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Abstract
In this paper, two temporal second-order schemes are derived and analyzed for the time
multi-term fractional diffusion-wave equation based on the order reduction technique. The
weighted average at two time levels is applied to the discretization of the spatial derivative, in
which the weight coefficient corresponds to the optimal point for the time discretization. The
two difference schemes are proved to be uniquely solvable. The stability and convergence
are rigorously investigated utilizing the energy method. In addition, a fast difference scheme
is also presented. The applicability and the accuracy of the schemes are demonstrated by
several numerical experiments.
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1 Introduction

Recently, the fractional differential equations (FDES) have attractedmore andmore attention,
which can simulate many physical and chemical processes more accuracy than the classical
integer-order differential equations. FDES have been frequently used to solve many appli-
cation problems [1–7]. The time fractional sub-diffusion and diffusion-wave equation are
obtained from the classical diffusion or wave equation by replacing the first or second order
time derivative by a fractional derivative of order α with 0 < α < 1 or 1 < α < 2, respec-
tively. In practice, many processes can be described by the multi-term FDES, such as the
underlying processes with loss [8], viscoelastic damping [9], oxygen delivery through a cap-
illaryto tissues [10], the anomalous diffusion in highly heterogeneous aquifers and complex
viscoelastic materials [11].

In particular, the multi-term time-fractional diffusion-wave equations can successfully
describe the power-law frequency dependence in a continuous time random walk model
[12].

For most fractional differential equations, it is very difficult to get the exact solutions.
Many researchers have proposed various kinds of numerical methods for solving fractional
differential equations [13–15]. Much work has been done numerically on the time diffusion-
wave equations. For the approximation of the fractional derivative with order α ∈ (1, 2),
Oldham and Spanier proposed the first-order GL formula based on the Grünwald-Letnikov
derivative [16]. Sun and Wu [17] derived L1 formula using linear interpolation technique
which keeps (3−α)-order accuracy. Later, the L1 formula was used for solving the problem
with diffusion-wave property [18–20], and the derived numerical schemes obtain (3 − α)-
order accuracy in time. Zhao et al. [21] proposed a second-order formula using high-order
interpolation for the variable-order fractional derivative with the order between 1 and 2, and
applied the formula for solvingwave propagation problem. Sun et al. [22] explored the L2-1σ

formula for the fractional diffusion-wave problem and obtained the second-order scheme both
in time and in space. Dehghan et al. [23] proposed a high-order numerical scheme to solve
the space-time tempered fractional diffusion-wave equation. They employ the fourth-order
technique to approximate theRiesz fractional derivative and a second-order approximation for
the tempered fractional integral. The convergence order of the proposedmethod isO(τ 2+h4).
Ghazizadeh et al. [24] constructed a generalized MacCormack scheme and a fully implicit
scheme for solving the fractional Cattaneo equation. The stability of the former scheme was
analyzed using the Von Neumann stability criterion. The scheme keeps second-order spatial
rate of convergence and (1+ α)-order temporal rate of convergence, where α ∈ (1, 2) is the
order of fractional derivative. Li and Cao [25] presented an unconditional stable scheme with
convergence order of O(τ 3−α + h2) for the 1D Cattaneo equation. Vong et al. [26] derived
a fourth order finite difference scheme for the 1D generalized fractional Cattaneo equation
combiningL1approximation for the time fractional derivative and compact difference scheme
for the second-order space derivative. The stability and convergence were proved in the
maximum norm by the energy method.

There are many numerical methods for multi-term fractional diffusion equation, such as
Galerkin finite element [27], finite difference method [28,38], spectral method [29], and so
on. Some research work on multi-term time fractional diffusion-wave equation has been
made. In [30], Salehi applied a meshless collocation method to solve the multi-term time
fractional diffusion-wave equation in two dimensions. The Caputo time fractional derivatives
are approximated by a scheme of order O(τ 3−α), α ∈ (1, 2).Abdel-Rehim et al. [31] gave the
simulations of the approximation solutions of time-fractionalwave, forcedwave (shearwave),
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and damped wave equations. The Von-Neumann stability conditions are also considered and
discussed for these models. Liu [32] established a strong maximum principle for fractional
diffusion equations with multiple Caputo derivatives in time, and investigate a related inverse
problem of practical importance. Bhrawy and Zaky [33] proposed a shifted Jacobi taumethod
for both temporal and spatial discretizations for multi-term time-space fractional differential
equation with Dirichlet boundary conditions. Dehghan et al. [34] constructed a high order
difference scheme and Galerkin spectral technique for the numerical solution of multi-term
time fractional partial differential equations. The proposed methods are based on a finite
difference scheme in time, which have (3 − α) order accuracy.

Ren and Sun [35] proposed some efficient numerical schemes to solve one-dimensional
and two-dimensional multi-term time fractional diffusion-wave equation, by combining the
compact difference approach for the spatial discretisation and an L1 approximation for the
multi-term time Caputo fractional derivatives. Liu et al. [36] proposed a finite difference
scheme for solving a two-term time-fractional wave-diffusion equation. Brunner et al. [37]
introduced an artificial boundary and found the exact and approximate artificial boundary
conditions for the time-fractional diffusion-wave equation on a two-dimensional unbounded
spatial domain, which leads to a problem on a bounded computational domain.

It is noted that the above methods for multi-term fractional diffusion-wave equation are
obtained mainly by applying directly the techniques which are used to handle the single-term
fractional diffusion-wave equation, including L1 formula and GL formula. L1 formula can
only achieve 3 − α order accuracy which is a little lower. Although GL formula can obtain
2 order accuracy, it requires the continuous zero-extension of the solution when t < 0.

In [38], the authors proposed a numerical formula to approximate the multi-term Caputo
fractional derivatives of orderαr (0 < αr ≤ 1) at the super-convergent point. The formula can
achieve at least second-order accuracy at this point. And some effective difference schemes
for solving the time multi-term fractional sub-diffusion equation and the time distributed-
order sub-diffusion equation, respectively, are presented along with the theoretical analysis
on the solvability, stability and convergence.

Motivated by the novel idea proposed in [38] and combining with the order reduction
method, we will present two temporal second-order accuracy difference schemes based on
the interpolation approximation for the timemulti-term fractional wave equation. The uncon-
ditional stability and convergence of the proposed difference schemes in L∞ norm are proved,
and the convergence order of the two difference schemes is O(τ 2 + h2) and O(τ 2 + h4),
respectively.

Most difference schemes for time fractional differential equations require storing the
solution at all previous time steps for use andhuge computational cost.Nowadays some efforts
have been made to develop efficient fast numerical methods for the Caputo derivative. Jiang
et al. [39] proposed a fast evaluation of Caputo fractional derivative based on the L1 formula
which employed the sum-of-exponentials (SOE) approximation to the kernel function t−1−α.

The fast algorithm keeps the accuracy of O(τ 2−α) and reduces the computational complexity
significantly. Yan et al. [40] proposed a fast FL2-1σ formula for the Caputo fractional
derivative combining the L2-1σ formula with SOE approximation. The formula has high
accuracy and reduces the storage and computational cost. We will develop a fast difference
scheme by combining FL2-1σ formula with the method of the order reduction for time
fractional diffusion wave equation.

In this paper, consider the following time multi-term fractional wave equation
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m∑

r=0

λr
C
0 D

αr
t u(x, t) = uxx (x, t) + f (x, t), 0 < x < L, 0 < t ≤ T , (1.1)

u(0, t) = 0, u(L, t) = 0, 0 < t ≤ T , (1.2)

u(x, 0) = w1(x), ut (x, 0) = w2(x), 0 ≤ x ≤ L, (1.3)

where λ0, λ1, . . . , λm are some positive constants, 1 < αm < αm−1 < · · · < α0 ≤ 2 and at
least one of αi ’s belongs to (1, 2), C0 D

α
t f (t) is the Caputo fractional derivative defined by

C
0 D

α
t f (t) = 1

�(2 − α)

∫ t

0

f ′′(s)
(t − s)α−1 ds.

This paper is arranged as follows. In Sect. 2, some useful notations and lemmas are
introduced. A temporal and spatial second order difference scheme is presented for time
multi-term fractional diffusion wave equation in Sect. 3. The stability and convergence of the
difference scheme are discussed. Sect. 4 constructs a temporal second order and spatial fourth-
order compact difference scheme. The stability and convergence of the compact difference
scheme are also shown. In Sect. 5, a fast second-order difference scheme is presented for
the time multi-term fractional diffusion wave equation. In Sect. 6, two numerical examples
are demonstrated to verify the theoretical results. The paper ends with a brief conclusion in
Sect. 7.

2 Preliminary

Denote

γr = αr − 1, 0 ≤ r ≤ m

and

F(σ ) =
m∑

r=0

λr

�(3 − γr )
σ 1−γr

[
σ − (1 − γr

2

)]
τ 2−γr , σ ≥ 0.

It is easy to know that 0 < γm < γm−1 < · · · < γ0 ≤ 1.

Lemma 2.1 [38] The equation F(σ ) = 0 has a unique positive root σ ∗ ∈ [a, b], where
a = 1 − γ0

2 , b = 1 − γm
2 .

If m = 0, the root of F(σ ) = 0 is σ ∗ = 1 − γ0
2 . If m ≥ 1, the root σ ∗ of F(σ ) = 0 can

be obtained by the Newton iteration method.

Lemma 2.2 [38] For m ≥ 1, the Newton iteration sequence {σk}∞k=0, generated by
{

σk+1 = σk − F(σk )
F ′(σk ) , k = 0, 1, 2, . . . ,

σ0 = b,
(2.1)

is monotonically decreasing and convergent to σ ∗.

