
Journal of Scientific Computing (2019) 78:1387–1404
https://doi.org/10.1007/s10915-018-0813-8

Energy Dissipative Local Discontinuous Galerkin Methods for
Keller–Segel Chemotaxis Model

Li Guo1 · Xingjie Helen Li2 · Yang Yang3

Received: 4 March 2018 / Revised: 12 August 2018 / Accepted: 14 August 2018 /
Published online: 24 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this paper, we apply the local discontinuous Galerkin (LDG) method to solve the classi-
cal Keller–Segel (KS) chemotaxis model. The exact solution of the KS chemotaxis model
may exhibit blow-up patterns with certain initial conditions, and is not easy to approximate
numerically. Moreover, it has been proved that there exists a definition of free energy of the
KS system which dissipates with respect to time. We will construct a consistent numeri-
cal energy and prove the energy dissipation with the LDG discretization. Several numerical
experiments in one and two space dimensions will be given. Especially, for solutions with
blow-up (converge to Dirac delta functions), the densities of KS model are computed to be
strictly positive in the numerical experiments and the energies are also numerically observed
to be strictly positive and decreasing as are seen in the figures. Therefore, the scheme is stable
for the KS model with blow-up solutions.
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1 Introduction

In this paper, we study the classical Keller–Segel (KS) chemotaxis model [29,36]. Let� be a
convex, bounded and open set inR2, thenwe focus on the following common formulation [7],

ρt = �ρ − ∇ · (χρ∇c), xxx ∈ �, t > 0, (1.1a)

ct = �c + ρ − c, xxx ∈ �, t > 0, (1.1b)

as well as its one dimensional version. Chemotaxis is the nonlinear movement of cell in
reaction to a chemical substance, where cell approaches chemically favorable environments
and avoids unpleasant ones. In (1.1) ρ represents the densities of cells and c denotes the
chemical concentration. The chemotactic sensitivity function χ is supposed to be a positive
constant. For simplicity, we take χ ≡ 1 in this paper. However, this assumption is not
essential. The initial conditions are given as

ρ(xxx, 0) = ρ0(xxx), and c(xxx, 0) = c0(xxx), xxx ∈ �. (1.2)

In addition, the boundary conditions are set to be homogeneousNeumann boundary condition

∇ρ · n = ∇c · n = 0, (1.3)

where n is the outer normal of the boundary ∂�. With this boundary condition,
∫
�

ρdxxx =∫
�

ρ0dxxx is a constant during the time evolution and the system is thus isolated.
It is not easy to obtain the existence and uniqueness of the weak solutions to (1.1). In [19,

20], the initial densities ρ0 and c0 are assumed to be strictly positive and satisfy

ρ0(x, y) ∈ L2(�), ρ0 ≥ a0 > 0 and c0(x, y) ∈ W 1,p(�), p > 2, ∀ (x, y) ∈ �,

(1.4)
where W 1,p(�) denote the Sobolev space of functions on � with the usual norm ‖ · ‖1,p .

Moreover, ρ0 is assumed to satisfy a smallness condition [19], that is, there exists a
constant CGNS

� > 0, such that

CGNS
� χ‖ρ0‖L1(�) < 1,

whereCGNS
� denotes the best constant in the Gagliardo–Nirenberg–Sobolev inequality. Then

for appropriate T > 0, there exists a unique weak solution (ρ, c) (see details in [20]) such
that

ρ ∈ C
([0, T ]; L2(�) ∩ L2(0, T ; H1(�))

)
, c ∈ L2(0, T ; H1(�)). (1.5)

The exact solutions of the KS chemotaxis model are always non-negative. Moreover, the
model exhibits blow-up patternswith certain initial conditions [19,20,24,25,34]. Biologically,
finite-time blow up for solutions is expected to describe chemotactic collapse, that is the
tendency of cells to concentrate to form spora, which can be explained mathematically as
concentration of ρ(x, t) towards a Dirac delta mass in finite time [25,34] in the sense of
distribution. When the blow-up patterns occur, the density ρ of cells will strengthen in the
vicinity of isolated points, and these regions become sharper and eventually result in finite
time point-wise blow-ups. It was well known that blow-up never occurs in problems in one
space dimension [34], whereas blow-up occurs within finite time in 2D and 3D cases. In 2D
space, mathematical proofs for spherically symmetric solutions in a ball have been given
in [24,34]. When the initial mass is greater than a certain threshold

χ‖ρ0‖L1(�) > 8π,
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the exact solutionwill blowup at the center of the ball, and this is proved to be the only possible
singularity. For nonsymmetric cases, if 4π < χ‖ρ0‖L1(�) < 8π and the corresponding
solution of (1.1) blows up at finite time, then the blow-up happens at the boundary of � [26,
27]. However, no such restriction in mass appears for the 3D case [24]. More theoretical
work can be found in [20,24–26].

