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Abstract
We study the h- and p-versions of non-conforming harmonic virtual elementmethods (VEM)
for the approximation of theDirichlet–Laplace problemon a 2Dpolygonal domain, providing
quasi-optimal error bounds. Harmonic VEM do not make use of internal degrees of freedom.
This leads to a faster convergence, in terms of the number of degrees of freedom, as compared
to standard VEM. Importantly, the technical tools used in our p-analysis can be employed as
well in the analysis of more general non-conforming finite element methods and VEM. The
theoretical results are validated in a series of numerical experiments. The hp-version of the
method is numerically tested, demonstrating exponential convergence with rate given by the
square root of the number of degrees of freedom.

Keywords Virtual element methods · Non-conforming methods · Laplace problem ·
Approximation by harmonic functions · hp error bounds · Polytopal meshes

Mathematics Subject Classification 65N30 · 65N12 · 65N15 · 35J05 · 31A05

1 Introduction

In recent years, Galerkin methods based on polygonal/polyhedral meshes have attracted a lot
of attention, owing to their flexibility in dealing with complex geometries [5,19,31,38,39,41,
55]. In this paper, we focus on the virtual element method (VEM) introduced in [13,16]. The
main feature of VEM, in addition to the fact that they allow for general polytopal meshes,
is that they are based on trial and test spaces that consist of solutions to local problems
mimicking the target one. These functions are not known in a closed form, which is at the
origin of the name “virtual”. Importantly, the construction of the method does not rely on
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an explicit representation of the basis functions, but rather on the explicit knowledge of the
degrees of freedom. This allows to compute certain projection operators from local VE spaces
into polynomial ones, which are instrumental in the definition of proper bilinear forms.

Owing to its flexibility and simplicitity of the implementation, despite its novelty, the basic
VEM paradigm has already been extended to highly-regular [22] and non-conforming [7,34]
approximating spaces, combinedwith domain decomposition techniques [27], adaptivemesh
refinement [32], adapted to curved domains [23], and applied to a wide variety of problems;
among them, we recall general second-order elliptic problems [14], eigenvalue problems
[43,53], Stokes problem [21], elasticity problem [15],Helmholtz problem [54],Cahn–Hilliard
equation [3], discrete fracture network simulations [24], and topology optimization [42].

In this paper,we introduce and analyzenon-conformingharmonicVEMfor the approxima-
tion of the Dirichlet–Laplace problem on polygonal domains. These methods can be seen as
the intermediate conformity level between the continuous harmonic VEM developed in [36],
and the harmonic discontinuous Galerkin finite element method (DG-FEM) of [45–47]. As
typically done in non-conforming methods, instead of requiring C0-continuity of test and
trial functions over the entire physical domain, one only imposes that the moments, up to a
certain order, of their jumps across two adjacent elements are zero. We highlight that non-
conforming VEM were introduced in [7] for the approximation of the Poisson problem and
were subsequently extended to the approximation of general elliptic and Stokes problems
in [33,34], respectively. Our method inherits the structure of that of [7], but makes use of
harmonic basis functions, which yield to faster convergence, when approximating harmonic
solutions, as compared to standard basis functions.

Weare particularly interested in the investigationof theh- and p-versions of thesemethods.
In the former version, convergence is achieved by fixing the dimension of local spaces and
refining the mesh, whereas, in the latter, by fixing a single mesh and increasing the dimension
of local spaces. A combination of the two goes by the name of hp-version. The literature
regarding the p- and hp-versions of VEM is restricted to [4,17,18,40,48], in addition to the
above-mentioned work [36]; for the hp-version of DG-FEM and hybrid-high order methods
onpolytopal grids, see [1,31] and the references therein.Wederive quasi-optimal error bounds
in the broken H1 norm and in the L2 norm, which are explicit in terms of the mesh size and of
the degree of accuracy of the method. Although not covered by our theoretical analysis, we
provide numerical evidence that, similarly as for the harmonic VEM and harmonic DG-FEM
[36,45], the exponential convergence of the hp-version of the non-conforming harmonic
VEM is faster than the one of standard FEM [8,56] and VEM [17,18].

The tools that we employ in the forthcoming p-analysis of non-conforming harmonic
VEMcan actually be employed as well in the p-analysis of non-conforming FEMand of non-
conforming VEM. For instance, our argument to trace back best approximation estimates by
means of non-conforming harmonic VE functions to best approximation estimates by means
of discontinuous harmonic polynomials (Proposition 3.1) extends to the non-harmonic case
(Proposition 3.8). This provides a useful tool in order to develop a p-analysis of the non-
conforming VEM of [7].

We stress that, in the high-order case, the construction of an explicit basis for non-
conforming harmonic VEM, as well as for non-conforming standard VEM, is much simpler
than for non-conforming FEM, see for instance [37].

The design and analysis of the non-conforming harmonic VEM developed in this paper
pave the way for the study of VEM for the Helmholtz problem in a truly Trefftz setting,
alternative to the conforming plane wave VEM of [54], which was based on a partition of
unity approach. In fact, the non-conforming framework seems to be the most appropriate one
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in order to design virtual Helmholtz–Trefftz approximation spaces. Such an extension has
been investigated in the recent work [49].

The outline of this paper is as follows. In Sect. 2, the model problem is formulated
and the concept of regular polygonal decompositions needed for the analysis is introduced;
besides, we recall the definition of non-conforming Sobolev spaces subordinated to polygonal
decompositions of the physical domain. Section 3 is dedicated to the construction of the 2D
non-conforming harmonic VEM and to the analysis of its h- and p-versions; further, a hint
for the extension to the 3D case is given. Next, in Sect. 4, numerical results validating the
theoretical convergence estimates are presented; a numerical investigation of the full hp-
version of the method is also provided. Finally, details on the implementation of the method
are given in “Appendix A”.
Notation We fix here once and for all the notation employed throughout the paper. Given
any domain D ⊆ R

d , d ∈ N, and � ∈ N, we denote by P�(D) and H�(D) the spaces of
polynomials and harmonic polynomials up to order � over D, respectively; moreover, we set
P−1(D) = H−1(D) = ∅.

We use the standard notation for Sobolev spaces, norms, seminorms and inner products.
More precisely, we denote the Sobolev space of functions with square integrable weak deriva-
tives up to order s over D by Hs(D), and the corresponding seminorms and norms by | · |s,D
and ‖·‖s,D , respectively. Sobolev spaces of non-integer order can be defined, for instance,
by interpolation theory. In addition, for bounded D, H1/2(∂D) denotes the space of traces
of H1(D) functions; H1

0 (D) and H1
g (D) are the Sobolev spaces of H1 functions with traces

equal to zero and equal to a given function g ∈ H1/2(∂D), respectively. Further, (·, ·)0,D is
the usual L2 inner product over D.

We employ the following multi-index notation: for α = (α1, . . . , αd),

xα = xα1
1 xα2

2 . . . xαd
d , ∂α = ∂

α1
1 ∂

α2
2 . . . ∂

αd
d ,

with |α| = α1 + · · · + αd , and where ∂α
� denotes the α-th partial derivative along

direction x�.
In the sequel, we also use the notation a � b meaning that there exists a constant c > 0,

independent of h and p, such that a � c b. Finally, we use the notation a ≈ b in lieu of a � b
and b � a simultaneously.

2 Continuous Problem, Polygonal Decompositions and Functional
Setting

Here, we want to set the target problem and some basic notation we need for the construc-
tion of the non-conforming harmonic virtual element method (VEM). More precisely, the
outline of the section is as follows. In Sect. 2.1, we introduce the model problem, that is a
Laplace problem on a polygonal domain. Then, in Sect. 2.2, we define the concept of regular
decompositions into polygons of the physical domain of the problem. Finally, in Sect. 2.3,
we describe non-conforming Sobolev spaces over such polygonal decompositions.

2.1 The Continuous Problem

The target problem we aim to approximate is a Laplace problem over a polygonal domain
� ⊂ R

2 with boundary ∂�. More precisely, given g ∈ H1/2(∂�), we look for a function u
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solving {
−�u = 0 in �

u = g on ∂�.
(1)

The weak formulation of (1) reads{
find u ∈ Vg such that

a(u, v) = 0 ∀v ∈ V0,
(2)

where
a(u, v) := (∇u,∇v)0,�, Vg := H1

g (�), V0 := H1
0 (�). (3)

Well-posedness of problem (2) follows from a lifting argument and the Lax–Milgram lemma.

2.2 Regular Polygonal Decompositions

In this section, we introduce the concept of regular sequences of polygonal decompositions
of the domain �, which will be needed in the forthcoming analysis of the method.

Let {Tn}n∈N be a sequence of conforming polygonal decompositions of�; by conforming,
we mean that, for each n ∈ N, every internal edge e of Tn is contained in the boundary of
precisely two elements in the decomposition. This automatically includes the possibility of
dealing with hanging nodes.

For all n ∈ N, with each Tn , we associate En , E I
n and E B

n , which denote its set of edges,
internal edges and boundary edges, respectively. Moreover, with each element K of Tn , we
associate EK , the set of its edges. Finally, we set for all K ∈ Tn and for all n ∈ N,

hK := diam(K ), h := max
K∈Tn

hK , he := length(e), ∀e ∈ EK ,

and we denote by xK the centroid of K .
We say that {Tn}n∈N is a regular sequence of polygonal decompositions if the following

assumptions are satisfied:

(D1) there exists a positive constantρ1 such that, for all n ∈ N and for all K ∈ Tn , he ≥ ρ1hK
for all edges e of K ;

(D2) there exists a positive constant ρ2 such that, for all n ∈ N and for all K ∈ Tn , K is
star-shaped with respect to a ball of radius greater than or equal to ρ2hK .

The assumptions (D1) and (D2) imply the following property:

(D3) there exists a constant� ∈ N such that, for all n ∈ N and for all K ∈ Tn , card(EK )≤ �,
that is, the number of edges of each element is uniformly bounded.

We point out that, in this definition, we are not requiring any quasi-uniformity on the size
of the elements. A discussion of VEM under more general mesh assumptions is the topic of
[20,29].

Remark 1 In the forthcoming analysis, we will employ a number of standard functional
inequalities (such as the Poincaré inequality and trace inequalities). It can be proven that
the constants appearing in such inequalities depend solely on the parameters ρ1, ρ2, and �

introduced in (D1)–(D3). We will omit such a dependence, for ease of notation.

For future use, we also define local bilinear forms on polygons K ∈ Tn as

aK (u, v) := (∇u,∇v)0,K ∀u, v ∈ H1(K ). (4)
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2.3 Non-conforming Sobolev Spaces

Having introduced the concept of regular sequences of meshes, we pinpoint the concept of
sequences of broken and non-conforming Sobolev spaces, along with their norms. For all
n ∈ N and s > 0, we define the broken Sobolev spaces on Tn as

Hs(Tn) := {v ∈ L2(�) | v|K ∈ Hs(K ) ∀K ∈ Tn
}

and the corresponding broken seminorms and norms

|v|2s,Tn
:=

∑
K∈Tn

|v|2s,K , ‖v‖2s,Tn
:=

∑
K∈Tn

‖v‖2s,K . (5)

Particular emphasis is stressed on the broken H1 bilinear form

(u, v)1,Tn :=
∑
K∈Tn

(∇u,∇v)0,K .