For simplicity in writing hear and after, let σ = σ ∗. For 0 < γ < 1, a sequence {c(k+1,γ )
n }

defined in [41] is introduced in the following.

a(γ )
0 = σ 1−γ , a(γ )

l = (l + σ)1−γ − (l − 1 + σ)1−γ , l ≥ 1,

b(γ )

l = 1

2 − γ
[(l + σ)2−γ − (l − 1 + σ)2−γ ] − 1

2
[(l + σ)1−γ + (l − 1 + σ)1−γ ], l ≥ 1.
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For k = 0

c(k+1,γ )
0 = a0. (2.2)

For k ≥ 1

c(k+1,γ )
n =

⎧
⎪⎨

⎪⎩

a(γ )
0 + b(γ )

1 , n = 0,

a(γ )
n + b(γ )

n+1 − b(γ )
n , 1 ≤ n ≤ k − 1,

a(γ )

k − b(γ )

k , n = k.

(2.3)

Denote

ĉ(k+1)
n =

m∑

r=0

λr
τ−γr

�(2 − γr )
c(k+1,γr )
n , n = 0, 1, . . . , k

and

b̂n =
m∑

r=0

λr
τ−γr

�(2 − γr )
b(γr )
n , n = 0, 1, . . . , k.

Theproperties of the coefficients {ĉ(k)
n } and {b̂n}will be stated in the following two lemmas.

Lemma 2.3 [38] Given any non-negative integer m and positive constants λ0, λ1, . . . , λm,

for any γi ∈ (0, 1], i = 0, 1, . . . ,m, it holds

ĉ(k+1)
1 > ĉ(k+1)

2 > · · · > ĉ(k+1)
k−2 > ĉ(k+1)

k−1 >

m∑

r=0

λr
τ−γr

�(2 − γr )
· 1 − γr

2
(k − 1 + σ)−γr .

In addition, there exists a τ0 > 0, such that

(2σ − 1)ĉ(k+1)
0 − σ ĉ(k+1)

1 > 0,

when τ ≤ τ0, n = 2, 3, . . . , and

ĉ(k+1)
0 > ĉ(k+1)

1 .

Lemma 2.4 [22] The sequences {ĉ(k)
n } and {b̂n} satisfy

ĉ(k+1)
n =

{
ĉ(k)
n , 0 ≤ n ≤ k − 2,
ĉ(k)
n + b̂n+1, n = k − 1.

In addition

k∑

n=1

ĉ(k+1)
n ≤

m∑

r=0

λr
3τ−γr

2�(2 − γr )
(k + σ)1−γr

and

k∑

n=1

b̂n ≤
m∑

r=0

λr
γrτ

−γr

2�(3 − γr )
(k + σ)1−γr .
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Take two positive integers M, N and let h = L
M , τ = T

N . Denote xi = ih, tk = kτ,
�h = {xi | 0 ≤ i ≤ M

}
, �τ = {tk | 0 ≤ k ≤ N

}
and tk+σ = tk + στ.

If w = {wk | 0 ≤ k ≤ N } is a grid function defined on �τ , denote

δtw
1
2 = 1

τ
(w1 − w0),

Dt̂w
k = 1

2τ

[
(2σ + 1)wk+1 − 4σwk + (2σ − 1)wk−1], 1 ≤ k ≤ N − 1

and

wk+σ = σwk+1 + (1 − σ)wk .

Let

Uh = {u | u = (u0, . . . , uM ), u0 = uM = 0}.
For u ∈ Uh , introduce the following notations

δxui+ 1
2

= 1

h
(ui+1 − ui ), δ2xui = 1

h2
(ui+1 − 2ui + ui−1),

Aui = 1

12
(ui−1 + 10ui + ui+1).

For any u, v ∈ Uh, the inner products and norms are defined by

(u, v) = h
M−1∑

i=1

uivi , (δxu, δxv) = h
M−1∑

i=0

(
δxui+ 1

2

) (
δxvi+ 1

2

)
, 〈u, v〉A = (u,Av),

‖u‖ = √
(u, u), ‖δxu‖ = √(δxu, δxu), ‖u‖A = √〈u, u〉A, ‖u‖∞ = max

0≤i≤M
|ui |.

Lemma 2.5 [38] Suppose f ∈ C3([0, T ]), for any γi ∈ (0, 1], i = 0, 1, . . . ,m and γ0 >

γ1 > · · · > γm, then it holds

m∑

r=0

λr
C
0 D

γr
t f (tk+σ ) =

k∑

n=0

( m∑

r=0

λr
τ−γr

�(2 − γr )
c(k+1,γr )
n

)[
f (tk−n+1) − f (tk−n)

]+ O(τ 3−γ0)

=
k∑

n=0

ĉ(k+1)
k−n

[
f (tn+1) − f (tn)

]+ O(τ 3−γ0).

Lemma 2.6 [22] Suppose f ∈ C3([0, T ]). It holds

Dt̂ f (tk) ≡ 1

2τ

[
(2σ + 1) f (tk+1) − 4σ f (tk) + (2σ − 1) f (tk−1)

]

= d f

dt
(tk+σ ) + O(τ 2), k ≥ 1.

Lemma 2.7 [38] Suppose 〈·, ·〉∗ is an inner product on Uh, ‖ · ‖∗ is a norm deduced by
the inner product. For any grid functions v0, v1, . . . , vk+1 ∈ Uh, we have the following
inequality

〈 k∑

n=0

ĉ(k+1)
k−n (vn+1 − vn), vk+σ

〉

∗ ≥ 1

2

k∑

n=0

ĉ(k+1)
k−n

(‖vn+1‖2∗ − ‖vn‖2∗
)
.
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Lemma 2.8 [22] For any grid functions u0, u1, . . . , uN ∈ Uh, we have the following inequal-
ity

(
Dt̂u

k, uk+σ
) ≥ 1

4τ
(Ek+1 − Ek), k ≥ 1,

with

Ek+1 = (2σ + 1)‖uk+1‖2 − (2σ − 1)‖uk‖2 + (2σ 2 + σ − 1)‖uk+1 − uk‖2, k ≥ 0.
(2.4)

In addition, it holds

Ek+1 ≥ 1

σ
‖uk+1‖2, k ≥ 0. (2.5)

Lemma 2.9 [43] For any u ∈ Uh, we have

‖u‖∞ ≤
√
L

2
‖δxu‖, ‖u‖ ≤ L√

6
‖δxu‖,

and

2

3
‖u‖2 ≤ ‖u‖2A ≤ ‖u‖2, ‖Au‖ ≤ ‖u‖.

Lemma 2.10 [42] Assume the grid function {wk | 0 ≤ k ≤ N } is a nonnegative sequence
and satisfies the inequality

wk ≤ A + τ B
k∑

p=1

w p, 0 ≤ k ≤ N ,

where A, B are nonnegative constants. Then, when τ ≤ 1
2B , we have

wk ≤ A exp(2Bkτ), 0 ≤ k ≤ N .

3 A Second-Order Difference Scheme in Time and Space

3.1 The Derivation of the Difference Scheme

Now, combining the super-convergence approximation [38] with the order reductionmethod,
we construct the difference scheme for the problem (1.1)–(1.3).

Let γr = αr − 1, 0 ≤ r ≤ m and

v(x, t) = ut (x, t). (3.1)

Then

∂αr u

∂tαr
(x, t) = 1

�(2 − αr )

∫ t

0

∂2u

∂s2
(x, s)

1

(t − s)αr−1 ds

= 1

�(1 − γr )

∫ t

0

∂v

∂s
(x, s)

1

(t − s)γr
ds

=∂γr v

∂tγr
(x, t). (3.2)
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It follows from (3.1) that

(uxx )t = vxx .

Then, Eqs. (1.1)–(1.3) are equivalent to the following equation

m∑

r=0

λr
C
0 D

γr
t v(x, t) = uxx (x, t) + f (x, t), 0 < x < L, 0 < t ≤ T , (3.3)

∂

∂t

(∂2u

∂x2

)
= ∂2v

∂x2
, x ∈ (0, L), t ∈ (0, T ], (3.4)

u(x, 0) = w1(x), v(x, 0) = w2(x), x ∈ [0, L], (3.5)

u(0, t) = 0, u(L, t) = 0, t ∈ (0, T ], (3.6)

v(0, t) = 0, v(L, t) = 0, t ∈ (0, T ]. (3.7)

Suppose u(x, t) ∈ C4,4
x,t ([0, L] × [0, T ]). Define the grid functions

Uk
i = u(xi , tk), V k

i = v(xi , tk), 0 ≤ i ≤ M, 0 ≤ k ≤ N .

Considering (3.3) at the point (xi , tk+σ ), we have

m∑

r=0

λr
C
0 D

γr
t v(xi , tk+σ ) = uxx (xi , tk+σ ) + f (xi , tk+σ ), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1.

(3.8)

Using Lemma 2.5, we obtain

m∑

r=0

λr
C
0 D

γr
t v(xi , tk+σ ) =

k∑

n=0

ĉ(k+1)
k−n

(
V n+1
i − V n

i

)+ O(τ 3−γ0),

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1. (3.9)

By Taylor expansion, it yields

uxx (xi , tk+σ ) = σuxx (xi , tk+1) + (1 − σ)uxx (xi , tk) + O(τ 2)

= σδ2xU
k+1
i + (1 − σ)δ2xU

k
i + O(τ 2 + h2),

= δ2xU
k+σ
i + O(τ 2 + h2), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1. (3.10)

Substituting (3.9) and (3.10) into (3.8), we get

k∑

n=0

ĉ(k+1)
k−n

(
V n+1
i − V n

i

) = δ2xU
k+σ
i + f k+σ

i + Rk+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(3.11)

where f k+σ
i = f (xi , tk+σ ) and there exists a constant c0 such that

|Rk+σ
i | ≤ c0(τ

2 + h2), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1. (3.12)

Considering Eq. (3.4) at the points (xi , t 1
2
) and (xi , tk+σ ), respectively, we have

(uxx )t
(
xi , t 1

2

)
= vxx

(
xi , t 1

2

)
, 1 ≤ i ≤ M − 1 (3.13)
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and

(uxx )t (xi , tk+σ ) = vxx (xi , tk+σ ), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1. (3.14)

By Taylor expansion, it follows from (3.13) that

δtδ
2
xU

1
2
i = δ2x V

1
2
i + r

1
2
i , 1 ≤ i ≤ M − 1. (3.15)