It is difficult to construct numerical schemes for (1.1), and most of the previous works are
for the following simplified system

ρt − ∇ · (∇ρ − χρ∇c) = 0, x ∈ �, t > 0,
−	c = ρ − c, x ∈ �, t > 0,

(see, for example, [19,23,33,41] and the references therein). Recently, there are some signif-
icant works designed to solve (1.1) directly [17,35,39,40]. In [35], the semigroup methods
were used to obtain the stability and error estimates of the finite element methods. Later,
In [39], the author constructed conservative upwind finite-element method to yield positive
numerical approximations under mild assumptions of the meshes. Subsequently, in [40],
the authors constructed implicit second-order positivity preserving finite-volume schemes in
three-dimensional space, and their technique requires solving a large dense linear system of
equations coupling together all grid points at each stage of the two stage TR-BDF2 method
when updating the diffusion terms at each time step. In [17], the interior penalty discon-
tinuous Galerkin (IPDG) method was applied to rectangular meshes to obtain suboptimal
rate of convergence, and the finite element space is assumed to be piecewise polynomials
of degree k ≥ 2. Other related works in this direction include [14–16]. Besides the above,
in [38] the authors applied the conservative upwind finite volume method for the simplified
system. Later in [6], the authors constructed a second order positivity-preserving scheme to
a revised system by differentiating (1.1) with respect to x and y, hence the schemes were
not designed to solve (1.1) directly. Subsequently, in [18], the author developed a composite
particle-grid numerical method with adaptive time stepping to resolve and propagate singular
solutions of (1.1). In [31], the authors applied finite difference method to the 2D problem and
investigated the problem in the transient regime. The scheme is proved to be stable as long as
the initial condition does not exceed certain threshold. Recently, in [30], the local discontin-
uous Galerkin methods were considered and the optimal rates of convergence were proved
under some special finite element spaces. Moreover, following [44], the positivity-preserving
technique was also introduced to obtain physically relevant numerical approximations and
defined the numerical blow-up time which was verified to be convergent to the exact value
by numerical benchmarks. Besides the above, for the KS chemotaxis model (1.1), one can
define a free energy

E(t) =
∫

�

(

ρ ln(ρ) − ρc + 1

2
c2 + 1

2
|∇c|2

)

d�. (1.6)

In most of the previous works the energy (1.6), which was proved to be decreasing during
time evolution, has been used to prove the existence of the global solutions of the system
(1.1), see [2,3,5,13,20,28,32] as an incomplete list. Numerical method based on a hybrid
variational principle was introduced in [4]. The implementation utilizes the steepest descent
of free energy under a special distance metric. In this paper, we will apply a special LDG
scheme and construct a numerical energy which is consistent with (1.6). It is well known
that in LDGmethods, the axillary variables must be introduced, and in general we can obtain
the L2 stability. However, for the (1.1), such a stability cannot be obtained since the exact
solution may yield blow-up patten. Therefore, one of the most significant difficulty is how
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to introduce the axillary variables. In this paper, we will rewrite (1.1) into several special
first-order equations and construct consistent and dissipating numerical energy accordingly.

