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Abstract
This paper proposes and analyzes theMorley elementmethod for theCahn–Hilliard equation.
It is a fourth order nonlinear singular perturbation equation arises from the binary alloy
problem in materials science, and its limit is proved to approach the Hele-Shaw flow. If the
L2(�) error estimate is considered directly as in paper [14], we can only prove that the
error bound depends on the exponential function of 1

ε
. Instead, this paper derives the error

bound which depends on the polynomial function of 1
ε
by considering the discrete H−1

error estimate first. There are two main difficulties in proving this polynomial dependence
of the discrete H−1 error estimate. Firstly, it is difficult to prove discrete energy law and
discrete stability results due to the complex structure of the bilinear form of the Morley
element discretization. This paper overcomes this difficulty by defining four types of discrete
inverse Laplace operators and exploring the relations between these discrete inverse Laplace
operators and continuous inverse Laplace operator. Each of these operators plays important
roles, and their relations are crucial in proving the discrete energy law, discrete stability results
and error estimates. Secondly, it is difficult to prove the discrete spectrum estimate in the
Morley element space because the Morley element space intersects with the C1 conforming
finite element space but they are not contained in each other. Instead of proving this discrete
spectrum estimate in the Morley element space, this paper proves a generalized coercivity
result by exploring properties of the enriching operators and using the discrete spectrum
estimate in its C1 conforming relative finite element space, which can be obtained by using
the spectrum estimate of the Cahn–Hilliard operator. The error estimate in this paper provides
an approach to prove the convergence of the numerical interfaces of the Morley element
method to the interface of the Hele-Shaw flow.
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1 Introduction

Consider the following Cahn–Hilliard problem:

ut + �

(
ε�u − 1

ε
f (u)

)
= 0 in �T := � × (0, T ], (1)

∂u

∂n
= ∂

∂n

(
ε�u − 1

ε
f (u)

)
= 0 on ∂�T := ∂� × (0, T ], (2)

u = u0 in � × {t = 0}, (3)

where � ⊆ R2 is a bounded domain, f (u) is the first derivative of a double well potential
F(u) which is defined below

F(u) = 1

4
(u2 − 1)2. (4)

The Allen–Cahn equation [3,5,11,16,18,19,23,24], which is a second order nonlinear
parabolic equation, describes the phase separation process of a binary alloy when the tem-
perature suddenly decreases, but the mass of each phase is not conserved. Compared with
the Allen–Cahn equation, the Cahn–Hilliard equation (1) also arises from the phase transi-
tion problem in materials science, but it has the mass conservation property. Notice equation
(1) differs from the original Cahn–Hilliard equation by scaling t

ε
by t . The Cahn–Hilliard

equation finds its applications in the areas of materials science, fluid mechanics, biology
and so on, and the coupling of the Cahn–Hilliard equation and fluid flow is becoming more
and more popular in industrial applications. The Cahn–Hilliard equation also serves as a
building block for the phase field formulations of the moving interface problems, and the
methodology can be applied to other phase field models. It is also well known [2] that the
Cahn–Hilliard equation (1) can be interpreted as the H−1 gradient flow of the Cahn–Hilliard
energy functional

Jε(v) :=
∫

�

(
ε

2
|∇v|2 + 1

ε
F(v)

)
dx . (5)

Stoth proved that u → ±1 in the interior or exterior of interface �t for all t ∈ [0, T ] as
ε → 0 for the radially symmetric case [29], and Alikakos, Bates and Chen gave the proof
for the general case [2].

Numerical approximations of the Cahn–Hilliard equation have been extensively studied
during the last 30 years [4,12–14,33]. These papers consider the case when ε is a fixed,
and the error bounds depend exponentially on 1

ε
. Better than the exponential dependence

on 1
ε
, the polynomial dependence on 1

ε
is proved using conforming finite element (CG)

method [20,21] and discontinuous Galerkin (DG) method [17,26]. For the C1 conforming
finite elements for the fourth order problem, polynomials with high degree are required.
To use lower order polynomials, one approach is to use macro-elements, where a given
element is divided into a few smaller subelements and the lower order polynomial is used
on each subelement. However, it is not widely used due to its complex formulation of finite
element spaces. The other approach is to use nonconforming finite elements, and among
the nonconforming finite elements, the Morley element has the least number of degrees
of freedom on each element. Comparing with the mixed finite element method or the C1

conforming finite element method, the computational cost of the Morley element is smaller,
and this is extremely important especially for the phase field problems where the interaction
length ε, time step size k, and mesh size h are all required to be chosen very small. The
Morley element was first used in [14] to discretize the Cahn–Hilliard equation, but only the
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error estimates with exponential dependence of 1
ε
could be derived there. In this paper, the

polynomial dependence of 1
ε
is finally given using the Morley element.

The approach in this paper follows those used in [17,20,21], but the generalization to
the Morley element method is nontrivial. In the mixed CG/DG formulation, different test
functions can be chosen in two equations, but in the Morley element formulation, only
one test function can be chosen. Because of this and the complex structure of the Morley
element formulation, proving the discrete energy law and the discrete stability results become
much more involved. It is also a challenge to prove the discrete spectrum estimate in the
Morley element space from the spectrum estimate of the Cahn–Hilliard operator because
the Morley element space has intersection with its C1 conforming relative finite element
space but they are not contained in each other. If the L2 error estimate is considered directly,
the generalized coercivity result in this paper or even the discrete spectrum estimate are not
useful in proving the L2 error estimate. To overcome these difficulties, there are three main
techniques in this paper. First, based on the structure of the bilinear form of the Morley
element formulation, this paper designs four discrete operators �̂−1

h , �̃−1
h , �−1

h and �−1
h ,

and proves the errors in different norms between these operators. Through these relations, by
using �̃−1

h in the test function, and by using the other operators as bridges, we can prove the
discrete energy law and some consequent discrete stability results. Each of these operators
plays important roles in proving the main results. These operators and their properties might
be applied to the analysis for the biharmonic equation. It also employs both the summation
by part for time and integration by part for space techniques to handle the nonlinear term
and then to establish the polynomial dependence of the ‖ · ‖2,2,h stability result, and only the
exponential dependence can be obtained if these two techniques are not used simultaneously.
Second, instead of proving the discrete spectrum estimate, this paper proves the generalized
coercivity result which is sufficient to get the sharper error estimates. The key point is to
use the enriching operator as a bridge between the nonconforming and conforming finite
elements, and this idea may be extended to other phase field models. Third, if the discrete L2

error estimate is considered directly, only the error estimates with exponential dependence
on 1

ε
could be derived using the Gronwall’s inequality as in [14]. This paper provides a

possibility by considering the H−1 error estimate first, and it explains how to utilize the
discrete inverse Laplace operators and the generalized coercivity result to circumvent the
Gronwall’s inequality, and finally to prove the error estimate with polynomial dependence
on 1

ε
.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the standard
function and Sobolev space notations, state a few a priori estimates of the solution, and
cite some known results including properties of the inverse Laplapce operators, properties
of enriching operator, generalized discrete Gronwall’s inequality and the spectrum estimate
for the linearized Cahn–Hilliard operator; In Sect. 3, and in the first two subsections, we
introduce the Morley element formulation, define different kinds of discrete inverse Laplace
operators and state their relations. Then in the last three subsections, we analyze the discrete
energy law and the discrete stability results, derive the generalized coercivity result in the
Morley element space, and finally prove the discrete H−1 error estimate with polynomial
dependence on 1

ε
; In Sect. 4, numerical experiments are given to validate the theoretical

results.
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2 Preliminaries

In this section, we cite some known results about problems (1)–(4), and they will be used
in the following sections. These results can be proved under some general assumptions on
the initial condition [11,17,20,21,26]. Throughout this paper, C denotes a generic positive
constant, which may have different values at different occasions, is independent of interfacial
length ε, spacial size h, and time step size k. The following Sobolev notations are used in
this paper, i.e., for any set A,

‖v‖0,p,A = (∫
A |v|pdx

)1/p 1 ≤ p < ∞,

‖v‖0,∞,A = ess sup
A

|v|,

|v|m,p,A =
( ∑

|α|=m
‖Dαv‖p

0,p,A

)1/p

1 ≤ p < ∞,

‖v‖m,p,A =
(

m∑
j=0

|v|p
m,p,A

)1/p

.

If A is the whole domain, i.e., A = �, then ‖ · ‖Hk , ‖ · ‖Lk are used to simplify the
notations ‖ · ‖Hk (�), ‖ · ‖Lk (�) respectively. Besides, assume Th to be a family of quasi-
uniform triangulations of domain �, and Eh to be a collection of edges, then for any triangle
K ∈ Th , define the following mesh dependent semi-norm, norm and inner product

|v| j,p,h =
⎛
⎝ ∑

K∈Th

|v|p
j,p,K

⎞
⎠

1/p

,

‖v‖ j,p,h =
⎛
⎝ ∑

K∈Th

‖v‖p
j,p,K

⎞
⎠

1/p

,

(w, v)h =
∑

K∈Th

∫
K

w(x)v(x)dx .

Theoretically, the tanh profile of the initial condition u0 is required to prove the relations
between the Cahn–Hilliard equation and the Hele-Shaw flow [2,11]. Because of the tanh
profile, the following assumptions can be made on the initial condition, and they were used
to derive a priori estimates for the solution of problems (1)–(4) [17,20,21,26].

