
Journal of Scientific Computing (2019) 78:1744–1767
https://doi.org/10.1007/s10915-018-0825-4

Computing Integrals Involved the Gaussian Function
with a Small Standard Deviation

Yunyun Ma1 · Yuesheng Xu2,3

Received: 9 April 2018 / Revised: 31 August 2018 / Accepted: 4 September 2018 /
Published online: 15 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We develop efficient numerical integration methods for computing an integral whose inte-
grand is a product of a smooth function and the Gaussian function with a small standard
deviation. Traditional numerical integration methods applied to the integral normally lead
to poor accuracy due to the rapid change in high order derivatives of its integrand when the
standard deviation is small. The proposed quadrature schemes are based on graded meshes
designed according to the standard deviation so that the quadrature errors on the resulting
subintervals are approximately equal. The integral in each subinterval is then computed by
considering the Gaussian function as a weight function and interpolating the smooth factor of
the integrand at the Chebyshev points of the first kind. For a finite order differentiable factor,
we design a quadrature scheme having accuracy of a polynomial order and for an infinitely
differentiable factor of the integrand, we design a quadrature scheme having accuracy of an
exponential order. Numerical results are presented to confirm the accuracy of these proposed
quadrature schemes.
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1 Introduction

We consider in this paper developing efficient quadrature methods for an integral whose
integrand is a product of a smooth function and the Gaussian function with a small standard
deviation. Gaussian functions [2,15,23,29,30] arise in many areas of mathematics, physics
and engineering, especially in the fields of statistics, probability theory [9,10], image and
signal processing [2,11,14,20,31]. Design of numerical quadrature formulas for the integral
is important for numerical analysis for the aforementioned applications. When the standard
deviation is small, high order derivatives of the Gaussian function oscillate dramatically
near the position of the peak of the curve of the Gaussian function, and decay rapidly away
from that position. Standard numerical quadratures of such an integral normally lead to poor
accuracy due to the rapid change in the derivatives of its integrandwhen the standard deviation
is small. We identified this computational challenge while we worked on a project of image
processing whose results were presented in [20]. Computing integrals of this type requires
special effort.

Quadrature schemes that we design for computing the integral is based on graded meshes
constructed according to the standard deviation so that the resulting quadrature errors on
the subintervals are approximately equal. The integral in each of the subintervals is then
computed by considering the Gaussian function as a weight function and interpolating the
smooth factor of the integrand at the Chebyshev points of the first kind.We establish accuracy
of exponential and polynomial orders for the proposed quadrature schemes according to the
regularity of the smooth factor of the integrand. We present numerical results to confirm the
accuracy estimates.

In the literature, quadrature formulas for the integrals involved the Gaussian function were
designed according to properties of the Gaussian function. The well-known Gauss–Hermite
quadrature [1,8] in numerical analysiswas designed for the integralswith theGaussianweight
in an unbounded integration interval. Theweights of the quadrature formulas can be computed
exactly, which are integrals with the integrand defined by a product of a polynomial and the
Gaussian function. We call these integrals the moments, and their computation in a bounded
integration interval can be found in [27]. A numerical quadrature for higher dimensional
integration with the Gaussian weight was developed in [19]. However, quadrature formulas
for integrals involved the Gaussian function are inadequate in the literature for the case
when the standard deviation of the Gaussian function is small. Such integrals require careful
numerical treatment, since higher order derivatives of the Gaussian function have severe
oscillation with large magnitude.

The purpose of this paper is to design efficient quadrature formulas for the integrals
involved the Gaussian function for the case when the standard deviation is small. Motivated
by the subdivision in nonuniform fashion for the singular integrals [3,16,25] and oscilla-
tory integrals [21,22], we shall divide the integration interval into subintervals according to
the standard deviation of the Gaussian function, and approximate the integrals in each of
the resulting subintervals by replacing the smooth factor of integrand by an interpolating
polynomial. The interpolation nodes are chosen as the Chebyshev points of the first kind
[5,8,26,32]. The weights of the quadrature formulas are computed by utilizing the error
function [1,12,18,29]. The accuracy of these quadrature formulas increases as the standard
deviation of the Gaussian function tends to zero and the computational complexity is inde-
pendent of the standard deviation of the Gaussian function.

This paper is organized in six sections. We discuss in Sect. 2 properties of the Gaussian
function to motivate the numerical integration for the integrals involved the Gaussian func-
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tion with a small standard deviation. In Sect. 3, we establish a basic quadrature formula for
computing the integrals involved the Gaussian function in a reference integration interval.We
then propose in Sect. 4 two composite quadrature formulas based on dividing the integration
interval into subintervals according to the standard deviation of the Gaussian function, and
using the formula developed in the previous section to calculate the integrals in the subinter-
vals. Orders of accuracy for the proposed quadrature formulas are presented in this section.
A computation method of the weights for the quadrature formulas is provided in Sect. 5. We
show in Sect. 6 numerical results to verify the theoretical accuracy estimate of the proposed
quadrature formulas.

2 Integrals Involved the Gaussian Function

In this section, we first discuss intrinsic difficulties in numerical integration by using tradi-
tional quadrature schemes for an integral whose integrand is a product of a smooth function
and the Gaussian function with a small standard deviation. This motivates us to design graded
meshes of the integration interval according to the standard deviation of the Gaussian func-
tion.

We begin with recalling the definition of the Gaussian function. For three fixed real
numbers c0, c1 and c2, a Gaussian function is of the form

G(x; c0, c1, c2) := c1 exp

{
− (x − c2)2

2c20

}
, for x ∈ R,

where c0 > 0 is called the standard deviation, c1 > 0 is the maximum of G, and c2 is the
position of the maximum of G occurring. The graph of G is a symmetric bell shaped curve.
The parameter c0 controls the width of the bell, and c1 and c2 are respectively the height
and the position of the peak of the bell. The Gaussian function with c1 := 1/(c0

√
2π) is the

probability density function of a normally distributed random variable with expected value
c2 and variance c20. Without loss of generality, we assume that c1 = 1. The behaviours of G
and its derivatives are influenced by the standard deviation and the center of the peak in the
graph of G. We simplify the parameters of G by

Gα,β(x) := e−α2(x−β)2 , for x ∈ R, (2.1)

where α > 0 and β is a real number. We let Gα := Gα,0. Clearly, α := 1/(
√
2c0) is the

1/
√
2-multiple of the reciprocal of the standard deviation of the Gaussian function. A small

standard deviation corresponds to a large parameter α. Therefore, in the remaining part of
this paper, we shall consider the integral involved Gα,β for a large α. Specifically, we shall
study numerical integration for the integral having the form

Iα[ f ] :=
∫
I
f (x)Gα(x)dx, (2.2)

where I := [0, 1], α � 1 and f ∈ C(I ) is independent of α. The integrals involved Gα,β

with β �= 0 may be treated by first splitting the integral interval into two subintervals, on
each of which β is an end point, and then changing the integrals defined on the subintervals
into the integrals defined on I having the form (2.2). The quadrature methods to be proposed
for (2.2) can extend straightforward to the general case.