The DG method was first introduced in 1973 by Reed and Hill [37] in the framework of
neutron linear transport. Subsequently,Cockburn et al. developedRunge–Kutta discontinuous
Galerkin (RKDG) methods for hyperbolic conservation laws in a series of papers [8–11].
In [12], Cockburn and Shu introduced the LDG method to solve the convection-diffusion
equations. Their idea was motivated by Bassi and Rebay [1], where the compressible Navier-
Stokes equations were successfully solved. Recently, the DG methods were applied to linear
hyperbolic equations with δ-singularities [42] to obtain high-order approximations under
suitable negative-order norms. Subsequently, themethods have also been applied to nonlinear
hyperbolic equations with δ-singularities [43,45]. Recently, the idea has been extended to
parabolic equations with blow-up solutions by using the LDGmethod [22]. In this paper, we
follow the same direction and employ the LDGmethod to capture the blow-up phenomenon.
For theKSchemotaxismodel (1.1), the exact solutionmayexhibits blow-uppatten.Therefore,
the L2 stability of the LDGmethod is missing. However, this leads another way to define the
numerical blow-up time. In [30], we introduced a new idea to capture the numerical blow-up
time by using the L2 norm of the numerical approximations under different resolutions. In
this paper, we will continue this approach and compute the numerical approximations up to
the blow-up appears. Moreover, we construct the numerical energy, consistent with (1.6),
that is decreasing during time evolution. Even though the energy can be negative, numerical
experiments for blow-up solutions demonstrate the positivity of the energy. Therefore, this
approach provides the stability of the LDG scheme for problems with blow-up solutions.
Before we finish the introduction, wewould like to demonstrate themain differences between
the LDG method in this paper and the one introduced in [30]. In [30], we basically followed
the idea introduced in [12] and define p = ∇ρ, q = ∇c to rewrite (1.1) as

ρt = ∇ · p − ∇ · (χρq), p = ∇ρ,

ct = ∇ · q + ρ − c, q = ∇c,

However, we cannot anticipate the numerical energy to be dissipative. Moreover, the numer-
ical approximation contains severe oscillations near the concentration of the δ-singularities.
In this paper, we will apply the new idea to decompose (1.1) and prove that the numerical
energy is dissipative during time evolution. Numerical experiments also demonstrate the
same conclusion.

The organization of this paper is as follows. In Sect. 2, we construct the energy stable
LDG scheme for the KS chemotaxis model. In Sect. 3, we construct the numerical energy and
prove the energy dissipation for the semi-discrete LDG scheme. Numerical experiments in
one and two space dimensions will be given in Sect. 4 to demonstrate the stability of the LDG
scheme for problems with blow-up solutions. Finally, we will end in Sect. 5 with concluding
remarks and remarks for future work.

2 The LDG Scheme

In this section, we define the finite element spaces and proceed to construct the LDG scheme
for the KS chemotaxis model (1.1).

Let �h = {K } be a partition of the domain � with rectangular or triangular element
K . Denote hK to be the diameter of element K , and h = maxK hK . Moreover, assume the
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partition is quasi-uniform, i.e. there exists a number τ > 0 such that every K ∈ �h contains
a circle of radius rK with rK ≥ hK /τ . We define the finite element space V k

h as

V k
h =

{
z : z∣∣K ∈ Pk(K ),∀K ∈ �h

}
,

where Pk(K ) is the set of polynomials of degree up to k in cell K .
We choose β to be a fixed vector that is not parallel to any normals of element interfaces.

Moreover, we denote 
h to be the set of all element interfaces and 
0 = 
h\∂�. Let e ∈ 
0

be an interior edge shared by elements K� and Kr , where β · n� > 0, and β · nr < 0,
respectively, with n� and nr being the outward normals of K� and Kr , respectively. For any
z ∈ V k

h , we define z− = z|∂K�
and z+ = z|∂Kr , respectively. The jump and average of z

across the cell interface are given as [z] = z+−z− and {z} = z++z−
2 , respectively. Moreover,

for s ∈ Vk
h = V k

h × V k
h , we define s+, s−, [s] and {s} analogously. Furthermore, we also

define ∂�− = {e ∈ ∂�|β · n < 0,n is the outer normal of e}, and ∂�+ = ∂�\∂�−.
To construct the LDG method scheme, we introduce the axillary variables w, s, q ∈ Vk

h
and r ∈ V k

h , then the chemotaxis model (1.1) can be written as

ρt = ∇ · w,

w = ρs,

s = ∇(r − c),

r = ln(ρ),

ct = ∇ · q + ρ − c,

q = ∇c.