General Assumption (GA)

(1) Assume that m0 ∈ (−1, 1) where

m0 := 1

|�|
∫

�

u0(x)dx . (6)

(2) There exists a nonnegative constant σ1 such that

Jε(u0) ≤ Cε−2σ1 . (7)

(3) There exists nonnegative constants σ2, σ3 and σ4 such that∥∥ − ε�u0 + ε−1 f (u0)
∥∥

H	 ≤ Cε−σ2+	 	 = 0, 1, 2. (8)

Under the above assumptions, the following a priori estimates of the solution were proved
in [17,20,21,26].
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Theorem 1 The solution u of problems (1)–(4) satisfies the following energy estimate:

ess sup
t∈[0,T ]

(
ε

2
‖∇u‖2L2 + 1

ε
‖F(u)‖L1

)
+
{∫ T

0 ‖ut (s)‖2H−1 ds∫ T
0 ‖∇w(s)‖2

L2 ds
≤ Jε(u0). (9)

Moreover, suppose that (6)–(8) hold, u0 ∈ H4(�) and ∂� ∈ C2,1, then u satisfies the
additional estimates:

1

|�|
∫

�

u(x, t) dx = m0 ∀t ≥ 0, (10)

ess sup
t∈[0,T ]

‖∇�u‖L2 ≤ Cε
−max

{
σ1+ 5

2 ,σ3+1
}
. (11)

Furthermore, if there exists σ5 > 0 such that

lim
s→0+ ‖∇ut (s)‖L2 ≤ Cε−σ5 , (12)

then there holds ∫ T

0
‖utt‖2H−1ds ≤ C ρ̃1(ε), (13)

where

ρ̃1(ε) := ε
− 1

2 max{2σ1+5,2σ3+2}−max
{
2σ1+ 13

2 ,2σ3+ 7
2 ,2σ2+4

}
+1 + ε−2σ5+1

+ ε−max{2σ1+7,2σ3+4}+1.

The next lemma gives an ε-independent low bound for the principal eigenvalue of the
linearized Cahn–Hilliard operator, and a proof of this lemma can be found in [11].

Lemma 1 Suppose that (6)–(8) hold. Given a smooth initial curve/surface �0, let u0 be a
smooth function satisfying �0 = {x ∈ �; u0(x) = 0} and some profile described in [11]. Let
u be the solution to problems (1)–(4). Define LC H as

LC H := �

(
ε� − 1

ε
f ′(u)I

)
. (14)

Then there exists 0 < ε0 << 1 and a positive constant C0 such that the principle eigenvalue
of the linearized Cahn–Hilliard operator LC H satisfies

λC H := inf
0 �=ψ∈H1(�)

�w=ψ

ε‖∇ψ‖2
L2 + 1

ε
( f ′(u)ψ,ψ)

‖∇w‖2
L2

≥ −C0 (15)

for t ∈ [0, T ] and ε ∈ (0, ε0).

Remark 1 1. A discrete version of the spectrum estimate of (15) on conforming finite ele-
ment spaces was proved in [20,21], and a discrete version on discontinuous Galerkin
finite element space was proved in [17]. They play crucial roles in the proofs of the
convergence of the numerical interfaces to the Hele-Shaw flow [17,20,21].

2. In the assumption, the initial function u0 should be chosen to satisfy some pro-
file to guarantee the convergence results. A simple function satisfying this profile is
u0 = tanh( d0(x)

ε
), where d0(x) denotes the signed distance function to the initial interface

�0. Assume u is an arbitrary function, instead of being the solution of the Cahn–Hilliard
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equation, we can find a low bound of λC H , which depends on 1
ε
polynomially, by inter-

polating L2(�) space to H1(�) and H−1(�) spaces.

The classical discrete Gronwall’s inequality is a main technique to derive the error esti-
mates of fully discretized scheme for partial differential equation (PDE) problems. However,
for many nonlinear PDE problems, the classical discrete Gronwall’s inequality can not be
applied because of nonlinearity. Instead, a generalized version discrete Gronwall’s inequality
is needed. In case of the power (or Bernoulli-type) nonlinearity, a generalized continuous
Gronwall’s inequality was proved in [22], and its discrete counterpart is stated below. The
proof of this generalized discrete Gronwall’s inequality can be found in [28].

Lemma 2 Let {S	}	≥1 be a positive nondecreasing sequence and {b	}	≥1 and {k	}	≥1 be
nonnegative sequences, and p > 1 be a constant. If

S	+1 − S	 ≤ b	S	 + k	S p
	 for 	 ≥ 1, (16)

S1−p
1 + (1 − p)

	−1∑
s=1

ksa1−p
s+1 > 0 for 	 ≥ 2, (17)

then

S	 ≤ 1

a	

{
S1−p
1 + (1 − p)

	−1∑
s=1

ksa1−p
s+1

} 1
1−p

for 	 ≥ 2, (18)

where

a	 :=
	−1∏
s=1

1

1 + bs
for 	 ≥ 2. (19)

Denote L2
0(�) as the space of functions with zero mean, then for  ∈ L2(�), let u :=

−�−1 ∈ H2(�) ∩ L2
0(�) such that

−�u =  in �,
∂u
∂n = 0 on ∂�.

Then we have

−(∇�−1,∇v) = (, v) in � ∀v ∈ H1(�) ∩ L2
0(�). (20)

For v ∈ L2
0(�) and  ∈ L2

0(�), define the continuous H−1 inner product by

(, v)H−1 := (∇�−1,∇�−1v) = (,−�−1v) = (v,−�−1). (21)

When  ∈ L2
0(�), define the induced continuous H−1 norm by

‖‖H−1 := √
(,)H−1 = ‖∇�−1‖L2 . (22)

Next define the Morley element spaces Sh below [9,10,14]:

Sh = {vh ∈ L∞(�) : vh ∈ P2(K ), vh is continuous at the vertices of all triangles, and
∂vh

∂n
is continuous at the midpoints of interelement edges of triangles}.

Through the the paper, we assume

‖un
h‖L∞ ≤ Cε−γ1 , (23)
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where un
h is defined in (32)–(33) and γ1 is a constant. Theoretically there is no analysis to

prove the discrete maximum principle for the Cahn–Hilliard equation. However, numerically
we can verify (23) for many initial conditions. In Sect. 4, two examples are given, and we
find γ1 = 0 and C = 1 in these cases.

We use the following notation

H j
E (�) =

{
v ∈ H j (�) : ∂v

∂n
= 0 on ∂�

}
j = 1, 2, 3.

Corresponding to H j
E (�), define Sh

E as the subspace of Sh below:

Sh
E =

{
vh ∈ Sh : ∂vh

∂n
= 0 at the midpoints of the edges on ∂�

}
.

To the end, the enriching operator Ẽ is restated [8–10]. Let S̃h
E be the Hsieh-Clough-

Tocher macro element space, which is an enriched space of the Morley finite element space
Sh

E . Let p and m be the internal vertices and midpoints of triangles Th . Define Ẽ : Sh
E → S̃h

E
by

(Ẽv)(p) = v(p),

∂ Ẽv

∂n
(m) = ∂v

∂n
(m),

(∂β(Ẽv))(p) = average of (∂βvi )(p) |β| = 1,

where vi = v|Ti and triangle Ti contains p as a vertex.
Define the interpolation operator Ih : H2

E (�) → Sh
E such that

(Ihv)(p) = v(p),

∂ Ihv

∂n
(m) = 1

|e|
∫

e

∂v

∂n
d S,

where p ranges over the internal vertices of all the triangles T , and m ranges over the
midpoints of all the edges e.

It can be proved that [8–10,14]

|v − Ihv| j,p,K ≤ Ch3− j |v|3,p,K ∀K ∈ Th, ∀v ∈ H3(K ), j = 0, 1, 2, (24)

‖Ẽv − v‖ j,2,h ≤ Ch2− j |v|2,2,h ∀v ∈ Sh
E , j = 0, 1, 2. (25)

3 Fully Discrete Approximation

In this section, the Morley element is used to discretize the fourth order Cahn–Hilliard
problems (1)–(4). Different kinds of discrete inverse Laplace operators are defined in order
to derive the discrete energy law and error estimates. The optimal ‖ · ‖2,2,h error orders are
obtained under a weaker regularity assumption, i.e., v ∈ H3,h(�). This can be considered
as a generalization of the regularity assumption in paper [14]. Besides, it is proved that the
error bounds depend on ε−1 in lower order polynomial, instead of in exponential order. The
crux part to prove the error bounds is to prove the generalized coercivity result in the Morley
element space, where the enriched finite element space is used as a bridge.
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3.1 Formulation

The weak form of (1)–(3) is to seek u(·, t) ∈ H2
E (�) such that

(ut , v) + εa(u, v) = 1

ε
(∇ f (u),∇v) ∀v ∈ H2

E (�), (26)

u(·, 0) = u0 ∈ H2
E (�), (27)

where the bilinear form a(·, ·) is defined as

a(u, v) =
∫

�

�u�v +
(

∂2u

∂x∂ y

∂2v

∂x∂ y
− 1

2

∂2u

∂x2
∂2v

∂ y2
− 1

2

∂2u

∂ y2
∂2v

∂x2

)
dxdy (28)

with Poisson’s ratio set to 1
2 .

It can be verified that [25] for any w ∈ H2(�),

a(w,w) = 1

2
(‖�w‖20,2,� + |w|22,2,�),

and when w, z are sufficiently smooth,

a(w, z) =
∫

�

�2w z dxdy −
∫

∂�

∂�w

∂n
zd S

+
∫

∂�

(
�w − 1

2

∂2w

∂s2

)
∂z

∂n
d S + 1

2

∫
∂�

∂2w

∂n∂s

∂z

∂s
d S,

where n, s denote the normal and tangential directions respectively.
Define the following spaces

H3,h(�) = Sh ⊕ H3(�), H3,h
E (�) = Sh

E ⊕ H3
E (�),

H2,h(�) = Sh ⊕ H2(�), H2,h
E (�) = Sh

E ⊕ H2
E (�),

H1,h(�) = Sh ⊕ H1(�), H1,h
E (�) = Sh

E ⊕ H1
E (�),

where, for instance,

Sh
E ⊕ H2

E (�) = {u + v : u ∈ Sh
E and v ∈ H2

E (�)}.
Next define the discrete bilinear form

ah(u, v) =
∑

K∈Th

∫
K

�u�v +
(

∂2u

∂x∂ y

∂2v

∂x∂ y
− 1

2

∂2u

∂x2
∂2v

∂ y2
− 1

2

∂2u

∂ y2
∂2v

∂x2

)
dxdy. (29)

To introduce the elliptic projection Ph [14], we first define

R = {
v ∈ H2

E (�) : �v ∈ H2
E (�)

}
.