We first review properties of Gα and its derivatives for α > 1. Let N := {1, 2, . . .} and
N0 := {0} ∪N. For n ∈ N0, we denote by Hn the Hermite polynomials [1]. For m ∈ N0, the
m-th derivative of Gα is given by
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A B

Fig. 1 The derivatives of Gα . a m = 0, b m = 10

A B

Fig. 2 The derivatives of Gα . a m = 15, b m = 30

G(m)
α (x) = (−1)mαmHm(αx)Gα(x), for x ∈ R. (2.3)

We plot in Figs. 1, 2 and 3 the graphs of G(m)
α with α = 50 for different m in the interval

[− 0.1, 0.1], with m = 0, 10, 15, 30, 35 and 50. From the graph of Gα shown in Fig. 1a,
we see that it looks like a bell, with the center of the bell being zero and the height of the
bell being one. However, in Figs. 1b, 2 and 3, the graph of the derivatives of Gα oscillates
rapidly near zero when m becomes large and the maximum of the derivatives increases fast
asm gets large. For the special case thatm ∈ N0 is even, by introducing the Hermite number
[17] given by

Hm(0) = (−1)m/22m/2(m − 1)!!,
we observe that the maximum of the derivatives of Gα grows in an exponential order of α,
since G(m)

α (0) = αmHm(0). Meanwhile, the tail of the graph of the derivatives of Gα falls
off quickly on the both sides and approaches the x-axis. The high order derivatives of the
Gaussian function behave like oscillatory functions near the position of the peak of its curve
when α is large.

Wenowdiscuss difficulties in computing the integral (2.2) by using a traditional quadrature
scheme. As an example, we calculate the integral Iα[ f ] with f (x) := 1, x ∈ I , for different
choices of α, by employing the composite trapezoidal rule with n equidistant nodes. One
might expect that the trapezoidal rule would produce satisfactory numerical results since
the Gaussian function is infinitely differentiable. However, we obtain rather disappointing
numerical results. We plot in Fig. 4 the absolute error (AE) of the computed integral value
for (a) n = 100 and (b) n = 1000. From Fig. 4, we see that for a fixed number of quadrature
nodes, the accuracy of the quadrature formula decreases as α increases. We then plot in Fig. 5
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A B

Fig. 3 The derivatives of Gα . a m = 35, b m = 50

A B

Fig. 4 The AE of the approximation to the value of the integrals of Gα with fixed n. a n = 100, b n = 1000

B CA

Fig. 5 The AE of the approximation to the value of the integrals of Gα with fixed α. a α = 100, b α = 1000,
c α = 10000

the absolute error of the computed integral value with fixed α for (a) α = 100, (b) α = 1000
and (c) α = 10000. We observe that in order to have certain order of accuracy, the number
of quadrature nodes should increase proportional to the value of α.

The numerical phenomena shown in the above numerical example can be well explained
by the error representation of the quadrature formula.We now recall the error of the composite
quadratures Im

n [Gα], for computing Iα[ f ], where we subdivide I into n equal subintervals
and use the closed Newton–Cotes formula with m + 1 quadrature nodes to calculate the
integrals defined on each subinterval. From the error of the Newton–Cotes formula [13]
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together with (2.3), we see that there exists ξ ∈ I such that∣∣Im
n [Gα] − Iα[ f ]∣∣ = cmGα(ξ)

∣∣Hm+γ (αξ)
∣∣ (α

n

)m+γ

,

γ = 1 for odd m and γ = 2 for even m (2.4)

where cm are defined by

cm := 1

(m + 1)!mm+2

{
Jm, if m is odd,

(m(m + 2))−1 Jm, if m is even,

with

Jm :=
⎧⎨
⎩
∣∣∣∫ m

0

∏m
j=0(t − j)dt

∣∣∣ , if m is odd,∣∣∣∫ m
0 t

∏m
j=0(t − j)dt

∣∣∣ , if m is even.

We introduce a complex number qm := (−i)m2m/
√

π and a complex-valued function by

Em(t) :=
∫ +∞

−∞
e−s2+i2ts smds, for t ∈ R,

where i denotes the imaginary unit, see [1]. We then write

Hm(t) = qme
t2Em(t), for t ∈ R.

By the definition of Gα , we have that

Gα(ξ)Hm(αξ) = qmEm(αξ).

Substituting the equation above into (2.4) yields∣∣Im
n [Gα] − Iα[ f ]∣∣ = cm |qmEm+γ (αξ)|

(α

n

)m+γ

, γ = 1 for odd m and γ = 2 for even m.

The error formula above shows that for the quadrature rule to converge, we have to choose n
larger than α. This will result in large computation costs to compute the integral when α is
large. This explains the reason why the trapezoidal rule applied to computing the integral of
the Gaussian function does not converge when α is larger than n.

Weconclude from the analysis above that using traditional quadrature formulas to calculate
integrals involved the Gaussian function becomes expensive to obtain satisfactory numerical
results if α is large. One reason is that the maximum (which occurs near zero) of the high
order derivative of Gα is large. We are required to add more number of quadrature nodes
in order to improve accuracy of the numerical integration. However, the values of the high
order derivatives ofGα decay rapidly whenmoving away from zero and have high oscillation
near zero. Clearly, adding more quadrature nodes uniformly in the integral interval increases
computational costs. It is therefore important to utilize the property of the Gaussian function
to design efficient quadrature formulas for computing these integrals.

To close this section,wedescribe themain idea to beused in this paper in designing efficient
quadrature formulas for computing (2.2). Inspired by the quadrature formulas proposed in
[3,4,16,25] for weakly singular integrals and in [21,22] for highly oscillatory integrals, we
shall develop quadrature formulas for (2.2) as follows.Wefix a positive integer n, independent
of the parameter α. Design a graded mesh of n subintervals according to α. Choose a basic
quadrature formula to be used for integration on each of the subintervals associated with
the graded mesh. The graded mesh is designed in the way that the resulting integration
errors on all the subintervals are approximately equal. We shall show that the accuracy of the
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proposed quadrature formulas for (2.2) increases as α increases and the number of functional
evaluations of the integrand used in the quadrature formula is independent of α.

In the remaining sections of this paper, we shall complete the following three tasks:

(i) Propose a quadrature formula for integrals involvedGα,β on the interval [− 1, 1], where
the Chebyshev points of the first kind are used as the quadrature nodes. This formulawill
serve as a basic quadrature formula for developing composite formulas for computing
the integrals (2.2).

(ii) Design a partition with a fixed number n of subintervals of the integral interval I , with
the break-points of the partition being distributed according to both the parameter α and
the number n. Develop composite quadrature formulas for computing the integrals (2.2),
one with accuracy of a polynomial order for a smooth factor f having differentiability
of a finite order, and another with accuracy of an exponential order for f having infinite
differentiability.

(iii) Develop a method for computing exactly the moments of the basic quadrature formula
with the help of the error function.

3 A Basic Quadrature Formula

We describe in this section a basic quadrature formula for computing the integral

Iα,β [ f ] :=
∫
Î
f (x)Gα,β(x)dx, (3.1)

with Î := [−1, 1], where f ∈ C( Î ) is independent of α and Gα,β is defined by (2.1) for
α > 1. The quadrature formula is designed by interpolating f at the Chebyshev points
of the first kind [5,8,26,32] and calculating the weights of the resulting formula exactly.
The advantage of interpolating at the Chebyshev points is to avoid the well-known Runge
phenomenon. The quadrature formula will be used as a basic rule to design the composite
quadrature formula for the integral Iα[ f ] defined by (2.2) in the following section.

The basic numerical quadrature formula for computing the integral (3.1) is derived by
replacing the function f in the integral by its Lagrange interpolation polynomial. For a fixed
positive integer m ∈ N, we denote by pm the Lagrange interpolation polynomial of degree
m, which interpolates f at the Chebyshev points of the first kind

t j := cos ((2 j + 1)π/(2m + 2)) , for j ∈ Zm := {0, 1, . . . ,m} .