In order to define non-conforming Sobolev spaces associatedwith polygonal decompositions,
we need to fix some additional notation. In particular, given any internal edge e ∈ E I

n shared
by the polygons K− and K+ in Tn , we denote by neK± the two outer normal unit vectors with
respect to K±. For simplicity, we will later only write nK± instead of neK± . Moreover, for
boundary edges e ∈ E B

n , we introduce the normal unit vector n� pointing outside �. Having
this, for any v ∈ H1(Tn), we set the jump operator across an edge e ∈ En to

�v� :=
{

v|K+nK+ + v|K−nK− if e ∈ E I
n

vn� if e ∈ E B
n .

(6)

Finally, we introduce the global non-conforming Sobolev space of order k ∈ N with
respect to the decomposition Tn incorporating boundary conditions in a non-conforming
sense: Given g ∈ H1/2(∂�) and k ∈ N, we define

H1,nc
g (Tn, k) := {v ∈ H1(Tn) |

∫
e
�v� · n qk−1 ds = 0 ∀qk−1 ∈ Pk−1(e), ∀e ∈ E I

n ,∫
e
�v� · n qk−1 ds =

∫
e
gqk−1 ds ∀qk−1 ∈ Pk−1(e), ∀e ∈ E B

n },
(7)

where n is either of the two normal unit vectors to e, but fixed, if e ∈ E I
n , and n = n�, if

e ∈ E B
n . In the homogeneous case, definition (7) becomes

H1,nc
0 (Tn, k) :=

{
v ∈ H1(Tn) |

∫
e
�v� · n qk−1 ds = 0 ∀qk−1 ∈ Pk−1(e), ∀e ∈ En

}
.

(8)
Importantly, the seminorm | · |1,Tn is actually a norm for functions in H1,nc

0 (Tn, k).
In [28], the validity of the following Poincaré inequality was proven: there exists a positive
constant cP only depending on � such that, for all k ∈ N,

‖v‖0,� ≤ cP |v|1,Tn ∀v ∈ H1,nc
0 (Tn, k). (9)

3 Non-conforming Harmonic Virtual Element Methods

In this section, we introduce a non-conforming harmonic virtual element method for the
approximation of problem (2) and investigate its h- and p-versions. To this purpose, in
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addition to (D1)–(D3), we will also require on the sequence of meshes {Tn}n∈N the following
quasi-uniformity assumption:

(D4) there exists a constant ρ3 ≥ 1 such that, for all n ∈ N and for all K1 and K2 in Tn , it
holds hK2 ≤ ρ3hK1 .

We want to approximate problem (2) with a method of the following type:{
find un ∈ V�,p

n,g such that

an(un, vn) = 0 ∀vn ∈ V�,p
n,0 ,

(10)

where the space of trial functions V�,p
n,g and the space of test functions V�,p

n,0 are finite
dimensional (non-conforming) spaces on a mesh Tn , “mimicking” the infinite dimensional
spaces Vg and V0, defined in (3), respectively. Moreover, an(·, ·) : V�,p

n,g × V�,p
n,0 → R

is a computable discrete bilinear form mimicking its continuous counterpart defined again
in (3). Such approximation spaces and discrete bilinear forms have to be tailored so that
method (10) is well-posed and provides “good” h- and p-approximation estimates.

The outline of this section is as follows. We first introduce suitable global approximation
spaces V�,p

n,g and V�,p
n,0 in Sect. 3.1, highlighting their approximation properties in Sect. 3.2.

Next, in Sect. 3.3, we define and provide an explicit discrete bilinear form and, moreover,
we discuss its properties. An abstract error analysis is carried out in Sect. 3.4; such analysis
is instrumental for the h- and p-error estimates proved in Sect. 3.5. L2 error bounds are
provided in Sect. 3.6. Finally, in Sect. 3.7, we give a hint concerning the extension to the 3D
case and we stress the main differences between the 2D and 3D cases. Some details on the
implementation of the method are presented in “Appendix A”.

3.1 Non-conforming Harmonic Virtual Element Spaces

The aim of the present section is to introduce non-conforming harmonic virtual element
spaces with uniform degree of accuracy. To this purpose, we begin with the description of
the local harmonic VE spaces, modifying those in [36] into a new setting suited for building
global non-conforming spaces.

Let p ∈ N be a given parameter. For all n ∈ N and for all K ∈ Tn , we set

V�(K ) :=
{
vn ∈ H1(K ) | �vn = 0 in K , (∇vn · nK )|e ∈ Pp−1(e) ∀e ∈ EK

}
. (11)

In words, V�(K ) consists of harmonic functions with piecewise (discontinuous) polynomial
normal traces on the boundary of K .

The space V�(K ) has dimension NK p, NK being the number of edges of K . A set of
NK p degrees of freedom for V�(K ) is the following. Given vn ∈ V�(K ),

1

he

∫
e
vnm

e
r ds ∀r = 0, . . . , p − 1, ∀e ∈ EK , (12)

where {me
r }r=0,...,p−1 is any basis ofPp−1(e). These degrees of freedom are in fact unisolvent

since, if vn ∈ V�(K ) has all the degrees of freedom equal to 0, then

|∇vn |21,K =
∫
K
(−�vn︸ ︷︷ ︸

=0

) vn dx +
∫

∂K
(∇vn · nK ) vn ds =

∑
e∈EK

∫
e
(∇vn · nK )︸ ︷︷ ︸

∈Pp−1(e)

vn ds = 0,
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which implies that vn is constant. This, in addition to

hevn =
∫
e
vn ds =

∫
e
1 vn ds = 0,

for some edge e ∈ EK , implies vn = 0, providing unisolvence.
We denote by {ϕ j,r } j=1...,NK

r=0,...,p−1
the local canonical basis associated with the set of degrees

of freedom (12), namely

dofi,s
(
ϕ j,r

) =
{
1 if i = j and s = r

0 otherwise
∀ i, j = 1, . . . , NK , ∀ s, r = 0, . . . , p − 1.

(13)
We underline that the indices i and j refer to the edge, whereas the indices s and r refer to
the polynomial me

r employed in the definition of the local degrees of freedom (12).
It is worth to note that the local canonical basis consists of functions that are not explicitly

known inside the element and even their polynomial normal traces over the boundary are
unknown.

By employing the degrees of freedom defined in (12), it is possible to compute the fol-
lowing two projectors. The first one is the edge L2 projector onto the space of polynomials
of degree p − 1



0,e
p−1 : V�(K )|e → Pp−1(e),∫
e

(
vn − 


0,e
p−1vn

)
qep−1 ds = 0 ∀vn ∈ V�(K ), ∀qep−1 ∈ Pp−1(e).

(14)

The second one is the bulk H1 projector onto the space of harmonic polynomials of degree p


∇,�,K
p = 
∇,K

p : V�(K ) → Hp(K ),∫
K

∇
(
vn − 
∇,K

p vn

)
· ∇q�

p dx = 0 ∀vn ∈ V�(K ), ∀q�
p ∈ Hp(K ),∫

∂K

(
vn − 
∇,K

p vn

)
ds = 0 ∀vn ∈ V�(K ),

(15)

where the last condition is imposed in order to define the projector in a unique way.
We are ready to define global non-conforming harmonic VE spaces, which incorporate

Dirichlet boundary conditions in a “non-conforming sense”. Let p ∈ N be a given parameter.
Then, for any g ∈ H1/2(∂�), we set

V�,p
n,g :=

{
vn ∈ H1,nc

g (Tn, p) | vn|K ∈ V�(K ) ∀K ∈ Tn
}

. (16)

We observe the following facts:

• Definition (16) includes the space of test functions V�,p
n,0 , by selecting g = 0.

• The parameter p in (16) indicates the level of non-conformity of themethod. The fact that
the non-conformity is definedwith respect toDirichlet traces allows us to easily couple the
local degrees of freedom into a global set, provided that we choose the same value p for
the non-conformity parameter and for the polynomial degree entering definition (11) of
the local spaces. The resulting global set of degrees of freedom is of dimension card(En)p.

• Dirichlet boundary conditions on ∂� are imposed weakly via the definition of the non-
conforming spaces (7) and (8). For instance, given a Dirichlet datum g, on all boundary
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edges e ∈ E B
n , we set∫

e
�vn� · n� qep−1 ds =

∫
e
vnq

e
p−1 ds =

∫
e
gqep−1 ds ∀vn ∈ V�,p

n,g , ∀qep−1 ∈ Pp−1(e).

Remark 2 We highlight that, at the discrete level, one should also take into account the

approximation of the Dirichlet boundary condition g. In practice, assuming g ∈ H
1
2+ε(∂�),

for any ε > 0 arbitrarily small, and denoting by gp the approximation of g obtained by
interpolating g at the p + 1 Gauß–Lobatto nodes on each edge in E B

n , one should define the
trial space as

V�,p
n,g :=

{
vn ∈ H1,nc

gp (Tn, p) | vn|K ∈ V�(K ) ∀K ∈ Tn
}

.

With this definition, in the forthcoming analysis (see Propositions 3.1, 3.8, Theorems 3.3,
3.6, and 3.9 below), an additional term related to the approximation of the Dirichlet datum via
Gauß–Lobatto interpolants should be taken into account. However, following [26, Theorems
4.2, 4.5], it is possible to show that the h- and p-rates of convergence of the method are
not spoilt by this term. For this reason and for the sake of simplicity, we will neglect in
the following the presence of this term and assume that the approximation space is the one
defined in (16).

3.2 Approximation Properties of Functions in Non-conforming Harmonic Virtual
Element Spaces

In this section, we deal with approximation properties of functions in the non-conforming
harmonic VE spaces V�,p

n,g and V�,p
n,0 .

Since h- and p-approximation properties of harmonic functions via harmonic polyno-
mials are known, see e.g. [11,45], we want to relate best approximation estimates in the
non-conforming harmonic VE spaces to the corresponding ones in discontinuous harmonic
polynomial spaces. In particular, we prove the following result.

Proposition 3.1 Given g ∈ H1/2(∂�), let u ∈ Vg, where Vg is defined in (3). For any

polygonal partition Tn of �, there exists u I ∈ V�,p
n,g , with V�,p

n,g introduced in (16), such that

|u − uI |1,Tn ≤ 2
∣∣∣u − q�

p

∣∣∣
1,Tn

∀q�
p ∈ S p,�,−1(Tn),

where S p,�,−1(Tn) is the space of discontinuous piecewise harmonic polynomials of degree
at most p, that is,

S p,�,−1(Tn) := {q ∈ L2(�) : q|K ∈ Hp(K ) ∀K ∈ Tn
}
. (17)

Proof Define uI ∈ V�,p
n,g by∫
e
(u − uI )q

e
p−1 ds = 0 ∀qep−1 ∈ Pp−1(e), ∀e ∈ En, (18)

that is, we fix the degrees of freedom (12) of uI to be equal to the values of the same
functionals applied to the solution u. Having this, it holds

|u − uI |1,Tn ≤
∣∣∣u − q�

p

∣∣∣
1,Tn

+
∣∣∣uI − q�

p

∣∣∣
1,Tn

∀q�
p ∈ S p,�,−1(Tn), (19)
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where S p,�,−1(Tn) is defined in (17). We focus on the second term on the right-hand side
of (19). By integrating by parts and using (18), together with the definition of the space (16),
we get

∣∣∣uI − q�
p

∣∣∣2
1,Tn

=
∑

K∈Tn

∣∣∣uI − q�
p

∣∣∣2
1,K

=
∑

K∈Tn

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫
K

(
uI − q�

p

)
⎛
⎜⎜⎜⎝−�

(
uI − q�

p

)
︸ ︷︷ ︸

=0

⎞
⎟⎟⎟⎠ dx +

∑
e∈EK

∫
e

(
uI − q�

p

)
∇
(
uI − q�

p

)
· nK ds

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
∑

K∈Tn

∑
e∈EK

∫
e

(
u − q�

p

)
∇
(
uI − q�

p

)
· nK ds.

