

The two graphs in Fig. 14 are quite similar and show very clearly the singular behavior
of Vu close to the four corners of £2.
The next problem with a spherical solution we consider is the following variant of problem
(53):
2 _ 4
detD“u = mm $2, 54)
u=0onas2,

where £ = {{x1, x2}, (x1—1/2)> + (xa — 1/2)? < 1/4}and r =/(x] — 1/2)>+(x2 — 1/2)2.
The function u defined by

1 _
u(xy, x0) = —5\/1 —4r2on 2

is a strictly convex solution to_problem (54), taking its minimal value — 1/2 at (1/2,1/2). We
can easily show that u € CoU(2)Nwhs2),Vs e [1,2).
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Fig.15 [Test problem (54)]: a, b graphs and contours of the approximate solution computed using approxima-
tions (23) of the second order derivatives (h = 1/160). ¢, d Graphs and contours of the approximate solution
computed using approximations (35), (36) of the second order derivatives (h = 1/160). e, f Graphs of the
restrictions of the computed approximate solutions to the diameter x; = 1/2, for » = 1/20, 1/40, 1/80 and
1/160 [e approximations (23), f approximations (35), (36)]

Problem (54) is significantly *'more non-smooth’ than problem (53) since |Vu| is infinite
on the whole boundary of 2, making (54) a good test problem to investigate the robustness
of our methodology. In order to solve problem (54) we used: (i) Isotropic unstructured
finite element meshes like the one in Fig. 1d. (ii) The one-stage algorithm with & = h>.
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Table 15 [Test problem (55)]: performances of the two-stage algorithm on a family of isotropic unstructured
meshes. (a) Approximations (23) of the second order derivatives. (b) Approximations (35), (36) of the second

order derivatives. The minimal value of the exact solution is —v/2(= — 1.41421 .. .)
h Iterations Nt —um) Min L, error Rate Lo error Rate
(a)
120 27 9.10 x 1078 —1.4138 143 x 1074 3.20 x 1074
1/40 36 9.09x 1078 —1.4141 3.62 x 1077 1.98 8.03 x 1077 1.99
1/80 40 9.62x 1078  — 14142  1.11x 107 1.71 235x%x 1077 1.77
(b)
120 32 733 x 1078 —1.4283 1.16 x 1072 1.49 x 1072
1/40 38 832x 1078  —1.422 6.59 x 1073 0.82 8.01 x 1073 0.90
1/80 43 987x 1078 —1.4182 344x1073 094  409x1073 097

(iii) The approximations of the second order derivatives defined by (23) and (35), (36). (iv)
lu"t' —u|, < 1073 as stopping criterion. The results reported in Table 14(a) and (b) show
that the two approaches we are considering are very close to each other as long as the number
of iterations is concerned. On the other hand, these results show that the second method is
more accurate than the first one. We obtain a clear-cut confirmation of the superiority of the
second method by comparing Fig. 15e , f where we visualized, for various values of &, the
graphs of the restrictions of the computed approximate solutions to the diameter x; = 1/2.
Figure 15a—d (obtained with 2 = 1/160) provide additional details.

Remark 10 When applied to the solution of problems (53) and (54), the two-stage algorithm
(described in Sect. 5) does not decrease the number of iterations needed for convergence,
when compared to the one-stage algorithm (11)—(13). This disappointing (but not surprising)
property follows from the non-smoothness of the solution to both problems. To check again
that solution smoothness enhances the speed of convergence of the two-stage algorithm we
are going to consider another test problem with a spherical solution, namely

detD?u = —2— in 2,
-2y’ (55)
u=—+2—-r2onas2,

where £ = {{x1, x2}, (x]—1/2)%4+(x2—1/2)? < 1/4}andr =+/(x; — 1/2)2 + (x — 1/2)2.
The function u defined by

u(xi, x2) = —v2 —r2on 2

is a strictly convex solution to problem (55), verifying u € C*°(£2). Applying the two-stage
algorithm combined with unstructured isotropic triangulations, like those in Fig. 1d, leads to
the results reported in Table 15 and visualized in Fig. 16 (we used lu"tt —u||p < 1077 as
topping criterion).