Then for arbitrary v ∈ R, define the following elliptic projection Ph by seeking Phv ∈ Sh
E

such that

b̃h(Phv,w) =
(

ε�2v − 1

ε
div ( f ′(u)∇v) + αv,w

)
∀w ∈ Sh

E , (30)

where

b̃h(v,w) = εah(v,w) + 1

ε
( f ′(u)∇v,∇w)h + α(v,w). (31)
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Notice here α > C
ε3

should be chosen to guarantee the coercivity of b̃h(v,w) because by the

proof of Lemma 2.4 in [14], when z ∈ H2,h(�), we have

b̃h(z, z) = ε

2

(‖�z‖20,2,h + |z|22,2,h
) + 1

ε
( f ′(u)∇z,∇z)h + α(z, z)

≥ ε

2

(‖�z‖20,2,h + |z|22,2,h
) − 1

ε
(∇z,∇z)h + α(z, z)

≥ ε

2

(‖�z‖20,2,h + |z|22,2,h
) − 1

ε
(∇z,∇z)h +

[
C(αε)

1
2 (∇z,∇z)h − ε

4
|z|22,2,h

]
.

Based on the above bilinear form, our fully discrete Galerkin method is to find un
h ∈ Sh

E
such that

(dt u
n
h, vh) + εah(un

h, vh) + 1

ε
(∇ f (un

h),∇vh)h = 0 ∀vh ∈ Sh
E , (32)

u0
h = uh

0 ∈ Sh
E , (33)

where the difference operator dt un
h := un

h−un−1
h

k , and uh
0 := Phu(t0) .

3.2 The ‖ · ‖2,2,h and ‖ · ‖1,2,h Errors UnderWeaker Regularity Assumptions

In Sect. 5 of paper [14], the projection errors in ‖ ·‖2,2,h and ‖ ·‖1,2,h norms are proved under
the assumption that the exact solution u ∈ H4(�). In this paper, �̂−1

h ζ is defined in (37),
which can be considered as a novel projection of �−1ζ where ζ ∈ Sh

E , and we also give the
error bounds between�−1ζ and �̂−1

h ζ under the assumption that�−1ζ ∈ H2(�)∩H3,h(�).
In this case, notice here�−1ζ does not need to be related to the exact solution, even we define
the bilinear form to be equal to the right-hand side (see Remark 4 below for details).

First we cite Lemma 2.5 in [14], which will be used in this paper.

Lemma 3 Let z ∈ H2,h
E (�) and w ∈ H2

E (�) ∩ W 3,p(�), and define Bh(w, z) by

Bh(w, z) =
∑

K∈Th

∫
∂K

(
�w

∂z

∂n
+ 1

2

∂2w

∂n∂s

∂z

∂s
− 1

2

∂2w

∂s2
∂z

∂n

)
d S,

then we have

|Bh(w, z)| ≤ Ch|w|3,2,h |z|2,2,h .

Next some mesh-dependent discrete inverse Laplace operators are given here. Define
space Wh by

Wh = {wh ∈ L2(�)|wh is a piecewise polynomial with degree ≤ 6 on each triangle K}.
Then we can define the discrete inverse Laplace operator�−1

h : L2(�) → Wh as follows:
given ζ ∈ L2(�), define �−1

h ζ ∈ Wh such that

(∇�−1
h ζ,∇wh)h + (�−1

h ζ,wh) = (∇�−1ζ,∇wh)h + (�−1ζ,wh) ∀ wh ∈ Wh . (34)

Therefore, −�−1
h ζ can be considered as a projection of −�−1ζ .

As a comparison, we define the discrete inverse Laplace operator �−1
h : L2(�) → Wh as

follows: given ζ ∈ L2(�), define �−1
h ζ ∈ Wh such that

(∇�−1
h ζ,∇wh)h + (�−1

h ζ,wh) = −(ζ, wh) + (�−1ζ,wh) ∀ wh ∈ Wh . (35)
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Furthermore, define �̃−1
h , �̂−1

h : Sh
E → Sh

E as follows: given ζ ∈ Sh
E , let �̃

−1
h ζ, �̂−1

h ζ ∈
Sh

E such that

bh(−�̃−1
h ζ,wh) = (∇ζ,∇wh)h + β(−�−1ζ,wh) ∀ wh ∈ Sh

E , (36)

bh(−�̂−1
h ζ,wh) = (∇ζ,∇wh)h + Bh(−�−1ζ,wh)

+β(−�−1ζ,wh) ∀ wh ∈ Sh
E , (37)

where bh(u, v) := ah(u, v)+β(u, v), and β is a positive number to guarantee the coercivity
of bh(u, v), i.e., β = 1 by the proof of Lemma 2.4 in [14].

For any v ∈ H3(�), it always holds that

bh(v, η) = −(∇�v,∇η)h + Bh(v, η) + β(v, η)

:= Fh(η) ∀η ∈ H2,h
E (�). (38)

Corresponding to operator �̂−1
h , for any v ∈ H3(�), define vh ∈ Sh

E by

bh(vh, ξ) = −(∇�v,∇ξ)h + Bh(v, ξ) + β(v, ξ)

:= Fh(ξ) ∀ξ ∈ Sh
E . (39)

Corresponding to operator �̃−1
h , for any v ∈ H3(�), define vh ∈ Sh

E by

bh(vh, ξ) = −(∇�v,∇ξ)h + β(v, ξ)

:= F̂h(ξ) ∀ξ ∈ Sh
E . (40)

By Eqs. (38) and (37), we know

bh(−�−1ζ, η) = (∇ζ,∇η)h − Bh(�−1ζ, η)

−β(�−1ζ, η) ∀η ∈ H2,h
E (�), (41)

bh(−�̂−1
h ζ, ξ) = (∇ζ,∇ξ)h − Bh(�−1ζ, ξ)

−β(�−1ζ, η) ∀ξ ∈ Sh
E . (42)

Then it is ready to prove the optimal error estimates of ‖�̂−1
h u−�−1u‖1,2,h and ‖�̂−1

h u−
�−1u‖2,2,h when u ∈ Sh

E . Notice u ∈ L2(�), but u may not be in H1(�). Instead of
using properties of the Morley elements (Lemmas 2.1–2.6 in [14]), the enriching operator is
perfectly employed to derive the upper bounds.

Lemma 4 Assume �̂−1
h is defined in (37) and u ∈ Sh

E , then

‖�̂−1
h u − �−1u‖2,2,h ≤ Ch‖u‖1,2,h .

Proof Using (38) and (39), we obtain

bh(v − vh, v − vh)

= bh(v − vh, v − Ihv) + bh(v, Ihv − vh) − Fh(Ihv − vh)

= bh(v − vh, v − Ihv)

≤ ‖v − vh‖2,2,h‖v − Ihv‖2,2,h . (43)
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Let v = �−1 Ẽu and vh = �̂−1
h u, by (24) and the elliptic regularity theory, we have

‖�−1 Ẽu − �̂−1
h u‖2,2,h ≤ ‖�−1 Ẽu − Ih�−1 Ẽu‖2,2,h

≤ Ch|�−1 Ẽu|H3

≤ Ch‖Ẽu‖H1

≤ Ch‖u‖1,2,h, (44)

where the last inequality uses (25), the inverse inequality and the triangle inequality.
On the other hand, using the elliptic regularity theory and (25), we have

‖�−1 Ẽu − �−1u‖H2 ≤ ‖u − Ẽu‖L2

≤ Ch|u|1,2,h . (45)

Combining (44) and (45), and using the triangle inequality, the theorem can be obtained
immediately. ��

The following lemma is a direct result of Lemma 4.

Lemma 5 Assume �̂−1
h is defined in (37) and u ∈ Sh

E , then

‖�̂−1
h u − �−1u‖1,2,h ≤ Ch‖u‖1,2,h .

Remark 2 1. In (43), if the enriching operator is not introduced, i.e., let v = �−1u and
vh = �̂−1

h u, we can only obtain

‖�−1u − �̂−1
h u‖2,2,h ≤ Ch|�−1u|3,2,h .

In the following part of this paper, u in in the Morley element space Sh
E , which is not in

H1(�), so the inequality below may be very hard to obtain

|�−1u|3,2,h ≤ Ch‖u‖1,2,h .

Next we prove the error between �−1ζ and �̃−1
h ζ .

Lemma 6 Assume �̃−1
h is defined in (36) and ζ ∈ Sh

E , then

‖�−1ζ − �̃−1
h ζ‖2,2,h ≤ Ch‖ζ‖1,2,h .

Proof By (40) and (43), we have

‖v − vh‖22,2,h = Cbh(v − vh, v − Ihv) + C[bh(v, Ihv − vh) − F̂h(Ihv − vh)]
≤ Cbh(v − vh, v − Ihv) + C Bh(v, Ihv − vh). (46)

Notice we will set vh = −�̃−1
h ζ , so Eq. (40) is used, then F̂h , instead of Fh , appears in

Eq. (46).
Using Lemma 3, we have

‖v − vh‖22,2,h
≤ C‖v − vh‖2,2,h‖v − Ihv‖2,2,h + Ch|�−1 Ẽζ |3,2,h‖Ihv − vh‖2,2,h
≤ Ch|ζ |1,2,h‖v − vh‖2,2,h + Ch‖ζ‖1,2,h(‖Ihv − v‖2,2,h + ‖v − vh‖2,2,h). (47)

Let v = −�−1 Ẽζ, vh = −�̃−1
h ζ , then

‖�−1 Ẽζ − �̃−1
h ζ‖2,2,h ≤ Ch‖ζ‖1,2,h . (48)

Combining (45) and (48), we get the conclusion. ��
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The following bound is a direct result from Lemma 6.

Lemma 7 Assume �̃−1
h is defined in (36) and ζ ∈ Sh

E , then

‖�−1ζ − �̃−1
h ζ‖1,2,h ≤ Ch‖ζ‖1,2,h .

