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Abstract
Mesh generation and adaptive refinement are largely driven by the objective of minimizing
the bounds on the interpolation error of the solution of the partial differential equation (PDE)
being solved. Thus, the characterization and analysis of interpolation error bounds for curved,
high-order finite elements is often desired to efficiently obtain the solution of PDEs when
using the finite element method (FEM). Although the order of convergence of the projection
error in L2 is known for both straight-sided and curved elements (Botti in J Sci Comput
52(3):675–703, 2012), an L∞ estimate as used when studying interpolation errors is not
available. Using a Taylor series expansion approach, we derive an interpolation error bound
for both straight-sided and curved high-order elements. The availability of this bound facil-
itates better node placement for minimizing interpolation error compared to the traditional
approach of minimizing the Lebesgue constant as a proxy for interpolation error. This is
useful for adaptation of the mesh in regions where increased resolution is needed and where
the geometric curvature of the elements is high, e.g., boundary layer meshes. Our numerical
experiments indicate that the error bounds derived using our technique are asymptotically
similar to the actual error, i.e., if our interpolation error bound for an element is larger than it
is for other elements, the actual error is also larger than it is for other elements. This type of
bound not only provides an indicator for which curved elements to refine but also suggests
whether one should use traditional h-refinement or should modify the mapping function used
to define elemental curvature. We have validated our bounds through a series of numerical
experiments on both straight-sided and curved elements, and we report a summary of these
results.
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1 Introduction

Many mesh generation and a posteriori adaptation strategies for the finite element method
(FEM) are motivated by the reduction of interpolation errors over the mesh elements to be
generated or refined. For linear finite elements, there is a long tradition of both a priori
and a posteriori error estimates that aid the FEM practitioner. However, when one moves
to (straight-sided) high-order FEM, there are fewer estimates available. Finally, when one
considers curvilinear high-order elements with curved sides and faces, which are crucial in
correctly aligning the mesh with an underlying geometry, results are even more sparse.

Curvilinear elements are obtained through the use of a geometricmapping froma reference
element to the desired element in physical Cartesian space (i.e., world-space). The mapping
is typically defined in an isoparametric or subparametric manner using a subset of the same
polynomial basis functions that are used to represent the approximated solutions. However,
in using this approach, an issue that has always bothered FEM practitioners is the question of
how the choice of the geometric mapping functions impacts on the approximation properties
of those elements in world-space, i.e., in the natural coordinate system of interest. Botti [1]
was among the first to quantify the impact of polynomial mapping functions on the quality
of the solution—providing a proof on the order of convergence in an integral norm of an
FEM projection operator for quadrilateral elements as a function of elemental polynomial
(enrichment) order p and mapping polynomial order q .

Many of the contemporary results for bounding the error in finite element interpolation,
including [1], have been derived from the Bramble-Hilbert lemma [2]. In their paper, Bramble
and Hilbert explicitly mention that this lemma can replace the “standard” Taylor series
technique. This approach, however, does not naturally translate to an understanding of a
“good” high-order finite element from the perspective of interpolation error, owing to the
lack of a constructive proof. This aspect was addressed by Dupont and Scott [3], who were
able to provide a constructive proof of the lemma using a Taylor series expansion. Arnold
et al. [4] proved error bounds for straight-sided quadrilateral finite elements by extending
the Bramble-Hilbert lemma. Dekel and Lavitan [5], however, argued that the main drawback
of their proof is that the constant associated with the order of convergence depends on
a “chunkiness parameter”, which blows up as a triangle becomes very thin. In order to
accommodate this drawback, a quasi-uniform mesh is assumed in which the parameter is
uniformly bounded. Dekel and Leviatan [5] provided a constructive proof for the lemma
that showed that the interpolated polynomial in a star-shaped domain obeys the bounds for
a straight-sided finite element.

A key drawback of approaches based on the Bramble-Hilbert lemma, in our view, is
that these results lead to bounds that are defined in an integral manner and therefore do
not offer much insight into how the geometric mapping can be changed in order to reduce
the interpolation error. We note that from a practical perspective, the mapping relies on a
distribution of points in the reference and Cartesian elements, alongside a set of Lagrange
interpolants. Although there is a rich body of literature relating to the effects of the distribution
of points in the reference element, the placement of the points in the Cartesian element and
how this pertains to the interpolation error are far less well-understood.

In earlier work [6], we highlighted how a first-principles approach, using a Taylor series
expansion of the function to be interpolated, leads to a pointwise bound on the interpolation
error for second-order straight-sided triangular elements. This bound, at a point in the high-
order element, is proportional to the sum of the product of its distance from a high-order
node of the triangle with the value of the corresponding shape function. This node-based
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approach gives FEM and adaptive mesh refinement (AMR) practitioners a method through
which nodes can be moved and placed optimally in order to reduce the interpolation error of
a given function.

