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Abstract
We discuss in this article a novel method for the numerical solution of the two-dimensional
elliptic Monge–Ampère equation. Our methodology relies on the combination of a time-
discretization by operator-splitting with a mixed finite element based space approximation
where one employs the same finite-dimensional spaces to approximate the unknown function
and its three second order derivatives. A key ingredient of our approach is the reformulation
of theMonge–Ampère equation as a nonlinear elliptic equation in divergence form, involving
the cofactor matrix of the Hessian of the unknown function. With the above elliptic equation
we associate an initial value problem that we discretize by operator-splitting. To enforce
the pointwise positivity of the approximate Hessian we employ a hard thresholding based
projection method. As shown by our numerical experiments, the resulting methodology is
robust and can handle a large variety of triangulations ranging from uniform on rectangles to
unstructured on domainswith curved boundaries. For those caseswhere the solution is smooth
and isotropic enough, we suggest also a two-stage method to improve the computational
efficiency, the second stage being reminiscent of a Newton-like method. The methodology
discussed in this article is able to handle domains with curved boundaries and unstructured
meshes, using piecewise affine continuous approximations, while preserving optimal, or
nearly optimal, convergence orders for the approximation error.

Keywords Fully nonlinear elliptic partial differential equations · Monge–Ampère
equations · Operator-splitting method · Finite element approximations · Mixed finite
element methods · Tychonoff regularization · Variational crimes

1 Introduction

LetΩ be a bounded domain ofR2. The Dirichlet problem for the canonical Monge–Ampère
equation reads as {

detD2u = f in Ω,

u = g on ∂Ω,
(1)
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D2u being the Hessian matrix of u, that is D2u =
⎛
⎝ ∂2u

∂x21

∂2u
∂x1∂x2

∂2u
∂x1∂x2

∂2u
∂x22

⎞
⎠ , the functions f and g

being given. If f > 0, problem (1) is a prototypical fully nonlinear elliptic boundary value
problem. The existence and regularity properties of the solutions to fully nonlinear elliptic
problems have been discussed in [2,10,25], a particular attention being given to the canonical
Monge–Ampère equation in [31]. As shown in, e.g., [3,9,18,24,35], the Monge–Ampère
equation has a wide range of applications, differential geometry, optimal transportation,
physics and mechanics among them.

Starting with [39] various numerical methods have been developed for the numerical solu-
tion of fully nonlinear elliptic boundary problems, problem (1) being the most investigated
by far. The fast multiplication of these methods during the last decade has made keeping track
of all of them an almost impossible task. Several of them have been reported in [18], but a
visit to Google Scholar has become a must to have a more complete view. Focusing on those
approaches with whichwe have some familiarity, wewill classify them roughly into two fam-
ilies. The methods of the first family treat a finite difference or finite element approximation
of the equation under consideration (possibly coupled to a regularization procedure as done
in [19,20]; see also [18]); such methods, and the iterative solution of the resulting discrete
problems, are discussed in, e.g., [1,4–6,22,23,34,43]. Another approach is to reformulate the
nonlinear elliptic problem as an optimization one; this can be done via least-squares or via
the introduction of a well-chosen augmented Lagrangian algorithm. Such optimization based
methods are discussed in e.g. [8,11–16,28–30,35].

The method discussed in this article concerns problem (1) specifically. It relies on: (i)
An equivalent divergence formulation of (1). (ii) An initial value problem associated with a
mixed variant of the above divergence formulation. (iii) The time discretization by operator-
splitting of the above initial value problem. (iv) An eigenvalue projection algorithm to enforce
the pointwise positive semi-definiteness of the approximate Hessian at each time step. (v)
A mixed finite element implementation of the above methodology. Also for those problems
where the solution of (1) is sufficiently smooth and isotropic, we propose a two-stage strategy
to speed up the convergence: during the first stage, the dynamical system (flow)we consider is
associatedwith ∂u/∂t , while during the second stagewe use ∂(Su)/∂t , S being awell-chosen
elliptic operator, giving to this second stage a Newton-like flavor.

As reported in, e.g., various chapters of [30] (see also the references therein), operator-
splitting methods have a long history for providing efficient solution methods for a large
variety of problemsmodeled by partial differential equations and inequalities. Fully nonlinear
elliptic equations are no exceptions: To the best of our knowledge, the first publication
making use of an operator-splitting method for the solution of a fully nonlinear elliptic
problem is the celebrated article [3] by J.D. Benamou and Y. Brenier on the solution of the
Monge–Kantorovich optimal mass transfer problem by the alternating direction method of
multipliers (ADMM), a particular operator-splitting method. The solution of (1) by another
ADMMalgorithm is discussed in [11,13,14,16,29,30]. The numerical solution of theMonge–
Ampère equation for domains with a curved boundary is one of the objectives of this article.
Actually, one discussed in [6,21,32,33] efficient methods to achieve that goal. In particular,
the methods in [21,32] are (among other things) mesh-free variants of the wide stencil finite
difference methods developed by A. Oberman and his collaborators (see, e.g., [22,38] and
the references therein). Solution methods for the Monge–Ampère equation on two and three-
dimensional domains with curved boundaries are discussed also in [7,8]. Albeit relying on
continuous piecewise affine approximations, like the methods in this article, the methods
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discussed in [7,8] are more complicated to implement, and less robust and flexible than the
quite simple and modular ones described in the following sections.

This article is organized as follows: In Sect. 2, we reformulate (1) as an elliptic problem in
divergence form with which we associate an initial value problem whose time-discretization,
by operator-splitting, is discussed in Sect. 3. The finite element implementation of the above
operator-splitting method is discussed in Sect. 4. The two-stage strategy wementioned above
is discussed in Sect. 5. In Sect. 6 we present the results of numerical experiments. These
results validate the methodology discussed in the preceding sections, including the two-
stage strategy described in Sect. 5; they also show that problem (1) is solvable on domains
with curved boundaries, using piecewise affine approximations associated with unstructured
triangulations.

The main goal of this article was to access the possibility of solving a large variety of
test problems, some of them quite singular, using continuous piecewise affine finite element
approximations, associated with possibly unstructured meshes on domains with a curved
boundary, while preserving good accuracy properties. The results of the many numerical
experiments we have performed are promising and suggest further investigations and appli-
cations: among them, accelerating the convergence of our algorithm being an important
objective, the two-stage method introduced in Sect. 5 (a Newton-like method) being just a
first step in that direction. Actually, preliminary promising results suggest that the method-
ology introduced in the present article can be generalized to three dimensional problems,
obstacle problems for the Monge–Ampère operator (like those discussed in [42]) and to the
Gaussian curvature equation detD2u = K (1 + |∇u|2)1+d/2, with d = 2 or 3, K (the given
curvature) being a positive function.

2 A Divergence Formulation of Problem (1) and an Associated Initial
Value Problem

Let us denote by cof(D2u) the matrix-valued function

⎛
⎝ ∂2u

∂x22
− ∂2u

∂x1∂x2

− ∂2u
∂x1∂x2

∂2u
∂x21

⎞
⎠. One can easily

show that problem (1) is equivalent to

{
−∇ · (cof (D2u

)∇u
)+ 2 f = 0 in Ω,

u = g on ∂Ω.
(2)

Similarly, one can also easily show that (2) characterizes formally u as being either a
minimizer or a maximizer of the functional I over the space Vg where

I (v) =
∫

Ω

(
cof

(
D2v

))∇v · ∇v dx + 6
∫

Ω

f vdx and Vg = {v|v smooth, v = g on ∂Ω}.

Assume that u is solution of (1), (2). Since the symmetric matrix-valued functions D2u
and cof(D2u) are either point-wise positive definite or negative definite in the neighborhood
of u, one can easily show that functional I is either convex or concave in the neighborhood
of u, justifying using a well-initialized descent type method to compute the solutions of (1),
(2); this can be achieved via the time integration of an initial value problem associated with
(2). To partly overcome the nonlinear coupling between u and its second order derivatives
we introduce a matrix-valued function p verifying the linear relation p = D2u. Problem (2)
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is clearly equivalent to the following system of partial differential equations:⎧⎪⎨
⎪⎩
{

−∇ · (cof(p)∇u) + 2 f = 0 in Ω,

u = g on ∂Ω,

p − D2u = 0.

(3)

To handle those situationswhere inf x∈Ω f (x) = 0, or for the solution of obstacle problems
for the Monge–Ampère operator (as those considered in [42]), we found that one is on the
safe side if one considers the following variant of (3), obtained by regularization:⎧⎪⎨

⎪⎩
{

−∇ · [(εI + cof(p)) ∇u
]+ 2 f = 0 in Ω,

u = g on ∂Ω,

p − D2u = 0,

(4)

ε being a small positive number (of the order of h2 in practice, h being the space discretization
step). In order to solve (4), we associate with it the following initial value problem (flow in
the dynamical system terminology):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
∂u
∂t − ∇ · [(εI + cof(p)) ∇u

]+ 2 f = 0 in Ω × (0,+∞),

u = g on ∂Ω × (0,+∞),
∂p
∂t + γ

(
p − D2u

) = 0 in Ω × (0,+∞),

u(0) = u0, p(0) = p0,

(5)

with γ a positive constant [above and below, φ(t) denotes the function x → φ(x, t)].
Before discussing (in Sect. 3) the time discretization of problem (5), we will address two

important issues, namely: (i) The choice of γ , and (ii) the choice of u0 and p0. Concerning
γ , the idea is to pick a value so that p(t) evolves in time roughly like u(t). Taking advantage
of the fact that p and cof(p) have the same eigenvalues, we suggest taking

γ = βλ0
(
ε + √

α
)
,

where λ0 is the smallest eigenvalue of operator −∇2 in H1
0 (Ω), α is the lower bound of

function f , and β is a constant of the order of 1. Assuming that we are looking for the convex
solutions of (1), several possibilities (not exclusive of each other) do exist in order to force
this convexity property. The simplest one is a proper choice of u0 and p0 in (5). Following the
discussion in [28,29], we suggest taking for u0 the solution of the following Poisson problem

∇2u0 = 2λ
√

f in Ω, u0 = g on ∂Ω, (6)

with λ(> 0) of the order of 1. Concerning p0, an obvious choice is p0 = D2u0, a simpler
alternative being p0 = λ

√
f I.

Remark 1 A natural variant of (5) is obtained by replacing ∂u
∂t by − ∂

∂t ∇2u. We did not
pursue in that direction for two main reasons: (i) ∂u

∂t is much better suited than − ∂
∂t ∇2u

for the numerical solution of obstacle problems for the Monge–Ampère operator (like those
discussed in [42]), and (ii) the numerical experiments we performed showed that the the two-
stage method discussed in Sect. 5 is as fast and, in general, more robust than the methodology
based on − ∂

∂t ∇2u.
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3 On the Time Discretization of System (5) by Operator-Splitting

The structure of system (5) suggests using operator-splitting for its time-discretization.
Among the many possible operator-splitting schemes (see, e.g., [30] for further informa-
tion on operator-splitting methods) we advocate the particular Lie scheme described below,
where Δt(> 0) is a time-discretization step and tn = nΔt :

u0 = u0 , p0 = p0. (7)

For n ≥ 0, {un,pn} → {
un+1/2,pn+1/2

} → {
un+1,pn+1

}
as follows

Fractional Step 1: Solve

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
∂u
∂t − ∇ · [(εI + cof (pn))∇u

]+ 2 f = 0 in Ω × (
tn, tn+1

)
,

u = g on ∂Ω × (
tn, tn+1

)
,

∂p
∂t = 0 in Ω × (

tn, tn+1
)
,

u (tn) = un, p (tn) = pn,

(8)

and set un+1/2 = u(tn+1) , pn+1/2 = pn .
Fractional Step 2: Solve

⎧⎪⎨
⎪⎩

∂u
∂t = 0 in Ω × (

tn, tn+1
)
,

∂p
∂t + γp = γD2un+1/2 in Ω × (

tn, tn+1
)
,

u (tn) = un+1/2, p (tn) = pn+1/2,

(9)

and set
un+1 = un+1/2,pn+1 = P+

[
p
(
tn+1)] , (10)

where in (10), P+ denotes a projection operator (to be defined in Sect. 4.5) on the convex cone
of the symmetric positive semi-definite 2× 2 matrices, the projection being done pointwise.
Scheme (7)–(10) is first-order accurate at most, and semi-constructive since we still have to
solve the sub-initial value problems (8) and (9). There is no difficulty with (9) since it has a
closed form solution. To time-discretize (8), we advocate just taking one step of the backward
Euler scheme. The resulting scheme (of theMarkchuk–Yanenko type) reads as follows (using
a more compact notation):

u0 = u0, p0 = p0. (11)

For n ≥ 0, {un,pn} → {
un+1,pn+1

}
as follows

{
un+1−un

Δt − ∇ · [(εI + cof (pn)) ∇un+1
]+ 2 f = 0 in Ω,

un+1 = g on ∂Ω,
(12)

pn+1 = P+
[
e−γΔtpn + (

1 − e−γΔt )D2un+1] . (13)

If the matrix-valued function pn is positive semi-definite, then (12) is a formally well-
posed elliptic boundary value problem.
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(a) (b) (c) (d)

Fig. 1 Four meshes for two different domains used in the numerical experiments. a A regular mesh on the
unit square. b A (highly) symmetric mesh on the unit square. c An isotropic unstructured mesh on the unit
square. d An isotropic unstructured mesh on a half-unit disk

4 On the Finite Element Implementation of the Operator-Splitting
Scheme

4.1 Synopsis

The equivalent divergence formulations (2) and (3) of problem (1) strongly suggest employing
space approximations based on variational principles. To achieve such a goal, we are going to
use finite element spaces consisting of functions which are globally continuous and piecewise
affine on triangulations ofΩ . As in, e.g., [8,29] (see also the references therein), we are going
to use a mixed finite element method, relying basically on the same finite dimensional spaces
to approximate u, its three second order derivatives, and the entries of the matrix-valued
function p.