By Lemma 2.6 and Taylor expansion, it follows from (3.14) that

Dt̂δ
2
xU

k
i = δ2x V

k+σ
i + rk+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1. (3.16)

There exists a constant c1 such that

|r
1
2
i | ≤c1(τ

2 + h2), 1 ≤ i ≤ M − 1, (3.17)

|rk+σ
i | ≤c1(τ

2 + h2), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1. (3.18)

In addition, noticing (3.4)–(3.6), we obtain

U 0
i =w1(xi ), V 0

i = w2(xi ), 1 ≤ i ≤ M − 1, (3.19)

Uk
0 =0, Uk

M = 0, 0 ≤ k ≤ N , (3.20)

V k
0 =0, V k

M = 0, 0 ≤ k ≤ N . (3.21)

Omitting the small terms in (3.11), (3.15) and (3.16) and noticing (3.19), (3.21) and we
construct the difference scheme for the problem (1.1)–(1.3) as follows

k∑

n=0

ĉ(k+1)
k−n (vn+1

i − vni ) = δ2xu
k+σ
i + f k+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (3.22)

δtδ
2
xu

1
2
i = δ2xv

1
2
i , 1 ≤ i ≤ M − 1, (3.23)

Dt̂δ
2
xu

k
i = δ2xv

k+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (3.24)

u0i = w1(xi ), v0i = w2(xi ), 1 ≤ i ≤ M − 1, (3.25)

uk0 = 0, ukM = 0, 0 ≤ k ≤ N , (3.26)

vk0 = 0, vkM = 0, 0 ≤ k ≤ N . (3.27)

3.2 The Unique Solvability of the Difference Scheme

Theorem 3.1 The difference Scheme (3.22)–(3.27) is uniquely solvable.

Proof Denote uk = (uk0, u
k
1, . . . , u

k
M ), vk = (vk0, v

k
1, . . . , u

k
M ).

(1) For k = 0, we can obtain the system of linear algebraic equations about the unknowns
u1 and v1 from (3.22), (3.23), (3.26) and (3.27). Considering its homogenous system, we
have

ĉ(1)
0 v1i = σδ2xu

1
i , 1 ≤ i ≤ M − 1, (3.28)

1

τ
δ2xu

1
i = 1

2
δ2xv

1
i , 1 ≤ i ≤ M − 1, (3.29)

u10 = 0, u1M = 0, v10 = 0, v1M = 0. (3.30)
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Solving δ2xu
1
i from (3.29) and substituting the result into (3.28), we obtain

ĉ(1)
0 v1i = στ

2
δ2xv

1
i , 1 ≤ i ≤ M − 1, (3.31)

Taking the inner product of (3.31) with v1 and using the summation by parts, we get

ĉ(1)
0 ‖v1‖2 + στ

2
‖δxv1‖2 = 0.

It implies that

v1i = 0, 1 ≤ i ≤ M − 1.

Then, it follows from (3.28) that

δ2xu
1
i = 0, 1 ≤ i ≤ M − 1. (3.32)

Taking the inner product of (3.32) with u1 and noticing (3.30), it yields

‖δxu1‖ = 0, ≤ k ≤ N − 1.

Then we get

u1i = 0, 1 ≤ i ≤ M − 1.

(2) For k(1 ≤ k ≤ N − 1), suppose that {uk−1, vk−1, uk, vk} have been determined, then
we get a linear system of equations with respect to uk+1 and vk+1 from (3.22), (3.24), (3.26)
and (3.27).

Consider the corresponding homogeneous system

ĉ(k+1)
0 vk+1

i = σδ2xu
k+1
i , 1 ≤ i ≤ M − 1, (3.33)

2σ + 1

2στ
δ2xu

k+1
i = δ2xv

k+1
i , 1 ≤ i ≤ M − 1, (3.34)

uk+1
0 = 0, uk+1

M = 0, (3.35)

vk+1
0 = 0, vk+1

M = 0. (3.36)

Solving δ2xu
k+1
i from (3.34) and substituting the result into (3.33), it yields

ĉ(k+1)
0 vk+1

i = 2σ 2τ

2σ + 1
δ2xv

k+1
i , 1 ≤ i ≤ M − 1. (3.37)

Taking the inner product of (3.37) with vk+1 and using the summation by parts, we obtain

ĉ(k+1)
0 ‖vk+1‖2 + 2σ 2τ

2σ + 1
‖δxvk+1‖2 = 0,

which yields that

vk+1
i = 0, 1 ≤ i ≤ M − 1.

Consequently, it follows from (3.33) that

δ2xu
k+1
i = 0, 1 ≤ i ≤ M − 1. (3.38)

Taking the inner product of (3.38) with uk+1, we have

‖δxuk+1‖ = 0.
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Then it yields

uk+1
i = 0, 1 ≤ i ≤ M − 1.

According to the induction principle, this completes the proof. �

3.3 The Stability and Convergence of the Difference Scheme

Firstly, we present the priori estimate of the difference Scheme (3.22)–(3.27). The proof is
divided into two steps, which correspond to the case k = 0 and k ≥ 1.

Theorem 3.2 Suppose {pki | 0 ≤ i ≤ M, 0 ≤ k ≤ N } and {qki | 0 ≤ i ≤ M, 0 ≤ k ≤ N }
satisfy

k∑

n=0

ĉ(k+1)
k−n (qn+1

i − qni ) = δ2x p
k+σ
i + f k+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (3.39)

δtδ
2
x p

1
2
i = δ2xq

1
2
i + g

1
2
i , 1 ≤ i ≤ M − 1, (3.40)

Dt̂δ
2
x p

k
i = δ2xq

k+σ
i + gk+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (3.41)

p0i = w1(xi ), q0i = w2(xi ), 1 ≤ i ≤ M − 1, (3.42)

pk0 = 0, pkM = 0, qk0 = 0, qkM = 0, 0 ≤ k ≤ N , (3.43)

where w1(xi ) = 0, w2(xi ) = 0 for i = 0, M . Then there exists a constant τ0 such that the
following inequality holds when τ ≤ τ0,

‖δx pk‖2 ≤ c2 exp
(4σ L2

3
T
)
Gk, τ

k∑

n=1

‖qn‖2 ≤ c3Gk, 0 ≤ k ≤ N .

where c2 and c3 are two constants and

Gk = ‖δx p0‖2 + ‖δ2x p0‖2 + ‖q0‖2 + ‖δxq0‖2 + ‖ f σ ‖2 + ‖g 1
2 ‖2

+ τ

k−1∑

l=1

‖ f l+σ ‖2 + τ

k−1∑

l=1

‖gl+σ ‖2.

Proof Step1.When k = 0, the system is as follows

ĉ(1)
0 (q1i − q0i ) = σδ2x p

1
i + (1 − σ)δ2x p

0
i + f σ

i , 1 ≤ i ≤ M − 1, (3.44)

δtδ
2
x p

1
2
i = δ2xq

1
2
i + g

1
2
i , 1 ≤ i ≤ M − 1, (3.45)

p0i = w1(xi ), q0i = w2(xi ), 1 ≤ i ≤ M − 1, (3.46)

p10 = 0, p1M = 0, q10 = 0, q1M = 0 (3.47)

with p00 = 0, p0M = 0, q00 = 0, q0M = 0.
(I) Taking the inner product of (3.44) with q1, we have

ĉ(1)
0 ‖q1‖2 = ĉ(1)

0 (q0, q1) − σ
(
δx p

1, δxq
1)+ (1 − σ)(δ2x p

0, q1) + ( f σ , q1). (3.48)

Taking the inner product of (3.45) with −2σ p1 and by the summation by parts, it yields

123



478 Journal of Scientific Computing (2019) 78:467–498

2σ

τ
‖δx p1‖2 = 2σ

τ
(δx p

0, δx p
1) + σ(δxq

1, δx p
1) + σ(δxq

0, δx p
1) − 2σ(g

1
2 , p1).

(3.49)

Adding (3.48) with (3.49) and using Young inequality and Lemma 2.9, we obtain

ĉ(1)
0 ‖q1‖2 + 2σ

τ
‖δx p1‖2

≤ ĉ(1)
0 (q0, q1) + (1 − σ)(δ2x p

0, q1) + ( f σ , q1)

+ 2σ

τ
(δx p

0, δx p
1) + σ(δxq

0, δx p
1) − 2σ(g

1
2 , p1)

≤
( ĉ(1)

0

3
‖q1‖2 + 3ĉ(1)

0

4
‖q0‖2

)
+
( ĉ(1)

0

3
‖q1‖2 + 3(1 − σ)2

4ĉ(1)
0

‖δ2x p0‖2
)

+
( ĉ(1)

0

3
‖q1‖2 + 3

4ĉ(1)
0

‖ f σ ‖2
)

+
( σ

3τ
‖δx p1‖2 + 3σ

τ
‖δx p0‖2

)

+
( σ

3τ
‖δx p1‖2 + 3στ

4
‖δxq0‖2

)
+
( σ

3τ
‖δx p1‖2 + L2σ

2
τ‖g 1

2 ‖2
)
. (3.50)

It follows that

‖δx p1‖2 ≤ 3‖δx p0‖2 + 3ĉ(1)
0 τ

4σ
‖q0‖2 + 3(1 − σ)2τ

4ĉ(1)
0 σ

‖δ2x p0‖2 + 3τ

4ĉ(1)
0 σ

‖ f σ ‖2

+ 3τ 2

4
‖δxq0‖2 + L2

2
τ 2‖g 1

2 ‖2. (3.51)

(II) It follows from (3.45) that

δ2x p
1
i = δ2x p

0
i + τδ2xq

1
2
i + τg

1
2
i , 1 ≤ i ≤ M − 1. (3.52)

Substituting (3.52) into (3.44), we have

ĉ(1)
0 (q1i − q0i ) = δ2x p

0
i + στδ2xq

1
2
i + f σ

i + στg
1
2
i , 1 ≤ i ≤ M − 1. (3.53)