By replacing the function f in the integral (3.1) with pm , we obtain the quadrature formula

Qα,β
m [ f ] := Iα,β [pm] (3.2)

for computing an approximate value of the integral (3.1). We now express the Lagrange
polynomial pm in terms of the Chebyshev polynomials of the first kind Tn for n ∈ N0.
Namely,

pm(x) =
∑′

j∈Zm

c j ( f )Tj (x), for x ∈ I ,

where the prime denotes a sum whose first term is halved and for j ∈ Zm
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c j ( f ) := 2

m + 1

∑
k∈Zm

f (tk)Tj (tk).

The formula (3.2) is rewritten as

Qα,β
m [ f ] :=

∑′

j∈Zm

c j ( f )Iα,β [Tj ].

Upon introducing the numbers

A j,k := (−1)k
( j − k − 1)!
k!( j − 2k)! 2

j−2k−1,

we have that
Tn(x) = n

∑
k∈Z	 n

2 

An,k x

n−2k, for n ∈ N,

where 	a
 denotes the biggest integer not larger than a, see [24]. Let q j (x) := x j , for x ∈ Î ,
j ∈ Zm . We introduce the moments

wα,β, j := Iα,β [q j ], for j ∈ Zm . (3.3)

Formula (3.2) may be re-expressed in terms of the moments wα,β, j as

Qα,β
m [ f ] = c0( f )wα,β,0

2
+

∑
j∈Z+

m

jc j ( f )
∑

k∈Z⌊ j
2

⌋
A j,kwα,β, j−2k . (3.4)

An approximate value of the integral may be computed according to formula (3.4) once
the moments wα,β, j are available. We postpone the computation of the moments wα,β, j until
Sect. 5. Formula (3.4) is the basic quadrature formula we shall use in each of the subintervals
determined by the mesh to be proposed in the next section.

In the next lemma, we present an estimate of the error of the basic quadrature formula

Eα,β
m [ f ] := ∣∣Iα,β [ f ] − Qα,β

m [ f ]∣∣ .
We let ‖ϕ‖∞ := max {|ϕ(x)| : x ∈ �} for a bounded function ϕ defined in �.

Lemma 3.1 If f ∈ Cm+1( Î ) for some m ∈ N and α > 1, then

Eα,β
m [ f ] ≤

√
π

2m(m + 1)!α
∥∥∥ f (m+1)

∥∥∥∞ .

Proof By the definition of the error Eα,β
m [ f ], we observe that

Eα,β
m [ f ] ≤ ‖ f − pm‖∞ Iα,β [g] (3.5)

with g(x) := 1 for x ∈ Î . According to [12], we have that

Iα,β [g] ≤
∫ ∞

−∞
Gα,β(x)dx = √

π/α. (3.6)

We recall that the error of the Lagrange interpolating of degree m ∈ N at the Chebyshev
points of the first kind for a function f ∈ Cm+1( Î ) is bounded by

‖ f − pm‖∞ ≤ 1

2m(m + 1)!
∥∥∥ f (m+1)

∥∥∥∞ . (3.7)

123



1752 Journal of Scientific Computing (2019) 78:1744–1767

Substituting both (3.6) and (3.7) into the right hand side of (3.5) yields the desired estimate.

�

To close this section, we comment on the relationship between the parameter α and Iα[ f ]
defined by (2.2) for a bounded function f . From (3.6), we see that Iα[ f ] decays to zero
not slower than O(α−1) as α → ∞. Hence, if we approximate the integral Iα[ f ] simply
by the number zero, its error is bounded by O(α−1). We may say that any approximation
to Iα[ f ] is less accurate than simply using the number zero is useless. We are required to
design quadrature formulas for computing Iα[ f ] with accuracy better than the zero.

4 Quadrature Formulas Based on the GradedMesh

We develop in this section composite quadrature formulas for computing the integrals (2.2)
for the case f ∈ C(I ) is independent of α and α > 1 (that is, the standard deviation c0 of
the Gaussian function is less than 1/

√
2). The composite quadrature formulas are developed

based on gradedmeshes determined by α and the number n of the subintervals to be designed.
Two types of composite quadrature formulas are proposed, onewith accuracy of a polynomial
order for a smooth factor f having smoothness of a finite order, and the other with accuracy
of an exponential order for f having smoothness of the infinite order.

We firstmotivate the design of the gradedmesh of the integral interval I . Ideally, the break-
points of the graded mesh should be distributed so that the resulting quadrature formula has
equal errors on all the subintervals determined by the mesh. Specifically, we let n ∈ N and
suppose that I is partitioned by 0 = x0 < x1 < · · · < xn = 1 with the break-points x j
to be determined. By E j we denote the error of the quadrature formula on the subinterval
I j := [x j−1, x j ], j ∈ Z

+
n := {1, 2, . . . , n}. That is,

E j =
∫ 1

−1

∣∣h j f (h j x/2 + (x j + x j+1)/2)/2 − pm(x)
∣∣Gα(h j x/2 + (x j + x j+1)/2)dx,

where h j := x j −x j−1 and pm(x) is the Lagrange interpolation polynomial of degreem ∈ N

at the Chebyshev points of the first kind which approximates h j f (h j x/2+(x j +x j+1)/2)/2
for x ∈ Î . The best choice of the break-points of the graded-meshwould ensure that the errors
E j are all equal. However, it is not possible to have the explicit form of x j . We then appeal
to conservative upper bounds of E j . From (3.7) we obtain upper bounds of the error on all
subintervals

E j ≤ Gα(x j )h
m+2
j

22m+1(m + 1)!
∥∥∥ f (m+1)

∥∥∥∞ , for j ∈ Z
+
n . (4.1)

One strategy to choose the break-points of the graded-mesh is to solve the following system
of equations for x j

Gα(x j )h
m+2
j = Gα(x j+1)h

m+2
j+1 , for j ∈ Z

+
n−1. (4.2)

Again, it is difficult to solve the system explicitly. Instead of solving (4.2) exactly, motivated
by the idea proposed in [21,22] for computing an oscillatory integral, we propose a strategy
to partition the interval I . Specifically, for n ∈ N with n > 1, we partition the interval I with
the break-points defined by

x0 = 0, x j = α( j−1)/(n−1)−1, for j ∈ Z
+
n . (4.3)
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This choice of the break-points ensures that Eq. (4.2) are approximately satisfied.
The proposed quadrature formulas are constructed by employing the graded-mesh (4.3)

with a transformation mapping each of the subintervals [x j−1, x j ] onto Î := [− 1, 1] and
using the basic quadrature formula to compute the resulting integrals on Î . Specifically,
we use the affine transformation x �→ h j x/2 + (x j−1 + x j )/2 to map [x j−1, x j ] onto Î .
Accordingly, the integral (2.2) may be written as

Iα[ f ] =
∑
j∈Z+

n

Iα j ,β j [ f j ], (4.4)

where for j ∈ Z
+
n ,

α j := αh j/2, (4.5)

β j := −(x j−1 + x j )/h j , (4.6)

and

f j (x) := h j

2
f

(
h j

2
x + x j−1 + x j

2

)
, for x ∈ Î . (4.7)

Computing the integral (2.2) is then reduced to calculate the integrals Iα j ,β j [ f j ] for j ∈ Z
+
n

in (4.4), which have the form of (3.1). Approximate values of these integrals will be computed
by using formula (3.2).