Remark 3 1. Using the theory of enriching operators, instead of the properties of theMorley
elements, we can applied the theory in this paper to other nonconforming elements, based
on their enriched conforming elements. If properties of the Morley elements are used to
get the bound of ‖�−1ζ − �̂−1

h ζ‖2,2,h , we can obtain
‖�−1ζ − �̂−1

h ζ‖2,2,h ≤ Ch|�−1ζ |3,2,h + Ch|�−1ζ |4,2,h .

2. Supposeweuse the properties of theMorley elements, andwedonot employ the enriching
operators. When ζ ∈ Sh

E , �
−1ζ may not be in H2

E (�) ∩ W 3,p(�) so that Lemma 3 can
not be applied. Then we can only prove the following lemma when the Poisson’s ratio is
1, which is not physical.

Lemma 8 Let z ∈ H2,h
E (�) and �w ∈ Sh

E , and when Poisson’s ratio is 1, we have

|Bh(w, z)| ≤ Ch(‖�w‖1,2,h‖z‖2,2,h + ‖�w‖2,2,h‖z‖1,2,h).

Proof By Lemma 2.3 in [14] and the inverse inequality, we get when w, z ∈ H2,h
E (�), and

at least one of them is in Sh
E , then∣∣∣∣∣∣

∑
K∈Th

∫
∂K

∂z

∂n
w

∣∣∣∣∣∣ ≤ Ch(‖w‖1,2,h‖z‖2,2,h + ‖w‖2,2,h‖z‖1,2,h).

When Poisson’s ratio is 1, bilinear form ah(u, v) in (29) and Bh(w, z) become

ah(u, v) =
∑

K∈Th

∫
K

�u�v, (49)

Bh(w, z) =
∑

K∈Th

∫
∂K

�w
∂z

∂n
d S. (50)

Then we have

|Bh(w, z)| ≤ Ch(‖�w‖1,2,h‖z‖2,2,h + ‖�w‖2,2,h‖z‖1,2,h).

Before we give the relations between operators �−1
h , �−1

h and �−1, we need an extra
lemma.

Lemma 9 The operators �−1
h and �−1

h are defined in (34) and (35), then for any ζ ∈ L2(�),
we have

(∇�−1ζ,∇(�−1
h ζ − �−1

h ζ ))h + (ζ,�−1
h ζ − �−1

h ζ )

≤ Ch‖�−1
h ζ − �−1

h ζ‖1,2,h‖ζ‖0,2,h .

Proof Define an elliptic projection P1 : L2(�) → V ∩ L2
0 by

(∇ζ − ∇ P1ζ,∇v)h = 0 ∀v ∈ V ∩ L2
0,

where V can be a conforming space consisting of piecewise polynomials.
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Define another elliptic projection P2 : H2(�) → V ∩ L2
0 by

(∇�−1ζ − ∇ P2(�
−1ζ ),∇v) = 0 ∀v ∈ V ∩ L2

0.

Then we have

(∇�−1ζ,∇(�−1
h ζ − �−1

h ζ ))h + (ζ,�−1
h ζ − �−1

h ζ )

≤ (∇�−1ζ − ∇ P2(�
−1ζ ),∇(�−1

h ζ − �−1
h ζ ))h + (ζ,�−1

h ζ − �−1
h ζ )

+ (∇ P2(�
−1ζ ),∇(�−1

h ζ − �−1
h ζ ))h

≤ (∇�−1ζ − ∇ P2(�
−1ζ ),∇(�−1

h ζ − �−1
h ζ ))h + (ζ,�−1

h ζ − �−1
h ζ )

+ (∇ P2(�
−1ζ ),∇ P1(�

−1
h ζ − �−1

h ζ ))

≤ (∇�−1ζ − ∇ P2(�
−1ζ ),∇(�−1

h ζ − �−1
h ζ ))h + (ζ,�−1

h ζ − �−1
h ζ )

+ (∇ P2(�
−1ζ ) − ∇�−1ζ,∇ P1(�

−1
h ζ − �−1

h ζ )) + (∇�−1ζ,∇ P1(�
−1
h ζ − �−1

h ζ ))

≤ (∇�−1ζ − ∇ P2(�
−1ζ ),∇(�−1

h ζ − �−1
h ζ ))h + (∇ P2(�

−1ζ ) − ∇�−1ζ,

∇ P1(�
−1
h ζ − �−1

h ζ )) + (ζ,�−1
h ζ − �−1

h ζ − P1(�
−1
h ζ − �−1

h ζ ))

≤ Ch|�−1
h ζ − �−1

h ζ |1,2,h‖ζ‖0,2,h + Ch2‖�−1
h ζ − �−1

h ζ‖2,2,h‖ζ‖0,2,h
≤ Ch‖�−1

h ζ − �−1
h ζ‖1,2,h‖ζ‖0,2,h . (51)

��
Next some lemmas related to operators �−1

h and �−1
h are proved below.

Lemma 10 Assume �−1
h is defined in (34) and ζ ∈ L2(�), then

‖�−1
h ζ − �−1

h ζ‖1,2,h ≤ Ch‖ζ‖0,2,h .

Proof Subtracting (35) from (34), choosing wh = �−1
h ζ − �−1

h ζ , and using Lemma 9, we
obtain

‖∇�−1
h ζ − ∇�−1

h ζ‖20,2,h + ‖�−1
h ζ − �−1

h ζ‖20,2,h
= (∇�−1ζ,∇(�−1

h ζ − �−1
h ζ ))h + (ζ,�−1

h ζ − �−1
h ζ )

≤ Ch‖�−1
h ζ − �−1

h ζ‖1,2,h‖ζ‖0,2,h . (52)

Then the lemma is proved. ��
Lemma 11 Assume �−1

h is defined in (35) and ζ ∈ L2(�), then

‖�−1
h ζ − �−1ζ‖1,2,h ≤ Ch‖ζ‖0,2,h .

Proof Observe �−1
h is a projection of �−1, then we can prove

‖�−1
h ζ − �−1ζ‖1,2,h ≤ Ch j‖ζ‖ j−1,2,h, j = 1, 2. (53)

Combining (53) and Lemma 10, and using the triangle inequality, this lemma can be proved.
��

Remark 4 1. In Lemmas 4–7, the regularity requirement on u is�−1u ∈ H2(�)∩H3,h(�).
It is proved that the error bounds can depend on norm ‖ ·‖3,2,h , instead of norm ‖ ·‖4,2,�.
Hence the lemmas in this subsection can be considered as a generalization of the error
bounds in [14].
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2. The idea of proposing the bilinear form bh(·, ·) defined in Eq. (38) is that (38) auto-
matically holds for η ∈ H2,h

E (�), but the bilinear form (5.2b) in [14] holds under the
condition that u ∈ H4(�). This is the main reason why the regularity requirement in
paper [14] can be removed. Another advantage of using this generalized projection is the
proofs of the error estimates can be simplified (see proofs of Lemmas 4–5).

3.3 The Discrete Energy Law and the Discrete Stability Results

In order to mimic the continuous energy law in (9), we consider the discrete energy law under
some mesh constraints in this subsection. A lemma is needed to prove the discrete energy
law. First we give the bound of the L2 norm interpolation.

Lemma 12 For any ζ ∈ L2(�), then

‖ζ‖2L2 ≤ ‖∇�−1
h ζ‖2L2 + ‖∇ζ‖20,2,h .

Proof Testing (35) by ζ , and using Lemma 11, we obtain

‖ζ‖2L2 = (−∇�−1
h ζ,∇ζ )h + (�−1ζ − �−1

h ζ, ζ )

≤ 1

2
‖∇�−1

h ζ‖2L2 + 1

2
‖∇ζ‖20,2,h + Ch‖ζ‖L2‖ζ‖L2 . (54)

When Ch ≤ 1
2 , the lemma is proved. ��

Remark 5 Combine (54) and Lemma 7, we can easily prove

‖ζ‖2L2 ≤ ‖∇�−1ζ‖2L2 + ‖∇ζ‖20,2,h,

‖ζ‖2L2 ≤ 1

a
‖∇�−1ζ‖2L2 + Ca‖∇ζ‖20,2,h,

‖ζ‖2L2 ≤ 1

a
‖∇�̃−1ζ‖2L2 + Ca‖∇ζ‖20,2,h .

The discrete energy law is proved below.

Theorem 2 Under the assumption (23) and the following mesh constraints

k ≥ C
h2

ε
,

k ≥ C
h2

ε4γ1+3 ,

k ≥ Cεβ2h2,

the following energy holds

J h
ε (un

h) + k

8

	∑
n=1

‖∇�−1dt u
n
h‖20,2,h

+ εk2

8

	∑
n=1

‖∇dt u
n
h‖20,2,h + k2

4ε

	∑
n=1

‖dt (|un
h |2 − 1)‖20,2,h ≤ C J h

ε (u0
h),

where

J h
ε (v) = ε

2
‖∇v‖20,2,h + 1

4ε
‖v2 − 1‖20,2,h .
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Proof Taking vh = −�̃−1
h (un

h − un−1
h ) as the test function in (32), then we have

(dt u
n
h,−�̃−1

h (un
h − un−1

h )) + εah(un
h,−�̃−1

h (un
h − un−1

h ))

+ 1

ε
(∇ f (un

h),−∇�̃−1
h (un

h − un−1
h ))h = 0. (55)

The first term on the left-hand side of (55) can be written as

M1 = k(∇�−1dt u
n
h,∇�−1dt u

n
h)h + k(∇�−1

h dt u
n
h − ∇�−1dt u

n
h,∇�−1dt u

n
h)h

+ k(∇�−1
h dt u

n
h,∇�̃−1

h dt u
n
h − ∇�−1dt u

n
h)h

+ k(�̃−1
h dt u

n
h,�−1

h dt u
n
h − �−1dt u

n
h)

≥ k‖∇�−1dt u
n
h‖20,2,h −

[
k

8
‖∇�−1dt u

n
h‖20,2,h + Ckh2‖dt u

n
h‖0,2,h

]

−
[

k

8
‖∇�−1dt u

n
h‖20,2,h + Ckh2‖dt u

n
h‖20,2,h + Ckh2‖dt u

n
h‖21,2,h

]

−
[

k

8
‖∇�−1dt u

n
h‖20,2,h + Ckh2‖dt u

n
h‖20,2,h + Ckh2‖dt u

n
h‖21,2,h

]

≥ k

2
‖∇�−1dt u

n
h‖20,2,h − Ckh2‖∇dt u

n
h‖20,2,h, (56)

where Remark 5 is used in the last inequality.
The second term on the left-hand side of (55) can be written as

M2 = ε(∇un
h,∇(un

h − un−1
h ))h + εβk(un

h,�−1dt u
n
h − �̃−1

h dt u
n
h)

≥ ε

2
‖∇un

h‖20,2,h − ε

2
‖∇un−1

h ‖20,2,h + εk2

2
‖∇dt u

n
h‖20,2,h

− Cεk‖∇un
h‖20,2,h − Cεβ2kh2‖dt u

n
h‖21,2,h

≥ ε

2
‖∇un

h‖20,2,h − ε

2
‖∇un−1

h ‖20,2,h − Cεk‖∇un
h‖20,2,h

+ 3εk2

8
‖∇dt u

n
h‖20,2,h − k

8
‖∇�−1dt u

n
h‖20,2,h, (57)

where the last inequality hold under the restriction k ≥ Cβ2h2.
We now bound the third term on the left-hand side of (55) from below. We consider the

case f n = (un
h)3 − un

h , and it can be written as

f n = un
h

(|un
h |2 − 1

)
= 1

2

(
(un

h + un−1
h ) + kdt u

n
h

) (|un
h |2 − 1

)
.