Taking the inner product of (3.53) with q
1
2 , we obtain

ĉ(1)
0

(
q1 − q0, q

1
2

)
=
(
δ2x p

0, q
1
2

)
+ στ

(
δ2xq

1
2 , q

1
2

)
+
(
f σ , q

1
2

)
+ στ

(
g

1
2 , q

1
2

)
.
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By the summation by parts and Young inequality ab ≤ a2
2ε + εb2

2

(
taking ε = 3

ĉ(1)
0

)
, it

yields

ĉ(1)
0

2
(‖q1‖2 − ‖q0‖2)

=
(
δ2x p

0, q
1
2

)
− στ‖δxq 1

2 ‖2 +
(
f σ , q

1
2

)
+ στ

(
g

1
2 , q

1
2

)

≤
( 1

2ε
‖δ2x p0‖2 + ε

2
‖q 1

2 ‖2
)

+
( 1

2ε
‖ f σ ‖2 + ε

2
‖q 1

2 ‖2
)

+
( 1

2ε
‖στg

1
2 ‖2 + ε

2
‖q 1

2 ‖2
)

≤
( ĉ(1)

0

6
‖q 1

2 ‖2 + 3

2ĉ(1)
0

‖δ2x p0‖2
)

+
( ĉ(1)

0

6
‖q 1

2 ‖2 + 3

2ĉ(1)
0

‖ f σ ‖2
)

+
( ĉ(1)

0

6
‖q 1

2 ‖2 + 3σ 2τ 2

2ĉ(1)
0

‖g 1
2 ‖2
)

≤ ĉ(1)
0

4
‖q1‖2 + ĉ(1)

0

4
‖q0‖2 + 3

2ĉ(1)
0

‖δ2x p0‖2 + 3

2ĉ(1)
0

‖ f σ ‖2 + 3σ 2τ 2

2ĉ(1)
0

‖g 1
2 ‖2. (3.54)

From (3.54), we obtain

‖q1‖2 ≤ 3‖q0‖2 + 6

(ĉ(1)
0 )2

‖δ2x p0‖2 + 6

(ĉ(1)
0 )2

‖ f σ ‖2 + 6σ 2τ 2

(ĉ(1)
0 )2

‖g 1
2 ‖2. (3.55)

Step 2. When k ≥ 1, taking the inner product (3.39) with qk+σ , we obtain
(

k∑

n=0

ĉ(k+1)
k−n (qn+1 − qn), qk+σ

)
=
(
δ2x p

k+σ , qk+σ
)

+
(
f k+σ , qk+σ

)
, 1 ≤ k ≤ N − 1.

(3.56)

By Lemma 2.7 and Lemma 2.4, we have
(

k∑

n=0

ĉ(k+1)
k−n (qn+1 − qn), qk+σ

)
≥ 1

2

k∑

n=0

ĉ(k+1)
k−n

(‖qn+1‖2 − ‖qn‖2)

= 1

2

(
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2 −

k∑

n=1

ĉ(k)
k−n‖qn‖2 − b̂k‖q1‖2 − ĉ(k+1)

k ‖q0‖2
)

,

1 ≤ k ≤ N − 1. (3.57)

Using Young inequality, for any ε > 0, it holds
∣∣∣
(
f k+σ , qk+σ

)∣∣∣ ≤ ε‖qk+σ ‖2 + 1

4ε
‖ f k+σ ‖2. (3.58)

Substituting (3.57) and (3.58) into (3.56), it yields

1

2

(
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2 −

k∑

n=1

ĉ(k)
k−n‖qn‖2 − b̂k‖q1‖2 − ĉ(k+1)

k ‖q0‖2
)

≤
(
δ2x p

k+σ , qk+σ
)

+ ε‖qk+σ ‖2 + 1

4ε
‖ f k+σ ‖2, 1 ≤ k ≤ N − 1. (3.59)
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Taking the inner product (3.41) with −pk+σ , we get

−
(
Dt̂δ

2
x p

k, pk+σ
)

= −
(
δ2xq

k+σ , pk+σ
)

−
(
gk+σ , pk+σ

)
, 1 ≤ k ≤ N − 1. (3.60)

Using Lemma 2.8, it yields

−
(
Dt̂δ

2
x p

k, pk+σ
)

=
(
Dt̂δx p

k, δx p
k+σ
)

≥ 1

4τ
(Fk+1 − Fk), (3.61)

where

Fk+1 = (2σ + 1)‖δx pk+1‖2 − (2σ − 1)‖δx pk‖2 + (2σ 2 + σ − 1)‖δx pk+1 − δx p
k‖2
(3.62)

and

Fk+1 ≥ 1

σ
‖δx pk+1‖2, k ≥ 0. (3.63)

By Cauchy-Schwarz inequality, we have
∣∣∣−
(
gk+σ , pk+σ

)∣∣∣ ≤ 1

2
‖gk+σ ‖2 + 1

2
‖pk+σ ‖2, 1 ≤ k ≤ N − 1. (3.64)

Substituting (3.61) and (3.64) into (3.60), it yields

1

4τ
(Fk+1 − Fk) ≤ −

(
δ2xq

k+σ , pk+σ
)

+ 1

2
‖gk+σ ‖2 + 1

2
‖pk+σ ‖2, 1 ≤ k ≤ N − 1.

(3.65)

Adding (3.59) with (3.65), we obtain

1

2

(
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2 −

k∑

n=1

ĉ(k)
k−n‖qn‖2 − b̂k‖q1‖2 − ĉ(k+1)

k ‖q0‖2
)

+ 1

4τ
(Fk+1 − Fk)

≤ ε‖qk+σ ‖2 + 1

4ε
‖ f k+σ ‖2 + 1

2
‖gk+σ ‖2 + 1

2
‖pk+σ ‖2, 1 ≤ k ≤ N − 1. (3.66)

Denote

Hk+1 = 2τ
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2 + Fk+1.

Then, (3.66) can be rewritten as

Hk+1 ≤ Hk + 2τ b̂k‖q1‖2 + 2τ ĉ(k+1)
k ‖q0‖2 + 4τε‖qk+σ ‖2 + τ

ε
‖ f k+σ ‖2

+ 2τ‖gk+σ ‖2 + 2τ‖pk+σ ‖2

≤H1 + 2τ
k∑

n=1

b̂n‖q1‖2 + 2τ
k∑

n=1

ĉ(k+1)
n ‖q0‖2 + 8τε

k+1∑

n=1

‖qn‖2 + τ

ε

k∑

n=1

‖ f n+σ ‖2

+ 2τ
k∑

n=1

‖gn+σ ‖2 + 4τ
k+1∑

n=1

‖pn‖2, 1 ≤ k ≤ N − 1. (3.67)

By Lemma 2.3, (3.62) and (3.63), when τ ≤ τ0, we have

Hk+1 ≥
(

m∑

r=0

λr
(1 − γr )T−γr

�(2 − γr )

)
τ

k+1∑

n=1

‖qn‖2 + 1

σ
‖δx pk+1‖2, 1 ≤ k ≤ N − 1 (3.68)

123



Journal of Scientific Computing (2019) 78:467–498 481

and

H1 = 2τ ĉ(1)
0 ‖q1‖2 + F1 ≤ 2τ ĉ(1)

0 ‖q1‖2 + (4σ 2 + 4σ − 1)‖δx p1‖2 + (4σ 2 − 1)‖δx p0‖2.
(3.69)

Substituting (3.68) and (3.69) into (3.67), it yields

(
m∑

r=0

λr
(1 − γr )T−γr

�(2 − γr )

)
τ

k+1∑

n=1

‖qn‖2 + 1

σ
‖δx pk+1‖2

≤ 2τ ĉ(1)
0 ‖q1‖2 + (4σ 2 + 4σ − 1)‖δx p1‖2 + (4σ 2 − 1)‖δx p0‖2 + 2τ

k∑

n=1

b̂n‖q1‖2

+ 2τ
k∑

n=1

ĉ(k+1)
n ‖q0‖2 + 8τε

k+1∑

n=1

‖qn‖2 + τ

ε

k∑

n=1

‖ f n+σ ‖2

+ 2τ
k∑

n=1

‖gn+σ ‖2 + 4τ
k+1∑

n=1

‖pn‖2. (3.70)

Taking ε = 1
16

( m∑
r=0

λr
(1−γr )T−γr

�(2−γr )

)
and using Lemma 2.4, (3.51) and (3.55), we have

‖δx pk+1‖2 ≤ 4στ

k+1∑

n=1

‖pn‖2 + c2Gk+1

≤ 2L2σ

3
τ

k+1∑

n=1

‖δx pn‖2 + c2Gk+1, 1 ≤ k ≤ N − 1,

where c2 is a constant.
By Lemma 2.10, it follows that

‖δx pk+1‖2 ≤c2 exp
(4σ L2

3
T
)
Gk+1, 1 ≤ k ≤ N − 1. (3.71)

Substituting (3.71) into (3.70), there exists a constant c3 such that

τ

k+1∑

n=1

‖qn‖2 ≤c3Gk+1, 1 ≤ k ≤ N − 1.

This completes the proof. �

Theorem 3.2 implies the following theorem.

Theorem 3.3 The solution of the difference scheme (3.22)–(3.27) is unconditionally stable
with respect to the initial values w1, w2 and the right hand side function f .
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Proof Suppose {θki | 0 ≤ i ≤ M, 0 ≤ k ≤ N } and {zki | 0 ≤ i ≤ M, 0 ≤ k ≤ N } be the
solution of

k∑

n=0

ĉ(k+1)
k−n (θn+1

i − θni ) = δ2x z
k+σ
i + f k+σ

i + ξ ki , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(3.72)

δtδ
2
x z

1
2
i = δ2xθ

1
2
i , 1 ≤ i ≤ M − 1, (3.73)

Dt̂δ
2
x z

k
i = δ2xθ

k+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (3.74)

z0i = w1(xi ) + η1i , θ0i = w2(xi ) + η2i , 1 ≤ i ≤ M − 1, (3.75)

zk0 = 0, zkM = 0, 0 ≤ k ≤ N , (3.76)

θk0 = 0, θkM = 0, 0 ≤ k ≤ N . (3.77)

Denote

νki = θki − vki , μk
i = zki − uki , 0 ≤ i ≤ M, 0 ≤ k ≤ N .