(20)

By expanding the right-hand side of (20) and using the Cauchy–Schwarz inequality, we
obtain∣∣∣uI − q�

p

∣∣∣2
1,Tn

=
∑
K∈Tn

∫
K

∇
(
u − q�

p

)
· ∇
(
uI−q�

p

)
dx +

∫
K

(
u − q�

p

)
�
(
uI − q�

p

)
︸ ︷︷ ︸

=0

dx

≤
∣∣∣u − q�

p

∣∣∣
1,Tn

∣∣∣uI − q�
p

∣∣∣
1,Tn

.

Inserting this into (19) gives the result. �

We remark that, with a similar proof of that of Proposition 3.1, one can prove an equivalent
result for the non-conforming (non-harmonic) VE spaces of [7]; see Proposition 3.8 below.

3.3 Discrete Bilinear Forms

In this section, we complete the definition of the method (10) by introducing a suitable
bilinear form an(·, ·), which is explicitly computable.We follow here the typical VEMgospel
[13,18,36]. It is important to highlight that the local bilinear forms aK (·, ·) defined in (4)
are not explicitly computable on the whole discrete spaces since an explicit representation
of functions in the harmonic VE spaces is not available in closed form.

Therefore, we aim at introducing explicit computable discrete bilinear forms aKn (·, ·)
which mimic their continuous counterparts aK (·, ·). To this purpose, we observe that the
Pythagorean theorem yields

aK (un, vn) = aK
(

∇,K

p un,

∇,K
p vn

)
+ aK

((
I − 
∇,K

p

)
un,
(
I − 
∇,K

p

)
vn

)
∀un, vn ∈ V�(K ),

(21)

where we recall that 
∇,K
p is defined in (15). The first term on the right-hand side of (21) is

computable, whereas the second is not. Thus, following [36] and the references therein, we
replace this term by a computable symmetric bilinear form SK : ker(
∇,K

p )×ker(
∇,K
p ) →

R, such that

c∗(p)|vn |21,K ≤ SK (vn, vn) ≤ c∗(p)|vn |21,K ∀vn ∈ ker
(

∇,K

p

)
, (22)

where c∗(p) and c∗(p) are twopositive constantswhichmaydependon p, but are independent
of K and, in particular, of hK .
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Hence, depending on the choice of the stabilization, a class of candidates for the local
discrete symmetric bilinear forms is

aKn (un, vn) = aK
(

∇,K

p un,

∇,K
p vn

)
+ SK

((
I − 
∇,K

p

)
un,
(
I − 
∇,K

p

)
vn

)
∀un, vn ∈ V�(K ).

(23)

The forms aKn (·, ·) satisfy the two following properties:

(P1) p-harmonic consistency: for all K ∈ Tn and for all p ∈ N,

aK
(
q�
p , vn

)
= aKn

(
q�
p , vn

)
∀q�

p ∈ Hp(K ), ∀vn ∈ V�(K ); (24)

(P2) stability: for all K ∈ Tn and for all p ∈ N,

α∗(p)|vn |21,K ≤ aKn (vn, vn) ≤ α∗(p)|vn |21,K ∀vn ∈ V�(K ), (25)

where α∗(p) = min(1, c∗(p)) and α∗(p) = max(1, c∗(p)).

Owing to property (P1), p can be addressed to as degree of accuracy of the method, since
whenever either of its two entries is a harmonic polynomial of degree p, the local discrete
bilinear form can be computed exactly, up to machine precision. Moreover, since aKn (·, ·) is
assumed to be symmetric, (P2) implies continuity

aKn (un, vn) ≤
(
aKn (un, un)

)1/2(
aKn (vn, vn)

)1/2≤ α∗(p)|un |1,K |vn |1,K ∀un, vn∈V�(K ).

(26)

The global discrete bilinear form is defined as

an(un, vn) =
∑
K∈Tn

aKn (un, vn) ∀un ∈ V�,p
n,g1 , ∀vn ∈ V�,p

n,g2 (27)

for all g1, g2 ∈ H1/2(∂�). The remainder of this section is devoted to introduce an explicit
stabilization SK (·, ·) with explicit bounds of the constants c∗(p) and c∗(p).

For all K ∈ Tn , we define

SK (un, vn) =
∑
e∈EK

p

he

(



0,e
p−1un,


0,e
p−1vn

)
0,e

∀un, vn ∈ ker
(

∇,K

p

)
. (28)

For this choice of stabilization forms, the following result holds true.

Theorem 3.2 Assume that (D1) and (D2) hold true. Then, for any K ∈ Tn, the stabilization
SK (·, ·) defined in (28) satisfies (22) with the bounds

c∗(p) � p−2, c∗(p) �

⎧⎪⎨
⎪⎩
p
(
log(p)

p

) λK
2

if K is convex

p
(
log(p)

p

) λK
2ωK

−ε

otherwise

(29)

for all ε > 0 arbitrarily small, where the hidden constants in (29) are independent of h and
p, and where ωKπ and λKπ , with ωK and λK ∈ (0, 2), denote the largest interior and the
smallest exterior angles of K , respectively.
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Proof We assume, without loss of generality, that hK = 1; the general result follows from a
scaling argument.

For any function vn in V�(K ), we have

|vn |21,K = −
∫
K

(�vn)︸ ︷︷ ︸
=0

vn dx +
∫

∂K
∇vn · nK vn ds

=
∑
e∈EK

∫
e
∇vn · nK

(



0,e
p−1vn

)
ds ≤ ‖∇vn · nK ‖0,∂K

∥∥∥
0,∂K
p−1 vn

∥∥∥
0,∂K

(30)

where we have set, with an abuse of notation, (
0,∂K
p−1 vn)|e = 


0,e
p−1(vn|e ).We prove that

‖∇vn · nK ‖0,∂K � p
3
2 ‖∇vn · nK ‖− 1

2 ,∂K . (31)

To this end, we set, for the sake of simplicity, rp := ∇vn · nK , and consider the case rp �= 0.
One has rp ∈ L2(∂K )with rp|e ∈ Pp(e) for all e ∈ EK . In general, rp /∈ H1/2(∂K ). Further,
we introduce the piecewise bubble function b∂K ∈ H1/2(∂K ) defined edgewise as

(b∂K )|e (x) := (β ◦ φ−1
e

)
(x) ∀e ∈ EK ,

where φe : [−1, 1] → e is the linear transformation mapping the interval [−1, 1] to the
edge e, and β : [−1, 1] → [0, 1] is the 1D quadratic bubble function β(x) := 4(1 − x2).

From the definition of the H−1/2(∂K ) norm, the fact that rp ∈ L2(∂K ), and rpb∂K ∈
H1/2(∂K )\{0}, we have

‖rp‖− 1
2 ,∂K = sup

ψ∈H1/2(∂K )\{0}

(
rp, ψ

)
0,∂K

‖ψ‖ 1
2 ,∂K

≥
(
rp, rpb∂K

)
0,∂K∥∥rpb∂K

∥∥ 1
2 ,∂K

=

∥∥∥∥rpb 1
2
∂K

∥∥∥∥
2

0,∂K∥∥rpb∂K
∥∥ 1

2 ,∂K

. (32)

We have the two following polynomial p-inverse inequalities:

∥∥rpb∂K
∥∥
0,e ≤

∥∥∥∥rpb 1
2
∂K

∥∥∥∥
0,e

,
∣∣rpb∂K

∣∣
1,e � p

∥∥∥∥rpb 1
2
∂K

∥∥∥∥
0,e

∀e ∈ EK . (33)

The first one is a direct consequence of the fact that the range of b∂K is [0, 1], and the second
one follows from [12, Lemma 2]. Using (33), summing over all edges e ∈ EK , and applying
interpolation theory, lead to

∥∥rpb∂K
∥∥ 1

2 ,∂K � p
1
2

∥∥∥∥rpb 1
2
∂K

∥∥∥∥
0,∂K

,

which, together with (32), gives

∥∥rp∥∥− 1
2 ,∂K � p− 1

2

∥∥∥∥rpb 1
2
∂K

∥∥∥∥
0,∂K

� p− 3
2
∥∥rp∥∥0,∂K ,

where in the last inequality, [25, Lemma 4] was used. The bound (31) follows immediately.
From (30) and (31), taking also into account that �vn = 0 in K , we get

|vn |21,K � p
3
2 ‖∇vn · nK ‖− 1

2 ,∂K

∥∥∥
0,∂K
p−1 vn

∥∥∥
0,∂K

� p
3
2 |vn |1,K

∥∥∥
0,∂K
p−1 vn

∥∥∥
0,∂K

,

where in the last step we have used a Neumann trace inequality, see e.g. [56, Theorem A.33].
This proves the first inequality of (22) with c∗(p) � p−2.
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In order to prove the second one, we can write∥∥∥
0,∂K
p−1 vn

∥∥∥
0,∂K

≤ ‖vn‖0,∂K � ‖vn‖
1
2
0,K |vn |

1
2
1,K , (34)

where we have used the stability of the L2 projection, the multiplicative trace inequality, and
the Poincaré inequality, see [28], which is valid since vn ∈ ker(
∇,K

p ) and thus has zero
mean value on ∂K , see (15).

Let us bound the first factor on the right-hand side of (34). To this end, we define vn as
the average of vn over the polygon K . A triangle inequality yields

‖vn‖0,K ≤ ‖vn − vn‖0,K + ‖vn‖0,K . (35)

Recalling that vn has zero average over ∂K , we have

‖vn‖0,K = |K | 12 |vn | = |K | 12
|∂K |

∣∣∣∣
∫

∂K
vn − vn ds

∣∣∣∣ .
A Cauchy–Schwarz inequality, together with the multiplicative trace inequality, yields

‖vn‖0,K � ‖vn − vn‖
1
2
0,K |vn |

1
2
1,K .

Inserting this inequality in (35) gives

‖vn‖0,K � ‖vn − vn‖0,K + ‖vn − vn‖
1
2
0,K |vn |

1
2
1,K . (36)

From [36, Lemma 3.2], we have

‖vn − vn‖
1
2
0,K �

⎧⎪⎨
⎪⎩
(
log(p)

p

)λK |vn |1,K if K is convex(
log(p)

p

) λK
ωK

−ε |vn |1,K otherwise

for all ε > 0 arbitrarily small. Inserting this into (36) gives

‖vn‖0,K �

⎧⎪⎨
⎪⎩
(
log(p)

p

) λK
2 |vn |1,K if K is convex(

log(p)
p

) λK
2ωK

−ε |vn |1,K otherwise,

which, together with (34), gives (22) with c∗(p) as in (29). �
Owing to (25) and (29) one deduces

α∗(p) � p−2, α∗(p) �

⎧⎪⎨
⎪⎩
p
(
log(p)

p

) λK
2

if K is convex

p
(
log(p)

p

) λK
2ωK

−ε

otherwise

for all ε > 0 arbitrarily small.