A direct calculation then yields [15]

1

ε

(
f n, dt u

n
h

)
h ≥ 1

4ε
dt‖|un

h |2 − 1‖20,2,h
+ k

4ε
‖dt (|un

h |2 − 1)‖20,2,h − k

2ε
‖dt u

n
h‖20,2,h . (58)
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The third term on the left-hand side of (55) can be written as

M3 = k

ε
(∇ f (un

h),−∇�−1
h dt u

n
h)h + k

ε
(∇ f (un

h),∇�−1
h dt u

n
h − ∇�−1dt u

n
h)h

+ k

ε
(∇ f (un

h),∇�−1dt u
n
h − ∇�̃−1

h dt u
n
h)h

≥ k

ε
( f (un

h), dt u
n
h)h + k

ε
(�−1dt u

n
h − �−1

h dt u
n
h, f (un

h))

− Cε4γ1k‖∇ f (un
h)‖20,2,h − C

ε4γ1+2 kh2‖dt u
n
h‖20,2,h

− Cε4γ1k‖∇ f (un
h)‖20,2,h − C

ε4γ1+2 kh2‖dt u
n
h‖21,2,h

≥ k

ε
( f (un

h), dt u
n
h)h − Cε2γ1−1k‖ f (un

h)‖20,2,h − C

ε2γ1+1 kh2‖dt u
n
h‖20,2,h

− C

ε4γ1+2 kh2‖dt u
n
h‖20,2,h − Cε4γ1k‖∇ f (un

h)‖20,2,h
− C

ε4γ1+2 kh2‖∇dt u
n
h‖20,2,h − k

16
‖∇�−1dt u

n
h‖20,2,h

≥
[

k

4ε
dt‖|un

h |2 − 1‖20,2,h + k2

4ε
‖dt (|un

h |2 − 1)‖20,2,h
]

− C
k

ε
‖(un

h)2 − 1‖20,2,h

−
[

k

8
‖∇�−1dt u

n
h‖20,2,h + Ckh2

ε4γ1+2 ‖∇dt u
n
h‖20,2,h

]
− Cεk‖∇un

h‖20,2,h . (59)

Taking the summation over n from 1 to 	, and restricting k by letting k ≥ C h2

ε4γ1+3 , then
the energy law can be obtained by the Gronwall’s inequality. ��
Remark 6 1. The idea of proving this discrete energy law is to control bad terms in M1

by terms M2, which is different from the conforming Galerkin case [20,21] and the
discontinuous Galerkin case [17]. This is one reason why there are some restrictions in
this theorem.

2. The constant C in the energy law can be chosen to approach 1 by restricting k as the
polynomial of ε more stringently.

A lemma about summation by parts below is needed in this section.

Lemma 13 Suppose {an}	n=0 and {bn}	n=0 are two sequences, then

	∑
n=1

(an − an−1, bn) = (a	, b	) − (a0, b0) −
	∑

n=1

(an−1, bn − bn−1).

Proof The lemma can be easily obtained by using the equality below

	∑
n=1

(an−1, bn − bn−1) =
	∑

n=1

(an−1, bn) −
	∑

n=1

(an, bn) + (a	, b	) − (a0, b0).

��
Next we prove the ‖un

h‖2,2,h stability results for the cases when L2 in time (Theorem 3)
and L∞ in time (Theorem 4) are considered, which will be used in proving the generalized
coercivity result in the Morley element space.
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Theorem 3 Under the mesh constraints in Theorem 2, the following stability result holds

1

2
‖u	

h‖20,2,h + k

2
‖dt u

n
h‖20,2,h + εk

	∑
n=1

‖un
h‖22,2,h + 3k

ε

	∑
n=1

‖un
h∇un

h‖20,2,h ≤ Cε−2σ1−2,

where C is also the ε-independent constant.

Proof Taking vh = un
h as the test function in (32), then

(dt u
n
h, un

h) + εah(un
h, un

h) + 1

ε
(∇ f (un

h),∇un
h)h = 0. (60)

The first term on the left-hand side of (60) can be written as

(dt u
n
h, un

h) = 1

2k
‖un

h‖20,2,h − 1

2k
‖un−1

h ‖20,2,h + 1

2k
‖un

h − un−1
h ‖20,2,h . (61)

The third term on the left-hand side of (60) can be written as

1

ε
(∇ f (un

h),∇un
h)h = 1

ε
((3(un

h)2 − 1)∇un
h,∇un

h)h

= 3

ε
‖un

h∇un
h‖20,2,h − 1

ε
‖∇un

h‖20,2,h . (62)

Taking the summation over n from 1 to 	 on both sides of (60), multiplying with k, and
using Theorem 2, we obtain the conclusion. ��

Theorem 4 Under the mesh constraints in Theorem 2, and when k ≥ C h4

ε4+4γ1+2σ1
(ln 1

h )2 and

k ≥ Ch2, the following stability result holds

‖u	
h‖22,2,h +

	∑
n=1

‖un
h − un−1

h ‖22,2,h +
	∑

n=1

‖un
h − un−1

h ‖20,2,h
εk

≤ Cε−2γ2 ,

where γ2 := 2γ1 + σ1 + 6 and C is the ε-independent constant.

Proof Taking vh = un
h − un−1

h as the test function in (32), then

(dt u
n
h, un

h − un−1
h ) + εah(un

h, un
h − un−1

h ) + 1

ε
(∇ f (un

h),∇(un
h − un−1

h ))h = 0. (63)

The first term on the left-hand side of (63) can be written as

(dt u
n
h, un

h − un−1
h ) = 1

k
‖un

h − un−1
h ‖2L2 . (64)

The second term on the left-hand side of (63) can be written as

εah(un
h, un

h − un−1
h ) = ε

2
ah(un

h, un
h) − ε

2
ah(un−1

h , un−1
h )

+ ε

2
ah(un

h − un−1
h , un

h − un−1
h ). (65)
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Using summation by parts in Lemma 13 and integration by parts, then the summation of
the third term on the left-hand side of (63) can be written as

− 1

ε

	∑
n=1

(∇ f (un
h),∇(un

h − un−1
h ))h

= −1

ε

	∑
n=1

∑
E∈Eh

(
f (un

h),
∂(un

h − un−1
h )

∂n

)
E

+ 1

ε

	∑
n=1

( f (un
h),�(un

h − un−1
h ))h

= −1

ε

	∑
n=1

∑
E∈Eh

(
� f (un

h)�,

{
∂(un

h − un−1
h )

∂n

})
E

− 1

ε

	∑
n=1

∑
E∈Eh

(
{ f (un

h)},
�

∂(un
h − un−1

h )

∂n

�)

E

+ 1

ε
( f (u	

h),�u	
h)h − 1

ε
( f (u0

h),�u0
h)h − 1

ε

	∑
n=1

( f (un
h) − f (un−1

h ),�un−1
h )h

:= T1 + T2 + T3 + T4 + T5,

where �·� and {·} denote the jump and the average along the mesh boundaries.

Using the inverse inequality and Theorem 3, when k ≥ C h4

ε4+4γ1+2σ1
(ln 1

h )2, we have

T1 ≤ 1

ε

	∑
n=1

Ch2| f (un
h)|2,2,h |un

h − un−1
h |1,∞,h

≤ ε

8

	∑
n=1

|un
h − un−1

h |22,2,h + C
h4

ε3
ln

1

h

	∑
n=1

|(3(un
h)2 − 1)�un

h + 6un
h(∇un

h)2|20,2,h

≤ ε

8

	∑
n=1

|un
h − un−1

h |22,2,h + k
	∑

n=1

|�un
h |20,2,h + Ck

	∑
n=1

|un
h |22,2,h, (66)

where the first inequality uses the proof of Lemma 2.6 in [14] before applying the inverse
inequality.

When k ≥ Ch2, using Theorem 2 and the idea of the proof of Lemma 2.1 in [14], it holds
for each element K , then the second term can be bounded by

T2 ≤ Ch
	∑

n=1

| f (un
h)|1,2,h |un

h − un−1
h |2,2,h

≤ ε

4

	∑
n=1

ah(un
h − un−1

h , un
h − un−1

h ) + Cε−4γ1−1k
	∑

n=1

|un
h |21,2,h

≤ ε

4

	∑
n=1

ah(un
h − un−1

h , un
h − un−1

h ) + Cε−4γ1−2σ1−2. (67)

By Theorem 3, the third term and the fourth term can be bounded by

T3 + T4 ≤ ε

4
ah(un

h, un
h) + Cε−2σ1−4γ1−5. (68)
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Using Theorem 3, the fifth term can be bounded by

T5 ≤ 1

ε

	∑
n=1

( f (un
h) − f (un−1

h ),�un−1
h )h

≤ 1

8k

	∑
n=1

‖un
h − un−1

h ‖2L2 + Cε−4γ1−2k
	∑

n=1

|un
h |22,2,h

≤ 1

8k

	∑
n=1

‖un
h − un−1

h ‖2L2 + Cε−4γ1−2σ1−5. (69)

Taking the summation over n from 1 to 	, and combining (64)–(69), we have

ε‖u	
h‖22,2,h + ε

	∑
n=1

‖un
h − un−1

h ‖22,2,h +
	∑

n=1

‖un
h − un−1

h ‖20,2,h
k

≤Cε−4γ1−2σ1−5.