We now develop two composite quadrature formulas for computing the integral (4.4) by
using the quadrature formula (3.2) to calculate the integrals Iα j ,β j [ f j ] for j ∈ Z

+
n . In the

first method, we use the same number of quadrature nodes in all of the subintervals. Selecting

a fixed positive integer m, we use Qα j ,β j
m [ f j ] as defined in (3.2) to approximate the integral

Iα j ,β j [ f j ] for j ∈ Z
+
n . The integral (4.4) is then approximated by

Qα
n,m[ f ] :=

∑
j∈Z+

n

Qα j ,β j
m [ f j ]. (4.8)

We next analyze the accuracy order of the quadrature formula (4.8). To this end, in the
following lemma we estimate the error

Eα j ,β j
m [ f j ] :=

∣∣∣Iα j ,β j [ f j ] − Qα j ,β j
m [ f j ]

∣∣∣ , j ∈ Z
+
n .

Lemma 4.1 If f ∈ Cm+1(I ) and α > 1, then for j ∈ Z
+
n

Eα j ,β j
m [ f j ] ≤

√
πhm+1

j

22m+1(m + 1)!α
∥∥∥ f (m+1)

∥∥∥∞ .

Proof We prove this lemma by applying Lemma 3.1 to integral Iα j ,β j [ f j ]. According to the
definition (4.5) of α j , we have for j ∈ Z

+
n that

Eα j ,β j
m [ f j ] ≤

√
π

2m(m + 1)!α j

∥∥∥ f (m+1)
j

∥∥∥∞ ≤
√

π

2m−1(m + 1)!αh j

∥∥∥ f (m+1)
j

∥∥∥∞ .

By the chain rule, we obtain for x ∈ Î that

f (m+1)
j (x) =

(
h j

2

)m+2

f (m+1)
(
h j

2
x + x j−1 + x j

2

)
,

where f j is defined by (4.7). This together with the inequality above yields the desired
estimate. 
�
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We are now ready to provide the error estimate for the quadrature formula (4.8). For m,
n ∈ N with n > 1, we define

Eα
n,m[ f ] := ∣∣Iα[ f ] − Qα

n,m[ f ]∣∣ ,
and denote by N (Qα

n,m[ f ]) the number of the quadrature nodes used in Qα
n,m[ f ].

Theorem 4.2 For α > 1 and n ∈ N with n > 1, let η := max
{
1/α, 1 − α−1/(n−1)

}
. If

f ∈ Cm+1(I ) for some m ∈ N, then

Eα
n,m[ f ] ≤

√
πηm

22m+1(m + 1)!α
∥∥∥ f (m+1)

∥∥∥∞ ,

and

N (Qα
n,m[ f ]) = (m + 1)n.

Proof The proof of this theorem is done by applying Lemma 4.1 on each of the subintervals.
This leads to the estimate that for j ∈ Z

+
n

Eα j ,β j
m [ f j ] ≤

√
πhm+1

j

22m+1(m + 1)!α
∥∥∥ f (m+1)

∥∥∥∞ . (4.9)

Note that h1 = x1 − x0 = 1/α ≤ η, and for j ∈ Z
+
n with j > 1,

h j = x j − x j−1 = x j
(
1 − α−1/(n−1)

)
≤ x jη ≤ η.

Substituting these bounds into the right-hand side of (4.9) and summing the resulting inequal-
ities over j ∈ Z

+
n , we obtain the desired estimate for Eα

n,m[ f ].
It remains to estimate the number of the quadrature nodes used in the quadrature formula.

According to the quadrature formula (4.8), we have that

N (Qα
n,m[ f ]) =

∑
j∈Z+

n

(m + 1) = (m + 1)n,

proving the desired result. 
�
We remark on the parameter η that appears in Theorem 4.2. When n is sufficiently large,

for a fixedα, the numberα− 1
n−1 is close to 1 and thus, 1−α− 1

n−1 ≤ 1
α
. Hence η = 1

α
. Theorem

4.2 then ensures that when n is sufficiently large, the accuracy order of the quadrature formula
(4.8) is O(1/αm+1).

We next develop the secondmethod to approximate the integral (2.2) for f having smooth-
ness of the infinite order. This method uses the same graded-mesh (4.3) for the interval I
but variable numbers of quadrature points in the subintervals. The numbers of the quadrature
nodes used in each of the subintervals are chosen to obtain the exponential order of accuracy
for the resulting quadrature formulas. Specifically, for n ∈ Nwith n > 1 and for the partition
of I chosen as (4.3), we let

m j :=
⌈
n(n − 1)

n + 1 − j

⌉
, for j ∈ Z

+
n , (4.10)

where �a� denotes the smallest integer not less than a. For each j ∈ Z
+
n , we use Q

α j ,β j
m j [ f ]

to approximate Iα j ,β j [ f j ]. Integral Iα[ f ] defined by (4.4) is then approximated by the
quadrature formula
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Qα
n [ f ] :=

∑
j∈Z+

n

Qα j ,β j
m j [ f j ]. (4.11)

We next estimate the error

Eα
n [ f ] := ∣∣Iα[ f ] − Qα

n [ f ]∣∣
of the quadrature formula Qα

n [ f ] defined by (4.11). To this end, we recall the inequality

n! ≥ √
2πn (n/e)n , for n ∈ N, (4.12)

which is obtained from the Stirling formula [1], and establish the following technical lemma.

Lemma 4.3 There exists a positive constant c such that for all α > 1, for all n ∈ N satisfying

(n − 1)(ln (n + 1 + e) − 1) ≥ ln α, (4.13)

and for all j ∈ Z
+
n with j > 1, the inequality holds

(
α1/(n−1) − 1

)m j+1

(m j + 1)! ≤ c(n + 1)−1/2. (4.14)

Proof Since α > 1, condition (4.13) implies that n > 1. By inequality (4.12), there exists a
positive constant c such that for all n ∈ N with n > 1 and j ∈ Z

+
n with j > 1,

1

(m j + 1)! ≤ c(m j + 1)−1/2
(

e

m j + 1

)m j+1

.

By definition (4.10) of m j , we see that m j + 1 ≥ n + 1 for j > 1. Using this result in the
right-hand side of the above inequality yields

1

(m j + 1)! ≤ c(n + 1)−1/2
(

e

n + 1

)m j+1

. (4.15)

Multiplying both sides of inequality (4.15) by (α1/(n−1) − 1)m j+1, we obtain that

(
α1/(n−1) − 1

)m j+1

(m j + 1)! ≤ c(n + 1)−1/2

(
e
(
α1/(n−1) − 1

)
n + 1

)m j+1

. (4.16)

Moreover, condition (4.13) is equivalent to that

e
(
α1/(n−1) − 1

)
n + 1

≤ 1.

Using this inequality in the right-hand side of (4.16), we find that there exists a positive
constant c such that for all α > 1, n ∈ N satisfying (4.13) and j ∈ Z

+
n with j > 1, the

desired estimate (4.14) holds. 
�

We are now ready to establish the estimate for Eα
n [ f ]. For a function φ ∈ C∞(�), we

define

‖φ‖n := max
{∥∥∥φ( j)

∥∥∥∞ : j ∈ Zn

}
for n ∈ N.
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Theorem 4.4 If f ∈ C∞(I ), then there exists a positive constant c such that for all α > 1
and n ∈ N satisfying (4.13),

Eα
n [ f ] ≤ c(n + 1)−1/2(2α)−n−1 ‖ f ‖(n−1)n+1 .

For n ∈ N with n > 1, there holds the estimate

N (Qα
n [ f ]) ≤ n(n − 1) ln n + n2 + n.