Remark 3 In the conforming harmonic VEM setting [36], the following local stabilization
forms were introduced:

SK (un, vn) = (un, vn) 1
2 ,∂K ∀K ∈ Tn .
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10 3

10 4

Fig. 1 Condition number for different values of p of the global stiffness matrix obtained with the local
stabilization forms in (28). A Cartesian mesh, a Voronoi-Lloyd mesh, and an Escher horses mesh have been
considered. We observe algebraic growth of the condition number with p for all the tested meshes

It was proven that employing such stabilization forms leads to have stability constants α∗(p)
and α∗(p) that are independent of the degree of accuracy p. However, in the present non-
conforming setting, such a stabilization is not computable, as the Dirichlet traces of functions
in the local VE spaces are not available in closed form.

We investigate numerically the behavior of the conditioning of the global VE matrix in
terms of the degree of accuracy p, when employing the local stabilization forms in (28).
In Fig. 1, we plot the condition number for different values of p, when computing the
global stiffness matrix on a Cartesian mesh, a Voronoi-Lloyd mesh , and an Escher horses
mesh, see Fig. 2, and note that it grows algebraically with p. We remark that the con-
dition number of standard (non-harmonic) VEM can grow exponentially or algebraically
with p, depending on the choice of the internal degrees of freedom. This was investigated
in [48].
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Fig. 2 Different types of meshes: mesh made of squares (left), Voronoi-Llyod mesh (center), and mesh made
of Escher horses (right)
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3.4 Abstract Error Analysis

Along the lines of [13,17,36], we provide in this section an abstract error analysis of the
method (10), taking into account the non-conformity of the approximation. To this purpose,
we introduce the auxiliary bilinear form

Nn : H1(�) × H1,nc
0 (Tn, p) → R, Nn(u, v) =

∑
e∈En

∫
e
∇u · �v� ds. (37)

The following convergence result holds true.

Theorem 3.3 Assume that (D1) and (D2) hold true and consider the non-conforming har-
monic VEM (10) defined by choosing the harmonic VE spaces as in (16) and (11), with level
of non-conformity, as well as degree of accuracy, equal to p, and by choosing the discrete
bilinear form as in (27) and (23), with stabilization form SK (·, ·) satisfying (22). Then, the
method is well-posed and the following bound holds true:

|u − un |1,Tn ≤ α∗(p)
α∗(p)

⎧⎨
⎩6 inf

q�
p ∈S p,�,−1(Tn)

∣∣∣u − q�
p

∣∣∣
1,Tn

+ sup
vn∈V�,p

n,0

Nn(u, vn)

|vn |1,Tn

⎫⎬
⎭ , (38)

where we recall that S p,�,−1(Tn) is defined in (17),Nn(·, ·) is given in (37), and the stability
constants α∗(p) and α∗(p) are introduced in (25).

Proof Thewell-posedness of themethod follows directly from (9), (25) and theLax–Milgram
lemma.

For the bound (38), we observe that

|u − un |1,Tn ≤ |u − uI |1,Tn + |un − uI |1,Tn ∀uI ∈ V�,p
n,g .

We estimate the second term on the right-hand side. Set δn := un −uI . Since un, uI ∈ V�,p
n,g ,

then δn ∈ V�,p
n,0 . Therefore, for all q�

p ∈ S p,�,−1(Tn), using (25), (10) and (24), we have

|δn |21,Tn
=
∑
K∈Tn

|δn |21,K ≤ 1

α∗(p)
∑
K∈Tn

aKn (δn, δn) = − 1

α∗(p)
∑
K∈Tn

aKn (uI , δn)

= − 1

α∗(p)

⎧⎨
⎩
∑
K∈Tn

[
aKn
(
uI − q�

p , δn

)
+ aK

(
q�
p − u, δn

)]
+
∑
K∈Tn

aK (u, δn)

⎫⎬
⎭ .

The last term on the right-hand side can be rewritten in the spirit of non-conformingmethods.
More precisely, we observe that an integration by parts, the fact that�u = 0 in every K ∈ Tn ,
and the definition (37), yield

∑
K∈Tn

aK (u, δn) =
∑
K∈Tn

∫
∂K

∇u · nK δn ds =
∑
e∈En

∫
e
∇u · �δn� ds = Nn(u, δn).

This, together with the stability property (25), the triangle and the Cauchy–Schwarz inequal-
ities, gives

|δn |21,Tn ≤ 1

α∗(p)

[(
α∗(p)

(
|uI − u|1,Tn +

∣∣∣u − q�
p

∣∣∣
1,Tn

)
+
∣∣∣q�

p − u
∣∣∣
1,Tn

)
|δn |1,Tn + Nn (u, δn)

]
.
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Therefore, using Proposition 3.1 and α∗(p) ≥ 1, we obtain

|δn |1,Tn ≤ 1

α∗(p)

[
α∗(p)

(
2
∣∣∣u − q�

p

∣∣∣
1,Tn

+
∣∣∣u − q�

p

∣∣∣
1,Tn

)
+
∣∣∣q�

p − u
∣∣∣
1,Tn

+ Nn (u, δn)

|δn |1,Tn

]

≤ α∗(p)
α∗(p)

[
4
∣∣∣u − q�

p

∣∣∣
1,Tn

+ Nn (u, δn)

|δn |1,Tn

]
,

and bound (38) readily follows. �

We refer to the term α∗(p)
α∗(p) appearing in (38) as pollution factor.

Remark 4 It is interesting to note that the counterpart of Theorem 3.3 in the conforming
version of the harmonic VEM in [36] states that the error of the method is bounded, up
to a constant times the pollution factor α∗(p)

α∗(p) , by a best approximation error with respect
to piecewise discontinuous harmonic polynomials, plus the best approximation error with
respect to functions in the global approximation space. In the non-conforming setting of the
present paper, however, the latter term is not present, thanks to Proposition 3.1. The additional
term here is related to the non-conformity.

3.5 h- and p-Error Analysis

This section is devoted to the h- and p-analysis of themethod (10) employing non-conforming
harmonic VE spaces with degree of non-conformity equal to the degree of accuracy of the
method.

For the analysis, we have to discuss how to bound the two terms on the right-hand side
of (38) in terms of h and p. The first term, i.e., the best approximation error with respect to
discontinuous harmonic polynomials, can be dealt with following [50,51]. In particular, we
recall the following result from [50, Theorem 2.9] (see also [51, Chapter II]).

Lemma 3.4 Under the star-shapedness assumption (D2), for a given K ∈ Tn, we denote
by λK π , 0 < λK < 2, its smallest exterior angle. Then, for every harmonic function u in
Hs+1(K ), s ≥ 0, there exists a sequence {q�

p }p∈N, with q�
p ∈ Hp(K ) for all p ∈ N with

p ≥ s − 1, such that

∣∣∣u − q�
p

∣∣∣
1,K

≤ chsK

(
log(p)

p

)λK s

‖u‖s+1,K , (39)

for some positive constant c depending only on ρ2.

Remark 5 We underline that the p-version approximation of harmonic functions by means of
harmonic polynomials has different rates of convergence than that of generic (non-harmonic)
functions by means of full polynomials. In particular, from (39), one deduces that, on convex
elements, a better convergence rate is achieved (i.e., harmonic functions can be better approx-
imated by polynomials than generic functions, even by considering harmonic polynomials
only), while on non-convex elements, the rate of approximation gets worse (i.e., the best
approximation of harmonic functions by full polynomials fails to be achieved with harmonic
polynomials).

Next, we have to bound the non-conformity term Nn(u, vn) introduced in (37). To this
purpose, we use tools of non-conforming methods and hp-analysis.
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Firstly, we define�ext as an extension of the domain�, subordinated to polygonal decom-
positions. More precisely, let T̃n be a triangulation of � which is given by the union of local
triangulations T̃n(K ) over each polygon K ∈ Tn (T̃n is nested in Tn); such local triangula-
tions are obtained by connecting the vertices of K to the center of the ball with respect to
which K is star-shaped, see assumption (D2). With each triangle T ∈ T̃n , we associate Q(T ),
a parallelogram obtained by reflecting T with respect to the midpoint of one of its edges,
which is arbitrarily fixed. Then, we set

�ext :=
⋃
T∈T̃n

Q(T ). (40)

Notice that �ext could coincide with �.
The following lemma provides an upper bound for the non-conformity term Nn(u, vn).

Lemma 3.5 Assume that (D1)-(D4) are satisfied. Then, for all s ≥ 1 and for all u ∈
Hs+1(�ext), the following bound holds true:

|Nn(u, vn)| ≤ c ds
hmin(s,p)

ps
‖u‖s+1,�ext |vn |1,Tn ∀vn ∈ V�,p

n,0 ,

where c is a positive constant depending only on ρ1, ρ2, ρ3, and �, and d is a positive
constant.

Proof Without loss of generality, let us assume that h = 1, so that ρ−1
3 ≤ hK ≤ 1 for all

K ∈ Tn , due to the assumption (D4); the general assertion follows from a scaling argument.
First, we observe that, for all vn ∈ V�,p

n,0 , the definition of non-conforming spaces and
basic properties of orthogonal projectors yield

|Nn(u, vn)| =
∣∣∣∣∣∣
∑
e∈En

∫
e
∇u · �vn� ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
e∈En

∫
e

(
∇u − 


0,e
p−1 (∇u)

)
·
(
�vn� − 


0,e
p−1�vn�

)
ds

∣∣∣∣∣∣
≤
∑
e∈En

∥∥∥∇u − 

0,e
p−1 (∇u)

∥∥∥
0,e

∥∥∥�vn� − 

0,e
p−1�vn�

∥∥∥
0,e

,

(41)
wherewe have denoted by


0,e
p−1, with an abuse of notation, the L

2 projector onto the vectorial
polynomial spaces of degree p − 1 on e.

In order to estimate the first term on the right-hand side, we proceed as follows. Let us
consider T̃n , the union of the local triangulations T̃n(K ) of each K ∈ Tn defined as above.
The triangulation T̃n has the property that each T ∈ T̃n is star-shaped with respect to a ball of
radius greater than or equal to ρ4hT , where ρ4 is a positive constant and hT is the diameter
of the triangle T , see [53]. Let now e ∈ En be fixed and K ∈ Tn be a polygon with e ∈ EK .
Then, ∥∥∥∇u − 


0,e
p−1(∇u)

∥∥∥
0,e

≤
∥∥∥∇u − 


0,T
p−1(∇u)

∥∥∥
0,e

,

where 

0,T
p−1 is the L2 projector onto the space of vectorial polynomials of degree at most

p− 1 over T , and T is the triangle in T̃n(K ) with e ⊂ ∂T (this inequality holds true because
the restriction of 


0,T
p−1(∇u) to e is a vectorial polynomial of degree p − 1).

For any v ∈ H2(T ), due to [35, Theorem 3.1], we have∥∥∥∇v − 

0,T
p−1(∇v)

∥∥∥
0,e

≤
√
5 + 1√
2

p− 1
2 |∇v|1,T . (42)
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Using that 
0,T
p−1∇qp = ∇qp for all qp ∈ Pp(T ), owing to (42), we get∥∥∥∇u−


0,T
p−1(∇u)

∥∥∥
0,e

=
∥∥∥(∇ (u − qp

))− 

0,T
p−1

(∇ (u − qp
))∥∥∥

0,e
� p− 1

2
∣∣∇ (u − qp

)∣∣
1,T .