��
Remark 7 If vh = un

h or vh = un
h − un−1

h are chosen as the test function in (32), we can only
obtain the L2 and ‖ · ‖2,2,h stability with upper bounds which are exponentially dependent
on 1

ε
.

3.4 The Generalized Coercivity Result in theMorley Element Space

Recall S̃h
E is the Hsieh-Clough-Tocher macro element space. This C1 conforming finite

element space S̃h
E is contained in H1(�) space, so the following discrete spectrum estimate

holds automatically.

Lemma 14 Under the assumptions of Lemma 1, there exists an ε-independent and h-
independent constant C0 > 0 such that for ε ∈ (0, 1) and a.e. t ∈ [0, T ]

λC O N F
C H := inf

0 �=ψ∈S̃h
E

�w=ψ

ε‖∇ψ‖2
L2 + 1

ε
( f ′(u(t))ψ,ψ)

‖∇w‖2
L2

≥ −C0

for t ∈ [0, T ] and ε ∈ (0, ε0).

Before the generalized coercivity result is given, the following lemma is needed. It is
about continuous H−1(�) norm.

Lemma 15 The H−1 norm has the following equivalent forms

‖‖H−1 = sup
0 �=ξ∈H1∩L2

0

(, ξ)

|ξ |H1
.

Proof By (20) and the Hölder’s inequality,

(, ξ) = −(∇�−1,∇ξ) ≤ ‖∇�−1‖L2‖∇ξ‖L2 ,

Then we have

sup
0 �=ξ∈H1∩L2

0

(, ξ)

|ξ |H1
≤ ‖‖H−1 .
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On the other hand, choose ξ = −�−1, then

sup
0 �=ξ∈H1∩L2

0

(, ξ)

|ξ |H1
≥ (∇�−1,∇�−1)

‖∇�−1‖L2
= ‖‖H−1 .

Then the lemma is proved. ��
Then we prove the generalized coercivity result in the Morley element space using the

properties of the enriching operators.

Theorem 5 Suppose there exist positive numbers C2 > 0 and γ3 > 0 such that the solution
u of problems (1)–(4) satisfies

‖u − Phu‖L∞((0,T );L∞) ≤ C2hε−γ3 , (70)

where the existence of C2 and γ3 can be guaranteed by imbedding the L∞ space to H2 space.
Suppose ψ ∈ Sh

E ∩L2
0(�) and the mesh constraints in Theorem 4 hold, then there exists an

ε-independent and h-independent constant C > 0 such that for ε ∈ (0, 1) and a.e. t ∈ [0, T ]

N := (ε − ε4)(∇ψ,∇ψ)h + 1

ε
( f ′(Phu(t))ψ,ψ)h ≥ −C‖∇�−1ψ‖2L2 − Cε−2γ2−4h2,

provided that h satisfies the constraint

h ≤ (C1C2)
−1εγ3+3, (71)

where C1 arises from the following equality:

C1 := max|ξ |≤C3
| f ′′(ξ)|.

Proof Based on the boundness of the exact solution of theCahn–Hilliard equation,we assume
there exists C3 such that

‖u‖L∞((0,T );L∞) ≤ C3, ‖Phu‖L∞((0,T );L∞) ≤ C3. (72)

Then under the mesh constraint (71), we have

‖ f ′(Phu(t)) − f ′(u(t))‖L∞((0,T );L∞) ≤ ε3.

Then we have

‖ f ′(Phu(t))‖L∞((0,T );L∞) ≥ ‖ f ′(u(t))‖L∞((0,T );L∞) − ε3.

Then the term N can be bounded by

N = (ε − ε4)(∇ψ,∇ψ)h + 1

ε
( f ′(Phu(t)))ψ,ψ)h

= ε4(∇ψ,∇ψ)h + 2ε2( f ′(Phu(t))ψ,ψ)h

+ (1 − 2ε3)

[
ε(∇ψ,∇ψ)h + 1

ε
( f ′(Phu(t)))ψ,ψ)h

]

≥ ε4(∇ψ,∇ψ)h + 2ε2( f ′(Phu(t))ψ,ψ)h − (1 − 2ε3)ε2(ψ,ψ)

+ (1 − 2ε3)

[
ε(∇ψ,∇ψ)h + 1

ε
( f ′(u(t))ψ,ψ)

]
. (73)
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Besides, using the Lemma 11 and Remark 5, we obtain

−Cε2(ψ,ψ) = Cε2(∇�−1
h ψ,∇ψ)h + Cε2(�−1

h ψ − �−1ψ,ψ)

≥ −ε4

8
(∇ψ,∇ψ)h − C‖∇�−1ψ‖2L2 − Ch2‖ψ‖2L2

− Cε2h2‖ψ‖2L2 − ε2(ψ,ψ)h,

≥ −ε4

4
(∇ψ,∇ψ)h − C‖∇�−1ψ‖2L2 . (74)

Then we have

N ≥ 5ε4

8
(∇ψ,∇ψ)h − C‖∇�−1ψ‖2L2

+ (1 − 2ε3)

[
ε(∇ψ,∇ψ)h + 1

ε
( f ′(u(t)))ψ,ψ)

]
. (75)

If ψ = Phu(tn) − un
h , then by Theorem 4, we have

‖ψ‖2,2,h ≤ Cε−γ2 .

Define ψ̃ by ψ̃ = Ẽψ , then by (25), we have

|ψ̃ − ψ |1,2,h ≤ Cε−γ2h (76)

|ψ̃ |1,2,h ≤ |ψ |1,2,h + Cε−γ2h. (77)

Using (77) and Remark 5, we obtain

(
1 − 2ε3 + ε3

8

)
ε(∇ψ,∇ψ)0,2,h ≥ (1 − 2ε3)ε(∇ψ̃,∇ψ̃)0,2,h − Cε−2γ2−2h2 (78)

(1 − 2ε3)
1

ε
( f ′(u(t)))ψ,ψ) = (1 − 2ε3)

1

ε
( f ′(u(t)))ψ̃, ψ̃)

+ (1 − 2ε3)
1

ε
( f ′(u(t))), ψ2 − ψ̃2)

≥ (1 − 2ε3)
1

ε
( f ′(u(t)))ψ̃, ψ̃)

− C

ε4
‖ψ − ψ̃‖2L2 − ε2‖ψ‖2L2

≥ (1 − 2ε3)
1

ε
( f ′(u(t)))ψ̃, ψ̃)

− Cε−2γ2−4h2 − ε4

8
(∇ψ,∇ψ)h − C‖∇�−1ψ‖2L2 .

(79)

Using (25), the definition of operator �−1 and Lemma 15, we obtain

‖∇�−1ψ̃ − ∇�−1ψ‖L2 ≤ ‖ψ̃ − ψ‖L2

≤ Ch2ε−γ2 . (80)
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When h ≤ Cεγ1 , using (78)–(80), and Lemma 14, Eq. (75) can be bounded by

N ≥ ε4

2
(∇ψ,∇ψ)h − C‖∇�−1ψ‖2L2 + (1 − 2ε3)

[
ε(∇ψ̃,∇ψ̃)h

+1

ε
( f ′(u(t)))ψ̃, ψ̃)h

]
− Cε−2γ2−4h2

≥ ε4

2
(∇ψ,∇ψ)h − C‖∇�−1ψ‖2L2 − C‖∇�−1ψ̃‖2L2 − Cε−2γ2−4h2

≥ −C‖∇�−1ψ‖2L2 − Cε−2γ2−4h2. (81)

��

3.5 The Error Estimates in Polynomial of 1
�

In this subsection, an error estimate of �̃−1
h (Phu(tn) − un

h) with polynomial dependence on
1
ε
is derived, and as corollaries, error estimates of �̂−1

h (Phu(tn) − un
h), �−1(Phu(tn) − un

h),

�−1
h (Phu(tn)−un

h) and�−1
h (Phu(tn)−un

h)with polynomial dependence on 1
ε
are also given.

Theorem 6 Suppose u is the solution of (1)–(4), un
h is the numerical solution of scheme

(32)–(33), and assumption (23) holds. Define θn := Phu(tn) − un
h, then under following

mesh constraints

h ≤ Cε2k, k ≤ Cε3σ1+13,

h ≤ Cε4γ1+4, h ≤ (C1C2)
−1εγ3+3,

we have the following error estimate

1

4
‖∇�̃−1

h θ	‖20,2,h + k2

4

	∑
n=1

‖∇�̃−1
h dtθ

n‖20,2,h + ε4k

16

	∑
n=1

(∇θn,∇θn)h

+ k

ε

	∑
n=1

‖θn‖40,4,h ≤ C(ρ̃0(ε)| ln h|h2 + ρ̃1(ε)k
2).

Proof Using (32)–(33), ∀vh ∈ Sh
E , we have

(dtθ
n, vh) + εah(θn, vh)

= [(dt Phu(tn), vh) + εah(Phu(tn), vh)] − [(dt u
n
h, vh) + εah(un

h, vh)]
= −(dtρ

n, vh) + (dt u(tn) + ε�2u(tn) − 1

ε
� f (u(tn)) + αu(tn), vh)

−
[
1

ε
( f ′(u(tn))∇ Phu(tn),∇vh)h + α(Phu(tn), vh)

]
+ 1

ε
(∇ f (un

h),∇vh)h

= (−dtρ
n + αρn, vh) − 1

ε
( f ′(u(tn))∇ Phu(tn) − ∇ f (un

h),∇vh)h

+ (R(utt , n), vh), (82)

where

R(utt ; n) := 1

k

∫ tn

tn−1

(s − tn−1)utt (s) ds.
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It follows from (13) that

k
	∑

n=1

‖R(utt ; n)‖2H−1 ≤ 1

k

	∑
n=1

(∫ tn

tn−1

(s − tn−1)
2 ds

)(∫ tn

tn−1

‖utt (s)‖2H−1 ds

)

≤ Ck2ρ̃1(ε).