4.2 The Basic Finite Element Spaces

We follow the presentations in [8,14,26,29]: Assuming that Ω is a polygonal domain ofR2

(or has been approximated by such a domain), we introduce a family (Th)h of triangulations
of Ω , like the ones in Fig. 1; usually, one denotes by h the length of the largest edge(s) of Th .

The first finite element space we introduce is the finite dimensional space Vh defined by

Vh = {
v|v ∈ C0 (Ω̄) , v|T ∈ P1,∀T ∈ Th

}
, (14)

where P1 is the space of the polynomials of two variables of degree ≤ 1. Let us denote by
Σh the set of the vertices of the triangles of Th ; we have then Σh = {

Q j
}Nh
j=1. Next, we

associate with each vertex Q j the (shape) function w j , uniquely defined by:

w j ∈ Vh, w j (Q j ) = 1, w j (Qk) = 0,∀k = 1, . . . , Nh, k 
= j .

The setBh = {
w j
}Nh
j=1 is a vector basis of the space Vh ; it verifies v = ∑Nh

j=1 v(Q j )w j ,∀v ∈
Vh, implying that dim Vh = Nh . We observe that the support of the basis function w j is the
union of those triangles of Th which have Q j as a common vertex.

Assuming that g ∈ C0(∂Ω), we define Vgh , an affine subspace of Vh , by
Vgh = {

v|v ∈ Vh, v(Q j ) = g(Q j ),∀Q j ∈ Σh ∩ ∂Ω
}
. Note that if g = 0, then Vgh = V0h ,

where V0h = {v|v ∈ Vh, v = 0 on ∂Ω} (= Vh ∩ H1
0 (Ω)

)
.

In Sect. 4.3 below, we are going to address the approximation of ∂2u/∂x21 , ∂
2u/∂x22 and

∂2u/∂x1∂x2, an important issue indeed.
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4.3 Finite Element Approximation of the Three Second Order Derivatives

Unlike the collocation methods discussed in [7,8,29], the values taken on ∂Ω by the discrete
second order derivatives affect the approximate solutions. From that point of view, enforcing
(as done in [7,8,29]) these discrete derivatives to vanish on ∂Ω leads to large approximation
errors on the solutions of problem (12), a consequence of the poor approximation of cof(pn)
in the neighborhood of ∂Ω . To overcome this difficulty, several approaches are available. We
will focus on two of them. The starting point of the first one is to observe that the Divergence
Theorem implies: ⎧⎪⎪⎨

⎪⎪⎩
∀i, j = 1, 2,∀v ∈ H2(Ω),∫
Ω

∂2v
∂xi ∂x j

wdx = − 1
2

∫
Ω

[
∂v
∂xi

∂w
∂x j

+ ∂v
∂x j

∂w
∂xi

]
dx

∀w ∈ H1
0 (Ω).

(15)

This suggests approximating ∂2v
∂xi ∂x j

by D2
i jh(v) verifying⎧⎪⎪⎨

⎪⎪⎩
∀i, j = 1, 2,∀v ∈ Vh, D2

i jh(v) ∈ Vh∫
Ω
D2
i jh(v)wdx = − 1

2

∫
Ω

[
∂v
∂xi

∂w
∂x j

+ ∂v
∂x j

∂w
∂xi

]
dx

∀w ∈ V0h .

(16)

The finite dimensional problem (16) being undetermined, additional relations are required in
order to force solution uniqueness. We suggest imposing (approximately)

∂

∂n
D2
i jh(v) = 0 on ∂Ω. (17)

Among the various options available to impose (17), the one we selected reads as∫
ωk

∇D2
i jh(v) · ∇wkdx = 0,∀k = N0h + 1, . . . , Nh, (18)

where in (18): (i) N0h = dim V0h . (ii) {Qk}Nh
k=N0h+1 = Σh ∩ ∂Ω,Σh = {Qk}Nh

k=1 being the
set of the vertices of Th . (iii) wk is the basis (shape) function of Vh associated with Qk . (iv)
ωk = support of wk is the union of those triangles of Th which have Qk as a common vertex;
|ωk | will denote the area of ωk .

The rationale behind (18) is easy to understand: we have (Green’s formula)∫
∂ωk∩∂Ω

∂ψ

∂n
wkd(∂Ω) =

∫
ωk

∇2ψwkdx +
∫

ωk

∇ψ · ∇wkdx,∀ψ ∈ H2(Ω). (19)

Suppose now that ψ is harmonic (that is ∇2ψ = 0), then relation (19) reduces to∫
∂ωk∩∂Ω

∂ψ

∂n
wkd(∂Ω) =

∫
ωk

∇ψ · ∇wkdx . (20)

Albeit the function D2
i jh(v) is piecewise harmonic only (being piecewise affine), we used

(20) to impose (17), explaining where (18) comes from. It is clear that replacing the above
homogeneous Neumann boundary condition by (18) is a typical example of variational crime
(in the sense of [44]). The numerical experiment results reported in Sect. 6 will validate a
regularized variant of the approach we just described, based essentially on relations (16)
and (18). Indeed, numerical experiments performed with (16), (18) show that the quality of
the approximation deteriorates as h → 0, unless Ω is a rectangle and that one uses regular
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triangulations like the one shown in Fig. 1a. To overcome the above difficulty, we advocate
(inspired by [7,8,29]) the simple (Tychonoff) regularization procedure where one replaces
system (16), (18) by:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∀i, j = 1, 2,∀v ∈ Vh, D2
i jh(v) ∈ Vh,

C
∑

T∈T k
h

|T | ∫T ∇D2
i jh(v) · ∇wkdx + ∫

ωk
D2
i jh(v)wkdx

= − 1
2

∫
ωk

[
∂v
∂xi

∂wk
∂x j

+ ∂v
∂x j

∂wk
∂xi

]
dx,∀k = 1, . . . , N0h,∫

ωk
∇D2

i jh(v) · ∇wkdx = 0,∀k = N0h + 1, . . . , Nh,

(21)

where in (21), C is a positive constant of the order of 1, T k
h being the set of those triangles

of Th which have Qk as a common vertex.

Remark 2 Suppose that one uses the trapezoidal rule to approximate the L2(Ω)-inner prod-
ucts in (21), then the above system reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∀i, j = 1, 2,∀v ∈ Vh, D2
i jh(v) ∈ Vh,

C
∑

T∈T k
h

|T | ∫T ∇D2
i jh(v) · ∇wkdx + |ωk |

3 D2
i jh(Qk)

= − 1
2

∫
ωk

[
∂v
∂xi

∂wk
∂x j

+ ∂v
∂x j

∂wk
∂xi

]
dx,∀k = 1, . . . , N0h,∫

ωk
∇D2

i jh(v) · ∇wkdx = 0,∀k = N0h + 1, . . . , Nh .

(22)

System (22) being simpler than system (21) from a matrix point of view, it is the one we
have used for those computations relying on (18). The practical use of (22) to define discrete
second order derivatives requires this finite dimensional variational problem to bewell-posed.
We will prove it is true in the particular case where Th being isotropic one replaces (22) by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∀i, j = 1, 2,∀v ∈ Vh, D2
i jh(v) ∈ Vh,

Ch2
∫
ωk

∇D2
i jh(v) · ∇wkdx + |ωk |

3 D2
i jh(v)(Qk)

= − 1
2

∫
ωk

[
∂v
∂xi

∂wk
∂x j

+ ∂v
∂x j

∂wk
∂xi

]
dx,∀k = 1, . . . , N0h,∫

ωk
∇D2

i jh(v) · ∇wkdx = 0,∀k = N0h + 1, . . . , Nh .

(23)

Theorem 1 Suppose that in (23), the function v is given in Vh. Then the associated linear
system providing D2

i jh(v) has a unique solution.

Proof The proof is very simple once we introduce the space Mh(⊂ Vh) defined by

Mh =
⎧⎨
⎩μ ∈ Vh, μ =

Nh∑
k=N0h+1

μkwk, (μk)
Nh
k=N0h+1 ∈ RNh−N0h

⎫⎬
⎭ . (24)

We clearly have

Vh = V0h ⊕ Mh and μ ∈ Mh ⇔ μ|T = 0,∀T ∈ Th such that ∂T ∩ ∂Ω = ∅. (25)
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Next, we denote by (·, ·)0h the inner-product over Vh defined by

(v,w)0h = 1

3

Nh∑
k=1

|ωk |v(Qk)w(Qk), (26)

where (Qk)
Nh
k=1 = Σh . We have then V⊥

0h = Mh for the inner product defined by (26).
In order to prove that (23) is well-posed, it is sufficient to show that⎧⎪⎨

⎪⎩
p ∈ Vh,

Ch2
∫
ωk

∇ p · ∇wkdx + |ωk |
3 p(Qk) = 0,∀k = 1, . . . , N0h,∫

ωk
∇ p · ∇wkdx = 0,∀k = N0h + 1, . . . , Nh,

⇒ p = 0. (27)

The variational system in the left part of (27) is equivalent to⎧⎪⎨
⎪⎩
p ∈ Vh,

Ch2
∫
Ω

∇ p · ∇vdx + (p, v)0h = 0,∀v ∈ V0h,∫
Ω

∇ p · ∇μdx = 0,∀μ ∈ Mh .

(28)

It follows from (25) that p = p0 + p1 with p0 ∈ V0h and p1 ∈ Mh , the above decomposition
being unique. We have (p0, p1)0h = 0 and [from (28)]

∫
Ω

∇ p · ∇ p1dx = 0. Taking v = p0
in (28), the above two relations imply

Ch2
∫

Ω

|∇ p|2dx + (p0, p0)0h = 0. (29)

It follows from (29) that p0 = 0 and ∇ p = ∇(p0 + p1) = ∇ p1 = 0. Function p1
is thus a constant, but since p1(Qk) = 0,∀k = 1, . . . , N0h , this constant is 0, implying
p = p0 + p1 = 0. ��

Remark 3 We recall that h is the length of the largest edge(s) of Th . Denote by hmin the length
of the smallest edge(s) of Th . If the ratio h/hmin ≈ 1 (a situation we already considered in
Remark 2), then one can advantageously replace the termC

∑
T∈T k

h
|T | ∫T ∇D2

i jh(v)·∇wkdx

in (22) by the following simpler one ε1
∫
ωk

∇D2
i jh(v) · ∇wkdx , with ε1 a positive parameter

of the order of h2.

Remark 4 Suppose that Ω = (0, 1)2 and that the triangulation Th is of the same type as the
one in Fig. 1a. Suppose also that h = 1

I+1 , I being an integer greater than 1. In this particular
case, we have Σh = {Qi j |Qi j = (ih, jh), 0 ≤ i, j ≤ I + 1} and

∑
0h = {Qi j |Qi j =

(ih, jh), 1 ≤ i, j ≤ I }, implying that Nh = (I + 2)2 and N0h = I 2. Suppose that C = 0 in
(22) or (23), then if 1 ≤ i, j ≤ I , the relations giving D2

klh(v)(Qi j )(1 ≤ k, l ≤ 2) reduce to
simple finite difference formulas, exact for the polynomials of degree ≤ 2. These formulas
can be found in [29] pages 390 and 391. ��

Although proving good convergence results, particularly if problem (1) has a smooth
solution, the variational crime at the basis of relations (22) and (23) was leaving us uncom-
fortable.When usingmodels (4), (5) to solve theMonge–Ampère equation (1), one can expect
increased robustness (possibly at the expense of accuracy) if one uses smooth approximation
of p. Suppose that ψ ∈ H2(Ω) and consider (with ε > 0) the following well-posed elliptic
linear variational problem
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⎧⎨
⎩
pε
i j ∈ H1

0 (Ω),

ε
∫
Ω

∇ pε
i j · ∇φdx + ∫

Ω
pε
i jφdx = − 1

2

∫
Ω

[
∂ψ

∂xi

∂φ

∂x j
+ ∂ψ

∂x j

∂φ

∂xi

]
dx,∀φ ∈ H1

0 (Ω).

(30)
Function pε

i j verifies

lim
ε→0

pε
i j = ∂2ψ

∂xi∂x j
in L2(Ω), (31)

and {
−ε∇2 pε

i j + pε
i j = ∂2ψ

∂xi ∂x j
in Ω,

pε
i j = 0 on ∂Ω

(32)

(in the sense of distributions). From the convexity of Ω , it follows from (32) that pε
i j ∈

H1
0 (Ω) ∩ H2(Ω)

(⊂ C0(Ω̄)
)
. Discrete variants of the above regularization method were

applied in [7,8] to the solution of the Monge–Ampère equation in dimensions two and three.
The numerical results reported in [7,8] show that the least-squares collocation method dis-
cussed there has no problem to accommodate the boundary condition pε

i j = 0 on ∂Ω , unlike
the divergence formulation (2) of the Monge–Ampère equation we employ in this article. In
order to overcome this difficulty, we suggest introducing a correcting step, namely{−ε∇2 p̃ε

i j + p̃ε
i j = pε

i j in Ω,
∂ p̃ε

i j
∂n = 0 on ∂Ω,

(33)

whose variational formulation reads as{
p̃ε
i j ∈ H1(Ω),

ε
∫
Ω

∇ p̃ε
i j · ∇φdx + ∫

Ω
p̃ε
i jφdx = ∫

Ω
pε
i jφdx,∀φ ∈ H1(Ω).