Applying now standard hp-polynomial approximation results, see e.g. [17, Lemma 5.1], we
obtain for every qp ∈ Pp(T ),∣∣∇ (u − qp−1

)∣∣
1,T � ds p−s+1|∇u|s,Q(T ), (43)

where d is a positive constant and Q(T ) is the parallelogram given by the union of T and its
reflection defined above.

Moving to the second term in (41), assuming that e = ∂T− ∩ ∂T+, where T± ∈ T̃n and
T± ⊂ K±, we have∥∥∥�vn� − 


0,e
p−1�vn�

∥∥∥
0,e

≤
∥∥∥vn|T+ − 


0,T+
p−1 vn|T+

∥∥∥
0,e

+
∥∥∥vn|T− − 


0,T−
p−1 vn|T−

∥∥∥
0,e

.

Then, applying once again [35, Theorem 3.1], we deduce∥∥∥�vn� − 

0,e
p−1�vn�

∥∥∥
0,e

� p− 1
2
(|vn|T+ |1,T+ + |vn|T− |1,T−

)
.

By combining the bounds of the two terms on the right-hand side of (41) and the definition
of the extended domain �ext in (40), we get the assertion. �

We are now ready to state the main h- and p-error estimate result.

Theorem 3.6 Let {Tn}n∈N be a sequence of polygonal decompositions satisfying (D1)–(D4).
Let u and un be the solutions to (2) and (10), respectively; we assume that u is the restriction
to � of an Hs+1, s ≥ 1, function (which we still denote u, with a slight abuse of notation),
over �ext, where �ext is defined in (40). Then, the following a priori h- and p-error estimate
holds true:

|u − un |1,Tn ≤ c ds
α∗(p)
α∗(p)

hmin(s,p)

{(
log(p)

p

)minK∈Tn (λK ) s

+ p−s

}
‖u‖s+1,�ext ,

where c is a positive constant depending only on ρ1, ρ2, ρ3, and �, d is a positive constant,
λK π denotes the smallest exterior angle of K for each K ∈ Tn, and α∗(p)

α∗(p) is the pollution
factor appearing in (38), which is related to the choice of the stabilization.

Proof It is enough to combine Theorem 3.3 with Lemmata 3.4 and 3.5. �
Assuming, moreover, that u, the solution to the problem (2), is the restriction to � of an

analytic function defined over�ext, where�ext was introduced in (40), it is possible to prove
the following result.

Theorem 3.7 Let (D1)–(D4) be valid and assume that u, the solution to the problem (2), is the
restriction to � of an analytic function defined over �ext, given in (40). Then, the following
a priori p-error estimate holds true:

|u − un |1,Tn ≤ c exp (−b p),

for some positive constants b and c, depending again only on ρ1, ρ2, ρ3, ρ4 and �.

Proof It is enough to use Theorem 3.6, in combination with the tools employed in [17,
Theorem 5.2]. �
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Remark 6 The construction involving the collection of parallelograms in (40) is instrumental
for proving Theorem 3.7. In order to derive the bound of Theorem 3.7 from that of The-
orem 3.6, one needs to know the explicit dependence on s of the constant in the bound
of Theorem 3.6. This comes at the price of involving the extended domain �ext. If one
were interested in approximating solutions with finite Sobolev regularity, then there would
be no need of employing the construction with the parellelograms Q(T ). In particular,
equation (43) would be valid also with the norm over the triangle T , instead of over Q(T ), on
the right-hand side. As a consequence, the bounds in Lemma 3.5 and in Theorem 3.6 would
be valid also with the norm of u over �, instead of over �ext, on the right-hand sides. See
[17] for additional details on the hp-version in the case of the standard VEM setting.

3.6 Error Estimates in the L2 Norm

This section is devoted to bound the L2 error of method (10) in terms of the energy error and
best approximation error with respect to piecewise discontinuous harmonic polynomials. For
simplicity, we restrict ourselves to the case of convex domains and of sequences of convex
polygons; the non-convex case is discussed in Remark 7.

To this purpose, we firstly recall the definition of non-conforming VE spaces introduced
in [7] for the approximation of the Poisson problem, and thenwe prove hp-best approximation
estimates by functions in those spaces. The obtained results will be instrumental for proving
L2 error estimates for method (10). Throughout the whole section, we assume that p, the
parameter used in the definition of local spaces (11), is equal to k, the non-conformity
parameter, appearing in the definition of the global non-conforming VE space (7).

Let K ∈ Tn . We define, for p ∈ N arbitrary,

V (K ) := {vn ∈ H1(K ) | �vn ∈ Pp−2(K ), (∇vn · nK )|e ∈ Pp−1(e) ∀e ∈ En
}
.

It is proved in [7, Lemma 3.1] that the following is a set of degrees of freedom for the space
V (K ). Given vn ∈ V (K ), we associate the edge moments defined in (12)

1

he

∫
e
vnm

e
α ds, ∀α = 0, . . . , p − 1, ∀e ∈ EK , (44)

plus the bulk moments of the form

1

|K |
∫
K

vnmα dx, ∀|α| = 0, . . . , p − 2, (45)

where {mα}p−2
|α|=0 is any basis of Pp−2(K ).

For all g ∈ H1/2(∂�), the global non-conforming spaces in (7) are defined as in the
harmonic case:

V k
n,g :=

{
vn ∈ H1,nc

g (Tn, k) | vn |K ∈ V (K ) ∀K ∈ Tn
}

. (46)

The set of global degrees of freedom is obtained by a standard non-conforming coupling
of the local counterparts. The precise treatment of Dirichlet boundary conditions should be
dealt with as in Remark 2.

We want to show that, in the H1 seminorm, the error between a regular target function and
its interpolant in the space V p

n,g defined in (46) can be bounded by the best approximation
error in the space of piecewise discontinuous polynomials of degree at most p. Notice that
neither the convexity of � nor the convexity of the elements are needed here.
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Proposition 3.8 Given g ∈ H1/2(∂�), let ψ ∈ Vg, where Vg is defined in (3). For every
polygonal partition Tn of �, there exists ψI ∈ V p

n,g, with V p
n,g given in (46), such that

|ψ − ψI |1,Tn
≤ 2

∣∣ψ − qp
∣∣
1,Tn

∀qp ∈ S p,−1(Tn),

where S p,−1(Tn) is the space of piecewise discontinuous polynomials, that is,

S p,−1 (Tn) := {q ∈ L2(�) : q|K ∈ Pp(K )∀K ∈ Tn
}
. (47)

Proof The proof follows the lines of that of Proposition 3.1. Given ψ ∈ Vg , we define
ψI ∈ V p

n,g by imposing its degrees of freedom as follows:

1

he

∫
e
(ψI − ψ)qep−1 ds = 0 ∀qep−1 ∈ Pp−1(e), ∀e ∈ EK , ∀K ∈ Tn .

1

|K |
∫
K
(ψI − ψ)qp−2 dx = 0 ∀qp−2 ∈ Pp−2(K ), ∀K ∈ Tn,

(48)

It is important to note that, since the degrees of freedom (44) and (45) are unisolvent for the
space V p

n,g , the interpolant ψI is defined in a unique way. Having this, we observe that, for
all K ∈ Tn ,

|ψ − ψI |1,K ≤ |ψ − qp|1,K + |ψI − qp|1,K ∀qp ∈ Pp(K ).

We focus on the second term. By integration by parts we get

|ψI − qp|21,K =
∫
K

−�(ψI − qp)(ψI − qp) dx +
∫

∂K
∇(ψI − qp) · nK (ψI − qp) ds

=
∫
K

−�(ψI − qp)(ψ − qp) dx +
∫

∂K
∇(ψI − qp) · nK (ψ − qp) ds,

where, in the last identity, the definition of the non-conforming space V p
n,g , given in (46) and

the definition (48) of ψI via the degrees of freedom were used. Integrating by parts back, we
obtain

|ψI − qp|21,K =
∫
K

∇(ψI − qp) · ∇(ψ − qp) dx ≤ |ψI − qp|1,K |ψ − qp|1,K .

This concludes the proof. �
We are now ready to prove a bound of the L2 error of the method. We will assume

henceforth that� is a convex domain split into a collection of convex polygons. An analogous
analysis could be performed in the non-convex case, and slightly worse error estimates could
be proven, see Remark 7. Nonetheless, here we stick to the convex setting, since we deem it
is clearer.

Theorem 3.9 Let � be a polygonal convex domain and let {Tn}n∈N be a sequence of decom-
positions into convex polygons satisfying (D1)–(D4). Let u and un be the solutions to (2) and
(10), respectively; we assume that u is the restriction to � of a Hs+1, s ≥ 1, function (which
we still denote, with a slight abuse of notation, u) over �ext, where �ext is defined in (40).
Then,

‖u − un‖0,� ≤ c

{
hmin(s,p)+1

ps+1
‖u‖s+1,�ext

+max

(
h

p
, h α∗(p)

(
log(p)

p

)maxK∈Tn λK
)⎛⎝|u − un |1,Tn + inf

q�
p ∈S p,�,−1(Tn )

∣∣∣u − q�
p

∣∣∣
1,Tn

⎞
⎠
⎫⎬
⎭ ,
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where c is a positive constant depending only on ρ1, ρ2, ρ3, ρ4 and �, α∗(p) is the “upper”
stability constant appearing in (25), S p,�,−1(Tn) is defined in (17), and λKπ denotes the
smallest exterior angle of K for each K ∈ Tn.

Proof We consider the following dual problem: Find ψ ∈ H1(�) such that{
−�ψ = u − un in �

ψ = 0 on ∂�.
(49)

Standard stability and a priori regularity theory implies that ψ ∈ H2(�) and

‖ψ‖2,� � ‖u − un‖0,�, (50)

where the hidden constant depends only on the domain �, see e.g. [44, Theorem 3.2.1.2].
Using (49) and (37), and taking into account that u − un ∈ H1,nc

0 (Tn, p), we obtain the
following equivalent expression for the L2 error:

‖u − un‖20,� =
∑
K∈Tn

∫
K
(−�ψ)(u − un) dx

=
∑
K∈Tn

{∫
K

∇ψ · ∇(u − un) dx −
∫

∂K
∇ψ · nK (u − un) ds

}

=
∑
K∈Tn

aK (ψ − ψI , u − un) +
∑
K∈Tn

aK (ψI , u − un) − Nn(ψ, u − un)

=: T1 + T2 + T3, (51)

whereψI is the (unique) function in V
p
n,0, the enlarged space of functions with zero Dirichlet

traces introduced in (46), defined fromψ via (48); in particular,ψI is not piecewise harmonic,
in general.

We begin by bounding term T1. Owing to the Cauchy–Schwarz inequality and Proposi-
tion 3.8, we have

|T1| ≤ |ψ − ψI |1,Tn |u − un |1,Tn ≤ 2|ψ − qp|1,Tn |u − un |1,Tn ∀qp ∈ S p,−1(Tn),

where S p,−1(Tn) is the space of piecewise discontinuous polynomials introduced in (47).
By taking qp equal to the best approximation of ψ in S p,−1(Tn) and using [17, Lemma 4.2],
together with (50), we have

|T1| � h

p
‖ψ‖2,�|u − un |1,Tn � h

p
‖u − un‖0,�|u − un |1,Tn .