Proof We establish the error bound of this theorem by estimating the errors

Eα j ,β j
m j [ f j ] :=

∣∣∣Iα j ,β j [ f j ] − Qα j ,β j
m j [ f j ]

∣∣∣
for j ∈ Z

+
n , and then summing them over j . Applying Lemma 4.1 with m := m1, we have

that for j = 1

Eα1,β1
m1

[ f1] ≤
√

πα−n−1

n!22n−1

∥∥∥ f (n)
∥∥∥∞ .

For j > 1, by applying Lemma 4.1 with

m := m j and h j := α
j−n−1
n−1

(
α1/(n−1) − 1

)
,

we obtain that

Eα j ,β j
m j [ f j ] ≤

√
π

22m j+1

(
α1/(n−1) − 1

)m j+1

(m j + 1)! α
j−n−1
n−1 (m j+1)−1

∥∥∥ f (m j+1)
∥∥∥∞ . (4.17)

Applying the estimate in Lemma 4.3 to the right hand side of (4.17) yields that there exists a
positive constant c such that for all α > 1, for n ∈ N satisfying (4.13), and for j ∈ Z

+
n with

j > 1,

Eα j ,β j
m j [ f j ] ≤ c

(n + 1)−1/2

22m j+1 α
j−n−1
n−1 (m j+1)−1

∥∥∥ f (m j+1)
∥∥∥∞ . (4.18)

Note that for j ∈ Z
+
n with j > 1,

j − n − 1

n − 1
(m j + 1) − 1 ≤ j − n − 1

n − 1

n(n − 1)

n + 1 − j
− 1 = −n − 1.

Substituting this result into the right hand side of inequality (4.18), we obtain the estimate

Eα j ,β j
m j [ f j ] ≤ c

(n + 1)−1/2

22m j+1 α−n−1
∥∥∥ f (m j+1)

∥∥∥∞ .

Summing up the both sides of the above inequalities over j ∈ Z
+
n , we observe that there

exists a positive constant c such that for all α > 1 and n ∈ N satisfying (4.13)

Eα
n [ f ] ≤

√
π

n!22n−1 α−n−1
∥∥∥ f (n)

∥∥∥∞ + cα−n−1

⎧⎨
⎩

n∑
j=2

(n + 1)−1/2

22m j+1

⎫⎬
⎭ ‖ f ‖(n−1)n+1

≤
√

π

n!22n−1 α−n−1
∥∥∥ f (n)

∥∥∥∞ + cn

22n−1 α−n−1(n + 1)−1/2 ‖ f ‖(n−1)n+1

≤ 4cn

2n
(2α)−n−1(n + 1)−1/2 ‖ f ‖(n−1)n+1 .

Note that n/2n < 1 for all n ∈ N. Using this in the last step of the above inequality leads to
the first desired estimate.
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It remains to estimate the numberN (Qα
n [ f ]) of the quadrature nodes used in the quadra-

ture formula (4.11). To this end, we note that

N (Qα
n [ f ]) ≤

∑
j∈Z+

n

{(
n(n − 1)

n + 1 − j
+ 1

)
+ 1

}
≤ 2n + n(n − 1)

∑
j∈Z+

n

1

n + 1 − j
.

For n ∈ N, by using the following inequality in the above estimate

∑
j∈Z+

n

1

j
≤ ln n + 1,

we have that

N (Qα
n [ f ]) ≤ 2n + n(n − 1)(ln n + 1) = n(n − 1) ln n + n2 + n,

which completes the proof. 
�

From Theorems 4.2 and 4.4, we see that the quadrature formula (4.8) has accuracy of a
polynomial order (in terms of α) and the quadrature formula (4.11) achieves accuracy of an
exponential order (in terms of α). The number of the quadrature nodes used in the quadrature
formula (4.8) is linear in n and the number of the quadrature nodes used in the quadrature
formula (4.11) is quadratic in n. Moreover, these numbers for both quadrature formulas are
independent of α. Specifically, the number of quadrature nodes used inQα

n,m[ f ] is (m + 1)n
for m and that in Qα

n [ f ] is n +∑
j∈Z+

n
m j , where m j for j ∈ Z

+
n are defined by (4.10).

5 Computation of theMoments

In this section, we propose a method to compute the exact values of the moments wα,β,k , for
k ∈ Zm , defined as in (3.3). For this purpose, we first re-express the moments in terms of
integrals involved Gα . We then provide a method to calculate these integrals exactly.

We begin with considering the representation of the moments wα,β,k . To this end, we let
k ∈ N0 and for j ∈ Zk , α > 0 and b > 0, we define

M j [α, b] :=
∫ b

0
x je−α2x2dx, (5.1)

and recall the binomial coefficients

C j
k := k!

j !(k − j)! .

Proposition 5.1 Let k ∈ N0. If α > 0 and β ≤ 0, then

wα,β,k =
∑
j∈Zk

C j
k βk− j

(
M j [α, 1 − β] + (−1)2k− jM j [α, 1 + β]

)
for β > − 1,

wα,β,k =
∑
j∈Zk

C j
k βk− j (M j [α, 1 − β] − M j [α, |1 + β|]) for β ≤ − 1.
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Proof We first derive forms of wα,β,k for different values of β. By a change of variables
x − β �→ x in (3.3), we obtain that

wα,β,k =
∫ 1

−1
xke−α2(x−β)2dx

=
∫ 1−β

0
(x + β)ke−α2x2dx +

∫ 0

−1−β

(x + β)ke−α2x2dx . (5.2)

For −1 < β ≤ 0, we make a change of variables x �→ −x in the second term of the right
hand side of Eq. (5.2), which yields that

wα,β,k =
∫ 1−β

0
(x + β)ke−α2x2dx + (−1)k

∫ 1+β

0
(x − β)ke−α2x2dx . (5.3)

For β ≤ −1, from formula (5.2) we have that

wα,β,k =
∫ 1−β

0
(x + β)ke−α2x2dx −

∫ |1+β|

0
(x + β)ke−α2x2dx . (5.4)

Applying the binomial formula to (x +β)k , (x −β)k in (5.3) and (x +β)k in (5.4), we attain
the assertions of this proposition. 
�

We next describe a method to computeMk[α, b] defined as in (5.1) for k ∈ N0, α > 0 and
b > 0. We first show an auxiliary equality. To this end, we denote by Dα the differentiation
operator with respect to α.

Lemma 5.2 If j ∈ N0, then

DαMj [√α, b] = −Mj+2[√α, b].
Proof Note that

M j [√α, b] =
∫ b

0
x je−αx2dx, (5.5)

for j ∈ N0. Differentiating M j [√α, b] with respect to α, we obtain that

DαMj [√α, b] = −
∫ b

0
x j+2e−αx2dx .

This together with (5.5) by replacing j with j + 2 yields the desired formula. 
�
According to Lemma 5.2, the computation ofMk[α, b] may be done by considering two

separate cases when k is an even number and when k is an odd number. We shall use the
Leibniz formula for the k-th derivative of the product of two functions for k ∈ N,

(φψ)(k) =
∑
j∈Zk

C j
k φ( j)ψ(k− j). (5.6)

We first consider the case when k is an odd number.

Proposition 5.3 If k = 2 j + 1 for j ∈ N0, then

Mk[α, b] = j !
2

(
1 − e−b2α2

)
α−2−2 j − j !

2
e−b2α2 ∑

l∈Z+
j

b2lα−2−2 j+2l/l!.
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Proof We first derive the form ofMk[√α, b] for k = 2 j + 1 with j ∈ N0. Repeatedly using
Lemma 5.2, we obtain that

Mk[√α, b] = (−1) jD j
αM1[√α, b].