The formulation of the LDG scheme is to find ρh , rh , ch ∈ V k
h and wh, sh, qh ∈ Vk

h , such
that for any test functions v, u, θ ∈ V k

h and φ, ψ , ξ ∈ Vk
h , we have

(ρh t , v)K = −(wh,∇v)K + 〈ŵh · n, v〉∂K , (2.1a)

(wh,φ)K = (ρhsh,φ)K , (2.1b)

(sh,ψ)K = −(rh − ch,∇ · ψ)K + 〈r̂h − ĉh,ψ · n〉∂K , (2.1c)

(rh, u)K = (ln(ρh), u)K , (2.1d)

(cht , θ)K = −(qh,∇θ)K + 〈q̂h · n, θ〉∂K + (ρh − ch, θ)K , (2.1e)

(qh, ξ)K = −(ch,∇ · ξ)K + 〈ĉh, ξ · n〉∂K , (2.1f)

where (u, v)K := ∫
K uvdxdy, (φ,ψ)K := ∫

K φ · ψdxdy and 〈u, v〉∂K := ∫
∂K uvds. n

is the outward normal vector of cell K . The “hat” terms in (2.1) at the cell interfaces are
numerical fluxes. In this paper, we choose

ŵh = {wh} + α[wh], r̂h = {rh} − α[rh], ĉh = {ch} − α[ch] q̂h = {qh} + α[qh]. (2.2)

If we take α = ±1, then the fluxes (2.2) turn out to be the alternating fluxes. Moreover, due
to the Neumann boundary condition, we take

ŵh · n|e = 0, r̂h |e = r+
h , ĉh |e = c+

h , q̂h · n|e = 0,

if e ∈ ∂�−, and

ŵh · n|e = 0, r̂h |e = r−
h , ĉh |e = c−

h , q̂h · n|e = 0,

if e ∈ ∂�+.
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We also denote

(u, v) =
∑

K∈�h

(u, v)K , (φ,ψ) =
∑

K∈�h

(φ,ψ)K ,

then (2.1) can be written as

(ρh t , v) = −Ld(wh, v), (2.3a)

(wh,φ) = (ρhsh,φ), (2.3b)

(sh,ψ) = −Q(rh − ch,ψ), (2.3c)

(rh, u) = (ln(ρh), u), (2.3d)

(cht , θ) = −Ld(qh, θ) + (ρh − ch, θ), (2.3e)

(qh, ξ) = −Q(ch, ξ), (2.3f)

where

Ld(p, w) := (p,∇w) −
∑

K∈�h

〈̂p · nK , w〉∂K ,

Q(u,w) := (u,∇ · w) −
∑

K∈�h

〈û,w · nK 〉∂K .

It is easy to check the following identities by integration by parts on each cell, with the given
choice of the numerical fluxes, for any functions u and w,

Ld(w, u) + Q(u,w) = 0. (2.4)

Remark 2.1 It is not easy to derive the a priori error estimates for the new LDG method
proposed above. The main difficulty is the numerical energy Eh given in (3.1) may not be
positive. However, numerical experiments in Sect. 4 demonstrate optimal convergence rates
if Pk polynomials are applied for problems in two space dimensions. We will discuss the
error estimates in the future.

3 Energy Dissipation

In this section, we will construct a suitable numerical energy Eh(t) obtained from the semi-
discretized LDG scheme (2.1) and prove the energy dissipation.

3.1 Free Energy of the LDG Scheme

In this subsection, we proceed to construct the numerical energy Eh(t), which is consistent
with the free energy E(t) given in (1.6) and prove that it is decreasing with respect to t .

The numerical energy Eh(t) is defined as follows

Eh(t) =
∫

�

ρh ln(ρh) − ρhch + 1

2
c2h + 1

2
|qqqh |2d�. (3.1)

The numerical energy given above is similar to that in (1.6). However, Eh is used for the
numerical approximations while (1.6) is for the exact solution.

123



Journal of Scientific Computing (2019) 78:1387–1404 1393

Theorem 3.1 The numerical energy given in (3.1) satisfies the following identity

d

dt
Eh(t) = −(cht , cht ) − (ρhsh, sh). (3.2)

Proof Firstly, we take the derivative of (2.3f) with respect to time and choose ξ = qh to
obtain

(qh t ,qh) = −Q(cht ,qh). (3.3)

Next, take θ = cht in (2.3e), one can obtain

(cht , cht ) = −Ld(qh, cht ) + (ρh − ch, cht ). (3.4)

We add (3.3) and (3.4) and use (2.4) to get

(qh t ,qh) + (cht , cht ) = (ρh − ch, cht ). (3.5)

Secondly, we choose the test functions v = rh − ch in (2.3a) and ψ = wh in (2.3c) to obtain

(ρh t , rh − ch) = −Ld(wh, (rh − ch)),

(sh,wh) = −Q(rh − ch,wh).