Next, we focus on term T3 on the right-hand side of (51). Following the same steps as in
the proof of Lemma 3.5, we obtain

|T3| = |Nn(ψ, u − un)| ≤
∑
e∈En

∥∥∥∇ψ − 

0,e
p−1(∇ψ)

∥∥∥
0,e

∥∥∥�u − un� − 

0,e
p−1�u − un�

∥∥∥
0,e

,

where 

0,e
p−1 denotes here again, with an abuse of notation, the L2 projector onto vectorial

polynomial spaces. Applying [35, Theorem 3.1] and [17, Lemma 4.1] similarly as in the
proof of Lemma 3.5, together with (50) (|∇ψ |1,K ≤ ‖ψ‖2,K ), we get

|T3| � h

p
‖u − un‖0,�|u − un |1,Tn .
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Finally, we study term T2 on the right-hand side of (51), which can be split as

T2 =
∑
K∈Tn

aK (ψI , u − un) =
∑
K∈Tn

aK (u, ψI ) −
∑
K∈Tn

aK (un, ψI ) =: T4 + T5. (52)

The first term T4 is related to the non-conformity of the discretization spaces, whereas the
second term T5 reflects the fact that method (10) does not employ the original bilinear form.

We start to bound term T4. Using computations analogous to those in the proof of Lemma
3.5, it is possible to deduce

|T4| =
∣∣∣∣ ∑
K∈Tn

aK (u, ψI )

∣∣∣∣ =
∣∣∣∣ ∑
K∈Tn

∫
∂K

∇u · nK ψI ds

∣∣∣∣ = |Nn(u, ψI )| = |Nn(u, ψI − ψ)|

≤
∑
e∈En

∥∥∥∇u − 

0,e
p−1(∇u)

∥∥∥
0,e

∥∥∥�ψI − ψ� − 

0,e
p−1�ψI − ψ�

∥∥∥
0,e

,

where in the fourth identity we used the fact that Nn(u, ψ) = 0, which holds since u and ψ

are sufficiently regular, and in the last step we used (41). Again, 
0,e
p−1 has to be understood

as the L2 projection onto the vectorial polynomial spaces of degree at most p − 1 on e.
Applying [35, Theorem 3.1], Proposition 3.8, [17, Lemma 4.2], and finally (50), leads to

|T4| � p−1|∇
(
u − 
∇

p u
)

|1,Tn |ψ − ψI |1,Tn � hmin(s,p)

ps
‖u‖s+1,�ext

h

p
‖u − un‖0,�,

where we recall that �ext is defined in (40) and where 
∇
p is any piecewise energy projector

from H1(K ) into Pp(K ), for all K ∈ Tn .
Finally, it remains to treat term T5 on the right-hand side of (52). To this purpose, we

consider the following splittings of ψ and ψI . Firstly, we split ψ into ψ = ψ1 + ψ2, where
ψ1 and ψ2 are, element by element, solutions to the local problems{−�ψ1 = −�ψ in K

ψ1 = 0 on ∂K ,

{−�ψ2 = 0 in K

ψ2 = ψ on ∂K
(53)

for all K ∈ Tn . Using (49), we can also observe that ψ2 − ψ solve the local problems{−�(ψ − ψ2) = u − un in K

ψ − ψ2 = 0 on ∂K ,

Then, (local) standard a priori regularity theory and, afterwards, summation over all elements
K ∈ Tn imply the global bound∥∥ψ2 − ψ

∥∥
2,Tn

� ‖u − un‖0,� , (54)

where the broken norm ‖ · ‖2,Tn is defined in (5). With the triangle inequality, (50), and (54),
we get ∥∥ψ2

∥∥
2,Tn

≤ ∥∥ψ − ψ2
∥∥
2,Tn

+ ‖ψ‖2,� � ‖u − un‖0,� . (55)

Secondly, we split ψI ∈ V p
n,0 into ψI = ψ1

I + ψ2
I . We define ψ2

I as the unique element in

V�,p
n,0 introduced in (16), which satisfies

1

he

∫
e
ψ2
I q

e
p−1 ds = 1

he

∫
e
ψI q

e
p−1 ds ∀qep−1 ∈ Pp−1(e), ∀e ∈ En . (56)
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Existence and uniqueness of ψ2
I follow from the fact that we are defining ψ2

I via unisolvent

degrees of freedom for the space V�,p
n,0 . Owing to (56), the definition of ψI in (48), and (53),

we deduce

1

he

∫
e
ψ2
I q

e
p−1 ds = 1

he

∫
e
ψI q

e
p−1 ds = 1

he

∫
e
ψqep−1 ds

= 1

he

∫
e
ψ2qep−1 ds ∀qep−1 ∈ Pp−1(e), ∀e ∈ En .

This entails thatψ2
I approximatesψ2 in the sense of Proposition 3.1. Having this, the function

ψ1
I = ψI − ψ2

I ∈ V p
n,0 satisfies

⎧⎪⎪⎨
⎪⎪⎩

1

|e|
∫
e
ψ1
I q

e
p−1 ds=0 ∀qep−1 ∈ Pp−1(e), ∀e ∈ EK , ∀K∈Tn,

1

|K |
∫
K

ψ1
I qp−2 dx= 1

|K |
∫
K

(
ψI − ψ2

I

)
qp−2 dx ∀qp−2 ∈ Pp−2(K ), ∀K ∈ Tn .

Moreover, since un ∈ V�,k
n,g , ψ1

I has the essential feature that it satisfies

aK
(
un, ψ

1
I

) =
∫
K

⎛
⎝−�un︸ ︷︷ ︸

=0

⎞
⎠ψ1

I dx +
∫

∂K
(∇un · nK ) ψ1

I ds︸ ︷︷ ︸
=0

= 0. (57)

We have now all the tools for bounding term T5. Using (57), (10), and (24), we get

|T5| =
∣∣∣∣∣∣
∑
K∈Tn

aK
(
un, ψ

2
I

)∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
K∈Tn

{
aKn
(
un, ψ

2
I

)− aK
(
un, ψ

2
I

)}∣∣∣∣∣∣
=
∣∣∣∣∣∣
∑
K∈Tn

{
aKn
(
un − q�

p , ψ2
I − q̃�

p

)
− aK

(
un − q�

p , ψ2
I − q̃�

p

)}∣∣∣∣∣∣
∀q�

p , q̃�
p ∈ S p,�,−1(Tn),

where we recall that S p,�,−1(Tn) is defined in (17). It is important to highlight that it is in
fact a key point of the error analysis to have piecewise harmonic functions in both entries of
the discrete bilinear form. By applying the continuity property (26) and the Cauchy–Schwarz
inequality, then the triangle inequality and Proposition 3.1, we deduce

|T5| � α∗(p)
∣∣∣un − q�

p

∣∣∣
1,Tn

∣∣∣ψ2
I − q̃�

p

∣∣∣
1,Tn

≤ α∗(p)
(

|u − un |1,Tn
+
∣∣∣u − q�

p

∣∣∣
1,Tn

)(∣∣ψ2 − ψ2
I

∣∣
1,Tn

+
∣∣∣ψ2 − q̃�

p

∣∣∣
1,Tn

)

� α∗(p)
(

|u − un |1,Tn
+
∣∣∣u − q�

p

∣∣∣
1,Tn

) ∣∣∣ψ2 − q̃�
p

∣∣∣
1,Tn

.
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Thanks to Lemma 3.4 (here, s = 1) and the bound (55), we have

|T5| � α∗(p)
(

|u − un |1,Tn
+
∣∣∣u − q�

p

∣∣∣
1,Tn

)
h

(
log(p)

p

)minK∈Tn λK

⎛
⎝∑

K∈Tn

∥∥ψ2
∥∥2
2,K

⎞
⎠

1
2

� α∗(p)
(

|u − un |1,Tn +
∣∣∣u − q�

p

∣∣∣
1,Tn

)
h

(
log(p)

p

)minK∈Tn λK

‖u − un‖0,� ,

where we recall that, for any K ∈ Tn , λK π denotes the smallest exterior angle of K .
By combining the estimates on all the terms T1 to T5, we get the assertion. �

Remark 7 As already highlighted, the case of non-convex� can be treated analogously.More
precisely, given ω the largest reentrant angle of �, the solution of (2) belongs to H1+t (�),
with t = π

ω
−ε for all ε > 0 arbitrarily small. Standard stability and a priori regularity theory,

see [9, Theorem 2.1], gives

‖ψ‖1+t,� ≤ c‖u − un‖0,�
for some positive constant c depending only on the domain �. An analogous bound is valid
for the counterpart of (54) in the non-convex case. Having this, a straightforwardmodification
of the proof of Theorem 3.9 leads to the h- and p-error bounds

‖u − un‖0,� ≤
{
c
hmin(s,p)+t

ps+t
‖u‖s+1,�ext

+ max

((
h

p

)t

, ht α∗(p)
(
log(p)

p

)maxK∈Tn (λK ) t
)

·
(

|u − un |1,Tn + inf
q�
p ∈S p,�,−1(Tn)

|u − q�
p |1,Tn

)}
,

where c is a positive constant depending only on the constants ρ1, ρ2, ρ3, ρ4, and� appearing
in (D1)–(D4) and in the proof of Lemma 3.5.

The presence of non-convex polygons in the decomposition Tn leads to a possible addi-
tional loss in the convergence rate in p of the L2 error, which will depend on the largest
interior and exterior angles of the polygons.

3.7 Hints for the Extension to the 3D Case

The aim of this section is to give a hint concerning the extension of what we have presented
and discussed so far to the three dimensional case.

Concerning the definition of local harmonic VE spaces, onemimics the strategy suggested
in [7] and defines, for every polyhedron K in R

3 and any fixed p ∈ N,

V�(K ) := {vn ∈ H1(K ) | �vn = 0 in K , (∇vn · nK )|F ∈ Pp−1(F) ∀F faces of K
}
.

Weobserve that the definition of the local 3D space is a straightforward extension of its 2D
counterpart. We underline that this is not the case when using conformingVEM. In that case,
typically, one also requires to have a modified version of the local VE spaces on each face,
see [2]. On the one hand, this allows the construction of continuous functions over the
boundary of a polyhedron, as well as the construction of projectors onto proper polynomial
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spaces; on the other, it complicates the p-analysis of the method. In the non-conforming
framework, however, one does not need to fix any sort of continuity across the interface
between faces of a polyhedron and thus it suffices to impose that normal derivatives are
polynomials.

The global 3D non-conforming space is built as in the 2D case. Also, the degrees of
freedom are given by scaled face moments with respect to polynomials up to order p − 1.

The abstract definition of the 2D local discrete bilinear form in (23) can also be employed
in the 3D case. The (properly scaled) 3D counterpart of the 2D explicit stabilization defined
in (28) would be

SK (un, vn) =
∑

F faces of K

p

hF

(



0,F
p−1un,


0,F
p−1vn

)
0,F

,

where, for any face F , 
0,F
p−1 denotes the L2 projector onto Pp−1(F) of the traces on F of

functions in the 3D VE space. Nonetheless, it is not clear whether explicit bounds in terms
of p of the stability constants appearing in (22) can be proved for this form. In fact, in the 2D
case, hp-polynomial inverse estimates in 1Dwere the key tool for proving Theorem3.2. In the
3D framework, one needs to employ hp-polynomial inverse estimates on general polygons
based on weighted norms. We highlight that the approach of [31, Chapter 3], see also [30],
could be followed in order to prove such hp-weighted inverse inequalities. However, as this
extension is quite technical, we do not investigate it here.