We shall make use of the above formula by differentiatingM1[√α, b] with respect to α. By
a direct computation, we have that

M1[√α, b] =
(
1 − e−b2α

)
/(2α).

Hence, we find that

Mk[√α, b] = (−1) j

2
D j

α

[(
1 − e−b2α

)
/α
]
. (5.7)

Note that for l ∈ Z
+
j Dl

α(1 − e−b2α) = (−1)l−1b2le−b2α and Dl
α(1/α) = (−1)l l!α−l−1.

Applying the Leibniz formula (5.6) with these two derivative formulas, we obtain that

D j
α

[(
1 − e−b2α

)
/α
]

= (− 1) j j !
(
1 − e−b2α

)
α−1− j

+ (− 1) j−1e−b2α
∑
l∈Z+

j

Cl
j ( j − l)!b2lα−1− j+l .

Substituting this equality into (5.7) yields that

Mk[√α, b] = j !
2

(
1 − e−b2α

)
α−1− j − j !

2
e−b2α

∑
l∈Z+

j

b2lα−1− j+l

l! .

In the above equation, we replace
√

α by α and obtain the desired result of this proposition.

�

We next consider the case when k is an even number. We shall use the notation of the error
function [1] defined by

erf(x) := 2√
π

∫ x

0
e−s2ds, for x ∈ R

+. (5.8)

For more information about the error function, see for instance [18,29]. We shall use � to
denote the Gamma function and recall that for a constant c ∈ (− 1, 1) and n ∈ N,

�(c + n)

�(c)
= c(c + 1) . . . (c + n − 1).

In particular, for c = 1/2, we have that �(1/2) = √
π.

Proposition 5.4 If k = 2 j for j ∈ N0, then

Mk[α, b] = �
( 1
2 + j

)
2

erf(bα)α−1−2 j

− 1

2π

∑
l∈Z+

j

∑
i∈Zl−1

j !� (l − i − 1
2

)
�
( 1
2 + j − l

)
b2i+1

( j − l)!(l − i − 1)!i !l e−b2α2
α−2 j+2i .
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Proof The proof of this result is similar to that of Proposition 5.3. We first derive the form
of Mk[√α, b] for k = 2 j with j ∈ N0. According to Lemma 5.2, we have that

Mk[√α, b] = (−1) jD j
αM0[√α, b].

A direct computation leads to

M0[√α, b] =
∫ b

0
e−αx2dx =

√
π

2
√

α
erf(b

√
α).

Differentiating the equation above j times with respect to α yields that

Mk[√α, b] = (−1) j
√

π

2
D j

α

[
erf(b

√
α)√

α

]
. (5.9)

Using definition (5.8), we have that

Dα

[
erf(b

√
α)
] = b√

π

e−b2α

√
α

. (5.10)

Note that

Dl
α

(
α− 1

2

)
= (−1)l

�
( 1
2 + l

)
�
( 1
2

) α− 1
2−l , for l ∈ Z j . (5.11)

Using formula (5.10) with the Leibniz formula (5.6) and the equation above yields that for
l ∈ Z

+
j

Dl
α

(
erf(b

√
α)
) = (−1)l−1

√
π

∑
i∈Zl−1

Ci
l−1

�
(
l − i − 1

2

)
b2i+1

�
( 1
2

) e−b2αα
1
2−l+i .

Applying the Leibniz formula (5.6) with the equation above and (5.11), we obtain that

D j
α

[
erf(b

√
α)√

α

]
= �

( 1
2 + j

)
�
( 1
2

) (−1) jerf(b
√

α)α− 1
2− j

+ (−1) j−1

√
π

∑
l∈Z+

j

∑
i∈Zl−1

j !� (l − i − 1
2

)
�
( 1
2 + j − l

)
b2i+1

( j − l)!(l − i − 1)!i !l (� ( 12 ))2 e−b2αα− j+i .

Substituting the equation above and �( 12 ) = √
π into (5.9) gives that

Mk[√α, b] = �
( 1
2 + j

)
2

erf(b
√

α)α− 1
2− j

− 1

2π

∑
l∈Z+

j

∑
i∈Zl−1

j !� (l − i − 1
2

)
�
( 1
2 + j − l

)
b2i+1

( j − l)!(l − i − 1)!i !l e−b2αα− j+i .

In the equation above replacing
√

α by α, we obtain the desired result of this proposition. 
�

Combining formulas in Propositions 5.1, 5.3 and 5.4 provides a method to compute the
exact values of the moments wα,β,k .
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Table 1 Relative errors and accuracy orders of QuadP for f (x) := x2

α c0 n = 5 n = 10 n = 15

RE Order RE Order RE Order

10 7.07e−2 3.56e−14 16.80 2.93e−15 17.89 2.59e−14 16.94

50 1.41e−2 1.55e−14 11.34 1.72e−14 11.31 3.46e−15 11.72

100 7.07e−3 3.46e−15 10.41 3.27e−14 9.92 3.94e−15 10.38

500 1.41e−3 1.60e−13 7.87 1.41e−14 8.26 3.69e−14 8.11

1000 7.07e−4 2.74e−13 7.31 1.60e−14 7.72 1.38e−14 7.38

5000 1.41e−4 4.78e−15 6.97 1.22e−14 6.86 9.80e−15 6.88

10000 7.07e−5 1.51e−14 6.55 1.25e−15 6.81 3.53e−15 6.70

6 Numerical Experiments

In this section, we carry out five numerical experiments to confirm the accuracy estimates,
established in Sect. 4, of the two quadrature formulas for (2.2). Specifically, we verify the
relative errors (RE) and the accuracy orders (Order) of these formulas.

The numerical results presented below were all obtained by using Matlab in a modest
desktop (a Core 2 Quad with 4GB of Ram memory). The error function (5.8) was computed
by using erf of Matlab. Numerical methods for calculating the error function may be found
in [6,7,28].

We present in the first example the numerical results of the quadrature formula (4.8)
which we denote by QuadP. The numerical accuracy order of QuadP is computed by using
the formula

Order := − ln
(Eα

n,m[ f ]) / ln(α), for α > 1,

for m, n ∈ N with n > 1.

Example 6.1 This example is to verify the accuracy of the quadrature formula Qα
n,m[ f ]

defined as in (4.8). We consider the function f (x) := x2 for x ∈ I . The exact value of
the corresponding integral is

Iα[ f ] =
(√

πerf(α)/2 − αe−α2
)

/(2α3).

We list in Table 1 the relative errors and the numerical accuracy orders of Qα
n,4[ f ] for

different values of α and different choices of n. The relative errors of the quadrature formula
Qα

n,4[ f ] are depicted in Fig. 6a for fixed α = 50 with n changing from 2 to 100 and in
Fig. 6b for fixed n = 20 with α changing from 10 to 500. Table 1 confirms the accuracy of
the quadrature formula Qα

n,4[ f ], since the accuracy orders of Qα
n,4[ f ] are higher than the

asymptotic order of the values of the integrals decaying to zero, which is O(α−3) as α tends
to infinity. From Fig. 6, we observe that for a fixed α the relative errors of the quadrature
formula change modestly as n grows and for a fixed n they also change modestly as α grows.
This demonstrates that the quadrature formula (4.8) has accuracy of a high order.