Adding up the above two equations and using (2.4), we have

(ρh t , rh − ch) + (sh,wh) = 0. (3.6)

Then let φ = sh in (2.3b) and u = ρh t in (2.3d), Eq. (3.6) becomes

(ln(ρh), ρh t ) − (ρh t , ch) + (ρhsh, sh) = 0. (3.7)

Thirdly, take v = 1 in (2.3a) to obtain

(ρh t , 1) = −Ld(wh, 1) = 0. (3.8)

Finally, we can obtain

d

dt
Eh(t) = (ln(ρh) + 1, ρh t ) − (ρh t , ch) − (ρh, cht ) + (ch, cht ) + (qh t ,qh)

= −(cht , cht ) − (ρhsh, sh)

where in the second step, we use (3.5), (3.7) and (3.8). Now we complete the proof. �

Remark 3.1 We proved the dissipation of the free energy with the LDG discretization. Also
to the best of our knowledge, we did not see any references claimed that the violation of
the initial threshold will make the energy to be negative infinity. On the other hand, the free
energy of the 2D test examples are numerically observed to be strictly positive provided
the exact solutions blow up (see Examples 4.6 and 4.7). Therefore, we numerically obtain
the stability of our scheme due to the monotonicity and boundedness of the free energy for
problems with blow-up solutions.

Remark 3.2 When ρh attains negative values, Eh in (3.1) is not well-defined and may not
decrease in (3.2). Hence the energy dissipation relies heavily on the positivity of ρh . However,
the positivity-preserving technique in [30] cannot be applied since we cannot obtain positive
numerical approximations for the first-order scheme. Moreover, the positivity-preserving
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technique require a special slope limiter. However, with the limiter, the energy equality in
Theorem 3.1 will be violated. In (3.2), it is possible to redefine the numerical energy as

Eh(t) =
∫

�

ρh ln(|ρh |) − ρhch + 1

2
c2h + 1

2
|qqqh |2d�,

and the numerical energy is well defined. With the new definition, it is easy to check that
Theorem 3.1 is still valid.

4 Numerical Experiments

In this section, we provide numerical experiments in one and two space dimensions to verify
the energy stability. We consider uniform meshes in this section for simplicity and apply
third-order strong-stability-preserving (SSP) time discretization [21] to solve theODEsystem
ut = L(u)

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4

(
u(1) + �tL(u(1))

)
,

un+1 = 1

3
un + 2

3

(
u(2) + �tL(u(2))

)
.

The time step �t is chosen to be �t = c f l ∗ h2, with c f l = 0.1, 0.01, 0.001, 0.0001 for P0,
P1, P2 and P3 finite element spaces, respectively. For simplicity, if not otherwise stated, we
choose α = 1 and use alternating fluxes [see (2.2)].

In each of the following experiments, the numerical energy Eh(t) is decreasing during
time evolution. Especially, for problems with blow-up solutions, the energy is also positive.
Following [30], we compute the L2 norm of numerical approximations at time t with N × N
cells (N cells for the 1D case), defined as S(N , t) and define the numerical blow-up time as

tb(N ) = inf{t : S(2N , t) ≥ S(N , t) ∗ 1.05}. (4.1)

In [30], the authors used numerical experiments to verify the convergence of the numerical
blow-up time during mesh refinements. We will continue this approach and take the final
time to be the blow-up time if the blow-up appears.

4.1 One Dimensional Space

In this subsection, numerical experiments in one space dimension are presented. The problem
in one space dimension does not exist blow-up patterns for any initial conditions. We first
check the accuracy of the algorithm.

Example 4.1 We consider 1D KS chemotaxis model with source terms.

ρt = ρxx − (ρcx )x − 2ρ

2 + sin(x)
+ (cos(2x) − 2 sin(x))ρ2

(2 + sin(x))2
, x ∈ [0, 2π],

ct = cx x + ρ − c − 2c

2 + sin(x)
, x ∈ [0, 2π ],

with the exact solution ρ = c = (2 + sin(x)) exp(−t) and periodic boundary conditions.