Independently of the specific choice of the stabilization, provided that it is symmetric
and satisfies (25), the abstract error analysis is dealt with similarly to the 2D case, see
Theorem 3.3. The only modification is in the definition of the non-conformity term, which
in 3D is defined as

Nn(u, v) =
∑
F∈E3

n

∫
F

∇u · �v�F ds

for all conforming functions u and all non-conforming functions v, where E3
n denotes the set

of faces in the polyhedral decomposition, and �·�F is defined as in (6) in terms of normal
derivatives over faces.

The proof of h- and p-error bounds for this non-conforming term follows the same lines as
in the 2D case, since [35, Theorem 3.1] holds true on simplices in arbitrary space dimension.
For the best approximation error, one should use the 3D version of Lemma 3.4, which can
be found e.g. in [52, Theorem 3.12].

4 Numerical Results

We present in Sect. 4.1 some numerical tests for the h-version and the p-version of the
method, validating the theoretical results obtained in Sect. 3; we conclude with a discussion
and some tests on the hp-version in Sect. 4.2. As already mentioned, we refer to “Appendix
A” for details on the implementation of the method.

4.1 Numerical Results: h- and p-Version

In this section, we present numerical experiments validating the theoretical error estimates
in the H1(Tn) (H1, for short) and L2 norms discussed in Theorems 3.6, 3.7, and 3.9.
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For the following numerical experiments, we consider boundary value problems of the
form (1), on � := (0, 1)2, with known exact solutions given by

• u1(x, y) = ex sin(y),
• u2(x, y) = u2(r , θ) = r2 (log(r) sin(2θ) + θ cos(2θ)).

We underline that u1 is an analytic function in �, whereas u2 ∈ H3−ε(�) for every ε > 0
arbitrarily small; moreover, u2 represents the natural singular solution at 0 = (0, 0) of the
Poisson problem on a square domain, see e.g. [9].

We discretize these problems on sequences of quasi-uniform Cartesian meshes and
Voronoi-Lloyd meshes of the type shown in Fig. 2, left and center, respectively. We also
test on a problem with exact solution u1 on the domain � given by the union of four Escher
horses as in Fig. 2, right.

It is important to note that, since an explicit representation of the numerical approximation
un inside each element is not available, due to the “virtuality” of the basis functions,we cannot
compute the L2 and H1 errors of the method directly. Instead, we will compute the following
relative errors between u and 
∇

p un , 

∇
p being defined in (15):∥∥∥u − 
∇

p un
∥∥∥
0,�

‖u‖0,� ,

∥∥∥u − 
∇
p un
∥∥∥
1,Tn

‖u‖1,� . (58)

We observe that the “computable” H1 error in (58) is related to the exact H1 error. In fact,
thanks to Theorem 3.3, we have

|u − un |1,Tn � inf
q�
p ∈S p,�,−1(Tn)

∣∣∣u − q�
p

∣∣∣
1,Tn

+ sup
vn∈V�,p

n,0

Nn(u, vn)

|vn |1,Tn

≤
∣∣∣u − 
∇

p un
∣∣∣
1,Tn

+ sup
vn∈V�,p

n,0

Nn(u, vn)

|vn |1,Tn

;

the convergence of the second term on the right-hand side is provided in Lemma 3.5. More-
over, by the triangle inequality and the stability of the H1-projection, one also has∣∣∣u − 
∇

p un
∣∣∣
1,Tn

≤
∣∣∣u − 
∇

p u
∣∣∣
1,Tn

+
∣∣∣
∇

p (u − un)
∣∣∣
1,Tn

≤
∣∣∣u − 
∇

p u
∣∣∣
1,Tn

+ |u − un |1,Tn
;

the convergence of the second term on the right-hand side is provided in Lemma 3.4.

4.1.1 Numerical Results: h-Version

In this section, we verify the algebraic rate of convergence of the h-version of the method,
validating thus Theorems 3.6 and 3.9 for different degrees of accuracy p = 1, 2, 3, 4, 5 of
the method.

The numerical results for the problems in � = (0, 1)2 with exact solutions u1
and u2, obtained on sequences of Cartesian and Voronoi-Lloyd meshes, are depicted in
Figs. 3 and 4.

From Theorems 3.6 and 3.9, we expect the H1 and L2 errors to behave like O(hmin(t,p))

and O(hmin(t,p)+1), respectively, where t + 1 is the regularity of the exact solution u, and p
is the degree of accuracy. The numerical results in Figs. 3 and 4 are in agreement with these
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Fig. 3 Convergence of the h-version of the method for the analytic solution u1 on quasi-uniform Cartesian
(first row) and Voronoi-Lloyd (second row) meshes; relative H1 errors (left) and relative L2 errors (right)
defined in (58)

theoretical estimates. In fact, for u1, which belongs to Hs(�) for all s � 0, we see that the
H1 error actually converges with order O(h p), and the L2 error with order O(h p+1) for all
degrees of accuracy. On the other hand, we observe convergence rates 1 and 2, respectively,
for p = 1, and convergence rates 2 and 3, respectively, for p = 2, 3, 4, 5. This is due
to the fact that the expected convergence is of order O(hmin{2−ε,p}) in the H1 norm and
O(hmin{2−ε,p}+1) in the L2 norm.

4.1.2 Numerical Results: p-Version

In this section, we validate the exponential convergence of the p-version of the method for
the model problem (1) with exact solution u1 on � = (0, 1)2 on a Cartesian mesh and a
Voronoi mesh made of four elements, respectively, as well as on the domain � given by the
union of four Escher horses (see Fig. 2, right). The obtained results are depicted in Fig. 5,
where the logarithm of the relative errors defined in (58) is plotted against the polynomial
degree p.

One can clearly observe that the exponential convergence predicted in Theorem 3.7 is
attained, even when employing a very coarse mesh with (non-convex) non-star-shaped ele-
ments, as the one in Fig. 2, right.
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Fig. 4 Convergence of the h-version of the method for the solution u2 with finite Sobolev regularity on quasi-
uniform Cartesian (first row) and Voronoi-Lloyd (second row) meshes; relative H1 errors (left) and relative
L2 errors (right) defined in (58)
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Fig. 5 Convergence of the p-version of the method for the analytic solution u1 on a quasi-uniform Cartesian
mesh, a Voronoi-Lloyd mesh, and a Escher horses mesh; relative H1 errors (left) and relative L2 errors (right)
defined in (58)
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4.2 The hp-Version and Approximation of Corner Singularities

So far, both the theoretical analysis and the numerical tests were performed considering
approximation spaces with uniform degree of accuracy p and with quasi-uniform meshes.

In general, however, the solutions to elliptic problems over polygonal domains have nat-
ural singularities arising in neighbourhoods of the corners of the domain. In particular, for
problem (2) in a domain � with reentrant corners, the solution might have a regularity lower
than H2, even if the Dirichlet boundary datum g is smooth; for a precise functional setting
regarding regularity of solutions to elliptic PDEs, we refer to [9,44,56] and the references
therein. This implies that both the h- and the p-versions of standardGalerkinmethods, in gen-
eral, have limited approximation properties. In particular, employing quasi-uniform meshes
and uniform degree of accuracy, does not entail any sort of exponential convergence.

A possible way to recover exponential convergence, even in presence of corner singu-
larities, is to use the so-called hp-strategy firstly designed by Babuška and Guo [8–10] in
the FEM framework, and then generalized to the VEM in [18]. This strategy consists in
combining mesh refinement towards the corners of the domain and increasing the number of
degrees of freedom over the polygonal decomposition in a non-uniform way. In this section,
we discuss and numerically test an hp-version of the presented non-conforming harmonic
VEM.

To this purpose, we recall the concept of sequences of geometrically graded polygonal
meshes {Tn}n∈N. For a given n ∈ N, Tn is a polygonal mesh consisting of n+1 layers, where
we define a layer as follows. The so-called 0-th layer is the set of all polygons in Tn abutting
the vertices of �. The other layers are defined inductively by requiring that the �-th layer
consists of those polygons, which abut the polygons in the (� − 1)-th layer. More precisely,
for all � = 1, . . . , n, we set

Ln,� := L� :=
{
K ∈ Tn | K ∩ K�−1 �= ∅ for some K�−1 ∈ L�−1, K � ∪�−1

j=0L j

}
.

The hp-gospel states that, in order to achieve exponential convergence of the error, one has to
employ geometrically graded sequences of meshes. For this reason, we consider sequences
{Tn}n∈N satisfying (D1)–(D3), but not (D4); we require instead

(D5) for all n ∈ N, there exists σ ∈ (0, 1), called grading parameter, such that

hK ≈
{

σ n if K ∈ L0
1−σ
σ

dist
(
K ,V�

)
if K ∈ L�, � = 1, . . . , n,

(59)

where V� denotes the set of vertices of the polygonal domain �.

Sequences {Tn}n∈N satisfying (D5) have the property that the layers “near” the corners of
the domain consist of elements with measure converging to zero, whereas the other layers
consist of polygons with fixed size. In Fig. 6, we depict three meshes that represent the third
elements T3 in certain sequences of meshes of the L-shaped domain

� := (−1, 1)2 \ (−1, 0)2, (60)

which are graded, for simplicity, only towards the vertex 0.
We still miss a crucial ingredient for a complete description of the hp-strategy, namely

harmonic VE spaces with non-uniform degrees of accuracy. For all n ∈ N, we can order the
elements in Tn as K1, K2, …, Kcard(Tn); then we consider a vector pn ∈ N

card(Tn) whose
entries are defined as follows:
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Fig. 6 Third element T3 in three different sequences of geometrically graded meshes (type a–c from left to
right) with σ = 0.5

(pn) j :=
{
1 if K j ∈ L0

max(1, �μ(� + 1)�) if K j ∈ L�, � = 1, . . . , n,
(61)

where μ is a positive parameter to be assigned, and where �·� is the ceiling function.
Having pn for all n ∈ N, we consider the elements e1, e2, …, ecard(En) in En ; we con-

sequently define a vector pEn ∈ N
card(En), whose entries are built using the following rule

(maximum rule):

(
pEn
)
j :=

{
(pn)i if e j ∈ E B

n and e j ⊂ ∂Ki

max
(
(pn)i1 , (pn)i2

)
if e j ∈ E I

n and e j ⊂ ∂Ki1 ∩ ∂Ki2 .

At this point, we define the local harmonic VE spaces with non-uniform degrees of accuracy
as follows. For all K ∈ Tn , we set

V�(K ) :=
{
vn ∈ H1(K ) | �vn = 0 in K , (∇vn · nK )|e j ∈ P(pEn ) j

(e j )∀e j edge of K
}

.

The global non-conforming space and the set of global degrees of freedom are defined
similarly to those for the case of uniform degree, see Sect. 3. The difference is that now
the degrees of freedom and the corresponding “level of non-conformity” of the method vary
from edge to edge. This approach is similar to that discussed in [18] for the hp-version of
the conforming standard VEM.