Subtracting (3.72)–(3.77) from (3.21)–(3.27), we get the perturbation error equations

k∑

n=0

ĉ(k+1)
k−n (νn+1

i − νni ) = δ2xμ
k+σ
i + ξ ki , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

δtδ
2
xμ

1
2
i = δ2xν

1
2
i , 1 ≤ i ≤ M − 1,

Dt̂δ
2
xμ

k
i = δ2xν

k+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1,

μ0
i = η1i , ν0i = η2i , 1 ≤ i ≤ M − 1,

μk
0 = 0, μk

M = 0, 0 ≤ k ≤ N ,

νk0 = 0, νkM = 0, 0 ≤ k ≤ N .

By Theorem 3.2, we obtain

‖δxμk‖2 ≤ κ1 exp

(
4σ L2

3
T

)
Qk, τ

k∑

n=1

‖νn‖2 ≤ κ2Qk, 0 ≤ k ≤ N ,

where κ1 and κ2 are two constants and

Qk = ‖δxη1‖2 + ‖δ2xη1‖2 + ‖η2‖2 + ‖δxη2‖2 + ‖ξ1‖2 + τ

k−1∑

l=2

‖ξ l‖2.

The proof ends. �
Next, we give the convergence of the scheme (3.22)–(3.27). We have the following theo-

rem.

Theorem 3.4 Suppose theproblem (3.3)–(3.7)hasaunique smooth solutionand {uki , vki | 0 ≤
i ≤ M, 0 ≤ k ≤ N } is the solution of the difference scheme (3.22)–(3.27). Thenwhen τ ≤ τ0,
there exists a constant C1 such that

‖ek‖∞ ≤ C1(τ
2 + h2), τ

k∑

n=1

‖ρn‖ ≤ C1(τ
2 + h2), 0 ≤ k ≤ N .
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Proof Let

ρk
i = V k

i − vki , eki = Uk
i − uki , 0 ≤ i ≤ M, 0 ≤ k ≤ N .

Subtracting (3.22)–(3.27) from (3.11), (3.15), (3.16), (3.19)–(3.21), respectively, we
obtain the error equations as follows

k∑

n=0

ĉ(k+1)
k−n (ρn+1

i − ρn
i ) = δ2x e

k+σ
i + Rk+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (3.78)

δtδ
2
x e

1
2
i = δ2xρ

1
2
i + r

1
2
i , 1 ≤ i ≤ M − 1, (3.79)

Dt̂δ
2
x e

k
i = δ2xρ

k+σ
i + rk+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (3.80)

e0i = 0, ρ0
i = 0, 1 ≤ i ≤ M − 1, (3.81)

ek0 = 0, ekM = 0, 0 ≤ k ≤ N , (3.82)

ρk
0 = 0, ρk

M = 0, 0 ≤ k ≤ N . (3.83)

Using Theorem 3.2 and noticing (3.12), (3.17) and (3.18), we can obtain

‖δx ek‖2 ≤ c4(τ
2 + h2)2, τ

k∑

n=1

‖ρn‖2 ≤ c4(τ
2 + h2)2, 0 ≤ k ≤ N ,

where c4 is a constant.
It follows from Lemma 2.9 and Cauchy-Schwarz inequality that

‖ek‖∞ ≤ C1(τ
2 + h2), τ

k∑

n=1

‖ρn‖ ≤ C1(τ
2 + h2), 0 ≤ k ≤ N ,

where C1 = max{√c4T ,
√
c4L
2 }. The proof ends. �

4 A Fourth-Order Difference Scheme in Space

4.1 The Derivation of the Difference Scheme

Suppose u(x, t) ∈ C6,4
x,t ([0, L] × [0, T ]).

Considering (3.3) at the point (xi , tk+σ ), we obtain

m∑

r=0

λr
C
0 D

γr
t v(xi , tk+σ ) = uxx (xi , tk+σ ) + f (xi , tk+σ ), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1.

Using Lemma 2.5 and Taylor expansion, we obtain

k∑

n=0

ĉ(k+1)
k−n

(
V n+1
i − V n

i

) = σuxx (xi , tk+1) + (1 − σ)uxx (xi , tk) + f k+σ
i + O(τ 2),

0 ≤ i ≤ M, 0 ≤ k ≤ N − 1. (4.1)
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Acting the averaging operator A on both sides of (4.1) and using Taylor expansion, we have

k∑

n=0

ĉ(k+1)
k−n

(AV n+1
i − AV n

i

) = σAuxx (xi , tk+1) + (1 − σ)Auxx (xi , tk)

+ A f (xi , tk+σ ) + O(τ 2)

= δ2xU
k+σ
i + A f k+σ

i + Sk+σ
i ,

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (4.2)

where there exists a constant c5 such that

|Sk+σ
i | ≤ c5(τ

2 + h4), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (4.3)

Considering Eq. (3.4) at the points (xi , t 1
2
) and (xi , tk+σ ), we have

uxxt
(
xi , t 1

2

)
= vxx

(
xi , t 1

2

)
, 0 ≤ i ≤ M (4.4)

and

uxxt (xi , tk+σ ) = vxx (xi , tk+σ ), 0 ≤ i ≤ M, 1 ≤ k ≤ N − 1. (4.5)

Acting A on Eqs. (4.4) and (4.6), we get

Auxxt
(
xi , t 1

2

)
= Avxx

(
xi , t 1

2

)
, 1 ≤ i ≤ M − 1 (4.6)

and

Auxxt (xi , tk+σ ) = Avxx (xi , tk+σ ), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1. (4.7)

Using Taylor expansion and Lemma 2.6, it yields

δtδ
2
xU

1
2
i = δ2x V

1
2
i + s

1
2
i , 1 ≤ i ≤ M − 1 (4.8)

and

Dt̂δ
2
xU

k
i = δ2x V

k+σ
i + sk+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (4.9)

where there exists a constant c6 such that

|s
1
2
i | ≤c6(τ

2 + h4), 1 ≤ i ≤ M − 1, (4.10)

|sk+σ
i | ≤c6(τ

2 + h4), 1 ≤ i ≤ M − 1. (4.11)

Noticing the initial and boundary conditions, we get

U 0
i =w1(xi ), V 0

i = w2(xi ), 1 ≤ i ≤ M − 1, (4.12)

Uk
0 =0, Uk

M = 0, 0 ≤ k ≤ N , (4.13)

V k
0 =0, V k

M = 0, 0 ≤ k ≤ N . (4.14)
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Omitting the small terms in (4.2), (4.8) and (4.9) ans noticing (4.12)–(4.14), we construct
the difference scheme for the problem (1.1)–(1.3) as follows

k∑

n=0

ĉ(k+1)
k−n (Avn+1

i − Avni ) = δ2xu
k+σ
i + A f k+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(4.15)

δtδ
2
xu

1
2
i = δ2xv

1
2
i , 1 ≤ i ≤ M − 1, (4.16)

Dt̂δ
2
xu

k
i = δ2xv

k+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (4.17)

u0i = w1(xi ), v0i = w2(xi ), 1 ≤ i ≤ M − 1, (4.18)

uk0 = 0, ukM = 0, 0 ≤ k ≤ N , (4.19)

vk0 = 0, vkM = 0, 0 ≤ k ≤ N . (4.20)

We know u0 and v0 from (4.18)–(4.20). Solving δ2xu
1
i from (4.16) and then substituting

the result into (4.15) with the superscript k = 0 yield a tri-diagonal system of linear algebraic
equations about v1. After v1 is obtained, then u1 can be got easily. Now suppose {ul , vl | 0 ≤
l ≤ k} have been determined. Then, we solve δ2xu

k+1
i from (4.16) and substitute it into

(4.15) to obtain a tri-diagonal system of linear algebraic equations about vk+1. When vk+1 is
obtained, it is an easy work to get uk+1 by solving (4.16). We see that only two tri-diagonal
systems of linear algebraic equations need be solved at each time level and the double weep
method can be used.

4.2 The Unique Solvability of the Difference Scheme

Theorem 4.1 The difference Scheme (4.15)–(4.20) is uniquely solvable.

Proof (1) For k = 0, from (4.15), (4.16), (4.19) and (4.20), we can get the linear system of
equations with respect to u1 and v1. Considering its homogenous system, we have

ĉ(1)
0 Av1i = σδ2xu

1
i , 1 ≤ i ≤ M − 1, (4.21)

1

τ
δ2xu

1
i = 1

2
δ2xv

1
i , 1 ≤ i ≤ M − 1, (4.22)

u10 = 0, u1M = 0, v10 = 0, v1M = 0. (4.23)

Solving δ2xu
1
i from (4.22) and substituting the result into (4.21), then taking the inner

product of the obtained equality with v1, it yields

ĉ(1)
0 ‖v1‖2A = στ

2
(δ2xv

1, v1) = −στ

2
‖δxv‖2.

It follows that

v1i = 0, 1 ≤ i ≤ M − 1.

Then, from (4.21), it yields

δ2xu
1
i = 0, 1 ≤ i ≤ M − 1. (4.24)

Taking the inner product of (4.24) with u1, we get

‖δxu1‖ = 0.
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Thus we have

u1i = 0, 1 ≤ i ≤ M − 1.

(2) Suppose that {uk−1, vk−1, uk, vk} have been determined, then we get a linear system
of equations with respect to uk+1 and vk+1 from (4.15), (4.17), (4.19) and (4.20). Consider
the corresponding homogeneous system

ĉ(k+1)
0 Avk+1

i = σδ2xu
k+1
i , 1 ≤ i ≤ M − 1, (4.25)

δ2xu
k+1
i = 2στ

2σ + 1
δ2xv

k+1
i , 1 ≤ i ≤ M − 1, (4.26)

uk+1
0 = 0, uk+1

M = 0, (4.27)

vk+1
0 = 0, vk+1

M = 0. (4.28)

Substituting (4.26) into (4.25) and then taking the inner product of the obtained equality with
vk+1, we obtain

ĉ(k+1)
0 ‖vk+1‖2A + 2σ 2τ

2σ + 1
‖δxvk+1‖2 = 0.