Table 15 shows that the two-stage approach we tested behave quite similarly as long as
the number of iterations is concerned. On the other hand Table 15 shows that for this smooth
test problem, the method based on (23) provides approximation errors "almost’ two orders
of magnitude smaller than the one based on (35), (36).
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Fig.16 [Testproblem (55)]: graphs of the computed approximate solutions and variations with n of the residual
and of the Ly and Lo norms of the approximation errors (two-stage algorithm and isotropic unstructured
triangulation of the disk £2 with & = 1/80). a, b Approximations (23) of the second order derivatives. ¢, d
Approximations (35), (36) of the second order derivatives

Figure 16 shows that, in practice, the final values of the approximation error norms are
reached much more quickly, when using relations (35), (36) to approximate the second order
derivatives, than when using (23). O

To conclude this sub-section, dedicated to test problems with singular functions f, we are
going to consider a test problem, which seems to be new in this context, namely:

detD?u = f in £2,

56
u=00nds, (56)

with £2 = (0, 1)? and f defined by

1= (1 =2x)?(1 - 2x)?
fx1,x2) = T6x1(1 — x)ma(l —x2) ,V(xy, x2) € 2.

The strictly convex function u defined by

u(x1, x2) = —/x1(1 — x)x2(l — x2), V(x1, x2) € £2,
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Table 16 [Test problem (56)]: performance of the one-stage algorithm combined with regular triangulations:
(a) Approximations (23) of the second order derivatives. (b) Approximations (35), (36) of the second order
derivatives. The minimal value of the exact solution is —0.25, showing the clear superiority of the second
approach

h Iterations [« — 4| Min L error Rate Lo error Rate L error Rate

(a)
120 132 9.15x 1077 —0.2014 4.86 x 102 4.86 x 1072 3.99 x 1072
1/40 314 9.75 x 1077 —0.2202 2.73x 1072 0.83  3.05 x 1072 0.67 2.65 x 1072 0.59
1/80 1209 9.81 x 1077 —0.2322 1.68x 1072 0.70  2.03 x 102 0.59 1.65 x 1072 0.68
1/160 4973 9.92x 1078 —0.2391 1.02x 1072 0.72 140 x 1072 0.54 1.01 x 1072 0.71
(b)
120 138 9.77 x 1077 —0.2313 1.29 x 1072 1.87 x 1072 1.16 x 1072
140 312 9.84 x 1077 —0.2376 9.41 x 1073 0.46 124 x 1072 0.59 8.79 x 1073 0.40
1/80 1207 9.99 x 1077 —0.2427 5.82x 1073 0.69 7.32x 1073 0.76 5.55 x 1073 0.66
1/160 4936 9.94 x 1078 —0.2455 348 x 1073 0.74  4.50 x 1073 0.70 3.35 x 1072 0.73

is solution to problem (56). We clearly have u € CO(.(_Z) N Whs(£2),Vs € [1,2), with Vu
singular on the whole boundary of 2. Combining the one-stage algorithm with regular tri-
angulations, we obtained the results reported in Table 16 and visualized in Fig. 17. These
results show the clear superiority, in terms of accuracy, of the approach based on approx-
imations (35), (36) of the second order derivatives. Actually, comparing Fig. 17f, h shows
that the method based on (35), (36) has better convexity conservation properties than the
method based on (23). We used [Ju"T! — u”|, < 107° (resp. 1077y as stopping criterion for
h = 1/20, 1/40 and 1/80 (resp., 1/160).

Problem (56) deserves becoming a classical test problem for Monge—Ampere—Dirichlet
solvers: Future will tell.