123



Journal of Scientific Computing (2019) 78:1387–1404 1395

Table 1 Example 4.1, accuracy test at time = 0.1

N α = 1 α = 0

L2 error Order L∞ error Order L2 error Order L∞ error Order

P0 16 1.80E−02 – 1.29E−02 – 1.81E−02 – 1.30E−02 –

32 7.24E−03 1.31 5.37E−03 1.26 7.24E−03 1.31 5.37E−03 1.26

64 3.36E−03 1.11 2.36E−03 1.19 3.36E−03 1.11 2.36E−03 1.19

128 1.64E−03 1.03 1.09E−03 1.11 1.64E−03 1.03 1.09E−03 1.11

P1 16 1.06E−02 – 6.15E−03 – 3.25E−02 – 2.01E−02 –

32 2.59E−03 2.03 1.47E−03 2.06 1.55E−02 1.02 9.83E−03 1.03

64 6.45E−04 2.01 3.65E−04 2.02 7.64E−03 1.00 4.88E−03 1.01

128 1.61E−04 2.00 9.09E−05 2.00 3.81E−03 1.00 2.44E−03 1.00

P2 16 4.49E−04 – 3.56E−04 – 3.30E−04 – 2.43E−04 –

32 5.62E−05 3.00 4.37E−05 3.03 4.06E−05 3.02 2.95E−05 3.04

64 7.03E−06 3.00 5.42E−06 3.01 5.06E−06 3.01 3.62E−06 3.03

128 8.79E−07 3.00 6.73E−07 3.01 6.31E−07 3.00 4.49E−07 3.01

P3 16 9.07E−06 – 5.61E−06 – 4.94E−05 – 3.18E−05 –

32 5.41E−07 4.06 3.05E−07 4.20 5.88E−06 3.07 3.89E−06 3.05

64 3.34E−08 4.02 1.88E−08 4.02 7.26E−07 3.02 4.82E−07 3.01

128 2.08E−09 4.00 1.18E−09 4.00 9.05E−08 3.00 6.03E−08 3.00

Example 4.1 aims to verify the accuracy of the LDG scheme with α = 1 and α = 0
respectively. The results can be found in Table 1. We list the L2 and L∞ errors of ρ at final
time T = 0.1. From the table, we can observe optimal rates of convergence with α = 1. For
α = 0, we can see that the rates of convergence have optimal and suboptimal accuracy for
odd orders and even orders respectively.

Example 4.2 Consider 1D KS chemotaxis model (1.1) on the domain [0, π] with smooth
initial condition and homogeneous Neumann boundary conditions

ρ(x, 0) = c(x, 0) = 2 + cos(x), and ∇ρ · n = ∇c · n = 0.

In this example, the exact solution is smooth and the energy Eh(t) is negative. We choose
the final time to be T = 0.1. From Fig. 1, we can see that the energy is decreasing during
time evolution and the numerical approximations of densities are positive in this example.

Example 4.3 Finally, we consider 1D KS chemotaxis model (1.1) on the computational
domain [−2, 2] with initial and Neumann boundary conditions given as

ρ(x, 0) = 400

1 + 40x2
, c(x, 0) = 200

1 + 20x2
, and ρx = cx = 0,

respectively.

In this example, the initial condition is symmetric and the derivative is large. Therefore, the
exact solutionmight be approximately singular at x = 0.Moreover, to preserve the symmetry,
we choose α = 0 in the numerical fluxes. We use P3 polynomials and take N = 320 and
N = 640 to check the convergence of the numerical approximations at T = 0.001, and the
results are given in Fig. 2.
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Fig. 1 Example 4.2: the energy (left) and ρ (right) with N = 80 and N = 160 by using P2 piecewise
polynomials
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Fig. 2 Example 4.3: the numerical approximations of ρ with N = 320 (left) and N = 640 (right) by using
P3 polynomials

From the figure, we can see that the numerical approximations under different resolutions
agree with each other, and the exact solution does not blow up. To demonstrate this point,
we also compute the L2 norm of the numerical approximations with N = 160, 320, 640 at
T = 0.001, and the results are given in Fig. 3.

Moreover, we compute the numerical free energy (3.1) and the L2 norm of the numerical
approximations by using P3 polynomials with N = 160, 320, 640 at T = 0.001. The results
are plotted in Fig. 3, 4. We can see that, the L2 norms of the numerical approximations are
almost identical, and the exact solution does not blow up at T = 0.001. Though the exact
solution contains a cusp at x=0 and looks like a delta-singularity shape, the numerical energy
is still positive and the solution is not a blow-up as in 1D. Figure 4 contains the numerical
energy with N = 160, N = 320 and N = 640.