Taking vh = −�̃−1
h θn in (82), we have

(dtθ
n,−�̃−1

h θn) + εah(θn,−�̃−1
h θn) + (R(utt , n),−�̃−1

h θn)

= (−dtρ
n + αρn,−�̃−1

h θn) − 1

ε
( f ′(u(tn))∇ Phu(tn) − ∇ f (un

h),−∇�̃−1
h θn)h . (83)

By the definition of �−1
h and �̃−1

h , then we have

(∇�−1
h dtθ

n,∇�̃−1
h θn)h + ε(∇θn,∇θn)h + βε(�̃−1

h θn − �−1θn, θn)

+ 1

ε
(∇ f (Phu(tn)) − ∇ f (un

h)),−∇�̃−1
h θn)h + (R(utt , n),−�̃−1

h θn)

= 1

ε
( f ′(Phu(tn))∇ Phu(tn) − f ′(u(tn))∇ Phu(tn),−∇�̃−1

h θn)

+ (− dtρ
n + αρn,−�̃−1

h θn) + (�−1dtθ
n − �−1

h dtθ
n, �̃−1

h θn)h . (84)

When h ≤ Cε2k, using Remark 5, then the first term on the left-hand side of (84) can be
bounded by

L1 = (∇�̃−1
h dtθ

n,∇�̃−1
h θn)h + (∇�−1

h dtθ
n − ∇�̃−1

h dtθ
n,∇�−1

h θn)h

+ (∇�−1
h dtθ

n − ∇�̃−1
h dtθ

n,∇�̃−1
h θn − ∇�−1

h θn)h

≥
[

k

2
‖∇�̃−1

h dtθ
n‖20,2,h + 1

2k
‖∇�̃−1

h θn‖20,2,h − 1

2k
‖∇�̃−1

h θn−1‖20,2,h
]

− [
Ch2‖dtθ

n‖21,2,h + ‖∇�−1θn‖20,2,h + Ch2‖θn‖20,2,h
]

−
[

Ch4‖dtθ
n‖21,2,h + ε4

32
‖∇θn‖20,2,h + C‖∇�̃−1

h θn‖20,2,h
]

≥
[

k

2
‖∇�̃−1

h dtθ
n‖20,2,h + 1

2k
‖∇�̃−1

h θn‖20,2,h − 1

2k
‖∇�̃−1

h θn−1‖20,2,h
]

−
[
Ch2‖∇dtθ

n‖20,2,h + Ch2‖∇�̃−1
h dtθ

n‖20,2,h

+ ε4

16
‖∇θ‖20,2,h + ‖∇�̃−1

h θn‖20,2,h + Ch2‖θn‖20,2,h
]

≥
[

k

2
‖∇�̃−1

h dtθ
n‖20,2,h + 1

2k
‖∇�̃−1

h θn‖20,2,h − 1

2k
‖∇�̃−1

h θn−1‖20,2,h
]

−
[

ε4k2

32
‖∇dtθ

n‖20,2,h + ε4

8
‖∇θ‖20,2,h + ‖∇�̃−1

h θn‖20,2,h
]

≥
[

k

2
‖∇�̃−1

h dtθ
n‖20,2,h + 1

2k
‖∇�̃−1

h θn‖20,2,h − 1

2k
‖∇�̃−1

h θn−1‖20,2,h
]

−
[

ε4

16
(‖∇θn‖20,2,h + ‖∇θn−1‖20,2,h) + ε4

8
‖∇θ‖20,2,h + ‖∇�̃−1

h θn‖20,2,h
]

. (85)
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When h ≤ C
β
ε2, the third term on the left-hand side of (84) can be bounded by

L3 ≤ Cβ2h2‖θn‖21,2,h + ε2‖θn‖20,2,h
≤ ε4

8
|θn |21,2,h + C‖∇�̃−1

h θn‖20,2,h . (86)

When h ≤ Cε4γ1+4 and h ≤ Cε4, the fourth term on the left-hand side of (84) can be
bounded by

L4 = 1

ε
(∇ f (Phu(tn)) − ∇ f (un

h)),∇�−1
h θn − ∇�̃−1

h θn)h

+ 1

ε
(∇ f (Phu(tn)) − ∇ f (un

h)),−∇�−1
h θn)h

≥ −h

ε
‖∇ (

f ′(Phu)θn − f ′′(Phu)(θn)2 + (θn)3
) ‖20,2,h − Ch‖θn‖21,2,h

+ 1

ε
(�−1

h θn − �−1θn, f (Phu(tn)) − f (un
h)))h + 1

ε
( f (Phu(tn)) − f (un

h), θn)h

≥ −[C h

ε4γ1
|θn |21,2,h + Ch|θn |21,2,h] − [C h

ε2
|θn |20,2,h + C

h

ε4γ1
|θn |20,2,h]

+
[
1

ε
( f ′(Phu(tn)))θn, θn)h − 3

ε
Phu(tn)((θn)2, θn)h + 1

ε
((θn)3, θn)h

]

≥ −ε4

8
|θn |21,2,h − C‖∇�̃−1

h θn‖0,2,h

+
[
1

ε
( f ′(Phu(tn)))θn, θn)h − 3

ε
Phu(tn)((θn)2, θn)h + 1

ε
((θn)3, θn)h

]
. (87)

For the second term inside the brackets and on the right-hand side of (87), we appeal
to Remark 5, the discrete energy law and the following Gagliardo-Nirenberg inequality [1].
Then for any K ∈ Th , we have

‖θn‖3L3(K )
≤ C

(
‖∇θn‖L2(K )‖θn‖2L2(K )

+ ‖θn‖3L2(K )

)

≤ ε5

32C
‖∇θn‖2L2(K )

+ C

ε
σ1
2 + 11

4

‖θn‖3L2(K )
,

≤ ε5

32C
‖∇θn‖2L2(K )

+
[

ε5

32C
‖∇θn‖2L2(K )

+ C

ε2σ1+11 ‖∇�−1θn‖3L2(K )

]
. (88)

When h ≤ Cεσ1+2, the second term inside the brackets and on the right-hand side of (87)
can be bounded by

3

ε
Phu(tn)((θn)2, θn)h

≤ ε4

16
‖∇θn‖20,2,h + C

ε2σ1+12 ‖∇�−1θn‖30,2,h

≤ ε4

16
‖∇θn‖20,2,h + C

ε2σ1+12 ‖∇�̃−1θn‖30,2,h + C

ε2σ1+12 h3‖θn‖30,2,h

≤ ε4

8
‖∇θn‖20,2,h + C

ε2σ1+12 ‖∇�̃−1θn‖30,2,h . (89)

123



1886 Journal of Scientific Computing (2019) 78:1862–1892

The fifth term on the left-hand side of (84) can be bounded by

L5 ≥ −C‖R(utt ; n)‖2H−1 − |∇�̃−1
h θn |20,2,h . (90)

By the mean value theorem and (11), the first term on the right-hand side of (84) can be
bounded by

R1 ≤ C

ε
( f ′′(ξ)(Phu(tn) − u(tn)),−∇�̃−1

h θn)h

≤ C

ε2
‖Phu(tn) − u(tn)‖20,2,h + ‖∇�̃−1

h θn‖20,2,h
≤ Cε−max{2σ1+7,2σ3+4}h4 + ‖∇�̃−1

h θn‖20,2,h . (91)

By the Poincaré inequality and the bounds of I1 in [32], the summation of the second term
on the right-hand side of (84) can be written as

	∑
n=1

⎡
⎣∑

E∈Eh

(
∂�−1(−dtρ

n + αρn)

∂n
,−�̃−1

h θn
)

E
− (∇�−1(−dtρ

n + αρn),−∇�̃−1
h θn)h

⎤
⎦

≤ C
	∑

n=1

‖ − dtρ
n + αρn‖2H−1 + C

	∑
n=1

‖∇�̃−1
h θn‖20,2,h

≤ C ρ̃0(ε)
| ln h|h2

k
+ C

	∑
n=1

‖∇�̃−1
h θn‖20,2,h, (92)

where Lemma 2.3 in [14] is used in the first inequality and

ρ̃0(ε) := ε4ρ3(ε) + ε−6ρ4(ε) + ρ5(ε),

ρ3(ε) := ε
−max

{
2σ1+ 13

2 ,2σ3+ 7
2 ,2σ2+4,2σ4

}
−max{2σ1+5,2σ3+2}−2

+ ε
−max

{
σ1+ 5

2 ,σ3+1
}
−2

ρ0(ε) + ε−2σ6+1,

ρ4(ε) := ε
−max

{
2σ1+ 13

2 ,2σ3+ 7
2 ,2σ2+4,2σ4

}
+4

,

ρ5(ε) := ε
−2max

{
2σ1+ 13

2 ,2σ3+ 7
2 ,2σ2+4,2σ4

}
+2

.