6.6 Test Problems with a Positive Measure as Right-Hand Side

Test problems where, in (1), f is a Dirac measure (possibly multiplied by some positive
constant) are classical nowadays. Our goal in this section is to return to such test problems,
and then to go one step further by considering situations where measure f is of the form

v—>/vd)/,
14

y being a curve contained in £2. We consider first the test problem defined by

{det D2y = 7'(5(]/2’]/2) in £2, 57)

u=ronas2

where in (57): §2 is either the square (0, 12 or the open disk of radius 1/2 centered at
(1/2,172), r = /(x1 — 1/2)2 + (xo — 1/2)2, and 8(1/2,1/2) is the Dirac measure at (1/2,1/2).
The function u defined by u = r|g is an exact convex solution to problem (57), belonging
to W1-°(02).
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Fig. 17 [Test problem (56)]: a, b, ¢, d graphs and contours of the approximate solution obtained by the
one-stage algorithm on a regular mesh with 7(= Ax; = Axy) = 1/80. e, g Graphs of the restrictions of
the computed approximate solutions to the line x; = 1/2. f, h Graphs of the restrictions of the computed
approximate solutions to the line x; = x;. The results visualized on a, b and e, f (resp., ¢, d and g, h) have
been obtained using relations (23) [resp., (35), (36)] to approximate the second order derivatives
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Table 17 (Test problem (57) for the unit square). For 2~ = 1/20, 1/40 and 1/80: (i) number of iterations
needed for convergence of the one-stage algorithm and associated residuals. (ii) Minimal value of the computed
approximate solutions. (iii) Discrete L, and Lo, norms of the approximation errors and associated rates of
convergence. Table (a) [resp., (b)] reports results associated with the approximation (58) [resp., (59)] of the
measure 81 /2,1/2) With n = 1073 (resp., p = 1/16). The minimal value of the exact solution is O

h Iterations a1 —u |y Min L, error Rate Lo error Rate
(a)

120 2586 9.99 x 1077 —0.2186  6.27 x 1072 2.19 x 107!

1/40 8323 9.99 x 1072 —0.0244 1.65x 1072 193 295x 1072  2.893

1/80 27,987 9.99 x 1072 0.0121  787x1073 107 121x1072 1.9
(b)

120 887 9.99 x 10~° —0.1679  4.67 x 1072 1.68 x 107!

1/40 3898 9.99 x 1072 —0.038 2.14x1072 113  492x1072 1.77

1/80 17,327 9.99 x 102 0.0057 840x 1073 135 122x1072 201

In order to apply our methodology to the numerical solution of problem (57) we approx-
imated (as in [8]) the measure 8(1/2,1/2) by the C* strictly positive function fﬂ1 defined
by

772

[12 + (x1 = 1/2)2 + (x2 — 1722]"

with 7 a small positive number having the dimension of a distance. In [8], good results were
obtained using n = h. On the other hand, a *good’ function 7 — 7n(h) seems more difficult
to identify for the methodology we use in the present article. Assuming that (with obvious
notation) the relation lim;,_, o limy_.¢ uZ = u holds, we fixed n and computed the associated
approximate solution for various values of %, leading to the results reported and visualized
in Tables 17, 18 and Figs. 18, 19. These results have been obtained using: (i) The one-stage
algorithm with [+ — 4|l < 1078 as stopping criterion. (ii) Regular (resp., unstructured
isotropic) triangulations of the unit square (resp., half unit disk). (iii) Approximations (35),
(36) of the second order derivatives. Actually, we have also reported and visualized on those
tables and figures, results obtained using the function f 3 defined, with p > 0, by

£ x) = (58)

3
S, 2) = 5 max (o, p— (1 = 1727 4 (x2 - 1/2)2> +h, (59)
as approximation of the measure 776(1,2,1/2)-

Remark 11 1If £2 is a square, the solution of problem (57) (or closely related ones) has been
addressed in various publications ([4,8,22,23] among others), by a variety of computational
methods, some of them particularly fast like the ones discussed in [23]. On the other hand,
solving (57) on a disk using piecewise affine approximations is a more challenging issue; it
has been addressed in particular in [8], using finite element approximations closely related
(but not identical) to those discussed in Sect. 4. O