In Table 2, we compare the relative errors of the formulaQα
n,2[ f ] (GradedMesh) with that

of the standard composite formula (Uniform). The standard composite formula is constructed
by subdividing the integration interval into n equal subintervals and using the Simpson rule
to calculate the integrals on each of the resulting subintervals. We conclude that the accuracy
order ofQα

n,2[ f ] ismuchhigher than the composite Simpson formulawith a uniformpartition.
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A B

Fig. 6 Relative errors of the approximation to the values of the integrals with f (x) := x2. a Fixed α (c0 =
1.14e − 2), b fixed n

Table 2 Relative errors of QuadP for f (x) := x2 with different partitions

n α = 20 (c0 = 3.54e−2) α = 30 (c0 = 2.36e−2) α = 40 (c0 = 1.77e−2)

Uniform Graded Mesh Uniform Graded Mesh Uniform Graded Mesh

n = 5 5.59e−1 1.05e−14 9.90e−1 7.64e−15 1.00e−0 8.44e−15

n = 10 2.21e−1 2.47e−14 7.29e−2 1.71e−14 5.59e−1 5.33e−14

n = 20 6.46e−4 3.61e−14 6.45e−2 1.05e−14 2.21e−1 2.50e−14

We show in the next example the numerical results of the quadrature formula (4.11) which
we denote by QuadE. As in the first example, we compute the numerical convergence order
of QuadE by using the formula

Order := − ln
(Eα

n [ f ]) / ln(2α), for α > 1,

for n ∈ N with n > 1.

Example 6.2 We verify in this example the theoretical accuracy estimate presented in The-
orem 4.4 for the quadrature formula Qα

n [ f ] defined by (4.11). We consider the function
f (x) := exp

{−x2
}
for x ∈ I . The exact value of the corresponding integral is

Iα[ f ] = √
πerf

(√
α2 + 1

)/(
2
√

α2 + 1
)

. (6.1)

Numerical results of this example are reported in Tables 3 and 4 and Fig. 7. Relative errors
and accuracy orders ofQα

n [ f ] for different values of α and choices of n = 3, 4, 5 are listed in
Table 3.We plot the relative errors ofQα

n [ f ] for fixed α = 600 in Fig. 7a with n ranging from
4 to 12. The absolute errors (AE) ofQα

n [ f ] multiplied by (2α)n+1 are depicted in Fig. 7b for
n = 4, where we choose α ranging from 300 to 400. From Table 3 and Fig. 7a, we observe
that for a fixed α, the accuracy of the quadrature formula improves as n grows and for a fixed
n, it also improves as α grows. From Fig. 7b we see that the asymptotic order of accuracy
of Qα

n [ f ] is O((2α)−5) for n = 4, which concurs with the theoretical estimate given in
Theorem 4.4. In Table 4, we compare the RE of the formulaQα

n [ f ] (Graded Mesh) with that
of the composite Simpson formulas (Uniform) having n uniform subintervals. We see that
the RE of Qα

n [ f ] is much smaller (with fewer quadrature nodes) than that of the composite
Simpson rule. The formulas defined by (4.11) enhance the approximation accuracy and as
well as reduce the computational complexity.
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Table 3 Relative errors and accuracy orders of QuadE for f (x) := exp
{
−x2

}
α c0 n = 3 n = 4 n = 5

RE Order RE Order RE Order

20 3.54e−2 1.37e−7 5.13 1.12e−9 6.43 1.14e−13 8.92

80 8.84e−3 6.16e−9 4.61 4.65e−12 6.03 4.70e−16 7.84

160 4.42e−3 5.38e−9 4.20 2.99e−13 5.90 3.13e−16 7.09

200 3.54e−3 4.26e−9 4.12 1.23e−13 5.87 1.96e−16 6.94

800 8.84e−4 5.50e−10 3.81 7.83e−16 5.64 1.96e−16 5.83

2000 3.54e−4 1.10e−10 3.70 4.89e−16 5.18 1.22e−16 5.35

Table 4 Relative errors of QuadE for f (x) := exp
{
−x2

}
with different partitions

α = 30 (c0 = 2.36e−2) α = 50 (c0 = 1.41e−2) α = 100 (c0 = 7.07e−3)

Uniform Graded Mesh Uniform Graded Mesh Uniform Graded Mesh

RE N RE N RE N RE N RE N RE N

1.61e−1 15 5.54e−8 14 3.44e−1 15 5.84e−9 14 1.69 15 6.97e−9 14

5.66e−2 31 2.34e−10 29 2.17e−1 31 2.97e−11 29 2.54e−1 31 1.93e−12 29

A B

Fig. 7 Relative errors ofQα
n [ f ] with fixed α and Eα

4 [ f ] scaled by α5 for f (x) := exp
{
−x2

}
. a RE for fixed

α, b (2α)5Eα
4 [ f ]

In the next two examples we test the accuracy of the quadrature formulas (4.8) and (4.11)
for functions of less smoothness.

Example 6.3 We consider in this example the function

f (x) :=
{
1, for x ∈ [0, 1/2],
1/2, for x ∈ (1/2, 1]. (6.2)

The exact value of the corresponding integral is

Iα[ f ] = √
π (erf(α) + erf(α/2)) /(4α).

We list in Table 5 relative errors and accuracy orders of the quadrature formula Qα
n,4[ f ],

and in Table 6 those of the quadrature formula Qα
n [ f ]. According to the results reported in
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Table 5 Relative errors and accuracy orders of QuadP for the function (6.2)

α c0 n = 4 n = 12 n = 16

RE Order RE Order RE Order

100 7.07e−3 1.96e−16 8.88 1.96e−16 8.88 1.96e−16 8.88

1000 7.07e−4 4.89e−16 6.12 2.45e−16 6.22 3.67e−16 6.16

10000 7.07e−5 4.59e−16 4.85 6.12e−16 4.82 1.53e−16 4.97

100000 7.07e−6 9.56e−16 4.01 1.91e−16 4.15 3.82e−16 4.09

1000000 7.07e−7 2.15e−15 3.45 2.39e−16 3.61 1.19e−16 3.66

Table 6 Relative errors and accuracy orders of QuadE for the function (6.2)

α c0 n = 3 n = 4 n = 5

RE Order RE Order RE Order

2000 3.54e−4 3.67e−16 5.22 4.89e−16 5.18 2.45e−16 5.27

20000 3.54e−5 2.45e−15 4.12 1.22e−15 4.19 3.06e−16 4.32

200000 3.54e−6 1.53e−14 3.42 1.91e−16 3.76 3.82e−16 3.71

2000000 3.54e−7 2.44e−14 3.02 3.58e−15 3.15 9.56e−16 3.24

20000000 3.54e−8 9.05e−14 2.68 3.29e−15 2.87 4.48e−16 2.99

Tables 5 and 6, we confirm that the quadrature formulas proposed in this paper are highly
accurate for the integrals defined as in (2.2), which is a piecewise continuous function, even
though the standard deviation is very small.

Example 6.4 We consider in this example the function f (x) := x5/2 for x ∈ I . The “true”
values of the integral is evaluated by using theMatlab symbolic toolbox.Note that the function
f is less smooth, with a singular third order derivative.
Numerical results of this example are presented inTables 7, 8 and 9. InTable 7,we compare

relative errors of the formulaQα
n,2[ f ]with those of the standard composite Simpson’s formula

for different n and α. We list in Table 8 relative errors and accuracy orders of the quadrature
formula Qα

n,m[ f ] for m = 1, 4, and in Table 9 those of the quadrature formula Qα
n [ f ].