(34)

Function p̃ε
i j verifies limε→0 p̃ε

i j = ∂2ψ
∂xi ∂x j

in L2(Ω), and p̃ε
i j ∈ H4(Ω). These properties are

at the foundation of our second approach concerning the approximation of the second order
derivatives. Suppose that v ∈ Vh ; one proceeds as follows to compute the discrete analogue

D2
i jh(v) of ∂2v

∂xi ∂x j
(1 ≤ i, j ≤ 2):

Solve:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pi j ∈ V0h,

C
∑

T∈T k
h

|T | ∫T ∇ pi j · ∇wkdx + |ωk |
3 pi j (Qk) = − 1

2

∫
ωk

[
∂v

∂xi

∂wk

∂x j
+ ∂v

∂x j

∂wk

∂xi

]
dx,

∀k = 1, . . . , N0h,

(35)
and then⎧⎪⎨

⎪⎩
D2
i jh(v) ∈ Vh,

C
∑

T∈T k
h

|T | ∫T ∇D2
i jh(v) · ∇wkdx + |ωk |

3 D2
i jh(v)(Qk) = |ωk |

3 pi j (Qk),

∀k = 1, . . . , Nh,

(36)

C being of the order of 1. Anticipating on the numerical results reported in Sect. 6, we
would like to mention the following facts concerning the two approaches we presented
concerning the approximation of the second order derivatives: Although resting on more
solid mathematical foundations the second approach is less accurate than the first one if the
Monge–Ampère problem under consideration has smooth enough solutions. However, the

123



Journal of Scientific Computing (2019) 79:1–47 11

second approach ismore robust in the sense it can handle non-smooth situations more easily
than the first one [typical examples in that direction being provided by problems (1) where
f is not a function, but a positive measure (a Dirac’s one for example)].
Remark 3 still applies for the approximation of the second order derivatives defined by

relations (35), (36).

Remark 5 When implementing the double regularization approach associated with relations
(32), (33), it makes sense (and is even tempting) to replace ε in (32) [resp. (33)] by η1 of
the order of h2+γ (resp., η2 of the order of h2−γ ) with γ (> 0) not too large. Numerical
experiments done with γ = 1/4, 1/3 and 1/2 showed that for some test problems the
introduction of a positive γ may improve convergence. However since we found examples
where it has the opposite effect, we decided to stay with γ = 0.

4.4 Finite Element Implementation of the Operator-Splitting Scheme (11)–(13)

Let us recall that the set Σ0h of the vertices of Th interior to Ω has been ordered so that
Σ0h = {Qk}N0h

k=1 and Σh = Σ0h ∪ {Qk}Nh
k=N0h+1. In the sequel, we will denote by Qh the

space {q|q ∈ (Vh)2×2,q = qT }.

4.4.1 Implementation of Scheme (11)–(13)

A fully discrete analogue of scheme (11)–(13) reads as

u0 = u0h
(∈ Vgh

)
,p0 = p0h (∈ Qh) . (37)

For n ≥ 0, {un,pn} → {
un+1,pn+1

}
as follows:

Solve ⎧⎪⎨
⎪⎩
un+1 ∈ Vgh,∫
Ω
un+1vdx + Δt

∫
Ω (εI + cof (pn)) ∇un+1 · ∇vdx

= ∫
Ω
unvdx − 2Δt

∫
Ω

fhvdx,∀v ∈ V0h,

(38)

and compute pn+1 via⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀k = 1, . . . , Nh, one has pn+ 1
2 (Qk) = e−γΔtpn(Qk)

+ (
1 − e−γΔt

) (D2
11h

(
un+1

)
(Qk) D2

12h

(
un+1

)
(Qk)

D2
12h

(
un+1

)
(Qk) D2

22h

(
un+1

)
(Qk)

)
,

pn+1(Qk) = P+
[
pn+1/2(Qk)

]
,

(39)

where in (38), fh(> 0) is a continuous approximation of f , and where in (39), the discrete
second order derivatives of un+1 are computed using the methods discussed in Sect. 4.3,
operator P+ being defined in Sect. 4.5. The initialization of scheme (37)–(39) and the solution
of the discrete variational problem (38)will be discussed inSects. 4.4.2 and4.4.3, respectively.

4.4.2 Initialization of Scheme (37)–(39)

Our starting point will be problem (6) defining u0. The most natural discrete analogue of
problem (6) is given by

u0h ∈ Vgh,

∫
Ω

∇u0h · ∇vdx = −2λ
∫

Ω

√
fhvdx,∀v ∈ V0h . (40)
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From a practical point of view, we advocate using the trapezoidal rule to compute (approxi-
mately) the integral

∫
Ω

√
fhvdx . We obtain then (using notation from previous sections):∫

Ω

√
fhvdx ≈ 1

3
Σ

N0h
j=1|ω j |

√
fh(Q j )v(Q j ). (41)

If Ω is a rectangle and the triangulation we employ is of the Fig. 1a type, we advocate using
finite differences and a fast Poisson solver to compute u0h from (6). The solution of (40)
for more general domains and/or triangulations Th will be (briefly) discussed in Sect. 4.4.3.
Once u0h has been computed, we use the methods discussed in Sect. 4.3 to define p0h by

p0h =
Nh∑
k=1

P+
[(

D2
11h(u0h) D2

12h(u0h)
D2
12h(u0h) D2

22h(u0h)

)
(Qk)

]
wk . (42)

An alternative to (42) is to define p0h by p0h = λ
∑Nh

k=1

√
fh(Qk)I, a discrete analogue of

p0 = λ
√

f I.

4.4.3 On the Solution of Problems (38) and Related Linear Variational Problems

What follows is fairly classical (see, for example Appendix 1 of [26] and Chapter 5 of [27],
and the references therein). Problems (38) and (40) are particular cases of the following finite
dimensional linear variational problem (of the Dirichlet type):

ψ ∈ Vgh, a
∫

Ω

ψφdx +
∫

Ω

M∇ψ · ∇φdx =
∫

Ω

f ∗φdx,∀φ ∈ V0h, (43)

where in (43), a is a non-negative constant,M is a piecewise affine uniformly positive definite
symmetric matrix-valued function, f ∗ being a given continuous function. From the positivity
ofM, problem (43) has a unique solution. We will return on the matrixM positivity issue in
Sect. 4.5.

Using the trapezoidal rule to approximate the first and third integrals in (43), the above
problem takes the following formulation:{

ψ ∈ Vgh,∀φ ∈ V0h,
a
3

∑N0h
l=1 |ωl | ψ(Ql)φ(Ql)

+ ∫
Ω
M∇ψ · ∇φdx = 1

3

∑N0h
l=1 |ωl | f ∗(Ql)φ(Ql).

(44)

Since the set {wk}N0h
k=1 is a vector basis of V0h , and ψ = ∑N0h

l=1 ψ(Ql) + ∑Nh
l=N0h+1 g(Ql),

it follows from (44) that the vector {ψ(Qk)}N0h
k=1 is clearly the solution of the following

[equivalent to (44)] linear system [where ψk denotes ψ(Qk)]:⎧⎪⎪⎨
⎪⎪⎩

a
3 |ωk | ψk +∑N0h

l=1

(∫
ωk∩ωl

M∇wk · ∇wldx
)

ψl

= 1
3 |ωk | f ∗(Qk) −∑Nh

l=N0h+1

(∫
ωk∩ωl

M∇wk · ∇wldx
)
g(Ql),

k = 1, . . . , N0h .

(45)

Since, in practice, h is small compared to the diameter of Ω , the matrix associated with
the linear system (45) is sparse. Moreover, this matrix is symmetric positive definite, these
properties following from the uniform positivity of the symmetric matrix-valued function
M. One can solve thus the linear system (45) by a sparse Cholesky solver, or a diagonally
preconditioned conjugate gradient algorithm. An user friendly alternative is to use one of
those MATLAB (or other library) programs which decides by itself which linear solver
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is the more appropriate to the linear system under consideration. Matrix M (resp., vector
∇wk) being piecewise affine (resp., piecewise constant) the various integrals in (45) can be
computed exactly by the trapezoidal rule.

The above comments concerning problems (38) and (40) apply also to the linear problems
(22), (23) and (35), (36) we used in Sect. 4.3 to compute the discrete second order partial
derivatives.

4.5 Enforcing the Local Positive Semi-definiteness of p by Eigenvalue Projection

In relations (10), (13), (39) and (42) we made use of P+ a (kind of) projection operator
mapping the space of the 2 × 2 symmetric real matrices onto the convex cone of the 2 × 2
positive semi-definite symmetric real matrices. Suppose that A is a 2 × 2 symmetric real
matrix. From the symmetry ofA there exists a 2×2 orthogonalmatrixS such thatA = S�S−1

with� =
(

λ1 0
0 λ2

)
, λ1 and λ2 being the two eigenvalues of matrixA. Operator P+ is defined

by P+(A) = S
(

λ+
1 0
0 λ+

2

)
S−1, with λ+

i = max(0, λi ),∀i = 1, 2.

5 A Two-Stage Convergence Acceleration Strategy

In this section, we propose a simple strategy to speed up the convergence to steady states of
scheme (11)–(13). Instead of (5), we consider the following initial value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

{
− ∂(∇·[(εI+M)∇u])

∂τ
− ∇ · [(εI + cof(p)) ∇u

]+ 2 f = 0 in Ω × (0,+∞),

u = g on ∂Ω × (0,+∞),
∂p
∂τ

+ γ
(
p − D2u

) = 0 in Ω × (0,+∞),

u(0) = u1, p(0) = p1,

(46)

where τ is (as is t) an artificial time. In (46),M is a time independent matrix-valued function,
which is supposed to be reasonably close to cof(D2u), u being the convex solution of problem
(1) (assuming that such a solution does exist). Scheme (11)–(13) can be easily modified to

accommodate (46): we just have to replace un+1−un
Δt in (12) by

−∇ ·
[
(εI + M) ∇

(
un+1 − un

Δτ

)]
.

Compared to (12), the above preconditioning allows the use of a larger time stepΔτ , typically
of the order of 1 if γ ≈ 1, and u1 and p1 are well-chosen. If convergence takes place, we
expect that limn→+∞ un = u. To guarantee convergence, a proper choice of {u1,p1} is in
order: a simple way to achieve that goal is to proceed as follows:

(i) Start iterating with scheme (11)–(13) for a small value of Δt , then stop time-stepping
after a sufficiently (but not too) large number of time steps, denoting by {u1,p1} the pair
produced by scheme (11)–(13) (further details will be given in Sect. 6).

(ii) Take for M the matrix-valued function cof(D2u1), and using {u1,p1} as initializer,
switch until convergence to the variant of scheme (11)–(13) associated with the initial
value-problem (46).

The reader will notice the Newton-like flavor of the above two-stage strategy. Its conver-
gence is discussed in the PhD dissertation of the second author. It is shown in particular that
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ifM is close to cof(D2u), where u is solution to problem (1), large values ofΔτ can be used,
leading to fast convergence properties.

6 Numerical Experiments

6.1 Generalities

In this section we will apply the computational methods discussed in Sects. 3–5, to the
numerical solution of test problems, some of them without smooth solutions or no solution
at all. The associated domains Ω will be the unit square (0, 1)2 (as expected), and the
disk of radius 1/2, centered at (1/2, 1/2). In Fig. 1a, b, c, d, we visualized finite element
triangulations of these two domains. The mesh in Fig. 1a will be called a regular mesh,
while the mesh on Fig. 1b will be called a symmetric mesh (it has five symmetries, while the
mesh in Fig. 1a has three symmetries ‘only’). We will say that the meshes in Fig. 1c, d are
unstructured, although they are quite isotropic.

We use DistMesh [40] to generate the meshes shown in Fig. 1c, d. As expected (from the
experiments reported in [8]), of all the triangulations we tested, those as the one in Fig. 1a are
the only ones not requiring a regularization of the discrete second order derivatives in rela-
tion (22) or (23) to produce accurate results, when applied to the solution of test problems
with smooth solutions. However, for poorly smooth or non-smooth problems, regulariza-
tion improves significantly the performances of our methods, even for meshes of Fig. 1a
type.

One of our goals with the first two test problems we are going to consider was to test
the performances of the original one-stage algorithm (11)–(13) (actually of a finite ele-
ment variant of it), and compare them with those of the two-stage algorithm discussed
in Sect. 5. In all of our tests, without specification, we use C = 1 in (23), (35) and
(36). We took ε = h2, β = 1/4 and Δt = 2h2 in the discrete analogue of algo-
rithm (11)–(13). In the first stage of the two-stage algorithm we used ‖D2un − pn‖ < 1
as the criterion to switch to stage 2 (above, we defined the matrix-function norm ‖ · ‖
by

‖S‖2 = 1

3

Nh∑
k=1

|ωk |‖S(Qk)‖2, ∀S ∈ Qh,

the matrix norm of S(Qk) being the Fröbenius one). In stage 2, we used Δτ = 8h and took,
typically, ‖un+1 − un‖2 < 10−7, as stopping criterion (‖ · ‖2 being a trapezoidal rule based
approximation of the canonical L2-norm). When using only the discrete analog of scheme
(11)–(13) we used a stopping criterion like the one used for stage 2, but with a smaller tol-
erance (h3 seems to be a reasonable choice), in order to compensate that Δt(= 2h2) is quite
small.

Remark 6 A smaller stopping criterion can be used for stage 2, but this is not necessary since
(as visible on Fig. 2) the L2 and L∞ distances to the exact solution do not decrease anymore
past some value of n; this appears clearly on Fig. 2b, c, d.
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Fig. 2 (Test problem (47), α = 1): graphs of the computed solutions obtained via the two-stage strategy with
relations (23) and related convergence behavior for: a a unit square regular mesh (h = 1/80), b a unit square
symmetric mesh (h = 1/80), c a unit square unstructured mesh (h = 1/80), d a half unit disk triangulation
(h = 1/80)
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6.2 A Polynomial Example

The first test problem we consider reads as{
detD2u = 256 in Ω,

u(x1, x2) = 8
[
α
(
x1 − 1

2

)2 + 1
α

(
x2 − 1

2

)2]− 1,∀(x1, x2) ∈ ∂Ω,
(47)

with α ≥ 1, Ω being either the unit square (0, 1)2 or the disk of radius 1/2 centered at
(1/2, 1/2). Clearly, the exact convex solution of problem (47) is given by

u(x1, x2) = 8

[
α

(
x1 − 1

2

)2

+ 1

α

(
x2 − 1

2

)2
]

− 1,∀(x1, x2) ∈ ∂Ω.