‘We define as follows the last problem involving a Dirac measure we consider in this article:

(60)

det Dy = 25(1/2.1/2) in §2,
u=0o0nas2,
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Table 18 (Test problem (57) for the half unit disk). For 2 = 1/20, 1/40 and 1/80: (i) number of iterations
needed for convergence of the one-stage algorithm and associated residuals. (ii) Minimal value of the computed
approximate solutions. (iii) Discrete Ly and L~ norms of the approximation errors and associated rates of
convergence. Table (a) [resp., (b)] reports results associated with the approximation (58) [resp., (59)] of the

measure 78(1/2,1/2) Withn = 1073 (resp., p = 1/16). The minimal value of the exact solution is O

h Iterations "L — w1, Min L, error Rate Lo error Rate
(a)

120 1166 9.91 x 1072 —0.148 3.82 x 1072 1.54 x 107!

1/40 4232 9.98 x 1072 —0.0177 167x1072 119 3.07x1072 233

1/80 14,883 9.99 x 1072 0.0106 835x 1073 1 1.05x 1072 155
(b)

120 685 9.90 x 1079 —0.1231  3.44 x 1072 137 x 107}

1/40 3475 9.99 x 1072 —0.0254 1.78x 1072 095 413x107%2 173

1/80 16,715 9.99 x 102 0.0028 948 x 1073 091  155x1072 141
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Fig. 18 (Test problem (57) for the unit square): a, b, ¢ (resp., d, e, f) are associated with the approximation
(58) with n = 1073/2 (resp., (59) with p = 1/16) of the measure 781 /2,1/2)- a, d Graphs of the computed
solutions for 4~ = 1/80. b, e Graphs of the restrictions of the computed solution to the line x; = 1/2 for
h = 1/20, 1/40 and 1/80. ¢, f Graphs of the restrictions of the computed solution to the line x| = x; for
h = 1/20, 1/40 and 1/80. The minimal value of the exact solution is 0

where in (60), §2 is the square (0, 1?2 and 8(1/2,1/2) is the Dirac measure at (1/2,1/2). It
follows from [17] that the function u defined by

u(xy, x2) = —min (x1, (1 — x1), x2, (1 = x2)), ¥(x1, x2) € £

is an exact convex solution to problem (60), belonging to WLo°(2). Its minimal value is
clearly —0.5. In order to solve problem (60), we proceeded as follows: (i) For 2 = 1/20, 1/40
and 1/80, we used regular triangulations like the one in Fig. 1a. (ii) Employed the one-stage
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Fig. 19 (Test problem (57) for the half-unit disk): a graph of the computed approximate solution obtained
for h = 1/80 by the one-stage algorithm, using the approximation (58) of the measure 78(1/2,1/2) with

n=10"32p Graphs of the restrictions of the computed approximate solutions to the diameter x; = 1/2, for
h = 1/20, 1/40 and 1/80 (approximation (58) of the measure 78| /2,1 /2) with = 10~3/2). ¢ Graphs of the
restrictions of the computed approximate solutions to the diameter x| = 1/2, for » = 1/20, 1/40 and 1/80
(approximation (59) of the measure 78y /2,1/2) with p = 1/16). The minimal value of the exact solution is 0

Table 19 [Test problem (60)]. For 2 = 1/20, 1/40 and 1/80: (i) number of iterations needed for convergence
of the one-stage algorithm and associated residuals. (ii) Minimal value of the computed approximate solutions.
(iii) Discrete Ly and Lo norms of the approximation errors and associated rates of convergence. Table (a)
[resp., (b)] reports results associated with the approximation (58) [resp., (59)] of the measure 781 /2,1/2) with

n= 1073/2 (resp., p = 1/16). The minimal value of the exact solution is —0.5

h Iterations (i —y lla Min L, error Rate Lo error Rate
(a)