In this paper, we show how this approach can be extended to derive interpolation error
bounds that are applicable for any valid (i.e., non self-intersecting) finite element mesh at
a polynomial order p and mapping order q . In particular, we highlight that the bound is
again dependent on the position of the mesh nodes, and thus our work provides a tighter
bound than Lebesgue function-based bounds, but with an assumption on the bounds on high-
order derivatives of the function we interpolate. This paper can be viewed as an extension
of [5] in the context of the high-order, curved finite elements and as an extension of [1] with
constructive proofs for an interpolation version of the theorems stated in their paper. We also
consider triangular elements due to their nearly ubiquitous nature in the FEM, as opposed to
the quadrilaterals investigated in [1].

As we prove our results from first principles using the Taylor series, it becomes possible
to define the quality of a high-order, curved element and to optimally place nodes within a
triangle to minimize the error bounds. This approach also enables us to analyze the effect of
anisotropy on the error bounds. The proofs presented in this paper are considerably simpler
thanBramble-Hilbert lemma-based proofs in earlier work in that they do not require extensive
knowledge of functional analysis. We believe that the biggest impact of this paper will be in
AMR for engineering applications in which high-order meshes are used.

We conclude with a brief overview of the structure of this paper. In Sect. 2, we reproduce
the result of [1] in terms of the order of convergence of solutions under h-refinement, but
under the L∞ norm instead of the L2 norm. We then outline the bounds in terms for both the
interpolation of a function and its derivatives. In Sect. 3, we present a number of numerical
experiments to validate the order of convergence for triangular elements, and examine the
tightness of the bounds in the context of anisotropic mesh refinement. Since the research and
application of high-order FEM are still relatively nascent, the scope for future research in
this field is large. We will indicate future research directions in Sect. 4, including the study
of conditioning of stiffness matrices, node placement, and error estimation techniques for
high-order polynomial interpolation.

2 Interpolation Error Bound

In this section, we derive error bounds for the piecewise interpolation error of p-th order
triangular elements with a q-th order reference-to-physical space mapping for a function and
its derivative. The proofs for the error bounds closely follow the techniques employed by
Johnson [7] and our previous paper [6].

2.1 Overview

We begin by providing a brief mathematical framework of the interpolation problem. Let Ke

denote a triangular element belonging to the conformal mesh of a domain Ω ⊂ R
2, so that

Ω = ⋃
e K

e and Ke ∩ K f = ∅ if e �= f . This mesh is then combined with an appropriate
high-order polynomial expansion on each element, so that discrete solutions of a given PDE
will belong to the space

D p(Ω) = {v ∈ L2(Ω) | v|Ke ∈ P
p(Ke)},
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where L2(Ω) denotes the space of square integrable functions on Ω and

P
p(Ke) = span

{
xi1x

j
2 | (x1, x2) ∈ Ke, 0 ≤ i ≤ p, 0 ≤ i + j ≤ p

}

is the polynomial space of total degree p on Ke, which is spanned by N (p) = 1
2 (p+1)(p+2)

basis functions.
This paper focuses on a key part of both the numerical solution of a PDE and applications

in AMR: the polynomial interpolation of a known function u : Ω → R to obtain a discrete
approximation uh ∈ D p(Ω). This process can be viewed as the application of a projection π

so that uh = πu, and can be defined in a number of ways depending on the desired outcome:
for example in [1], π is an L2 projection. Here however, in order to provide constructive
proofs, we consider π to be the result of a L∞ interpolation operator, which we will define
in the following section with the aide of a reference element. The intent of this work is to
obtain convergence properties and bounds on the pointwise interpolation error ‖u−uh‖L∞ by
assuming sufficient regularity of u so as to apply Taylor’s theorem. To this end, we therefore
consider functions u ∈ Ck

b (Ω) that are bounded and k-times continuously differentiable for
sufficiently large k, so that π : Ck

b (Ω) → D p(Ω).

2.2 Reference-to-World Mapping

In order to facilitate the definition of a basis spanningD p(Ke) on each element, we consider
a reference triangle

K = {(ξ1, ξ2) | ξi ∈ [−1, 1], ξ1 + ξ2 ≤ 0}
and define a basis on K . To assist in the definition of π , we consider the commonly-used
basis of total degree p Lagrange interpolants λk(ξ), so that a function f : K → R with
f ∈ D p(K ) can be written as

f (ξ) =
N (p)∑

k=1

f̂kλk(ξ),

where {ξ̂i }N (p)
i=1 ⊂ K denotes a distribution of solvent points within the reference element

and λi (ξ̂ j ) = δi j , where δi j is the Kronecker delta. In this setting, the interpolation operator
π can then be viewed as the mapping such that, for an arbitrary function v : Ω → R, πv is
the unique polynomial such that πv(ξ̂k) = v(ξ̂k) for each k and