The first problem (47) we considered was the one associated with α = 1, correspond-
ing clearly to an isotropic solution. On Table 1, we have reported some of the results we
obtained when applying the two-stage algorithm to the solution of problem (47), the second
order derivatives being approximated by (23). For various values of h we have shown: (i)
The number of iterations (time steps) necessary to achieve convergence. (ii) The value of
‖un+1 − un‖2 at convergence. (iii) The L2 and L∞ approximation errors and the associated
convergence rates (roughly of the order of two, which is generically optimal for the contin-
uous piecewise affine approximations of the solution of a second order elliptic problem). In
addition, we have reported on the 8th column of Table 1, a discrete L2-norm of the gradient
of the function unc − u where nc denotes the number of time steps necessary to achieve
convergence (nc can be found in the second column of Table 1). For all tests with h = 1/160,
we set ε = h and the stopping criterion ‖D2un − pn‖ < 10 for stage-one and stopping
criterion ‖un+1 − un‖2 < 10−8 for stage-two.

Actually, further explanations are in order: indeed, we defined ‖∇(unc − u)‖2 by

∥∥∇ (
unc − u

)∥∥
2 =

√√√√1

3

Nh∑
k=1

|ωk ||∇hunc (Qk) − ∇u(Qk)|2

with

∇hu
nc (Qk) = 1

|ωk |
∑
T∈Th

|T | (∇unc
) |T ,

T k
h being, as in Sect. 4.3, the set of those triangles of Th which have Qk as a common vertex.

The (classical) averaging procedure associated with the definition of ∇hunc (Qk) acts as a
low pass filter, explaining the higher than one convergence rates reported in the 9th column
of Table 1. Let us define by ATq , q = 1, 2 and 3, the three vertices of triangle T ; defining
‖∇(unc − u)‖2 by

∥∥∇ (
unc − u

)∥∥
2 =

√√√√1

3

∑
T∈Th

|T |
3∑

q=1

∣∣∣∣∇unc |T − ∇u
(
ATq

) ∣∣∣∣
2

would lead to rates of convergence equal to one for the gradient approximation.
Table 2 is the variant of Table 1 associatedwith the second order derivative approximations

defined by relations (35) and (36). The results reported in Table 2 suggest faster convergence
of the iterative method, but lower orders of convergence for the approximation errors as
h → 0. Since our method converges faster and the second order derivatives are smoother
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Table 1 (Test problem (47), α = 1): (i) number of iterations needed for the convergence of the two-stage
algorithm. (ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regularmeshes
of the unit square. (b) Symmetric meshes of the unit square. (c) Unstructured isotropic meshes of the unit
square. (d) Unstructured isotropic meshes of the half-unit disk. Relations (23) have been used to approximate
the second order derivatives. (In (a), h = Δx1 = Δx2)

h Iterations ‖un+1 − un‖2 L2 error Rate L∞ error Rate ‖∇(unc − u)‖2 Rate

(a)

1/10 20 4.37 × 10−8 3.89 × 10−4 7.06 × 10−4 3.76 × 10−1

1/20 22 5.69 × 10−8 1.00 × 10−4 1.96 1.80 × 10−4 1.97 1.33 × 10−1 1.50

1/40 48 8.61 × 10−8 2.55 × 10−5 1.97 4.56 × 10−5 1.98 4.71 × 10−2 1.50

1/80 135 9.39 × 10−8 6.43 × 10−6 1.99 1.15 × 10−5 1.99 1.67 × 10−2 1.50

1/160 295 9.86 × 10−9 1.61 × 10−6 2.00 2.87 × 10−6 2.00 5.89 × 10−3 1.50

(b)

1/10 17 4.49 × 10−8 7.89 × 10−3 1.40 × 10−2 1.95 × 10−1

1/20 25 9.38 × 10−8 1.98 × 10−3 1.99 3.51 × 10−3 2.00 6.90 × 10−2 1.50

1/40 53 7.67 × 10−8 4.94 × 10−4 2.00 8.79 × 10−4 2.00 2.44 × 10−2 1.50

1/80 148 9.18 × 10−8 1.23 × 10−4 2.00 2.19 × 10−4 2.00 8.61 × 10−3 1.50

1/160 265 9.64 × 10−9 3.09 × 10−5 1.99 5.47 × 10−5 2.00 3.04 × 10−3 1.50

(c)

1/10 21 6.16 × 10−8 4.33 × 10−3 1.50 × 10−2 3.59 × 10−1

1/20 21 7.06 × 10−8 9.68 × 10−4 2.18 4.64 × 10−3 1.69 1.17 × 10−1 1.61

1/40 46 8.26 × 10−8 2.26 × 10−4 2.10 1.30 × 10−3 1.84 4.29 × 10−2 1.45

1/80 110 9.86 × 10−8 7.61 × 10−5 1.57 5.18 × 10−4 1.32 1.68 × 10−2 1.35

1/160 212 9.94 × 10−9 5.20 × 10−5 0.55 3.18 × 10−4 0.70 1.26 × 10−2 0.42

(d)

1/10 20 5.15 × 10−8 1.93 × 10−3 1.23 × 10−2 3.26 × 10−1

1/20 20 7.49 × 10−8 6.47 × 10−4 1.58 2.95 × 10−3 2.06 9.44 × 10−2 1.79

1/40 44 9.41 × 10−8 1.16 × 10−4 2.48 8.32 × 10−4 1.83 3.32 × 10−2 1.51

1/80 102 9.35 × 10−8 3.09 × 10−5 1.91 2.74 × 10−4 1.60 1.10 × 10−2 1.59

1/160 143 9.94 × 10−9 3.12 × 10−5 − 2.19 × 10−4 0.32 1.03 × 10−2 0.09

with relations (35) and (36), a very small stopping criterion is not necessary. Here we use
‖D2un − pn‖ < 10 for stage-one and ‖un+1 − un‖2 < 10−4 for stage-two.

On Fig. 2, we have visualized the approximate solutions produced by the two-stage algo-
rithm, the discrete second order derivatives being defined by relations (23). We clearly see
that the L2 and L∞ approximation errors reach a plateau for n large enough, implying that
the actual approximation errors have been reached.

In Table 3, we have reported the CPU time necessary for the two-stage algorithm to solve
problem (47), with α = 1, for the same types of meshes and space discretization steps that
in Table 1, relations (23) being used to approximate the second order derivatives.

Remark 7 Wewould like to emphasize that the main goals of this article were: (i) Investigate
the possibility of solving the Dirichlet problem for the Mong–Ampère equation using con-
tinuous piecewise affine finite element approximations, well-suited to domain with curved
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Table 2 (Test problem (47), α = 1): (i) number of iterations needed for the convergence of the two-stage
algorithm. (ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regularmeshes
of the unit square. (b) Symmetric meshes of the unit square. (c) Unstructured isotropic meshes of the unit
square. (d) Unstructured isotropic meshes of the half-unit disk. Relations (35) and (36) have been used to
approximate the second order derivatives. (In (a), h = Δx1 = Δx2)

h Iterations ‖un+1 − un‖2 L2 error Rate L∞ error Rate ‖∇(unc − u)‖2 Rate

(a)

1/20 11 7.89 × 10−5 2.51 × 10−1 2.94 × 10−1 1.65 × 100

1/40 27 8.48 × 10−5 1.28 × 10−1 0.97 1.50 × 10−1 0.97 1.16 × 100 0.51

1/80 62 9.90 × 10−5 6.53 × 10−2 0.97 7.67 × 10−2 0.97 8.11 × 10−1 0.52

1/160 182 9.32 × 10−5 3.36 × 10−2 0.96 3.90 × 10−2 0.98 5.69 × 10−1 0.51

(b)

1/20 17 5.36 × 10−5 2.24 × 10−1 2.60 × 10−1 1.55 × 100

1/40 31 8.19 × 10−5 1.15 × 10−1 0.96 1.29 × 10−1 1.01 1.06 × 100 0.55

1/80 81 8.99 × 10−5 5.82 × 10−2 0.98 6.43 × 10−2 1.00 7.27 × 10−1 0.54

1/160 265 9.17 × 10−5 2.98 × 10−2 0.97 3.22 × 10−2 1.00 5.02 × 10−1 0.53

(c)

1/20 14 8.48 × 10−5 2.48 × 10−1 2.94 × 10−1 1.65 × 100

1/40 27 8.72 × 10−5 1.26 × 10−1 0.98 1.49 × 10−1 0.98 1.14 × 100 0.53

1/80 63 8.45 × 10−5 6.37 × 10−2 0.98 7.55 × 10−2 0.98 7.99 × 10−1 0.51

1/160 196 9.13 × 10−5 3.24 × 10−2 0.98 3.62 × 10−2 1.06 5.56 × 10−1 0.52

(d)

1/20 10 5.52 × 10−5 2.50 × 10−1 3.20 × 10−1 1.69 × 100

1/40 27 8.44 × 10−5 1.40 × 10−1 0.84 1.70 × 10−1 0.91 1.27 × 100 0.41

1/80 60 8.57 × 10−5 7.33 × 10−2 0.93 8.66 × 10−2 0.97 9.03 × 10−1 0.49

1/160 172 9.73 × 10−5 3.71 × 10−2 0.98 4.38 × 10−2 0.98 6.20 × 10−1 0.54

Table 3 (Test problem (47), α = 1): CPU times for the two-stage algorithm with regularization (23) and the
four types of meshes shown in Fig. 1, the values of h being those in Table 1. (a) Unit square regular meshes.
(b) Unit square symmetric meshes. (c) Unit square isotropic unstructured meshes. (d) Half-unit disk isotropic
unstructured meshes

Mesh CPU time (s)

h = 1/10 h = 1/20 h = 1/40 h = 1/80

(a) 0.92 1.38 5.81 69.00

(b) 1.01 2.12 11.98 249.89

(c) 0.93 1.39 6.35 58.92

(d) 0.88 1.27 5.35 47.20

boundaries. (ii) Use a simple operator-splitting based method, to solve the discrete Monge–
Ampère problems. Privileging simplicity versus sophistication, our goal was not at this stage
to develop fast solutionmethods, although the two-stage algorithm (aNewton-likemethod) is
a step in that direction. There is no doubt that CPU times can be improved by using dedicated
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Table 4 (Test problem (47), α = 1): comparison between the discrete analogue of the one-stage algorithm
(11)–(13) and its two-stage variant. These comparisons have been done for Fig. 1a (regular) and b (symmetric)
types of meshes: (i) one-stage algorithm and regular mesh. (ii) two-stage algorithm and regular mesh. (iii)
one-stage algorithm and symmetric mesh. (iv) two-stage algorithm and symmetric mesh. Relations (23) have
been used to approximate the second order derivatives. In (i) and (ii), h = Δx1 = Δx2

h Iterations L2 error L∞ error

(i) 1/80 254 6.46 × 10−6 1.16 × 10−5

(ii) 1/80 135 6.43 × 10−6 1.15 × 10−5

(iii) 1/80 211 1.18 × 10−4 2.54 × 10−4

(iv) 1/80 148 1.24 × 10−4 2.19 × 10−4
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Fig. 3 (Test problem (47), α = 1): convergence histories of the L2 and L∞ approximation errors: a regular
mesh for h(= Δx1 = Δx2) = 1/80. b Symmetric mesh for h = 1/80. Relations (23) have been used to
approximate the second order derivatives. We observe that the various errors reach a plateau for n sufficiently
large

linear solvers more efficient than the more general ones picked by MATLAB, with the user
out the loop. ��

In Table 4 we have compared the results obtained by the discrete analogue of algorithm
(11)–(13) and by its two-stage variant, the meshes being like those in Fig. 1(a) (regular) and
(b) (symmetric). These results show the significantly faster convergence of the two-stage
algorithm, and the higher accuracy obtained with the regular mesh. We have visualized on
Fig. 3 the results of Table 4; the plateaus reached by the L2 and L∞ approximation errors as
n increases appear clearly on this figure.

Suppose that one takes ε = 0 in the discrete analogue of (12), C = 0 in (23), and uses a
mesh of Fig. 1a type to solve the discrete Monge–Ampère problem. The solution of problem
(47) being a polynomial function of degree 2, it follows from Remark 4 that the relations
giving the discrete second order derivatives are exact at the vertices of Th interior toΩ . Since
∂
∂nD

2u = 0 on ∂Ω , one expects to reach machine precision for a sufficiently large number
of time steps. The results visualized in Fig. 4 show that this prediction is verified. These
results have been obtained using the one-stage algorithm with Δt = h2, h being equal to
1/40; they show indeed that both the L2 and L∞ approximation errors converge to 0 with
machine precision.
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Fig. 4 (Test problem (47),
α = 1): histories of the L2 and
L∞ approximation errors for the
one-stage algorithm with ε = 0
in (12), C = 0 in (23), and
Δt = h2 (regular mesh on the
unit square, h = 1/40)
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Fig. 5 (Test problem (47), α = 5): histories of the L2 and L∞ approximation errors for the one-stage and
two-stage algorithms. a Regular mesh on the unit square with h = 1/40. b Symmetric mesh with h = 1/40.
Relations (23) have been used to approximate the second order derivatives. For the two-stage algorithm we
used γ = 1 and Δτ = 8h in the discrete analogue of (46)

Increasingα in (47) increases, as expected, the anisotropy of the solution to the problem.A
consequence of this phenomenon is that beyond α = 5 there is no gain at using the two-stage
algorithm, as shown by the numerical comparisons we performed. This appears clearly on
Fig. 5 where we have visualized the convergence histories of the one-stage and two-stage
algorithms, when applied to the solution of problem (47) with α = 5.