It implies that

vk+1
i = 0, 1 ≤ i ≤ M − 1.

Then, it follows from (4.25) that

δ2xu
k+1
i = 0, 1 ≤ i ≤ M − 1. (4.29)

Taking the inner product of (4.29) with uk+1, it yields

‖δxuk+1‖ = 0.

Consequently, we get

uk+1
i = 0, 1 ≤ i ≤ M − 1.

The proof ends. �

4.3 The Stability and Convergence of the Difference Scheme

Next, we investigate the stability and convergence of the difference scheme. The following
theorem presents the prior estimate on the difference scheme (4.15)–(4.20).

Theorem 4.2 Suppose {pki |0 ≤ i ≤ M, 0 ≤ k ≤ N } and {qki |0 ≤ i ≤ M, 0 ≤ k ≤ N }
satisfy

k∑

n=0

ĉ(k+1)
k−n (Aqn+1

i − Aqni ) = δ2x p
k+σ
i + A f k+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(4.30)

δtδ
2
x p

1
2
i = δ2xq

1
2
i + g

1
2
i , 1 ≤ i ≤ M − 1, (4.31)

Dt̂δ
2
x p

k
i = δ2xq

k+σ
i + gk+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (4.32)

p0i = w1(xi ), q0i = w2(xi ), 1 ≤ i ≤ M − 1, (4.33)

pk0 = 0, pkM = 0, qk0 = 0, qkM = 0, 0 ≤ k ≤ N , (4.34)
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where w1(xi ) = 0, w2(xi ) = 0 for i = 0, M . Then when τ ≤ τ0, it holds that

‖δx pk‖2 ≤ c7 exp
(4σ L2

3
T
)
Lk, τ

k∑

n=1

‖qn‖2 ≤ c8Lk, 0 ≤ k ≤ N .

where c7 and c8 are two constants and

Lk = ‖δx p0‖2 + ‖δ2x p0‖2 + ‖q0‖2 + ‖δxq0‖2 + ‖A f σ ‖2 + ‖g 1
2 ‖2

+ τ

k−1∑

l=1

‖ f l+σ ‖2A + τ

k−1∑

l=1

‖gl+σ ‖2.

Proof Step 1. When k = 0, the system is as follows

ĉ(1)
0 (Aq1i − Aq0i ) = σδ2x p

1
i + (1 − σ)δ2x p

0
i + A f σ

i , 1 ≤ i ≤ M − 1, (4.35)

δtδ
2
x p

1
2
i = δ2xq

1
2
i + g

1
2
i , 1 ≤ i ≤ M − 1, (4.36)

p0i = w1(xi ), q0i = w2(xi ), 1 ≤ i ≤ M − 1, (4.37)

p10 = 0, p1M = 0, q10 = 0, q1M = 0 (4.38)

with p00 = 0, p0M = 0, q00 = 0, q0M = 0.
(I) Taking the inner product of (4.35) with q1, we obtain

ĉ(1)
0 ‖q1‖2A = ĉ(1)

0 (Aq0, q1) − σ
(
δx p

1, δxq
1)+ (1 − σ)(δ2x p

0, q1) + (A f σ , q1).

Taking the inner product of (4.36) with −2σ p1, we arrive at

2σ

τ
‖δx p1‖2 = 2σ

τ
(δx p

0, δx p
1) + σ(δxq

1, δx p
1) + σ(δxq

0, δx p
1) − 2σ

(
g

1
2 , p1

)
.

Similar to the derivation of (3.51)and noticing ‖Aq0‖ ≤ ‖q0‖, it yields

‖δx p1‖2 ≤ 3‖δx p0‖2 + 3τ

4ĉ(1)
0 σ

‖q0‖2 + 3(1 − σ)2τ

4ĉ(1)
0 σ

‖δ2x p0‖2 + 3τ

4ĉ(1)
0 σ

‖A f σ ‖2

+ 3τ 2

4
‖δxq0‖2 + L2

2
τ 2‖g 1

2 ‖2. (4.39)

(II) It follows from (4.36) that

δ2x p
1
i = δ2x p

0
i + τδ2xq

1
2
i + τg

1
2
i , 1 ≤ i ≤ M − 1. (4.40)

Substituting (4.40) into (4.35), we have

ĉ(1)
0 (Aq1i − Aq0i ) = δ2x p

0
i + στδ2xq

1
2
i + A f σ

i + στg
1
2
i , 1 ≤ i ≤ M − 1. (4.41)

Taking the inner product of (4.41) with q
1
2 , we obtain

ĉ(1)
0

(
Aq1 − Aq0, q

1
2

)
=
(
δ2x p

0, q
1
2

)
+ στ

(
δ2xq

1
2 , q

1
2

)
+
(
A f σ , q

1
2

)
+ στ

(
g

1
2 , q

1
2

)
.
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By Cauchy-Schwarz inequality and Lemma 2.9, it follows that

ĉ(1)
0

2
(‖q1‖2A − ‖q0‖2A)

≤ ĉ(1)
0

9
‖q 1

2 ‖2 + 9

4ĉ(1)
0

‖δ2x p0‖2 + ĉ(1)
0

9
‖q 1

2 ‖2 + 9

4ĉ(1)
0

‖A f σ ‖2 + ĉ(1)
0

9
‖q 1

2 ‖2

+ 9σ 2τ 2

4ĉ(1)
0

‖g 1
2 ‖2

≤ ĉ(1)
0

4
‖q1‖2A + ĉ(1)

0

4
‖q0‖2A + 9

4ĉ(1)
0

‖δ2x p0‖2 + 9

4ĉ(1)
0

‖A f σ ‖2 + 9σ 2τ 2

4ĉ(1)
0

‖g 1
2 ‖2.

Then, noticing ‖q0‖A ≤ ‖q0‖, we get

‖q1‖2A ≤ 3‖q0‖2 + 9

(ĉ(1)
0 )2

‖δ2x p0‖2 + 9

(ĉ(1)
0 )2

‖A f σ ‖2 + 9σ 2τ 2

(ĉ(1)
0 )2

‖g 1
2 ‖2. (4.42)

By ‖q1‖ ≤ 3
2‖q1‖A, we obtain

‖q1‖ ≤ 3

2

[
3‖q0‖2 + 9

(ĉ(1)
0 )2

‖δ2x p0‖2 + 9

(ĉ(1)
0 )2

‖A f σ ‖2 + 9σ 2τ 2

(ĉ(1)
0 )2

‖g 1
2 ‖2
]

.

Step 2. When k ≥ 1, taking the inner product (4.30) with qk+σ , we obtain
(

k∑

n=0

ĉ(k+1)
k−n (Aqn+1 − Aqn), qk+σ

)
=
(
δ2x p

k+σ , qk+σ
)

+
(
A f k+σ , qk+σ

)
, 1 ≤ k ≤ N − 1. (4.43)

By Lemma 2.7 and Lemma 2.4, we have
(

k∑

n=0

ĉ(k+1)
k−n (Aqn+1 − Aqn), qk+σ

)
≥ 1

2

k∑

n=0

ĉ(k+1)
k−n

(‖qn+1‖2A − ‖qn‖2A
)

= 1

2

(
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2A −

k∑

n=1

ĉ(k)
k−n‖qn‖2A − b̂k‖q1‖2A − ĉ(k+1)

k ‖q0‖2A
)

,

1 ≤ k ≤ N − 1. (4.44)

Using Young’s inequality, for any ε > 0, it holds
∣∣∣
(
A f k+σ , qk+σ

)∣∣∣ ≤ ‖ f k+σ ‖A · ‖qk+σ ‖A ≤ ε‖qk+σ ‖2A + 1

4ε
‖ f k+σ ‖2A. (4.45)

Substituting (4.44) and (4.45) into (4.43), it yields

1

2

(
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2A −

k∑

n=1

ĉ(k)
k−n‖qn‖2A − b̂k‖q1‖2A − ĉ(k+1)

k ‖q0‖2A
)

≤
(
δ2x p

k+σ , qk+σ
)

+ ε‖qk+σ ‖2A + 1

4ε
‖ f k+σ ‖2A, 1 ≤ k ≤ N − 1. (4.46)
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Taking the inner product (4.32) with −pk+σ , we get

−
(
Dt̂δ

2
x p

k, pk+σ
)

= −
(
δ2xq

k+σ , pk+σ
)

−
(
gk+σ , pk+σ

)
, 1 ≤ k ≤ N − 1.

Similarly to the derivation of (3.65), it yields

1

4τ
(Fk+1 − Fk) ≤ −

(
δ2xq

k+σ , pk+σ
)

+ 1

2
‖gk+σ ‖2 + 1

2
‖pk+σ ‖2, 1 ≤ k ≤ N − 1,

(4.47)

where Fk+1 is defined by (3.62).
Adding (4.46) with (4.47), we obtain

1

2

[
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2A −

k∑

n=1

ĉ(k)
k−n‖qn‖2A − b̂k‖q1‖2A − ĉ(k+1)

k ‖q0‖2A
]

+ 1

4τ
(Fk+1 − Fk)

≤ ε‖qk+σ ‖2A + 1

4ε
‖ f k+σ ‖2A + 1

2
‖gk+σ ‖2 + 1

2
‖pk+σ ‖2, 1 ≤ k ≤ N − 1. (4.48)

Denote

J k+1 = 2τ
k+1∑

n=1

ĉ(k+1)
k−n+1‖qn‖2A + Fk+1.