From Table 7 we find that the formula Qα
n,2[ f ] produces much more accurate results than

the standard composite Simpson’s formula, when the same number of quadrature nodes are
used in these two quadrature formulas. From Tables 7 and 8, we observe that the accuracy
of the formula Qα

n,1[ f ] is higher than that of the standard composite Simpson’s formula,
and the asymptotic order of accuracy for Qα

n,1[ f ] is higher than 3, which concurs with the
theoretical estimate given in Theorem 4.2. The accuracy of the formula Qα

n,m[ f ] improves
as the number of the quadrature nodes increases. We conclude from Table 9 that the formula
Qα

n [ f ] is accurate for the less smooth function whose third order derivative has a singularity.

In the last example,we compare the performance of the proposed quadrature formulaswith
that of the treatment described in [20], where we first identified the computational challenge
of computing integrals involved the Gaussian function with a small standard deviation. To
this end, we recall the numerical treatment described in [20], where we treated integrals of
this type as a weakly singular integral and employed the computational strategy proposed in
[16]. Let ε > 0 be a given fixed number and n be a positive integer. Choosing γ ∈ (0, 1),
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Table 7 Relative errors of QuadP for the function f (x) := x5/2 with m = 2

α c0 n = 20 n = 50 n = 80

Uniform Graded Mesh Uniform Graded Mesh Uniform Graded Mesh

100 7.07e−3 8.62e−1 1.05e−5 2.23e−1 1.09e−7 1.04e−2 9.74e−8

1000 7.07e−4 1.00e+0 5.27e−5 1.00e+0 1.09e−6 1.00e+0 4.86e−7

10000 7.07e−5 1.00e+0 1.63e−4 1.00e+0 3.73e−6 1.00e+0 4.41e−7

100000 7.07e−6 1.00e+0 3.69e−4 1.00e+0 9.25e−6 1.00e+0 1.26e−6

1000000 7.07e−7 1.00e+0 7.46e−4 1.00e+0 1.92e−5 1.00e+0 2.76e−6

10000000 7.07e−8 1.00e+0 1.52e−3 1.00e+0 3.55e−5 1.00e+0 5.22e−6

Table 8 Relative errors and accuracy orders of QuadP for the function f (x) := x5/2 with m = 1, 4

α c0 n = 20 n = 50

m = 1 m = 4 m = 1 m = 4

RE Order RE Order RE Order RE Order

100 7.07e−3 2.87e−3 4.94 1.33e−7 7.11 4.52e−4 5.34 1.33e−7 7.11

1000 7.07e−4 6.00e−3 4.35 1.28e−7 5.91 1.01e−3 4.61 1.33e−7 5.90

10000 7.07e−5 9.45e−3 4.09 1.00e−7 5.33 1.77e−3 4.27 1.33e−7 5.30

100000 7.07e−6 1.22e−2 3.95 1.56e−8 5.13 2.71e−3 4.08 1.33e−7 4.94

1000000 7.07e−7 1.52e−2 3.86 3.19e−7 4.64 3.81e−3 3.96 1.32e−7 4.70

10000000 7.07e−8 1.64e−2 3.80 1.06e−6 4.40 5.04e−3 3.88 1.31e−7 4.53

Table 9 Relative errors of QuadE for the function f (x) := x5/2

α c0 n = 7 n = 9 n = 11

RE Order RE Order RE Order

100 7.07e−3 1.63e−6 6.56 2.63e−7 6.96 6.26e−8 7.27

1000 7.07e−4 1.64e−6 5.54 2.63e−7 5.81 6.26e−8 6.01

10000 7.07e−5 2.00e−6 5.00 2.63e−7 5.23 6.26e−8 5.39

100000 7.07e−6 8.80e−6 4.58 2.67e−7 4.88 6.26e−8 5.00

1000000 7.07e−7 6.54e−5 4.25 3.21e−7 4.64 6.27e−8 4.75

10000000 7.07e−8 2.80e−4 4.06 9.16e−7 4.41 6.36e−8 4.58

we introduce a partition of I with the nodes s0 := 0 and s j := γ n− j , for j ∈ Z
+
n . Let

m j := 	( j − 1)ε
 + 1, for j ∈ Z
+
n , where 	a
 is the largest integer less than or equal to

a. The quadrature formula for computing Iα[ f ] is designed by using the Gauss–Legendre
quadrature with m j nodes to approximate the integrals on the subinterval [s j−1, s j ] for
j ∈ Z

+
n . We denote this formula by Pγ,ε

n,α [ f ].

Example 6.5 In this example, we compare accuracy of the quadrature formulaQα
n [ f ] defined

by (4.11) with that of Pγ,ε
n,α [ f ] described above. We consider two functions

f1(x) := x7/2 and f2(x) := exp
{−x2

}
, for x ∈ I ,

123



1766 Journal of Scientific Computing (2019) 78:1744–1767

Table 10 Relative errors of QuadE for the function f1(x) := x7/2

α c0 n = 7 n = 8 n = 9

Qα
n [ f ] P0.2,6

n,α [ f ] Qα
n [ f ] P0.2,6

n,α [ f ] Qα
n [ f ] P0.2,6

n,α [ f ]
20000 3.54e−5 1.72e−6 4.74e−8 1.02e−7 3.54e−11 2.39e−8 3.27e−14

200000 3.54e−6 2.93e−5 2.18e−1 5.33e−7 6.06e−6 3.24e−8 7.20e−10

2000000 3.54e−7 2.73e−4 9.77e−1 7.13e−6 5.66e−1 1.60e−7 6.01e−3

20000000 3.54e−8 1.28e−3 1.00e+0 6.49e−5 1.00e+0 1.74e−6 1.00e+0

Table 11 Relative errors of QuadE for the function f2(x) := exp
{
−x2

}
α c0 n = 3 n = 4 n = 5

Qα
n [ f ] P0.02,6

n,α [ f ] Qα
n [ f ] P0.02,6

n,α [ f ] Qα
n [ f ] P0.02,6

n,α [ f ]
20000 3.54e−5 1.38e−12 1.00e+0 1.22e−15 1.48e−3 3.06e−16 1.15e−6

200000 3.54e−6 3.82e−16 1.00e+0 1.91e−16 4.80e−2 3.82e−16 1.07e−2

2000000 3.54e−7 2.43e−14 1.00e+0 3.70e−15 1.00e+0 1.06e−15 4.51e−2

20000000 3.54e−8 9.04e−14 1.00e+0 3.43e−15 1.00e+0 2.99e−16 7.21e−1

where f1 has smoothness of a finite order and f2 has smoothness of the infinite order. The
true values of the integral with f1 is evaluated by using the Matlab symbolic toolbox, and
that of the integral with f2 is given by (6.1).

We report in Table 10 relative errors for f1 of the two quadrature formulas Qα
n [ f1] and

Pγ,ε
n,α [ f1] for different n and α, where the parameters in Pγ,ε

n,α [ f1] are γ = 0.2 and ε = 6. We
see from Table 10 that relative errors ofQα

n [ f1] are smaller than those of P0.2,6
n,α [ f1] for fixed

n when α is large.
Relative errors for f2 are listed in Table 11, where the parameters inPγ,ε

n,α [ f ] are γ = 0.02
and ε = 6. From Table 11, we confirm thatQα

n [ f2] is more accuracy thanP0.02,6
n,α [ f2]. Notice

that the quadrature nodes used in Qα
n [ f2] is less than that in P0.02,6

n,α [ f2] for fixed n.
We finally remark the quadrature formulas proposed in this paper are robust, easy to

implement and computationally inexpensive, when α is large.
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