6.3 A Smooth Exponential Example

In this section, we consider the following Monge–Ampère problem{
detD2u = 64

(
1 + 2r2

)
e2r

2
in Ω,

u = 4er
2 − 9

2 , on ∂Ω,
(48)

with r = √
(x1 − 1/2)2 + (x2 − 1/2)2, Ω being either the unit square (0, 1)2 or the open

disk of radius 1/2 centered at (1/2, 1/2). We recall that if function φ is radial with respect to
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Table 5 [Test problem (48)]: (i) number of iterations necessary for the convergence of the two-stage algorithm.
(ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regular meshes of the
unit square. (b) Symmetric meshes of the unit square. (c) Unstructured isotropic meshes of the unit square. (d)
Unstructured isotropic meshes of the half-unit disk. Relations (23) have been used to approximate the second
order derivatives. (In (a), h = Δx1 = Δx2)

h Iterations ‖un+1 − un‖2 L2 error Rate L∞ error Rate ‖∇(unc − u)‖2 Rate

(a)

1/10 11 5.30 × 10−8 1.64 × 10−2 3.75 × 10−2 3.59 × 10−1

1/20 25 9.48 × 10−8 4.95 × 10−3 1.73 1.07 × 10−2 1.81 1.23 × 10−1 1.55

1/40 55 8.29 × 10−8 1.28 × 10−3 1.95 2.67 × 10−3 2.00 4.23 × 10−2 1.54

1/80 149 9.28 × 10−8 3.25 × 10−4 1.98 6.59 × 10−4 2.02 1.46 × 10−2 1.53

1/160 208 9.66 × 10−9 8.22 × 10−5 1.98 1.63 × 10−4 2.09 5.12 × 10−3 1.51

(b)

1/10 17 8.07 × 10−8 2.43 × 10−2 5.04 × 10−2 2.24 × 10−1

1/20 30 7.06 × 10−8 8.33 × 10−3 1.54 1.60 × 10−2 1.06 8.14 × 10−2 1.46

1/40 68 7.76 × 10−8 2.70 × 10−3 1.63 4.76 × 10−3 1.75 3.02 × 10−2 1.43

1/80 219 9.04 × 10−8 8.31 × 10−4 1.70 1.37 × 10−3 1.80 1.13 × 10−2 1.42

1/160 277 9.93 × 10−9 2.36 × 10−4 1.82 3.74 × 10−4 1.87 4.09 × 10−3 1.47

(c)

1/10 13 6.65 × 10−8 1.70 × 10−2 4.07 × 10−2 3.45 × 10−1

1/20 25 7.43 × 10−8 5.50 × 10−3 1.63 1.14 × 10−2 1.84 1.06 × 10−1 1.70

1/40 54 9.86 × 10−8 1.39 × 10−3 1.98 3.13 × 10−3 1.86 3.71 × 10−2 1.51

1/80 146 8.58 × 10−8 3.57 × 10−4 1.96 8.04 × 10−4 1.96 1.40 × 10−2 1.41

1/160 225 9.91 × 10−9 9.30 × 10−5 1.94 2.66 × 10−4 1.60 8.96 × 10−3 0.64

(d)

1/10 10 4.15 × 10−8 1.14 × 10−2 2.93 × 10−2 2.81 × 10−1

1/20 24 6.32 × 10−8 3.25 × 10−3 1.81 7.54 × 10−3 1.96 7.34 × 10−2 1.94

1/40 51 8.48 × 10−8 8.85 × 10−4 1.88 2.09 × 10−3 1.85 2.44 × 10−2 1.59

1/80 130 9.35 × 10−8 2.46 × 10−4 1.85 6.00 × 10−4 1.80 7.97 × 10−3 1.61

1/160 127 9.68 × 10−9 7.30 × 10−5 1.75 2.30 × 10−4 1.38 6.35 × 10−3 0.33

(1/2, 1/2), then detD2φ = φ′φ′′
r , implying that the function u defined by u =

(
4er

2 − 9
2

)∣∣∣
Ω̄

is an exact convex solution to problem (48). We have reported on Table 5: (i) The number of
iterations needed to have convergence of the two-stage algorithm, using ‖un+1−un‖2 ≤ 10−7

as stopping criterion, and (ii) various approximation errors. These results were obtained with
ε = h2, the discrete second order derivatives being defined by (23). The orders of convergence
of the approximation errors are not optimal but significantly higher than 1, the symmetric
meshes having-as expected-the lowest orders of convergence. It is worth noticing that the
unstructured isotropic meshes used on the disk give orders of convergence almost as good as
those produced by the symmetric meshes on the unit square. For all tests with h = 1/160, we
set ε = h and the stopping criterion ‖D2un − pn‖ < 10 for stage-one and stopping criterion
‖un+1 − un‖2 < 10−8 for stage-two.
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Fig. 6 [Test problem (48)]: convergence histories of the L2 and L∞ approximation errors: a regular mesh for
h = 1/40. b Symmetricmesh for h = 1/40.We observe that the various errors reach a plateau for n sufficiently
large. Relations (23) have been used to approximate the second order derivatives. (In a h = Δx1 = Δx2)

Table 6 [Test problem (48)]: CPU times for the two-stage algorithm and the four types of meshes shown
in Fig. 1, the values of h being those in Table 5. (a) Unit square regular meshes. (b) Unit square symmetric
meshes. (c) Unit square unstructured meshes. (d) Half-unit disk unstructured meshes

Mesh CPU time (s)

h = 1/10 h = 1/20 h = 1/40 h = 1/80

(a) 0.82 1.46 6.57 66.33

(b) 1.01 2.38 15.04 363.98

(c) 0.86 1.51 7.33 77.24

(d) 0.77 1.37 6.03 59.39

In Fig. 6 we have compared the convergence histories of the one-stage and two-stage
algorithms, when applied to the solution of problem (48). The comments we did, in Sect. 6.2,
about Fig. 3 (concerning the solution of problem (47) with α = 1) still apply here.

In Table 6, we have reported the CPU time necessary for the two-stage algorithm to solve
problem (48), for the same types of meshes and space discretization steps than in Table 5,
relation (23) being used to approximate the second order derivatives.

In Table 7, we have compared the results obtained by the discrete analogue of algorithm
(11)–(13) and by its two-stage variant, the meshes being like those in Fig. 1a, b with relations
(23). These results show the significantly faster convergence of the two-stage algorithm. The
above results, combined with those reported in Sect. 6.2, strongly suggest that for problems
with smooth isotropic solutions the two-stage algorithm is clearly faster than the one-stage
one.

Finally, we have reported in Table 8, various convergence results obtained when com-
bining the two-stage algorithm with the approximation of the second order derivatives
defined by (35), (36). We use stopping criterion ‖D2un − pn‖ < 10 for stage-one and
‖un+1 − un‖2 < 10−4 for stage-two, the same criterions as those for Table 2. Comparing
with the results in Table 5 the following conclusions can be drawn: (i) The algorithms based on
approximation (35), (36) of the second order derivatives are (roughly) twice faster than those
based on approximation (23). (ii) Approximation (23) leads to higher orders of accuracy for

123



Journal of Scientific Computing (2019) 79:1–47 23

Table 7 [Test problem (48)]: comparison between discrete analogue of the one-stage algorithm (11)–(13) and
its two-stage variant. These comparisons have been done formeshes as in Fig. 1a (regular) and b (symmetric): (i)
one-stage algorithm and regular mesh. (ii) two-stage algorithm and regular mesh. (iii) one-stage algorithm and
symmetric mesh. (iv) two-stage algorithm and symmetric mesh. Relations (23) have been used to approximate
the second order derivatives. In (i) and (ii), h = Δx1 = Δx2

h Iterations L2 error L∞ error

(i) 1/80 284 3.17 × 10−4 6.39 × 10−4

(ii) 1/80 149 3.25 × 10−4 6.59 × 10−4

(iii) 1/80 419 7.90 × 10−4 1.34 × 10−3

(iv) 1/80 219 8.31 × 10−4 1.37 × 10−3

Table 8 [Test problem (48)]: (i) number of iterations necessary for the convergence of the two-stage algorithm.
(ii) Approximation errors and convergence rates for the solution and its gradient. (a) Regular meshes of the
unit square. (b) Symmetric meshes of the unit square. (c) Unstructured isotropic meshes of the unit square. (d)
Unstructured isotropic meshes of the half-unit disk. Relations (35) and (36) have been used to approximate
the second order derivatives. (In (a), h = Δx1 = Δx2)

h Iterations ‖un+1 − un‖2 L2 error Rate L∞ error Rate ‖∇(unc − u)‖2 Rate

(a)

1/20 17 6.77 × 10−5 1.58 × 10−1 1.89 × 10−1 1.07 × 100

1/40 28 8.26 × 10−5 8.08 × 10−2 0.97 9.45 × 10−2 1.00 7.50 × 10−1 0.51

1/80 75 9.30 × 10−5 4.11 × 10−2 0.98 4.67 × 10−2 1.02 5.16 × 10−1 0.54

1/160 248 9.36 × 10−5 2.13 × 10−2 0.95 2.34 × 10−2 1.00 3.57 × 10−1 0.53

(b)

1/20 17 9.72 × 10−5 1.40 × 10−1 1.67 × 10−1 1.03 × 100

1/40 36 8.81 × 10−5 7.19 × 10−2 0.96 8.09 × 10−2 1.05 6.90 × 10−1 0.58

1/80 105 9.50 × 10−5 3.65 × 10−2 0.98 3.86 × 10−2 1.07 4.63 × 10−1 0.58

1/160 379 9.19 × 10−5 1.88 × 10−2 0.96 2.03 × 10−2 0.93 3.15 × 10−1 0.56

(c)

1/20 17 6.34 × 10−5 1.57 × 10−1 1.90 × 10−1 1.09 × 100

1/40 28 8.40 × 10−5 7.92 × 10−2 0.99 9.35 × 10−2 1.02 7.43 × 10−1 0.55

1/80 76 9.33 × 10−5 4.01 × 10−2 0.98 4.57 × 10−2 1.03 5.08 × 10−1 0.55

1/160 272 9.33 × 10−5 2.05 × 10−2 1.00 2.22 × 10−2 1.04 3.49 × 10−1 0.54

(d)

1/20 16 7.82 × 10−5 1.57 × 10−1 2.03 × 10−1 1.10 × 100

1/40 30 7.67 × 10−5 8.98 × 10−2 0.81 1.10 × 10−1 0.88 8.29 × 10−1 0.41

1/80 70 8.69 × 10−5 4.71 × 10−2 0.93 5.61 × 10−2 0.97 5.87 × 10−1 0.50

1/160 228 9.95 × 10−5 2.42 × 10−2 0.96 2.89 × 10−2 0.96 4.01 × 10−1 0.55

the approximation errors. Further numerical experiments will show that for most non-smooth
problems, the algorithms relying on (35), (36) are faster and more accurate than those based
on (23).
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6.4 A Popular Monge–Ampère ProblemWithout Classical Solution

The test problems we considered in Sects. 6.2 and 6.3 had exact, strictly convex classi-
cal solutions belonging to C∞(Ω̄). Our goal in this section is to investigate the ability of
our methodology at handling a ’pathological’ (nevertheless very popular) Monge–Ampère
problem, namely {

detD2u = 1 in Ω,

u = 0 on ∂Ω,
(49)

with Ω = (0, 1)2. Problem (49) (introduced in [11], to the best of our knowledge) is patho-
logical since, despite the simplicity of its data (making it the Monge–Ampère analogue of
the Dirichlet problem −∇2u = 1 in Ω, u = 0 on ∂Ω,Ω still being the unit square), this
problem does not have smooth classical solutions. The non-existence of smooth solutions to
problem (49) is very simple to prove (see, e.g., [14] for details), the difficulty stemming, from
the non-strict convexity of Ω (and from the corners of Ω). The non-existence of classical
solutions does not prevent problem (49) to have generalized solutions, viscosity solutions for
example. Actually, the approximation of the viscosity solutions to problem (49), and their
computation, has been thoroughly investigated in, e.g., [4,38]; this is fortunate since it will
allow qualitative and quantitative comparisons. The computational method we used to solve
problem (49) relies on the one-stage algorithm combined with the approximation (35), (36)
of the second order derivatives, the other combinations being slower and less accurate. Using
‖un+1 − un‖2 ≤ 10−8 as stopping criterion, we obtained the results reported and visualized
on Table 9 and Figs. 7 and 8 [in Table 9(a) h = Δx1 = Δx2, while in Table (b) and (c), h
denotes the length of the mesh largest edge(s)].

As h → 0, the results from Table 9 and graphs of Figs. 7 and 8 indicate the convergence
of the approximate computed solutions to a convex function whose minimal value is close
to −0.183. The three types of meshes we employed share these convergence properties.
The graphs in Fig. 7 are qualitatively close to graphs reported in the literature (in references
[4,38], for example). Making quantitative comparisons is more difficult. Indeed the minimal
values reached by the solutions computed in [4] Section 5.3 on a 141 × 141 grid (the finest
one used in [4]) range from 0.2621 to 0.3024. Since the test problem considered in [4] was

detD2u = 1 in Ω̃, u = 1 on ∂Ω̃,

with Ω̃ = (−1, 1)2, corrections are needed (subtract 1 and divide by 4), leading to the range
[−0.184475, −0.17315] which contains definitely all the values reported in the 6th column
of Table 9 (which is gratifying in itself). Actually, there is more: Indeed, one can assume
reasonably that in Table 8 of [4] the most accurate approximation of the actual minimal value
is 0.2695. Two reasons for that statement are that: (i) The value 0.2695 has been obtained
with the finer mesh (141× 141) and wider stencil (33 points) used in [4], and (ii) it has been
proved (see, e.g., [22]) that the associated method guarantees convergence to a viscosity
solution. After correction of the value 0.2695, one obtains −0.182625, which is pretty close
to the value −0.1831 reported in Table 9(a) for h = 1/120.