Then (4.48) can be rewritten as

J k+1 ≤ J k + 2τ b̂k‖q1‖2A + 2τ ĉ(k+1)
k ‖q0‖2A + 4τε‖qk+σ ‖2A + τ

ε
‖A f k+σ ‖2

+ 2τ‖gk+σ ‖2 + 2τ‖pk+σ ‖2

≤ J 1 + 2τ
k∑

n=1

b̂n‖q1‖2A + 2τ
k∑

n=1

ĉ(k+1)
n ‖q0‖2A + 8τε

k+1∑

n=1

‖qn‖2A + τ

ε

k∑

n=1

‖ f n+σ ‖2A

+ 2τ
k∑

n=1

‖gn+σ ‖2 + 4τ
k+1∑

n=1

‖pn‖2, 1 ≤ k ≤ N − 1. (4.49)

Using Lemma 2.3, (3.62) and (3.63), when τ ≤ τ0, we obtain

J k+1 ≥
(

m∑

r=0

λr
(1 − γr )T−γr

�(2 − γr )

)
τ

k+1∑

n=1

‖qn‖2A + 1

σ
‖δx pk+1‖2, 1 ≤ k ≤ N − 1 (4.50)

and

J 1 = 2τ ĉ(1)
0 ‖q1‖2A + F1 ≤ 2τ ĉ(1)

0 ‖q1‖2A + (4σ 2 + 4σ − 1)‖δx p1‖2 + (4σ 2 − 1)‖δx p0‖2.
(4.51)
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Substituting (4.50) and (4.51) into (4.49), we have

(
m∑

r=0

λr
(1 − γr )T−γr

�(2 − γr )

)
τ

k+1∑

n=1

‖qn‖2A + 1

σ
‖δx pk+1‖2

≤ 2τ ĉ(1)
0 ‖q1‖2A + (4σ 2 + 4σ − 1)‖δx p1‖2 + (4σ 2 − 1)‖δx p0‖2 + 2τ

k∑

n=1

b̂n‖q1‖2A

+ 2τ
k∑

n=1

ĉ(k+1)
n ‖q0‖2 + 8τε

k+1∑

n=1

‖qn‖2A + τ

ε

k∑

n=1

‖ f n+σ ‖2A

+ 2τ
k∑

n=1

‖gn+σ ‖2 + 4τ
k+1∑

n=1

‖pn‖2,

1 ≤ k ≤ N − 1. (4.52)

Taking ε = 1
16

( m∑
r=0

λr
(1−γr )T−γr

�(2−γr )

)
and using Lemma 2.4, (4.39) and (4.42), we have

‖δx pk+1‖2 ≤ 4στ

k+1∑

n=1

‖pn‖2 + c7Lk+1 ≤ 2L2σ

3
τ

k+1∑

n=1

‖δx pn‖2 + c7Lk+1, 1≤k≤N−1,

where c7 is a constant. By Lemma 2.10, it follows that

‖δx pk+1‖2 ≤ c7 exp
(4σ L2

3
T
)
Lk+1, 1 ≤ k ≤ N − 1. (4.53)

Substituting (4.53) into (4.52) and using Lemma 2.9, we get

τ

k+1∑

n=1

‖qn‖2 ≤ 3

2
τ

k+1∑

n=1

‖qn‖2A ≤ c8Lk+1, 1 ≤ k ≤ N − 1, 1 ≤ k ≤ N − 1,

where c8 is a constant.
This completes the proof. �

From the theorem above, we can obtain the stability of the difference scheme.

Theorem 4.3 The solution of the difference Scheme (4.15)–(4.20) is unconditionally stable
with respect to the initial values w1, w2 and the right hand side function f .

Next, we prove the convergence of the difference Scheme (4.15)–(4.20).
Let

ρk
i = V k

i − vki , eki = Uk
i − uki , 0 ≤ i ≤ M, 0 ≤ k ≤ N .
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Subtracting (4.15)–(4.20) from (4.2), (4.8), (4.9), (4.12)–(4.14), respectively, we get the
error equations as follows

k∑

n=0

ĉ(k+1)
k−n (Aρn+1

i − Aρn
i ) = δ2x e

k+σ
i + Sk+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(4.54)

δtδ
2
x e

1
2
i = δ2xρ

1
2
i + s

1
2
i , 1 ≤ i ≤ M − 1, (4.55)

Dt̂δ
2
x e

k
i = δ2xρ

k+σ
i + sk+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (4.56)

e0i = 0, ρ0
i = 0, 1 ≤ i ≤ M − 1, (4.57)

ek0 = 0, ekM = 0, 0 ≤ k ≤ N , (4.58)

ρk
0 = 0, ρk

M = 0, 0 ≤ k ≤ N . (4.59)

Theorem 4.4 Suppose theproblem (3.3)–(3.7)hasaunique smooth solutionand {uki , vki | 0 ≤
i ≤ M, 0 ≤ k ≤ N } is the solution of the difference Scheme (4.15)–(4.20). Then when
τ ≤ τ0, there exists a constant C2 such that

‖ek‖∞ ≤ C2(τ
2 + h4), τ

k∑

n=1

‖ρn‖ ≤ C2(τ
2 + h4), 0 ≤ k ≤ N .

Proof By Theorem 4.2 and noticing (4.3), (4.10) and (4.11), it yields

‖δx ek‖2 ≤ c9(τ
2 + h4)2, τ

k∑

n=1

‖ρn‖2 ≤ c9(τ
2 + h4)2, 0 ≤ k ≤ N ,

where c9 is a constant.
Using Lemma 2.3 and Cauchy-Schwarz inequality, we have

‖ek‖∞ ≤ C2(τ
2 + h4), τ

k∑

n=1

‖ρn‖ ≤ C2(τ
2 + h4), 0 ≤ k ≤ N ,

where C2 = max{√c9T ,
√
c9L
2 }. The proof ends. �

5 A Fast Second-Order Difference Scheme

In this section, we present a fast difference scheme for multi-term fractional diffusion wave
equation based on the F L2-1σ formula [40], which can reduce the computational complexity
significantly.

In [39,40], the kernel function t−α in Caputo derivative is approximated by the sum-of-
exponentials. For the given α ∈ (0, 1), tolerance error ε, cut-off time step size τ̂ and final
time T , there is one positive integer Nexp, exponential coefficients sl and corresponding
positive weights ωl , (l = 1, 2, . . . , Nexp) satisfying

∣∣∣t−α −
Nexp∑

l=1

ωl e
−sl t
∣∣∣ ≤ ε, ∀t ∈ [τ̂ , T ].
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In addition, the number of exponentials has the following order

Nexp = O
(
log

1

ε

(
log log

1

ε
+ log

T

τ̂

)
+ log

1

τ̂

(
log log

1

ε
+ log

T

τ̂

))
.

The fast evaluation of Caputo derivative, F L2-1σ formula, is given as follows

C
0 D

γr
t v(tk+σ ) = FHDγr

t vk+σ + O(ε + τ 2)

=
Nexp∑

l=1

ŵl V̂
k
l + σ 1−γr

τγr �(2 − γr )
(vk+1 − vk) + O(ε + τ 2),

where ŵl = 1
�(1−γr )

wl and V̂ k
l is obtained by the following recurrence relation

V̂ k
l = e−slτ V̂ k−1

l + Al(v
k − vk−1) + Bl(v

k+1 − vk),

with V̂ 0
l = 0, (l = 1, . . . , Nexp) and

Al =
∫ 1

0

(3
2

− s
)
e−slτ(σ+1−s) ds, Bl =

∫ 1

0

(
s − 1

2

)
e−slτ(σ+1−s) ds.

Thus, we obtain

m∑

r=0

λr
C
0 D

γr
t v(tk+σ ) =

m∑

r=0

λr

⎛

⎝
Nexp∑

l=1

ŵl V̂
k
l + σ 1−γr

τγr �(2 − γr )
(vk+1 − vk)

⎞

⎠+ O(ε + τ 2),

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1.

Then, we can construct a fast second-order recursion difference scheme for Eqs. (3.3)–
(3.7) as follows

m∑

r=0

λr

⎛

⎝
Nexp∑

l=1

ŵl V̂
k
l + σ 1−γr

τγr �(2 − γr )
(vk+1

i − vki )

⎞

⎠ = δ2xu
k+σ
i + f k+σ

i ,

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (5.1)

δtδ
2
xu

1
2
i = δ2xv

1
2
i , 1 ≤ i ≤ M − 1, (5.2)

Dt̂δ
2
xu

k
i = δ2xv

k+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (5.3)

u0i = w1(xi ), v0i = w2(xi ), 1 ≤ i ≤ M − 1, (5.4)

uk0 = 0, ukM = 0, 0 ≤ k ≤ N , (5.5)

vk0 = 0, vkM = 0, 0 ≤ k ≤ N , (5.6)

V̂ 0
l = 0, 1 ≤ l ≤ Nexp, (5.7)

V̂ k
l = e−slτ V̂ k−1

l + Al(v
k
i − vk−1

i ) + Bl(v
k+1
i − vki ),

1 ≤ l ≤ Nexp, 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, . (5.8)

From (5.4)–(5.6), we know u0 and v0. Solving δ2xu
1 from (5.2) and substituting the result

into (5.1) with the superscript k = 0 then noting (5.7) achieve a tri-diagonal system of linear
algebraic equations about v1. After v1 is obtained, then u1 can be got easily from (5.2). Now
suppose {uk−1, vk−1, uk, vk} and {V̂ k−1

l | 1 ≤ l ≤ Nexp} have been determined. Then, we
solve δ2xu

k+1 from (5.3) and substitute the result and (5.8) into (5.1) to obtain a tri-diagonal
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system of linear algebraic equations about vk+1. When vk+1 is obtained, by solving (5.3)
to get uk+1. Simultaneously, we get {V̂ k

l | 1 ≤ l ≤ Nexp} from (5.8). We find that only two
tri-diagonal systems of linear algebraic equations need be solved at each time level and the
double weep method can be used.

The determination of {uk+1, vk+1} and {V̂ k
l | 1 ≤ l ≤ Nexp} is only dependent on

{uk−1, vk−1, uk, vk} and {V̂ k−1
l | 1 ≤ l ≤ Nexp}. We only need store the values at two

time levels. This reduces the storage and computational cost significantly.
The analysis of the stability and convergence of the difference scheme (5.1)–(5.8) is too

long, which we omit here.