From the figure, we can observe that the numerical energy is positive and decreasing
during time evolution, which further implies the energy stability of the scheme. The result is
consistent with Theorem 3.1.
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Fig. 3 Example 4.3: the L2 norm
of the numerical approximations
with N = 160, 320, 640 with P3

polynomials at T = 0.001
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Fig. 4 Example 4.3: the
numerical energy with N = 160,
N = 320 and N = 640 with P3

polynomials at T = 0.001
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4.2 Two Dimensional Space

In this subsection, we will present numerical examples in two space dimensions to show the
performance of our algorithm. For simplicity, we take Nx = Ny = N .

Example 4.4 We study the following KS chemotaxis model on the computational domain
[0, 2π] × [0, 2π] with source terms to check the accuracy

ρt = �ρ − ∇ · (ρ∇c) − 4ρ

2 + sin(x + y)
+ 2ρ2(cos(2(x + y)) − 2 sin(x + y))

(2 + sin(x + y))2
,

ct = �c + ρ − c − 4c

2 + sin(x + y)
,

with the exact solution ρ = c = (2+sin(x+ y)) exp(−2t) and periodic boundary conditions.

In Table 2, we present the L2 and L∞ errors of ρ at the final time T = 0.1 of Example 4.4
to test the accuracy of the LDG scheme. From the table, we can observe optimal rates of
convergence.
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Table 2 Example 4.4, accuracy test at time = 0.1

N × N α = 1 α = 0

L2 error Order L∞ error Order L2 error Order L∞ error Order

P0 8 × 8 2.25E−01 – 5.29E−01 – 2.26E−01 – 5.30E−01 –

16 × 16 6.91E−02 1.70 2.13E−02 1.32 6.91E−02 1.70 2.13E−02 1.32

32 × 32 2.61E−02 1.40 8.27E−03 1.36 2.61E−02 1.40 8.27E−03 1.36

64 × 64 1.18E−02 1.15 3.52E−03 1.23 1.18E−02 1.15 3.52E−03 1.23

P1 8 × 8 2.03E−01 – 4.85E−02 – 2.60E−01 – 8.04E−02 –

16 × 16 4.85E−02 2.07 1.08E−02 2.17 1.25E−01 1.06 3.83E−02 1.07

32 × 32 1.18E−02 2.04 2.66E−03 2.01 6.15E−02 1.02 1.85E−02 1.05

64 × 64 2.93E−03 2.01 6.60E−04 2.01 3.07E−02 1.00 9.06E−03 1.03

P2 8 × 8 1.16E−02 – 3.51E−03 – 2.53E−02 – 5.79E−03 –

16 × 16 1.82E−03 2.67 5.74E−04 2.63 3.87E−03 2.71 8.97E−04 2.69

32 × 32 2.47E−04 2.88 7.82E−05 2.88 5.18E−04 2.90 1.19E−04 2.91

64 × 64 3.16E−05 2.97 9.77E−06 3.00 6.57E−05 2.98 1.49E−05 3.00
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Fig. 5 Example 4.5: the numerical approximations of ρ with N = 40 (left) and N = 80 (right) and P1

polynomials

Example 4.5 Consider 2D KS chemotaxis model (1.1) on the computational domain [0, π]×
[0, π] with initial and Neumann boundary conditions given as

ρ(x, y, 0) = c(x, y, 0) = 2 + cos(x) cos(y), and ∇ρ · n = ∇c · n = 0,

respectively.

In this example, the exact solution is smooth and the energy E(t) is negative at t = 0. We
use P1 polynomials and compute the numerical solutions at T = 0.1 with N = 40 and 80.
The numerical approximations of ρ are given in Fig. 5. From the figure, we can see that the
numerical approximations of ρ are strictly positive. Moreover, Fig. 6 shows the numerical
energy. We can see that the energy is decreasing during time evolution.

Now, we proceed to problems with blow-up solutions.
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Fig. 6 Example 4.5: the
numerical energy with N = 40
and N = 80 with P1 piecewise
polynomials
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Fig. 7 Example 4.6: the L2 norm of the numerical approximations of ρ with N = 80 and N = 160 by using
P1 (left) and P2 (right) polynomials

Example 4.6 Let us consider 2D KS chemotaxis model (1.1) on the computational domain
[−2, 2]×[−2, 2]with homogeneousNeumann boundary conditions and the initial conditions
are given as

ρ(x, y, 0) = 400

1 + 40(x2 + y2)
,

c(x, y, 0) = 200

1 + 20(x2 + y2)
.