Remark 8 The above comparisons with the results in [4] suggest that our methodology pro-
duces approximate solutions converging to viscosity solutions if one uses (35), (36) to
approximate the second order derivatives. Albeit we do not know how to prove this con-
vergence result, it is not completely surprising since our method solves the regularized
Mong–Ampère equation
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Table 9 [Test problem (49)]: (i) second column—number of iterations of the one-stage algorithm necessary
to achieve convergence (approximation (35), (36) of second order derivatives). (ii) Fourth and fifth columns:
Discrete L2-norms of the consistency gap D2

h(uh) − ph . (iii) Minimal values of the computed solutions. (a)
Regular meshes of the unit square. (b) Symmetric meshes of the unit square. (c) Isotropic unstructured meshes
of the unit square. (In (a), h = Δx1 = Δx2)

h Iterations ‖un+1 − un‖2 ‖D2un − pn‖ ‖D2un−pn‖
‖pn‖ Min value

(a)

1/20 222 7.73 × 10−9 3.96 × 10−5 1.72 × 10−5 − 0.1801

1/40 622 9.04 × 10−9 2.83 × 10−3 7.37 × 10−4 − 0.1817

1/80 2468 9.82 × 10−9 6.42 × 10−3 1.28 × 10−3 − 0.1834

1/120 3247 9.90 × 10−9 6.60 × 10−2 1.07 × 10−2 − 0.1831

(b)

1/20 324 9.87 × 10−9 7.82 × 10−4 3.43 × 10−4 − 0.1793

1/40 1168 9.99 × 10−9 5.87 × 10−3 1.75 × 10−3 − 0.1812

1/80 3994 9.99 × 10−9 3.40 × 10−2 7.05 × 10−3 − 0.1831

1/120 8211 9.99 × 10−9 8.05 × 10−2 1.36 × 10−2 − 0.1839

(c)

1/20 217 9.43 × 10−9 3.49 × 10−5 1.53 × 10−5 − 0.1797

1/40 625 8.75 × 10−9 2.40 × 10−3 7.06 × 10−4 − 0.1815

1/80 2492 9.99 × 10−9 6.17 × 10−3 1.28 × 10−3 − 0.1831

1/120 15,885 9.99 × 10−9 1.20 × 10−2 2.14 × 10−3 − 0.1837

− ε

2
∇2u − detD2u = −1 in Ω, u = 0 on ∂Ω,

with ε ≈ h2 after space discretization.

We mentioned above that the non-strict convexity of (0, 1)2 was explaining the non-
existence of smooth solutions to problem (49). In order to investigate the influence of
boundary corners we considered the following variant of problem (49){

detD2u = 1 in Ω,

u = 0 on ∂Ω,
(50)

where Ω is the (eye-shape) strictly convex domain defined by

Ω = {{x1, x2}| − x1(1 − x1) < x2 < x1(1 − x1), 0 < x1 < 1},
and visualized in Fig. 9 (where we have also visualized one of the triangulations we
employed). We have reported on Table 10 and Figs. 10 and 11 numerical results obtained
by the one-stage algorithm, using approximations (35), (36) of the second order derivatives,
the stopping criterion still being ‖un+1 − un‖2 < 10−8. Comparing Tables 9 and 10 shows
several qualitative similarities, namely: (i) The number of iterations necessary to achieve
convergence of the one-stage algorithm is a fast increasing function of 1/h. (ii) The discrete
L2-norm of the consistency gap D2

h(uh) − ph increases with 1/h. These results suggest the
non-existence of a smooth convex solution to problem (50). We could have anticipated this
result. Suppose indeed that u is a convex solution to (50) belonging toC1(Ω̄): it follows then
from the boundary conditions that
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Fig. 7 [Test problem (49)]: graphs and contours of the computed solutions, using the one-stage algorithm and
relations (35), (36) to approximate the second order derivatives. a Regular mesh with h = 1/120. b Symmetric
mesh with h = 1/120. c Unstructured isotropic mesh with h = 1/120. (In a h = Δx1 = Δx2)

∇u(0, 0) · τ+ = 0,∇u(0, 0) · τ− = 0, (51)

where the unit vectors τ+(= (1/
√
2, 1/

√
2)) and τ−(= (1/

√
2,−1/

√
2)) are tangent at

(0, 0) at the upper and lower parts of ∂Ω , respectively. Relations (51) imply ∇u(0, 0) = 0.
Similarly, one can show that ∇u(1, 0) = 0. The function u being convex and differentiable
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Fig. 8 [Test problem (49)]: graphs of the restrictions of the computed solutions to: a the line x1 = 1/2
and b the line x1 = x2, for h = 1/20, 1/40, 1/80, and 1/120 (one-stage algorithm using regular meshes,
and approximations (35), (36) of the second order derivatives). a, b Suggest the uniform convergence of the
approximate solutions to a strictly convex generalized solution of problem (49)

Fig. 9 [Test problem (50)]: a
triangulation of the eye-shape
domain (h = 1/40)
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Table 10 [Test problem (50)]: (i) second column—number of iterations of the one-stage algorithmnecessary to
achieve convergence (approximations (35), (36) of the second order derivatives). (ii) Fourth and fifth columns:
Discrete L2-norms of the consistency gap D2

h(uh) − ph . (iii) Minimal values of the computed solutions

h Iterations ‖un+1 − un‖2 ‖D2un − pn‖ ‖D2un−pn‖
‖pn‖ Min value

1/20 84 8.73 × 10−9 1.05 × 10−5 9.27 × 10−6 − 0.0644

1/40 220 9.73 × 10−9 6.34 × 10−4 4.33 × 10−4 − 0.0598

1/80 829 9.53 × 10−9 1.30 × 10−3 7.34 × 10−4 − 0.0573

1/120 1766 9.93 × 10−9 2.38 × 10−3 1.17 × 10−3 − 0.0578

on the convex set Ω̄ , and vanishing on ∂Ω , the relation ∇u(0, 0) = 0 implies that u = 0 on
Ω̄ , which implies in turn that detD2u = 0 in Ω , contradicting (50).

Figures 10 and 11 suggest uniform convergence to a strictly convex function as h → 0 ,
the gradient of this solution being infinite on ∂Ω\ {{0, 0}, {1, 0}}.
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Fig. 10 [Test problem (50)]: graph and contours of the computed approximate solution (h = 1/80)
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Fig. 11 [Test problem (50)]: graphs of the computed approximate solutions restricted to the lines x2 = 0
(left), and x1 = 1/2 (right) (h = 1/20, 1/40, 1/80, 1/120)

6.5 Test Problems with Singular Functions f

This subsection is dedicated to Monge–Ampère-Dirichlet problems, where function f in (1)
is singular (in the sense that supx∈Ω f (x) = +∞). In that direction, the first problem we
consider is defined by {

detD2u = 1
r in Ω,

u = 2
√
2

3 r3/2 on ∂Ω,
(52)

where Ω = (−1, 1)2 and r = √
(x1 − 1)2 + (x2 − 1)2, implying that function f blows up

at the corner (1, 1). The strictly convex function u defined by

u(x1, x2) = 2
√
2

3
r3/2,∀(x1, x2) ∈ Ω̄,

is an exact solution to problem (52). Very clearly, u /∈ C2(Ω̄). On the other hand, one can
easily verify that u ∈ C1(Ω̄) ∩ W 2,s(Ω),∀s ∈ [1, 4), making problem (52) an ’almost’
smooth one. To solve problem (52), we used the finite element analogue of the one-stage
algorithm (11)–(13) with ε = 2h2, the triangulations we employed being regular (as in
Fig. 1a), or symmetric (as in Fig. 1b). We used relations (23) to approximate the second order
derivatives with C = 2. We took ‖un+1 − un‖2 < 10−5 as stopping criterion. For this test
problem, h denotes the space discretization step Δx1(= Δx2).
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Fig. 12 [Test problem (52)]: graphs of the computed approximate solution and convergence histories (regular
triangulation with h = 1/64)
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Fig. 13 [Test problem (52)]: graphs of the computed solution and convergence histories (symmetric triangu-
lation with h = 1/64)

We have visualized on Fig. 12 (resp., Fig. 13) the graph of the computed approximate
solution, and the convergence histories of the residual ‖un+1 − un‖2 and of the L2 and L∞
norms of the approximation error, Fig. 12 (resp., Fig. 13) being associated with the h = 1/64
regular (resp., h = 1/64 symmetric) triangulation.

In Table 11(a), we have reported results obtained on regularmeshes by themethod detailed
above, namely number of iterations necessary to achieve convergence and related approxima-
tion errors for various values of h. For comparison purpose, we have reported in Table 11(b)
the related results obtained in [43] on identical meshes by two solution methods, both relying
on those wide-stencil finite difference methods discussed in [22]. Comparing Table 11(a)
and (b) shows that (for this test problem at least) the method we employed to solve problem
(52) is significantly more accurate than the two methods discussed in [43] (however, for
this test problem and for the same meshes, they are less accurate and much slower than the
least-square/relaxation method discussed in [8]).

Remark 9 The methods discussed in [43] rely on accelerated gradient type algorithms à la
Nesteroy ([36,45]) whose convergence rate is O(1/n2), n denoting the number of iterations.
Actually, the twomethods discussed in [43] are also cascadic (in the sense that a first approx-
imate solution is computed on a coarse mesh, and then interpolated on a mesh twice finer,
in order to initialize an iterative method). Motivated by [36,43] (and by suggestions of our
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Table 11 [Test problem (52)]: number of iterations necessary to achieve convergence and associated approx-
imation errors on regular meshes for various mesh sizes. (a) Results obtained by the methodology discussed
in the current article. (b) Results obtained by the two methods discussed in [43] (M1 and M2 are the numbers
of iterations needed by the two methods discussed in [43] to achieve convergence)

h Iterations ‖un+1 − un‖2 L2 error Rate L∞ error Rate

(a)

1/16 106 9.69 × 10−6 9.23 × 10−3 8.75 × 10−3

1/32 311 9.83 × 10−6 3.71 × 10−3 1.31 3.59 × 10−3 1.29

1/64 1115 9.96 × 10−6 1.56 × 10−3 1.25 1.79 × 10−3 1.00

Grid size L∞ error Rate M1 M2

(b)

16 × 16 2.50 × 10−2 564 601

32 × 32 1.60 × 10−2 0.64 585 651

64 × 64 1.10 × 10−2 0.54 976 1037

colleague X.C. Tai) we applied the so-called Nesterov method (introduced by Polyak in [41])
to speed up the convergence of the algorithms considered in the present article. The improve-
ment it brings to these algorithms are marginal (if any). A possible explanation is that our
algorithms rely on implicit/explicit schemes, unlike the algorithms in [43], all related to fully
explicit schemes. ��

The second problem we consider in this subsection is another classical test problem. It is
defined by {

detD2u = R2

(R2−r2)2
in Ω,

u = −√
R2 − r2 on ∂Ω.

(53)

where Ω = (0, 1)2, R≥ 1/
√
2, and r =√

(x1 − 1/2)2+(x2−1/2)2. The function u defined
by

u(x1, x2) = −
√
R2 − r2,∀(x1, x2) ∈ Ω̄,

is a strictly convex solution to problem (53), its graph being a part of the sphere of radius
R centered at (1/2,1/2,0). The above function u belongs to C∞(Ω̄) if R > 1/

√
2. On the

other hand, u ∈ C0(Ω̄) ∩ W 1,s(Ω), s ∈ [1, 4), if R = 1/
√
2, the vector-valued function

∇u being singular at the four corners of Ω̄ . Function u reaches its minimal value (−R) at
(1/2,1/2). We tested our methodology on the two particular cases of problem (53) associated
with R = √

2 (a smooth case) and R = 1/
√
2 (a non-smooth case). For both values of R

we used: (i) Regular triangulations (like the one in Fig. 1a, with h(= Δx1 = Δx2) taking
the values 1/20, 1/40 and 1/80, and (ii) the fully discrete analogue of the one-stage algorithm
(11)–(13) with ε = h2. The results in Table 12(a) [resp., Table 12(b)] have been obtained
using approximation (23) [resp., (35), (36)] of the second derivatives, the stopping criterion
being ‖un+1 −un‖2 < 10−10 (resp.,< 10−8). These results show that the method relying on
(23) is second order accurate, while the other one is first order accurate. We observe also that
in Table 12(a) [resp., Table 12(b)] the minimal value of the computed solutions decreases
(resp., increases) with h, the convergence to the exact value (−√

2(= − 1.41421 . . . ), here)
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Table 12 (Test problem (53) with R = √
2): number of iterations needed for the convergence of the one-stage

algorithm, minimal value of the computed solutions, and associated L2 and L∞ norms of the approximation
errors. (a) Approximations (23) of the second order derivatives. (b) Approximations (35), (36) of the second
order derivatives. We used regular triangulations (with h = Δx1 = Δx2), as the one in Fig. 1a, to obtain these
results. We recall that the minimal value of the exact solution is −√

2(= − 0.141421 . . . )

h Iterations ‖un+1 − un‖2 Min L2 error Rate L∞ error Rate

(a)

1/20 358 9.68 × 10−11 − 1.4138 1.99 × 10−4 4.08 × 10−4

1/40 1161 9.55 × 10−11 − 1.4141 5.06 × 10−5 1.98 1.03 × 10−4 1.99

1/80 4505 9.97 × 10−11 − 1.4142 1.26 × 10−5 2.01 2.54 × 10−5 2.02

(b)

1/20 290 9.01 × 10−9 − 1.4266 1.16 × 10−2 1.38 × 10−2

1/40 1050 9.91 × 10−9 − 1.4204 5.99 × 10−3 0.95 7.03 × 10−3 0.97

1/80 3024 9.99 × 10−9 − 1.4173 3.04 × 10−3 0.99 3.56 × 10−3 0.98

Table 13 (Test problem (53) with R = 1/
√
2): number of iterations needed for the convergence of the

one-stage algorithm, minimal value of the computed solutions, and associated L2 and L∞ norms of the
approximation errors. (a) Approximations (23) of the second derivatives. (b) Approximations (35), (36) of the
second derivatives. We used regular triangulations (with h = Δx1 = Δx2), as the one in Fig. 1a, to obtain
these results. We recall that the minimal value of the exact solution is −1/

√
2(= − 0.707106 . . . )

h Iterations ‖un+1 − un‖2 Min L2 error Rate L∞ error Rate

(a)

1/20 142 9.80 × 10−9 − 0.7052 3.90 × 10−3 2.58 × 10−2

1/40 489 9.92 × 10−9 − 0.7065 1.70 × 10−3 1.20 1.95 × 10−2 0.40

1/80 1548 9.90 × 10−9 − 0.7069 6.54 × 10−4 1.38 1.43 × 10−2 0.45

(b)

1/20 145 8.29 × 10−9 − 0.7382 3.24 × 10−2 4.64 × 10−2

1/40 539 9.93 × 10−9 − 0.7225 1.58 × 10−2 1.04 2.67 × 10−2 0.80

1/80 1846 9.95 × 10−9 − 0.7146 7.72 × 10−3 1.03 1.56 × 10−2 0.78

being much faster for the first method. From the smoothness of the R = √
2 solution, the

results reported just above were expected, including the clear superiority of the relation (23)
based method (Table 12).