Under this construction, one should be able to prove the following convergence result in
terms of the number of degrees of freedom. There exists μ > 0 such that the choice (61)
guarantees

|u − un |1,Tn ≤ c exp
(
−b

2
√
#dofs

)
, (62)

for some positive constants b and c, depending on u, ρ1, ρ2, �, and σ , where #dofs denotes
the number of degrees of freedom of the discretization space. This exponential convergence
in terms of the dimension of the approximation space was proven for conforming harmonic
VEM in [36] and for Trefftz DG-FEM in [45]. In the present non-conforming harmonic
VEM, the setting of the proof of such exponential convergence would follow the same lines
as that of the two methods mentioned above. We omit a detailed analysis and present here
some numerical results.

We underline that the exponential convergence in (62) is faster (in terms of the dimension
of the space) than that of standard hp-FEM [56] and hp-VEM [18], whose decay rate is
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Fig. 7 Convergence of the hp-version of themethod for the solution u3 on an L-shaped domain�, for the three
sequences of graded meshes represented in Fig. 6; relative H1 errors defined in (58). The grading parameter
σ is set to 1/2,

√
2 − 1 and (

√
2 − 1)2

O(exp
(
−b 3

√
#dofs

)
), due to the use of harmonic subspaces instead of complete FE or VE

spaces.
For our numerical tests, we consider the boundary value problems (2) on the L-shaped

domain � defined in (60), with exact solution

u3(x, y) = u3(r , θ) = r
2
3 sin

(
2

3
θ + π

3

)
.

We note that u3 ∈ H
5
3−ε(�) for every ε > 0 arbitrarily small, and also u3 ∈ H

5
3−ε(�ext),

where �ext is defined in (40); we stress that u3 is the natural solution, singular at 0 = (0, 0),
which arises when solving a Poisson problem in the L-shaped domain �.

In Fig. 7, we show the convergence of the hp-version of the method for different values
of the grading parameter σ used in (59) and with degrees of accuracy graded according
to (61), having set μ = 1. We plot the logarithm of the relative H1 error (58) against the
square root of the number of degrees of freedom.

Note that, due to the different number of degrees of freedom for each type of mesh,
the range of the coordinates varies from plot to plot. The straight lines for σ = 0.5 and
σ = √

2 − 1 indicate agreement with (62) for meshes of type (a) and (b). However, when
employing the mesh of type (c) with all grading parameters, and when employing grad-
ing parameter σ = (

√
2 − 1)2 for meshes of all types, we do not observe exponential

convergence (62). In the former case, we deem that this is due to the shape of the elements,
whereas, in the latter, this could be due to the fact that the size of the elements in the outer
layers is too large if picking the parameter μ in (61) equal to 1.

We point out that, in the framework of the conforming harmonic VEM [36], a similar
behaviour for the mesh of type (c) was observed. Instead, when employing the hp-version of
the standard (non-harmonic) VEM [18], the performance is more robust and the decay of the
error is always straight exponential. This suboptimal behaviour might be intrinsic in the use
of harmonic polynomials, or might be due to the choice of the harmonic polynomial basis
employed in the construction of the method, see “Appendix A”.

5 Conclusions

In this paper, we investigated non-conforming harmonic VEM for the approximation of
solutions to 2D Dirichlet–Laplace problems, providing error bounds in terms both of h, the
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mesh size, and of p, the degree of accuracy of the method. We gave some hints concerning
the extension of the method to the 3D case, where the design of a suitable stabilization is the
only missing item. Numerical tests validating the theoretical convergence results, as well as
testing the hp-version of the method in presence of corner singularities, were presented.

The technology herein introduced can also be seen as an intermediate step towards the
construction of non-conforming Trefftz-VE spaces for the approximation of solutions to
Helmholtz problems, which has been recently investigated in [49].

Acknowledgements The authors have been funded by the Austrian Science Fund (FWF) through the projects
P 29197-N32 and F 65. They are very grateful to the anonymous referees for their valuable and constructive
comments, which have contributed to the improvement of the paper.

Appendix A: Details on the Implementation

In this section, we discuss some practical aspects concerning the implementation of the
non-conforming harmonic VEM in 2D. We employ henceforth the notation of [16]. It is
worth to underline that we present herein only the case with uniform degree of accuracy; the
implementation of the hp version is dealt with similarly. As a first step, we begin by fixing
the notation for the various bases instrumental for the construction of the method.

Basis of Pp−1(e) for a given e ∈ EK . Using the same notation as in (12), we denote the
basis of Pp−1(e), e ∈ EK , by {me

r }r=0,...,p−1. The choice we make is

me
r (x) := Lr

(
φ−1
e (x)

) ∀r = 0, . . . , p − 1, (63)

where φe : [−1, 1] → e is the linear transformation mapping the interval [−1, 1] to the
edge e, and Lr is the Legendre polynomial of degree r over [−1, 1]. We recall, see e.g. [56],
for future use the orthogonality property

(
me

r ,m
e
s

)
0,e = he

2

∫ 1

−1
Lr (t)Ls(t) dt = he

2r + 1
δrs ∀r , s = 0, . . . , p − 1, (64)

where δrs is the Kronecker delta (1 if r = s, 0 otherwise).

Basis of Hp(K ) for a given K ∈ Tn . We denote the basis of the space of harmonic polyno-
mials Hp(K ) by {q�

α }α=1,...,n�
p
, where n�

p := dimHp(K ) = 2p + 1. The choice we make
for this basis is

q�
1 (x) = 1;

q�
2l (x) =

l∑
k=1, k odd

(−1)
k−1
2

(
l

k

)(
x − xK
hK

)l−k ( y − yK
hK

)k

∀l = 1, . . . , p;

q�
2l+1(x) =

l∑
k=0, k even

(−1)
k
2

(
l

k

)(
x − xK
hK

)l−k ( y − yK
hK

)k

∀l = 1, . . . , p.

The fact that this is actually a basis for Hp(K ) is proven, e.g., in [6, Theorem 5.24].

Basis for V�(K ) for a given K ∈ Tn . For this local VE space introduced in (11), we
employ the canonical basis

{
ϕ j,r

}
j=1,...,NK
r=0,...,p−1

defined though (13), where we also recall that

NK denotes the number of edges of K .
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In the following, we derive the matrix representation of the local discrete bilinear form
introduced in (23).Webeginwith the computation of thematrix representation of the projector



∇,K
p acting from V (K ) to Hp(K ) and defined in (15). To this purpose, given any basis

function ϕ j,r ∈ V�(K ), j = 1, . . . , NK , r = 0, . . . , p − 1, we expand 

∇,K
p ϕ j,r in terms

of basis {q�
α }α=1,...,n�

p
of Hp(K ), i.e.,


∇,K
p ϕ j,r =

n�
p∑

α=1

s( j,r)
α q�

α . (65)

Using (15) and testing (65) with functions q�
β , β = 1, . . . , n�

p , we get that the coefficients

s( j,r)
α can be computed by solving for s( j,r) := [s( j,r)

1 , . . . , s( j,r)
n�
p

]T the n�
p × n�

p algebraic

linear system

Gs( j,r) = b( j,r),

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
q�
1 , 1

)
0,∂K

(
q�
2 , 1

)
0,∂K · · ·

(
q�
n�
p
, 1

)
0,∂K

0
(∇q�

2 ,∇q�
2

)
0,K · · ·

(
∇q�

n�
p
,∇q�

2

)
0,K

...
...

. . .
...

0

(
∇q�

n�
p
,∇q�

2

)
0,K

· · ·
(

∇q�
n�
p
,∇q�

n�
p

)
0,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b( j,r) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
ϕ j,r , 1

)
0,∂K(∇ϕ j,r ,∇q�
2

)
0,K

...(
∇ϕ j,r ,∇q�

n�
p

)
0,K

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Collecting all the NK p (column) vectors b( j,r) in a matrix B ∈ R
n�
p ×NK p , namely, setting

B := [b(1,1), . . . , b(NK ,p)], the matrix representation �∗ of the projector 

∇,K
p acting from

V�(K ) to Hp(K ) is given by

�∗ = G−1B ∈ R
n�
p ×NK p.

Subsequently, we define

D :=

⎡
⎢⎢⎢⎢⎢⎣

dof1,1
(
q�
1

) · · · dof1,1

(
q�
n�
p

)
...

. . .
...

dofNK ,p
(
q�
1

) · · · dofNK ,p

(
q�
n�
p

)

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

NK p×n�
p .

Let � be the matrix representation of the operator 

∇,K
p seen now as a map from V�(K )

into V�(K ) ⊇ Hp(K ). Then, following [16], it is possible to show that

� = DG−1B ∈ R
NK p×NK p.
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Next, denoting by G̃ ∈ R
n�
p ×n�

p the matrix coinciding with G apart from the first row which
is set to zero, the matrix representation of the bilinear form in (23) is

(�∗)T G̃ (�∗) + (I − �)T S (I − �) .

Here, S denotes the matrix representation of an explicit stabilization SK (·, ·). For the stabi-
lization defined in (28), we have

S((k − 1)NK + r , (l − 1)NK + s) =
NK∑
i=1

p

hei

(



0,ei
p−1ϕl,s,


0,ei
p−1ϕk,r

)
0,ei

∀k, l = 1, . . . , NK ,∀r , s = 0, . . . , p − 1.

By expanding 

0,ei
p−1ϕl,s and 


0,ei
p−1ϕk,r in the basis

{
mei

γ

}
γ=0,...,p−1 of Pp−1(ei ), i.e.,



0,ei
p−1ϕl,s =

p−1∑
γ=0

t (l,s),eiγ mei
γ , 


0,ei
p−1ϕk,r =

p−1∑
ζ=0

t (k,r),eiζ mei
ζ ,

∀k, l = 1, . . . , NK , ∀r , s = 0, . . . , p − 1, (66)

we can write

S((k − 1)NK + r , (l − 1)NK + s) =
NK∑
i=1

p−1∑
γ=0

p−1∑
ζ=0

t (l,s),eiγ t (k,r),eiζ

p

hei

(
mei

γ ,mei
ζ

)
0,ei

∀k, l = 1, . . . , NK , ∀r , s = 0, . . . , p − 1.

For the basis defined in (63), using the orthogonality of the Legendre polynomials (64), this
expression can be simplified leading to a diagonal stability matrix S:

S((k − 1)NK + r , (k − 1)NK + r) =
NK∑
i=1

p−1∑
ζ=0

p

2r + 1

(
t (k,r),eiζ

)2
∀k = 1, . . . , NK , ∀r = 0, . . . , p − 1.

For fixed i, k ∈ {1, . . . , NK } and r ∈ {0, . . . , p− 1}, the coefficients t (k,r),eiζ are obtained by

testing 

0,ei
p−1ϕk,r , defined in (66), with mei

ζ , ζ = 0, . . . , p − 1, and by taking into account

the definition of 

0,ei
p−1 in (14), the orthogonality relation (64) and the definition of ϕk,r

in (13). This gives

t (k,r),eiζ = 2ζ + 1

hei

(
ϕk,r ,m

ei
ζ

)
0,ei

= (2ζ + 1)δikδrζ ∀ζ = 0, . . . , p − 1.

The global system of linear equations corresponding to method (10) is assembled as in
the standard non-conforming FEM. Finally, one imposes in a non-conforming fashion the
Dirichlet boundary datum g by∫

e
unq

e
p−1 ds =

∫
e
gqep−1 ds ∀qep−1 ∈ Pp−1(e),

where, in practice, g is replaced by gp , see Remark 2.
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