6 Numerical Experiments

In this section, we provide two numerical examples. The first example is to demonstrate the
accuracy of the difference scheme (3.22)–(3.27) and the scheme (4.15)–(4.20). A comparison
with the difference scheme based on L1 formula is also presented. The second example is
to compare the difference scheme (3.22)–(3.27) with the fast difference scheme (6.1)–(6.3),
which shows that the fast difference scheme can reduce the CPU time greatly.

Denote

E(h, τ ) = max
0≤k≤N

‖Uk − uk‖∞,

Orderτ = log2(E(h, 2τ)/E(h, τ )), Orderh = log2(E(2h, τ )/E(h, τ )).

Example 6.1 In (1.1)–(1.3), take T = 1, [0, L] = [0, π]. Consider the problem (1.1)–(1.3)
with the source term

f (x, t) =
(

2∑

r=0

24λr t4−αr

�(5 − αr )
+ t4

)
sin x

and the initial the boundary values

u(0, t) = 0, u(1, t) = 0, u(x, 0) = 0, ut (x, 0) = 0.

The problem has an exact solution

u(x, t) = t4 sin x .

With different values of λ0, λ1, λ2 and α0, α1, α2, the difference scheme (3.22)–(3.27)
and the scheme (4.15)–(4.20) will be used to numerically solve this problem, respectively.

Firstly, we examine the numerical accuracy in time. Taking the fixed and sufficiently
small h, the maximum errors and convergence orders are shown in Table 1. From Table 1,
one can see that both difference schemes can achieve the second-order accuracy in time. The
computational results are in a good agreement with theoretical results.

Secondly, the numerical accuracy of the difference scheme (3.22)–(3.27) and the scheme
(4.15)–(4.20) in space is tested. We fix the temporal step size τ = 1

5000 , Table 2 presents the
maximum errors and convergence orders for the different space step sizes. From Table 2, we
can find that, the second-order convergence of the difference schemes (3.22)–(3.27) and the
fourth-order convergence of the scheme (4.15)–(4.20) in space are verified, respectively.

Next, we show the efficiency of proposed difference scheme comparingwith the difference
scheme based on L1 formula. The difference scheme for the problem (1.1)–(1.3) based on
L1 formula is as follows [27]:
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Table 1 Maximum errors and convergence orders of the two difference schemes in time

(λ0, λ1, λ2) (α0, α1, α2) τ scheme (3.22)–(3.27) (M = 2000) scheme (4.15)–(4.20) (M = 100)

E(h, τ ) orderτ E(h, τ ) orderτ

(3, 2, 1) (4/3, 5/4, 6/5) 1/20 6.8898e−3 − 6.8904e − 3 −
1/40 1.7801e−3 1.953 1.7802e−3 1.953

1/80 4.5256e−4 1.976 4.5260e−4 1.976

1/160 1.1410e−4 1.988 1.1411e−4 1.988

(5/3, 3/2, 4/3) 1/20 4.6355e−3 − 4.6377e−3 −
1/40 1.1896e−3 1.962 1.1902e−3 1.962

1/80 3.0177e−4 1.979 3.0192e−4 1.979

1/160 7.6062e−5 1.988 7.6099e−5 1.988

(1, 2, 3) (4/3, 5/4, 6/5) 1/20 7.1942e−3 − 7.1945e−3 −
1/40 1.8587e−3 1.953 1.8587e−3 1.953

1/80 4.7232e−4 1.976 4.7234e−4 1.976

1/160 1.1900e−4 1.989 1.1900e−4 1.989

(5/3, 3/2, 4/3) 1/20 5.3556e−3 − 5.3570e−3 −
1/40 1.3640e−3 1.973 1.3644e−3 1.973

1/80 3.4270e−4 1.993 3.4280e−4 1.993

1/160 8.5480e−5 2.003 8.5505e−5 2.003

Table 2 Maximum errors and convergence orders of the two difference schemes in space (N = 5000)

(λ0, λ1, λ2) (α0, α1, α2) scheme (3.22)–(3.27) scheme (4.15)–(4.20)

h E(h, τ ) orderh h E(h, τ ) orderh

(3, 2, 1) (4/3, 5/4, 6/5) π/4 1.7719e−4 − π/4 5.7628e−7 −
π/8 4.6079e−5 1.944 π/8 4.0833e−8 3.819

π/16 1.1591e − 5 1.989 π/16 2.6492e−9 3.947

m∑

r=0

τ 1−αr

�(3 − αr )

[
a(αr )
0 δt u

k+ 1
2

i −
k−1∑

n=1

(
a(αr )
k−n−1 − a(αr )

k−n

)
δt u

n+ 1
2

i − a(αr )
k−1w2(xi )

]

= δ2xu
k+ 1

2
i + f

k+ 1
2

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (6.1)

u0i = w1(xi ), 1 ≤ i ≤ M − 1, (6.2)

uk0 = 0, ukM = 0, 0 ≤ k ≤ N , (6.3)

where δt uk+
1
2 = uk+1−uk

τ
, a(αr )

0 = 1, a(αr )
l = (l + 1)2−αr − l2−αr .

Table 3 lists the errors and the orders of the scheme (3.22)–(3.27) and the scheme (6.1)–
(6.3). For the different temporal step sizes 1

40 ,
1
80 ,

1
160 and 1

320 , we choose the spatial step

sizes by h = τ
1
2 min {2−γr } for the scheme (6.1)–(6.3) and h = τ for the scheme (3.22)–(3.27).

From Table 3, we can see the scheme (6.1)–(6.3) has min {2 − γr } order accuracy, while the
scheme (3.22)–(3.27) can achieve 2-order accuracy. It shows that the scheme (3.22)–(3.27)
is more efficient than the scheme (6.1)–(6.3).
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Table 3 Maximum errors and convergence orders of the two difference schemes

(λ0, λ1, λ2) (α0, α1, α2) N scheme (3.22)–(3.27) scheme (6.1)–(6.3)

M E(h, τ ) orderτ M E(h, τ ) orderτ

(3, 2, 1) (5/3, 3/2, 4/3) 40 40 5.6545e−5 − 137 8.9636e−3 −
80 80 1.2950e−5 2.126 345 3.5804e−3 1.324

160 160 2.9663e−6 2.126 869 1.4154e−3 1.339

320 320 6.8341e−7 2.118 2189 5.5638e−4 1.347

(9/5, 7/4, 6/5) 40 40 7.1120e−5 − 84 1.9274e−2 −
80 80 1.6401e−5 2.116 192 8.3824e−3 1.201

160 160 3.7659e−6 2.123 442 3.6221e−3 1.211

320 320 8.6452e−7 2.123 1014 1.5593e−3 1.216

(1, 2, 3) (5/3, 3/2, 4/3) 40 40 5.1573e−5 − 137 5.5068e−3 −
80 80 1.1904e−5 2.115 345 2.1182e−3 1.378

160 160 2.7499e−6 2.114 869 8.0600e−4 1.394

320 320 6.3915e−7 2.105 2189 3.0521e−4 1.401

(9/5, 7/4, 6/5) 40 40 6.6939e−5 − 84 1.6068e−2 −
80 80 1.5347e−5 2.125 192 6.8266e−3 1.235

160 160 3.5063e−6 2.130 442 2.8790e−3 1.246

320 320 8.0210e−7 2.128 1014 1.2092e−3 1.251

Table 4 Numerical errors and convergence orders of the difference scheme (5.1)–(5.6) in timewithM = 1000
and (λ0, λ1, λ2) = (3, 2, 1), (α0, α1, α2) = (4/3, 5/4, 6/5) for Example 6.2

τ difference scheme (5.1)–(5.6) difference scheme (3.22)–(3.27)

E(h, τ ) orderτ E(h, τ ) orderτ

1/20 4.4867e−3 − 4.4867e−3 −
1/40 1.1482e−3 1.966 1.1482e−3 1.966

1/80 2.9008e−4 1.985 2.9031e−4 1.984

1/160 7.3043e−5 1.990 7.2975e−5 1.992

Example 6.2 In (1.1)–(1.3), take T = 1, [0, L] = [0, π]. Consider the problem (1.1)–(1.3)
with the source term

f (x, t) =
(

2∑

r=0

λr
�(3 + α0)

�(3 + α0 − αr )
t2+α0−αr + t2+α0

)
sin x

and the initial and boundary values

u(0, t) = 0, u(1, t) = 0, u(x, 0) = 0, ut (x, 0) = 0.

The problem has an exact solution

u(x, t) = t2+α0 sin x .

From Table 4 and Table 5, we can see that the difference scheme (5.1)–(5.6) can achieve
second order accuracy both in time and in space. We take ε = 10−10 and τ̂ = στ in the
simulation. The CPU time for both schemes are also shown in Table 5 which verifies the
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Table 5 Numerical errors and convergence orders of two difference schemes in space with N = 5000 and
(λ0, λ1, λ2) = (3, 2, 1), (α0, α1, α2) = (4/3, 5/4, 6/5) for Example 6.2

h difference scheme (5.1)–(5.6) difference scheme (3.22)–(3.27)

E(h, τ ) orderh CPU E(h, τ ) orderh CPU

π/4 1.1701e−3 − 49s 1.2046e−3 − 18.77h

π/8 2.7123e−4 2.109 84s 3.0567e−4 1.979 19.15h

π/16 4.2327e−5 2.680 116s 7.6757e−5 1.994 19.48h

efficiency of the scheme (5.1)–(5.6). From Table 5, we find the difference scheme (5.1)–(5.6)
can reduce the computational cost significantly.

7 Conclusion

Motivated by the idea in [38], we propose two temporal second-order accuracy difference
schemes at the super-convergence point by the order reduction technique for time multi-term
fractional diffusion wave equation. The schemes based on the interpolation approximation
can achieve higher-order accuracy than L1 formula andmore efficient thanGL formulawhich
requires continuous zero-extension of the solution when t < 0. The unconditional stability
and convergence of the two schemes are proved rigorously by the energy method. We also
present a fast difference scheme which can reduce the computational cost significantly. The
numerical examples are presented to verify the theoretical results.
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