The exact solution is symmetric and will blow up if t is large. To preserve the symmetry,
we choose α = 0 in (2.2). We use both P1 and P2 polynomials and the schemes are first and
third order accurate, respectively, according to the error table in Example 4.4. Moreover, we
take N = 80 and 160 in this example. The L2 norms of the numerical approximations of ρ

are given in Fig. 7.
Following the notations given in (4.1), the red line and green line are for S(80, t) and

S(160, t), respectively and the numerical blow-up time tb(80) is approximately t = 0.00032
for both P1 and P2 polynomials. Moreover, we plot the contour and the cross section at
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Fig. 8 Example 4.6: the contour (left) and cross section at x = 0 (right) of ρ with N = 160 by using P2 at
T = 6 × 10−4 polynomials
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Fig. 9 Example 4.6: the contour plots ofρwith N = 80 (left) and N = 160 (right) by using P1 at T = 6×10−4

polynomials

x = 0 of ρ at T = 6 × 10−4 for P2 polynomials in Fig. 8. From the figure, we cannot
observe undershoots, and the numerical approximations remain positive in this example.

Moreover, we also plot the contours of ρ at T = 6 × 10−4 for P1 polynomials with
N = 80 and N = 160 in Fig. 9 and we can observe significant differences. Especially, the
maximum value of ρ for N = 160 is almost four times of that for N = 80. This clearly
demonstrate the appearance of the blow-up.

We plot the numerical energy for N = 80 and N = 160 in Fig. 10. From the figure, we
can observe that the energy is decreasing and strictly positive during time evolution, which
clearly demonstrated the stability of the algorithm.

Finally, we repeat the example given in [30] and demonstrate the energy stability of the
algorithm.

Example 4.7 We consider 2D KS chemotaxis model (1.1) on the computational domain
[−0.5, 0.5] × [−0.5, 0.5] with homogeneous Neumann boundary conditions and the ini-
tial conditions are given as
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Fig. 10 Example 4.6: the
numerical energy with N = 80
and N = 160 by using P2

polynomials
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Fig. 11 Example 4.7: the L2 norms of the numerical approximations of ρ with N = 50 and N = 100 by
using P1 (left) and P2 (right) polynomials

ρ(x, y, 0) = 840 exp(−84(x2 + y2)),

c(x, y, 0) = 420 exp(−42(x2 + y2)).

The exact solution is symmetric and will blow up if t is large. To preserve the symmetry,
we also choose α = 0 in (2.2).

In Fig. 11, we plot the L2 norm of the numerical approximations of ρ with N = 50 and
N = 100 by using P1 and P2 polynomials, and based on the numerical experiments in
Example 4.4, the schemes are first and third order accurate, respectively. We cannot observe
significant difference between the two panels. Following (4.1), we can see that the numerical
blow-up appears at about tb = 8.2 × 10−5.

In [14], the authors computed the same example for P2 polynomials with h = 1
50 (N =

50). For comparison, we present the contour and the cross section at x = 0 of ρ at t =
1.21 × 10−4 in Fig. 12 for P2 polynomials. We can obtain similar results given in [14].

Finally, to demonstrate the energy stability, we plot the numerical energy in Fig. 13. We
can see that the energy is strictly positive and decreasing during time evolution. Therefore,
our algorithm is stable.

123



1402 Journal of Scientific Computing (2019) 78:1387–1404

x

y

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

120000
110000
100000
90000
80000
70000
60000
50000
40000
30000
20000
10000
0

x

ρ

-0.4 -0.2 0 0.2 0.4

0

20000

40000

60000

80000

100000

120000

140000

Fig. 12 Example 4.7: the contour (left) and cross section at x = 0 (right) of ρ with P2 polynomials. We take
h = 1

50

Fig. 13 Example 4.7: the free
energy with N = 50 and
N = 100
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5 Conclusion

In this paper, we construct a numerical energy for the LDG method for Keller–Segel chemo-
taxis model. The energy is proved to the decreasing during time evolution. For solutions
with blow-up, the energy is also strictly positive which further implies the stability of the
numerical algorithm.
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