1/20 4099 8.75 x 1077 —0.6356  3.67 x 1072 1.36 x 1071

1/40 10,356 9.99 x 1077 —04937  856x 1073 210 1.94x 1072 28]

1/80 14,970 9.99 x 10~° —04848 142x1072 - 228x 1072 —
(b)

1/20 2116 9.99 x 1077 —0.5949  2.45x 1072 9.49 x 1072

1/40 4847 1.06 x 107 —05099 1.41x1072 080 243x1072 197

1/80 10,939 9.99 x 1077 —04860 1.05x1072 043 1.69x1072 052

algorithm, using [|u" ! —u”|| < 107 or 1078 as stopping criterion. (iii) Approximated the
second order derivatives using relations (35), (36). (iv) Approximated the measure 25(1/2,1,2)
by 2 £} (resp. 2 £2), with n = 10732 in (58) [resp., p = 1/16 in (59)]. The results we
obtained have been reported and visualized in Table 19 and Fig. 20.

Table 19 and Fig. 20 support the assumption lim;_, ¢ lim;_, ¢ uZ = lim;) 0 lim; ¢ uZ =
u, but they show also that a critical issue needing to be addressed is identifying how to pick
n and p as functions of %, in order to improve the convergence of the approximate solutions
when 7 — 0; we intend to investigate this issue.

To conclude this section dedicated to the numerical solution of problem (1), when f is a
positive measure, we consider the following Monge—Ampere problem:

detD?u = f in 2,

61
u=0o0noas2, D
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Fig. 20 [Test problem (60)] a, d graphs of the computed approximate solution obtained for 27 = 1/80 by
the one-stage algorithm. b, e Graphs of the restrictions of the computed approximate solutions to the line
x1 = 1/2,for h = 1/20, 1/40 and 1/80. ¢, f Graphs of the restrictions of the computed approximate solutions
to the line x| = xp, for h = 1/20, 1/40 and 1/80. a, b, ¢ (resp., d, e, f) correspond to the approximation (58)
[resp., (59)] of the measure (1 2,1/2) With n = 10-3/2 (reps., p = 1/16). The minimal value of the exact
solution is — 0.5

where in (62): (i) £2 = (0, 1)2, and (ii) f is the positive measure defined by
(f.¢) = / ¢dy.¥¢ € Hy(82), (62)
Y
the ’curve’ y being the cross defined by

y ={(x1,x2),0 <x1 < 1l,xx=1/2} U{(x1,x2),x1 =1/2,0 <xp < 1}.

In order to apply to the solution of problem (61) the methodology discussed in Sects. 2-5,
we approximate the above measure f by f;, a strictly positive C* function defined by

1 1
2 _ 2)3/2 + 2 _ 2
(n? + |x1 — 1/212) (7 + Ix2 — 1/2]2)

3/2] Y(x1,x0) € 2,

(63)
with > 0. We can easily prove thatlim, ¢ f;, = f in the sense of distributions. The param-
eter 1 having the dimension of a distance, we used n = h when applying the methodology
discussed in Sects. 2-5 to the solution of

Fo(x1,x0) = n? |:

:detDzu,, = f,in £, o

uy =0o0nas2.

The results reported and visualized in Table 20 and Fig. 21 have been obtain using: (i) Regular
triangulations of §2 for h = 1/20, 1/40 and 1/80 (here, h = Ax; = Ax»). (ii) The one-stage
algorithm with [|u"T! — || < 108 as stopping criterion. (iii) The approximations (35),
(36) of the second order derivatives.
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Table 20 [Test problem (61)]. For 2 = 1/20, 1/40 and 1/80: (i) Number of iterations needed for the conver-
gence of the one-stage algorithm, and related residuals. (ii) Minimum values of the computed approximate
solutions. We used 1 = £ in (63) when approximating the measure f by the function f,

h Iterations

e+ — Min
1720 955 9.99 x 1072 —0.4917
1/40 5642 9.99 x 1072 —0.4905
1/80 39952 9.99 x 1072 —0.4923
1
-0.05
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Fig. 21 [Test problem (61)]. a, b Graph and contours of the computed approximate solution for 2 = 1/80.
¢ Graph of the restrictions of the computed approximate solutions to the line x; = 1/2, for h = 1/20, 1/40
and 1/80. d Graphs of the restrictions of the computed approximate solutions to the line x; = xp, for h =