Taking R = 1/
√
2 in (53) makes this problem non-smooth (and therefore more challeng-

ing) since ∇u is singular at the four corners of Ω̄ . Taking ‖un+1 − un‖2 < 10−8 as stopping
criterion, we obtained the results reported in Table 13(a) and (b).

Comparing Table 13(a) and (b) suggest the following: (i) The two one-stage methods we
employed, relying on either (23) or (35), (36) behave similarly as long as iterative properties
are concerned. (ii) The first method produces better approximation errors for the values
of h considered here, particularly for the discrete L2 approximation error. Actually, the
convergence rates reported in the last column of Table 13(a) are close to those reported in
Section 5.4 of [4], for a closely related problem. (iii) We observe that in Table 13(a) [resp.,
Table 13(b)] the minimal value of the computed solutions decreases (resp., increases) with
h . We observed a similar behavior in Table 12. As we already mentioned, the numerical
solution of problem (53) with R = 1/

√
2 is discussed in [4]; it is discussed also in [22,37].
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Fig. 14 (Test problem (53) with R = 1/
√
2): graphs of the approximate solutions computed on a regular mesh

with h = 1/80. a Approximations (23) of the second order derivatives. b Approximations (35), (36) of the
second order derivatives

Table 14 [Test problem (54)]: (i) number of iterations needed for the convergence of the one-stage algorithm.
(ii) Approximations errors and orders of convergence. (a) Approximation (23) of the second order derivatives.
(b) Approximations (35), (36) of the second order derivatives

h Iterations ‖un+1 − un‖ Min L2 error Rate L∞ error Rate

(a)

1/20 46 9.21 × 10−6 − 0.4077 6.86 × 10−2 9.21 × 10−2

1/40 138 9.55 × 10−6 − 0.4394 4.85 × 10−2 0.50 6.05 × 10−2 0.61

1/80 485 9.85 × 10−6 − 0.4597 3.36 × 10−2 0.53 4.03 × 10−2 0.59

1/160 1600 9.99 × 10−6 − 0.4699 2.36 × 10−2 0.51 3.25 × 10−2 0.31

(b)

1/20 33 2.30 × 10−6 − 0.5272 3.66 × 10−2 5.88 × 10−2

1/40 143 9.91 × 10−6 − 0.5344 3.48 × 10−2 0.07 5.30 × 10−2 0.15

1/80 500 9.84 × 10−6 − 0.5296 2.83 × 10−2 0.30 4.31 × 10−2 0.30

1/160 1652 9.99 × 10−6 − 0.5186 1.93 × 10−2 0.55 3.31 × 10−2 0.38

The two graphs in Fig. 14 are quite similar and show very clearly the singular behavior
of ∇u close to the four corners of Ω̄ .

The next problemwith a spherical solutionwe consider is the following variant of problem
(53): {

detD2u = 4

(1−4r2)
2 in Ω,

u = 0 on ∂Ω,
(54)

whereΩ ={{x1, x2}, (x1−1/2)2+ (x2−1/2)2 < 1/4} and r =√(x1 − 1/2)2+(x2 − 1/2)2.
The function u defined by

u(x1, x2) = −1

2

√
1 − 4r2 on Ω̄

is a strictly convex solution to problem (54), taking its minimal value −1/2 at (1/2,1/2). We
can easily show that u ∈ C0(Ω̄) ∩ W 1,s(Ω),∀s ∈ [1, 2).
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Fig. 15 [Test problem (54)]: a, b graphs and contours of the approximate solution computed using approxima-
tions (23) of the second order derivatives (h = 1/160). c, d Graphs and contours of the approximate solution
computed using approximations (35), (36) of the second order derivatives (h = 1/160). e, f Graphs of the
restrictions of the computed approximate solutions to the diameter x1 = 1/2, for h = 1/20, 1/40, 1/80 and
1/160 [e approximations (23), f approximations (35), (36)]

Problem (54) is significantly ’more non-smooth’ than problem (53) since |∇u| is infinite
on the whole boundary of Ω̄ , making (54) a good test problem to investigate the robustness
of our methodology. In order to solve problem (54) we used: (i) Isotropic unstructured
finite element meshes like the one in Fig. 1d. (ii) The one-stage algorithm with ε = h2.
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Table 15 [Test problem (55)]: performances of the two-stage algorithm on a family of isotropic unstructured
meshes. (a) Approximations (23) of the second order derivatives. (b) Approximations (35), (36) of the second
order derivatives. The minimal value of the exact solution is −√

2(= − 1.41421 . . . )

h Iterations ‖un+1 − un‖ Min L2 error Rate L∞ error Rate

(a)

1/20 27 9.10 × 10−8 − 1.4138 1.43 × 10−4 3.20 × 10−4

1/40 36 9.09 × 10−8 − 1.4141 3.62 × 10−5 1.98 8.03 × 10−5 1.99

1/80 40 9.62 × 10−8 − 1.4142 1.11 × 10−5 1.71 2.35 × 10−5 1.77

(b)

1/20 32 7.33 × 10−8 − 1.4283 1.16 × 10−2 1.49 × 10−2

1/40 38 8.32 × 10−8 − 1.422 6.59 × 10−3 0.82 8.01 × 10−3 0.90

1/80 43 9.87 × 10−8 − 1.4182 3.44 × 10−3 0.94 4.09 × 10−3 0.97

(iii) The approximations of the second order derivatives defined by (23) and (35), (36). (iv)
‖un+1 −un‖2 < 10−5 as stopping criterion. The results reported in Table 14(a) and (b) show
that the two approaches we are considering are very close to each other as long as the number
of iterations is concerned. On the other hand, these results show that the second method is
more accurate than the first one. We obtain a clear-cut confirmation of the superiority of the
second method by comparing Fig. 15e , f where we visualized, for various values of h, the
graphs of the restrictions of the computed approximate solutions to the diameter x1 = 1/2.
Figure 15a–d (obtained with h = 1/160) provide additional details.

Remark 10 When applied to the solution of problems (53) and (54), the two-stage algorithm
(described in Sect. 5) does not decrease the number of iterations needed for convergence,
when compared to the one-stage algorithm (11)–(13). This disappointing (but not surprising)
property follows from the non-smoothness of the solution to both problems. To check again
that solution smoothness enhances the speed of convergence of the two-stage algorithm we
are going to consider another test problem with a spherical solution, namely

{
detD2u = 2

(2−r2)
2 in Ω,

u = −√
2 − r2 on ∂Ω,

(55)

whereΩ ={{x1, x2}, (x1−1/2)2+(x2−1/2)2 < 1/4} and r =√(x1 − 1/2)2 + (x2 − 1/2)2.
The function u defined by

u(x1, x2) = −
√
2 − r2 on Ω̄

is a strictly convex solution to problem (55), verifying u ∈ C∞(Ω̄). Applying the two-stage
algorithm combined with unstructured isotropic triangulations, like those in Fig. 1d, leads to
the results reported in Table 15 and visualized in Fig. 16 (we used ‖un+1 − un‖2 < 10−7 as
topping criterion).

Table 15 shows that the two-stage approach we tested behave quite similarly as long as
the number of iterations is concerned. On the other hand Table 15 shows that for this smooth
test problem, the method based on (23) provides approximation errors ’almost’ two orders
of magnitude smaller than the one based on (35), (36).
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Fig. 16 [Test problem (55)]: graphs of the computed approximate solutions and variationswith n of the residual
and of the L2 and L∞ norms of the approximation errors (two-stage algorithm and isotropic unstructured
triangulation of the disk Ω̄ with h = 1/80). a, b Approximations (23) of the second order derivatives. c, d
Approximations (35), (36) of the second order derivatives

Figure 16 shows that, in practice, the final values of the approximation error norms are
reached much more quickly, when using relations (35), (36) to approximate the second order
derivatives, than when using (23). ��

To conclude this sub-section, dedicated to test problems with singular functions f , we are
going to consider a test problem, which seems to be new in this context, namely:{

detD2u = f in Ω,

u = 0 on ∂Ω,
(56)

with Ω = (0, 1)2 and f defined by

f (x1, x2) = 1 − (1 − 2x1)2(1 − 2x2)2

16x1(1 − x1)x2(1 − x2)
,∀(x1, x2) ∈ Ω.

The strictly convex function u defined by

u(x1, x2) = −√x1(1 − x1)x2(1 − x2),∀(x1, x2) ∈ Ω̄,
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Table 16 [Test problem (56)]: performance of the one-stage algorithm combined with regular triangulations:
(a) Approximations (23) of the second order derivatives. (b) Approximations (35), (36) of the second order
derivatives. The minimal value of the exact solution is −0.25, showing the clear superiority of the second
approach

h Iterations ‖un+1 − un‖ Min L2 error Rate L∞ error Rate L1 error Rate

(a)

1/20 132 9.15 × 10−7 −0.2014 4.86 × 10−2 4.86 × 10−2 3.99 × 10−2

1/40 314 9.75 × 10−7 −0.2202 2.73 × 10−2 0.83 3.05 × 10−2 0.67 2.65 × 10−2 0.59

1/80 1209 9.81 × 10−7 −0.2322 1.68 × 10−2 0.70 2.03 × 10−2 0.59 1.65 × 10−2 0.68

1/160 4973 9.92 × 10−8 −0.2391 1.02 × 10−2 0.72 1.40 × 10−2 0.54 1.01 × 10−2 0.71

(b)

1/20 138 9.77 × 10−7 −0.2313 1.29 × 10−2 1.87 × 10−2 1.16 × 10−2

1/40 312 9.84 × 10−7 −0.2376 9.41 × 10−3 0.46 1.24 × 10−2 0.59 8.79 × 10−3 0.40

1/80 1207 9.99 × 10−7 −0.2427 5.82 × 10−3 0.69 7.32 × 10−3 0.76 5.55 × 10−3 0.66

1/160 4936 9.94 × 10−8 −0.2455 3.48 × 10−3 0.74 4.50 × 10−3 0.70 3.35 × 10−2 0.73

is solution to problem (56). We clearly have u ∈ C0(Ω̄) ∩ W 1,s(Ω),∀s ∈ [1, 2), with ∇u
singular on the whole boundary of Ω . Combining the one-stage algorithm with regular tri-
angulations, we obtained the results reported in Table 16 and visualized in Fig. 17. These
results show the clear superiority, in terms of accuracy, of the approach based on approx-
imations (35), (36) of the second order derivatives. Actually, comparing Fig. 17f, h shows
that the method based on (35), (36) has better convexity conservation properties than the
method based on (23). We used ‖un+1 − un‖2 < 10−6 (resp. 10−7) as stopping criterion for
h = 1/20, 1/40 and 1/80 (resp., 1/160).

Problem (56) deserves becoming a classical test problem for Monge–Ampère–Dirichlet
solvers: Future will tell.

6.6 Test Problems with a Positive Measure as Right-Hand Side

Test problems where, in (1), f is a Dirac measure (possibly multiplied by some positive
constant) are classical nowadays. Our goal in this section is to return to such test problems,
and then to go one step further by considering situations where measure f is of the form

v →
∫

γ

vdγ,

γ being a curve contained in Ω . We consider first the test problem defined by

{
detD2u = πδ(1/2,1/2) in Ω,

u = r on ∂Ω
(57)

where in (57): Ω is either the square (0, 1)2 or the open disk of radius 1/2 centered at
(1/2,1/2), r = √

(x1 − 1/2)2 + (x2 − 1/2)2, and δ(1/2,1/2) is the Dirac measure at (1/2,1/2).
The function u defined by u = r |Ω̄ is an exact convex solution to problem (57), belonging
to W 1,∞(Ω).
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Fig. 17 [Test problem (56)]: a, b, c, d graphs and contours of the approximate solution obtained by the
one-stage algorithm on a regular mesh with h(= Δx1 = Δx2) = 1/80. e, g Graphs of the restrictions of
the computed approximate solutions to the line x1 = 1/2. f, h Graphs of the restrictions of the computed
approximate solutions to the line x1 = x2. The results visualized on a, b and e, f (resp., c, d and g, h) have
been obtained using relations (23) [resp., (35), (36)] to approximate the second order derivatives
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Table 17 (Test problem (57) for the unit square). For h = 1/20, 1/40 and 1/80: (i) number of iterations
needed for convergence of the one-stage algorithm and associated residuals. (ii)Minimal value of the computed
approximate solutions. (iii) Discrete L2 and L∞ norms of the approximation errors and associated rates of
convergence. Table (a) [resp., (b)] reports results associated with the approximation (58) [resp., (59)] of the
measure πδ(1/2,1/2) with η = 10−3/2 (resp., ρ = 1/16). The minimal value of the exact solution is 0

h Iterations ‖un+1 − un‖2 Min L2 error Rate L∞ error Rate

(a)

1/20 2586 9.99 × 10−9 − 0.2186 6.27 × 10−2 2.19 × 10−1

1/40 8323 9.99 × 10−9 − 0.0244 1.65 × 10−2 1.93 2.95 × 10−2 2.893

1/80 27,987 9.99 × 10−9 0.0121 7.87 × 10−3 1.07 1.21 × 10−2 1.29

(b)

1/20 887 9.99 × 10−9 − 0.1679 4.67 × 10−2 1.68 × 10−1

1/40 3898 9.99 × 10−9 − 0.0386 2.14 × 10−2 1.13 4.92 × 10−2 1.77

1/80 17,327 9.99 × 10−9 0.0057 8.40 × 10−3 1.35 1.22 × 10−2 2.01

In order to apply our methodology to the numerical solution of problem (57) we approx-
imated (as in [8]) the measure πδ(1/2,1/2) by the C∞ strictly positive function f 1η defined
by

f 1η (x1, x2) = η2[
η2 + (x1 − 1/2)2 + (x2 − 1/2)2

]2 , (58)

with η a small positive number having the dimension of a distance. In [8], good results were
obtained using η = h. On the other hand, a ’good’ function h → η(h) seems more difficult
to identify for the methodology we use in the present article. Assuming that (with obvious
notation) the relation limη→0 limh→0 u

η
h = u holds, we fixed η and computed the associated

approximate solution for various values of h, leading to the results reported and visualized
in Tables 17, 18 and Figs. 18, 19. These results have been obtained using: (i) The one-stage
algorithm with ‖un+1 − un‖2 < 10−8 as stopping criterion. (ii) Regular (resp., unstructured
isotropic) triangulations of the unit square (resp., half unit disk). (iii) Approximations (35),
(36) of the second order derivatives. Actually, we have also reported and visualized on those
tables and figures, results obtained using the function f 2ρ defined, with ρ > 0, by

f 2ρ (x1, x2) = 3

ρ3 max

(
0, ρ −

√
(x1 − 1/2)2 + (x2 − 1/2)2

)
+ h, (59)

as approximation of the measure πδ(1/2,1/2).