Using Remark 5, then under the mesh constraint h ≤ Ck and h ≤ Cε4, the third term on
the right-hand side of (84) can be bounded by

R3 =
∑

E∈Eh

(
∂�−1(�−1dtθ

n − �−1
h dtθ

n)

∂n
, �̃−1

h θn

)
E

− (∇�−1(�−1dtθ
n − �−1

h dtθ
n),∇�̃−1

h θn)h

≤ Ch‖dtθ
n‖L2‖∇�̃−1

h θn‖L2

≤ (Ch3‖∇dtθ
n‖2L2 + h

4C
‖∇�̃−1

h dtθ
n‖2L2) + C‖∇�̃−1

h θn‖2L2

≤ ε4k2

32
‖∇dtθ

n‖2L2 + k

4
‖∇�̃−1

h dtθ
n‖2L2 + C‖∇�̃−1

h θn‖2L2

≤ ε4

16
(‖∇θn‖2L2 + ‖∇θn−1‖2L2) + k

4
‖∇�̃−1

h dtθ
n‖2L2 + C‖∇�̃−1

h θn‖2L2 , (93)
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where Lemma 2.3 in [14] and the inverse inequality are used in the first inequality.
Combining (85) to (93), we have

1

2
‖∇�̃−1

h θn‖20,2,h − 1

2
‖∇�̃−1

h θn−1‖20,2,h + k2

4
‖∇�̃−1

h dtθ
n‖20,2,h

+ k

(
ε − 7ε4

8

)
(∇θn,∇θn)h + k

ε
( f ′(Phu(tn)))θn, θn)h + k

ε
‖θn‖40,4,h

≤ Ck(−dtρ
n + αρn,−�̃−1

h θn) + Ck‖R(utt ; n)‖2H−1 + Ck

ε2σ1+12 ‖∇�̃−1
h θn‖30,2,h

+ Cε−max{2σ1+7,2σ3+4}h4 + Ck‖∇�̃−1
h θn‖20,2,h . (94)

Taking the summation for n from 1 to 	, Eq. (94) can be changed into

1

2
‖∇�̃−1

h θ	‖20,2,h + k2

4

	∑
n=1

‖∇�̃−1
h dtθ

n‖20,2,h

+ k
	∑

n=1

[
(ε − ε4)(∇θn,∇θn)h + 1

ε
( f ′(Phu(tn)))θn, θn)h

]

+ ε4k

8

	∑
n=1

(∇θn,∇θn)h + k

ε

	∑
n=1

‖θn‖40,4,h

≤ C ρ̃1(ε)k
2 + Ck

ε2σ1+12

	∑
n=1

‖∇�̃−1
h θn‖30,2,h + Ck

	∑
n=1

‖∇�̃−1
h θn‖20,2,h

+ C ρ̃0(ε)| ln h|h2. (95)

Using the generalized coercivity result in Theorem 5, we obtain when h ≤ Cε2, we have

1

2
‖∇�̃−1

h θ	‖20,2,h + k2

4

	∑
n=1

‖∇�̃−1
h dtθ

n‖20,2,h

+ ε4k

8

	∑
n=1

(∇θn,∇θn)h + k

ε

	∑
n=1

‖θn‖40,4,h

≤ C ρ̃1(ε)k
2 + Ck

ε2σ1+12

	∑
n=1

‖∇�̃−1
h θn‖30,2,h + Ck

	∑
n=1

‖∇�̃−1
h θn‖20,2,h

+ C ρ̃0(ε)| ln h|h2 + Ck
	∑

n=1

‖∇�−1θn‖2L2 + Ch2ε−2γ2−4

≤ C ρ̃1(ε)k
2 + Ck

ε2σ1+12

	∑
n=1

‖∇�̃−1
h θn‖30,2,h + Ck

	∑
n=1

‖∇�̃−1
h θn‖20,2,h

+ ε4k

16

	∑
n=1

(∇θn,∇θn)h + C ρ̃0(ε)| ln h|h2. (96)
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By the discrete energy law and Theorem 3, when k ≤ Cε3σ1+13, we have

1

4
‖∇�̃−1

h θ	‖20,2,h + k2

4

	∑
n=1

‖∇�̃−1
h dtθ

n‖20,2,h

+ ε4k

16

	∑
n=1

(∇θn,∇θn)h + k

ε

	∑
n=1

‖θn‖40,4,h

≤ C ρ̃1(ε)k
2 + Ck

ε2σ1+12

	−1∑
n=1

‖∇�̃−1
h θn‖30,2,h + Ck

	−1∑
n=1

‖∇�̃−1
h θn‖20,2,h

+ C ρ̃0(ε)| ln h|h2. (97)

Let d	 ≥ 0 be the slack variable such that

1

4
‖∇�̃−1

h θ	‖20,2,h + k2

4

	∑
n=1

‖∇�̃−1
h dtθ

n‖20,2,h

+ ε4k

16

	∑
n=1

(∇θn,∇θn)h + k

ε

	∑
n=1

‖θn‖40,4,h + d	

= Ck

ε2σ1+12

	−1∑
n=1

‖∇�̃−1
h θn‖30,2,h + Ck

	−1∑
n=1

‖∇�̃−1
h θn‖20,2,h

+ C ρ̃1(ε)k
2 + C ρ̃0(ε)| ln h|h2. (98)

and define for 	 ≥ 1

S	+1 : = 1

4
‖∇�̃−1

h θ	‖20,2,h + k2

4

	∑
n=1

‖∇�̃−1
h dtθ

n‖20,2,h

+ ε4k

16

	∑
n=1

(∇θn,∇θn)h + k

ε

	∑
n=1

‖θn‖40,4,h + d	 (99)

S1 : = C ρ̃1(ε)k
2 + C ρ̃0(ε)| ln h|h2, (100)

then we have

S	+1 − S	 ≤ CkS	 + Ck

ε2σ1+12 S
3
2
	 for 	 ≥ 1. (101)

Applying Lemma 2 to {S	}	≥1 defined above, we obtain for 	 ≥ 1

S	 ≤ a−1
	

{
S

− 1
2

1 − Ck

ε2σ1+12

	−1∑
s=1

a
− 1

2
s+1

}−2

(102)

provided that

S
− 1

2
1 − Ck

ε2σ1+12

	−1∑
s=1

a
− 1

5
s+1 > 0. (103)

We note that as (1 ≤ s ≤ 	) are all bounded as k → 0, therefore, (103) holds under the mesh
constraint stated in the theorem. Then it follows from (102) and (103) that

S	 ≤ 2a−1
	 S1 ≤ C(ρ̃0(ε)| ln h|h2 + ρ̃1(ε)k

2).
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Table 1 Approximate number of
DOF using MDG, Argyris, HCT
and Morley elements

MDG Argyris HCT Morley

h = 0.4 1200 526 343 221

h = 0.2 4800 1946 1283 841

h = 0.1 19,200 7486 4963 3281

h = 0.05 76,800 29,366 19,523 12,961

h = 0.025 307,200 116,326 77,443 51,521

Then the theorem is proved. Notice the mesh restrictions are stringent theoretically, and
numerically they are much better. ��

Next we gave a Corollary based on Theorem 6, Lemmas 5–11, and the triangle inequality.

Corollary 1 Assume the mesh constraints in Theorem 6 hold, then the following estimates
hold

‖∇�̂−1
h θ	‖20,2,h ≤ C(ρ̃0(ε)| ln h|h2 + ρ̃1(ε)k

2),

‖∇�−1
h θ	‖20,2,h ≤ C(ρ̃0(ε)| ln h|h2 + ρ̃1(ε)k

2),

‖∇�−1
h θ	‖20,2,h ≤ C(ρ̃0(ε)| ln h|h2 + ρ̃1(ε)k

2),

‖∇�−1θ	‖20,2,h ≤ C(ρ̃0(ε)| ln h|h2 + ρ̃1(ε)k
2).

Remark 8 1. All mesh restrictions have been incorporated into Theorem 6. For example,

h ≤ Cε4 can be incorporated into h ≤ Cε4γ1+4 since γ1 ≥ 0, k ≥ C h4

ε4+4γ1+2σ1
(ln 1

h )2

in Theorem 4 can be incorporated into k ≥ C h2

ε4γ1+3 and h2(ln 1
h )2 ≤ ε2σ1+1, and so on.

2. If vh = −�̂−1
h θn , instead of vh = −�̃−1

h θn , is chosen as the test function in (82), the
error estimate can not be obtained due to other terms in the definition of −�̂−1

h .

4 Numerical Experiments

In this section,we present twonumerical tests to gauge the performance of theMorley element
approximation. The fully implicit scheme and the square domain � = [−1, 1]2 are used in
both tests. The degrees of freedom (DOF) are compared for quadratic mixed discontinuous
Galerkin method (MDG), C1 conforming Argyris element, C1 conforming Hsieh–Clough–
Tocher (HCT) macro element, and Morley element in Table 1. From the angle of degrees of
freedom, Morley element method is supposed to be very efficient.

Next, two numerical tests are presented to numerically check the discrete maximum prin-
ciple, which is not known theoretically. See [32] for evolutions of the zero-level sets of the
Cahn–Hilliard equation using theMorley elements based onmore different initial conditions.

Test 1. Consider the Cahn–Hilliard equations (1)–(4) with the following initial condition:

u0(x) = tanh

(
d0(x)√

2ε

)
, (104)

where d0(x) =
√

x21 + x22 − 0.5, which is the signed distance from any point to the circle

x21 + x22 = 0.52. Note that u0 has the desired form as stated in Lemma 1.
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Fig. 1 The zero-level set of the initial condition (left) and the |un
h |L∞ bound at different time points (right).

In this test, ε = 0.05, h = 0.04, k = 0.0001

Fig. 2 The zero-level set of the initial condition (left) and the |un
h |L∞ bound at different time points (right).

In this test, ε = 0.025, h = 0.02, k = 0.0001

Figure 1 plots the zero-level set of this initial condition and L∞ bound |un
h |L∞ . We can

observe that |un
h |L∞ ≤ 1, which numerically verifies the assumption (23). In this test, the

interaction length ε = 0.05, the space size h = 0.04 and the time step size k = 0.0001.
Test 2. Consider the Cahn–Hilliard equations (1)–(4) with the following initial condition:

u0(x) = tanh

(
1√
2ε

(
min

{√
(x1 + 0.3)2 + x22 − 0.3,

√
(x1 − 0.3)2 + x22 − 0.25

}))
.

Note that u0 can be written in the form given in (104) with d0(x) being the signed distance
function to the initial curve. We note that u0 does not have the desired form as stated in
Lemma 1.

Figure 2 plots the zero-level set of this initial condition and L∞ bound |un
h |L∞ . We can

observe that |un
h |L∞ ≤ 1, which numerically verifies the assumption (23). In this test, the

interaction length ε = 0.025, the space size h = 0.02, and the time step size k = 0.0001.
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