1/20, 1/40 and 1/80

From Fig. 21, we observe the convexity of the computed approximate solutions. Figure 21
suggests also a fast uniform convergence to a convex solution of problem (61) the choice

n = h works "beautifully’.
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Fig.22 [Test problem (65)]. Graphs of the computed approximate solutions forh = 1/80:an =h.bn = nZ.
At first glance, the two graphs are identical

6.7 A Kind of Obstacle Problem

The last test problem we will consider in this article is defined by

r

detD?u = max (1 — %2,0) in £2, 65)
u = %(max(r — 0.2,0))% on 352,

where in (65), 2 = (0, 1)2 andr = \/(x —1/2)%2 4 (—1/2)2. Problem (65) was suggested
to us by one of the anonymous referees of this article; its solution has been addressed in, e.g.,
[22,37]. The function u defined by

1 2 _
u(xy, x3) = 3 (max <\/(x1 —1/2)2 4 (x2 — 1/2)2 = 0.2, o)) ,V(x1,x0) € £2,

is the exact convex solution to problem (65); we clearly have u € C 1(£2). Since the function
u vanishes in the open disk of radius 0.2 centered at (1/2,1/2), det D2u shares the same
property, making the elliptic problem (65) degenerated. In order to facilitate the solution of
problem (65), we approximated the function max(1 — %, 0) by max(1 — 072, 1), n being
a small non-negative parameter converging to O with 4. We have reported in Table 21 and
Fig. 22, numerical results associated withn = 0,n = handn = h2. These results have been
obtained using: (i) Regular triangulations with h(= Ax; = Axp) = 1/20, 1/40, 1/80 and
1/160. (i) The one-stage algorithm, the stopping criterion being ||u"T! — u"|l» < tol with
10719 < rol < 1077, (iii) Approximations (23) of the second order derivatives.

From an accuracy point of view, the results obtained for n = h [Table 21(b)] match those
reported in [22,37], obtained using more sophisticated approximations. Moreover, Table 21(c)
shows that taking 1 = h? increases accuracy by (roughly) one order of magnitude, the price
to pay for this improvement being a much larger number of iterations in order to achieve the
convergence of the one-stage algorithm.

Remark 12 We used the word obstacle in the title of this section. To justify this terminology,
observe that, in (65), one can replace the equation

0.2
det D?u = max (1 - — O)
r
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by
0.2
detD%y = (1 - —) K(u>0)s (66)

r

where x,~0) is the characteristic function of the set {x € £, u(x) > 0}. One encounters
equations similar to (66) in [42], a publication dedicated to obstacle problems for the Monge—
Ampere operator ¢ — det D?¢. The obstacle associated with problem (65) is clearly the plane
x3=0.

7 Conclusion

In this article, we have developed a relatively easy to implement finite element and operator-
splitting based methodology for the numerical solution of the Monge—Ampere equation.
The related methods have performed well for various types of triangulations (structured and
unstructured) and can handle curved boundaries quite easily since they rely on continuous
piecewise affine approximations. We introduced also a Newton-like two-stage variant of our
methodology, which accelerates significantly the convergence if the problem under consider-
ation has a smooth convex solution. Our future investigations (some of them quite advanced)
will include looking at techniques to further accelerate the convergence of our iterative proce-
dures, and the solution of three-dimensional and obstacle problems for the Monge—Ampere
operator ¢ — det D%p.
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