Remark 11 If Ω is a square, the solution of problem (57) (or closely related ones) has been
addressed in various publications ([4,8,22,23] among others), by a variety of computational
methods, some of them particularly fast like the ones discussed in [23]. On the other hand,
solving (57) on a disk using piecewise affine approximations is a more challenging issue; it
has been addressed in particular in [8], using finite element approximations closely related
(but not identical) to those discussed in Sect. 4. ��

Wedefine as follows the last problem involving aDiracmeasurewe consider in this article:{
detD2u = 2δ(1/2,1/2) in Ω,

u = 0 on ∂Ω,
(60)
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Table 18 (Test problem (57) for the half unit disk). For h = 1/20, 1/40 and 1/80: (i) number of iterations
needed for convergence of the one-stage algorithm and associated residuals. (ii)Minimal value of the computed
approximate solutions. (iii) Discrete L2 and L∞ norms of the approximation errors and associated rates of
convergence. Table (a) [resp., (b)] reports results associated with the approximation (58) [resp., (59)] of the
measure πδ(1/2,1/2) with η = 10−3/2 (resp., ρ = 1/16). The minimal value of the exact solution is 0

h Iterations ‖un+1 − un‖2 Min L2 error Rate L∞ error Rate

(a)

1/20 1166 9.91 × 10−9 − 0.148 3.82 × 10−2 1.54 × 10−1

1/40 4232 9.98 × 10−9 − 0.0177 1.67 × 10−2 1.19 3.07 × 10−2 2.33

1/80 14,883 9.99 × 10−9 0.0106 8.35 × 10−3 1 1.05 × 10−2 1.55

(b)

1/20 685 9.90 × 10−9 − 0.1231 3.44 × 10−2 1.37 × 10−1

1/40 3475 9.99 × 10−9 − 0.0254 1.78 × 10−2 0.95 4.13 × 10−2 1.73

1/80 16,715 9.99 × 10−9 0.0028 9.48 × 10−3 0.91 1.55 × 10−2 1.41
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Fig. 18 (Test problem (57) for the unit square): a, b, c (resp., d, e, f) are associated with the approximation
(58) with η = 10−3/2 (resp., (59) with ρ = 1/16) of the measure πδ(1/2,1/2). a, d Graphs of the computed
solutions for h = 1/80. b, e Graphs of the restrictions of the computed solution to the line x1 = 1/2 for
h = 1/20, 1/40 and 1/80. c, f Graphs of the restrictions of the computed solution to the line x1 = x2 for
h = 1/20, 1/40 and 1/80. The minimal value of the exact solution is 0

where in (60), Ω is the square (0, 1)2 and δ(1/2,1/2) is the Dirac measure at (1/2,1/2). It
follows from [17] that the function u defined by

u(x1, x2) = −min (x1, (1 − x1), x2, (1 − x2)) ,∀(x1, x2) ∈ Ω̄

is an exact convex solution to problem (60), belonging to W 1,∞(Ω). Its minimal value is
clearly−0.5. In order to solve problem (60), we proceeded as follows: (i) For h = 1/20, 1/40
and 1/80, we used regular triangulations like the one in Fig. 1a. (ii) Employed the one-stage
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Fig. 19 (Test problem (57) for the half-unit disk): a graph of the computed approximate solution obtained
for h = 1/80 by the one-stage algorithm, using the approximation (58) of the measure πδ(1/2,1/2) with

η = 10−3/2. bGraphs of the restrictions of the computed approximate solutions to the diameter x1 = 1/2, for
h = 1/20, 1/40 and 1/80 (approximation (58) of the measure πδ(1/2,1/2) with η = 10−3/2). c Graphs of the
restrictions of the computed approximate solutions to the diameter x1 = 1/2, for h = 1/20, 1/40 and 1/80
(approximation (59) of the measure πδ(1/2,1/2) with ρ = 1/16). The minimal value of the exact solution is 0

Table 19 [Test problem (60)]. For h = 1/20, 1/40 and 1/80: (i) number of iterations needed for convergence
of the one-stage algorithm and associated residuals. (ii) Minimal value of the computed approximate solutions.
(iii) Discrete L2 and L∞ norms of the approximation errors and associated rates of convergence. Table (a)
[resp., (b)] reports results associated with the approximation (58) [resp., (59)] of the measure πδ(1/2,1/2) with

η = 10−3/2 (resp., ρ = 1/16). The minimal value of the exact solution is −0.5

h Iterations ‖un+1 − un‖2 Min L2 error Rate L∞ error Rate

(a)

1/20 4099 8.75 × 10−7 − 0.6356 3.67 × 10−2 1.36 × 10−1

1/40 10,356 9.99 × 10−7 − 0.4937 8.56 × 10−3 2.10 1.94 × 10−2 2.81

1/80 14,970 9.99 × 10−9 − 0.4848 1.42 × 10−2 − 2.28 × 10−2 −
(b)

1/20 2116 9.99 × 10−7 − 0.5949 2.45 × 10−2 9.49 × 10−2

1/40 4847 1.06 × 10−6 − 0.5099 1.41 × 10−2 0.80 2.43 × 10−2 1.97

1/80 10,939 9.99 × 10−7 − 0.4860 1.05 × 10−2 0.43 1.69 × 10−2 0.52

algorithm, using ‖un+1 −un‖2 < 10−6 or 10−8 as stopping criterion. (iii) Approximated the
second order derivatives using relations (35), (36). (iv) Approximated the measure 2δ(1/2,1/2)

by 2
π
f 1η (resp. 2

π
f 2ρ ), with η = 10−3/2 in (58) [resp., ρ = 1/16 in (59)]. The results we

obtained have been reported and visualized in Table 19 and Fig. 20.
Table 19 and Fig. 20 support the assumption limη→0 limh→0 u

η
h = limη→0 limh→0 u

ρ
h =

u, but they show also that a critical issue needing to be addressed is identifying how to pick
η and ρ as functions of h, in order to improve the convergence of the approximate solutions
when h → 0; we intend to investigate this issue.

To conclude this section dedicated to the numerical solution of problem (1), when f is a
positive measure, we consider the following Monge–Ampère problem:

{
detD2u = f in Ω,

u = 0 on ∂Ω,
(61)
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Fig. 20 [Test problem (60)] a, d graphs of the computed approximate solution obtained for h = 1/80 by
the one-stage algorithm. b, e Graphs of the restrictions of the computed approximate solutions to the line
x1 = 1/2, for h = 1/20, 1/40 and 1/80. c, f Graphs of the restrictions of the computed approximate solutions
to the line x1 = x2, for h = 1/20, 1/40 and 1/80. a, b, c (resp., d, e, f) correspond to the approximation (58)
[resp., (59)] of the measure πδ(1/2,1/2) with η = 10−3/2 (reps., ρ = 1/16). The minimal value of the exact
solution is −0.5

where in (62): (i) Ω = (0, 1)2, and (ii) f is the positive measure defined by

〈 f , φ〉 =
∫

γ

φdγ,∀φ ∈ H1
0 (Ω), (62)

the ’curve’ γ being the cross defined by

γ = {(x1, x2), 0 < x1 < 1, x2 = 1/2} ∪ {(x1, x2), x1 = 1/2, 0 < x2 < 1}.
In order to apply to the solution of problem (61) the methodology discussed in Sects. 2–5,

we approximate the above measure f by fη, a strictly positive C∞ function defined by

fη(x1, x2) = η2

[
1(

η2 + |x1 − 1/2|2)3/2 + 1(
η2 + |x2 − 1/2|2)3/2

]
,∀(x1, x2) ∈ Ω̄,

(63)
with η > 0.We can easily prove that limη→0 fη = f in the sense of distributions. The param-
eter η having the dimension of a distance, we used η = h when applying the methodology
discussed in Sects. 2–5 to the solution of{

detD2uη = fη in Ω,

uη = 0 on ∂Ω.
(64)

The results reported and visualized in Table 20 and Fig. 21 have been obtain using: (i) Regular
triangulations of Ω for h = 1/20, 1/40 and 1/80 (here, h = Δx1 = Δx2). (ii) The one-stage
algorithm with ‖un+1 − un‖ < 10−8 as stopping criterion. (iii) The approximations (35),
(36) of the second order derivatives.
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Table 20 [Test problem (61)]. For h = 1/20, 1/40 and 1/80: (i) Number of iterations needed for the conver-
gence of the one-stage algorithm, and related residuals. (ii) Minimum values of the computed approximate
solutions. We used η = h in (63) when approximating the measure f by the function fη

h Iterations ‖un+1 − un‖ Min

1/20 955 9.99 × 10−9 − 0.4917

1/40 5642 9.99 × 10−9 − 0.4905

1/80 39952 9.99 × 10−9 − 0.4923
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Fig. 21 [Test problem (61)]. a, b Graph and contours of the computed approximate solution for h = 1/80.
c Graph of the restrictions of the computed approximate solutions to the line x1 = 1/2, for h = 1/20, 1/40
and 1/80. d Graphs of the restrictions of the computed approximate solutions to the line x1 = x2, for h =
1/20, 1/40 and 1/80

From Fig. 21, we observe the convexity of the computed approximate solutions. Figure 21
suggests also a fast uniform convergence to a convex solution of problem (61) the choice
η = h works ’beautifully’.
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Fig. 22 [Test problem (65)]. Graphs of the computed approximate solutions for h = 1/80: a η = h. b η = h2.
At first glance, the two graphs are identical

6.7 A Kind of Obstacle Problem

The last test problem we will consider in this article is defined by{
detD2u = max

(
1 − 0.2

r , 0
)
in Ω,

u = 1
2 (max(r − 0.2, 0))2 on ∂Ω,

(65)

where in (65), Ω = (0, 1)2 and r = √
(x − 1/2)2 + (2−1/2)2. Problem (65) was suggested

to us by one of the anonymous referees of this article; its solution has been addressed in, e.g.,
[22,37]. The function u defined by

u(x1, x2) = 1

2

(
max

(√
(x1 − 1/2)2 + (x2 − 1/2)2 − 0.2, 0

))2

,∀(x1, x2) ∈ Ω̄,

is the exact convex solution to problem (65); we clearly have u ∈ C1(Ω̄). Since the function
u vanishes in the open disk of radius 0.2 centered at (1/2,1/2), detD2u shares the same
property, making the elliptic problem (65) degenerated. In order to facilitate the solution of
problem (65), we approximated the function max(1 − 0.2

r , 0) by max(1 − 0.2
r , η), η being

a small non-negative parameter converging to 0 with h. We have reported in Table 21 and
Fig. 22, numerical results associated with η = 0, η = h and η = h2. These results have been
obtained using: (i) Regular triangulations with h(= Δx1 = Δx2) = 1/20, 1/40, 1/80 and
1/160. (ii) The one-stage algorithm, the stopping criterion being ‖un+1 − un‖2 < tol with
10−10 ≤ tol ≤ 10−7. (iii) Approximations (23) of the second order derivatives.

From an accuracy point of view, the results obtained for η = h [Table 21(b)] match those
reported in [22,37], obtained usingmore sophisticated approximations.Moreover, Table 21(c)
shows that taking η = h2 increases accuracy by (roughly) one order of magnitude, the price
to pay for this improvement being a much larger number of iterations in order to achieve the
convergence of the one-stage algorithm.

Remark 12 We used the word obstacle in the title of this section. To justify this terminology,
observe that, in (65), one can replace the equation

detD2u = max

(
1 − 0.2

r
, 0

)

123



Journal of Scientific Computing (2019) 79:1–47 45

by

detD2u =
(
1 − 0.2

r

)
χ(u>0), (66)

where χ(u>0) is the characteristic function of the set {x ∈ Ω, u(x) > 0}. One encounters
equations similar to (66) in [42], a publication dedicated to obstacle problems for theMonge–
Ampère operatorφ → detD2φ. The obstacle associatedwith problem (65) is clearly the plane
x3 = 0.

7 Conclusion

In this article, we have developed a relatively easy to implement finite element and operator-
splitting based methodology for the numerical solution of the Monge–Ampère equation.
The related methods have performed well for various types of triangulations (structured and
unstructured) and can handle curved boundaries quite easily since they rely on continuous
piecewise affine approximations. We introduced also a Newton-like two-stage variant of our
methodology, which accelerates significantly the convergence if the problem under consider-
ation has a smooth convex solution. Our future investigations (some of them quite advanced)
will include looking at techniques to further accelerate the convergence of our iterative proce-
dures, and the solution of three-dimensional and obstacle problems for the Monge–Ampère
operator φ → detD2φ.
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