πv(ξ) =
N (p)∑

k=1

v(ξ̂k)λk(ξ). (1)

To translate this basis on K to a basis on any given element Ke, we require the definition of a
diffeomorphism χe : K → Ke between the reference and physical space element to define
a basis over the world-space element that involves polynomials in the reference space. An
important aspect of this high-order finite element setting is that each element Ke is generally
assumed to be curvilinear. This allows, for example, the mesh elements that touch the domain
boundary to be curved so that the mesh accurately represents the underlying geometry. This
is particularly important in the context of, for example, fluid dynamics problems. Here, an
accurate representation of the geometry is critical in the accurate prediction of important
flow features such as separation and recirculation, which define key aspects of the fluid’s
behaviour.
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ξ = (ξ1, ξ2) ∈ K
reference element

ξ1

ξ2

ξ̂k

x = (x1, x2) ∈ Ke

curvilinear element

x̂k
x = χe(ξ)

Fig. 1 Notation showing reference-to-world mappings χe from the reference element K to a physical element
Ke , where the nodes correspond to an order of p = 3. The distributions of nodal coordinates are denoted by
ξ̂k ∈ K and x̂k ∈ Ke

To define the reference-to-physical space mapping and to enable the use of curved ele-
ments, we typically choose to employ the use of mappings that draw from a subset of the
basis functions defined on K . That is, we suppose that χe = (χe

1 , χ
e
2 ) ∈ [Pq(K )]2 for some

polynomial order q ≤ p, where if q = p the mapping is referred to as isoparametric, if
q < p it is subparametric and if q > p it is superparametric. Each coordinate of a given
point x = (x1, x2) ∈ Ke can be expressed as a function of the mapping from a point ξ ∈ K ,
which in turn is written as a polynomial

xk = χe
k (ξ) =

i+ j≤q∑

i, j=0

αi j,kξ
i
1ξ

j
2 , (2)

where αi j,k are constants depending on the element Ke. Hereafter, x ∈ Ω will denote
coordinates in the physical Cartesian space and ξ ∈ K in the reference triangle.

Sincewe considerLagrange interpolants as our particular basis on K , anotherway to define
this mapping explicitly is through the definition of nodal points {x̂k = ((x̂k)1, (x̂k)2)}N (q)

k=1 ⊂
Ke on each element. This then yields

xk = χe
k (ξ) =

N (q)∑

i=1

(x̂i )kλi (ξ)

so that under this mapping, the reference points ξ̂k map onto the physical elemental nodes
x̂k . Figure 1 shows a visual representation of this setting. Throughout this paper we make the
assumption followed in [8], that χe has a positive Jacobian determinant for every ξ ∈ K for
every element Ke in the mesh, and its inverse is smooth.

Finally, we note in particular that the distributions of nodes ξ̂k in relation to their inter-
polation properties on K is a very well-studied topic, as described in e.g. [8]. Generally,
the goal of such points is to minimise the Lebesgue constant of π , leading to distributions
such as those proposed by Hesthaven [9]. However, the effect of the distribution of x̂k on the
interpolation operator is far less well-understood in the context of curvilinear elements. This
is the key aim of this paper and the results of the following two sections.
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2.3 Convergence Order

Our first goal is to determine the order of the interpolation error ‖u − πu‖L∞ in terms of the
element size h; that is, we wish to determine the integer k such that ‖u − πu‖L∞ ≤ C |hk |
for some constant C . This then determines the order of convergence under h-refinement
(reduction of element size). For straight sided elements, it is a standard result that k = p+1.
However when a reference-to-physical space mapping of order q is introduced, Botti [1]
determined that k = �p/q�+1 in the L2 norm through the use of the Bramble-Hilbert lemma.
In this section, we highlight how the same result under the L∞ norm can be recovered in a
first-principles setting, under the assumption of sufficient regularity of u.

Theorem 1 The interpolation error ‖u − πu‖L∞ is of order k = �p/q� + 1, so that ‖u −
πu‖L∞ ≤ C |hk | for a constant C.

Proof We begin with a Taylor series expansion of the true solution u in world-space around
an arbitrary world-space point x∗ ∈ Ke where the size of Ke is bounded by h [7]. In a
standard Taylor expansion, this is represented in terms of a power series

∑

0≤|α|≤p

(x − x∗)α

α! ∂αu(x∗) + Dp+1(ζ ),

where α is a 2-tuple multi-index and D is a remainder term of polynomial order p + 1
depending on a point ζ lying on the line segment between x and x∗. However, for the coming
analysis, since we have explicit expressions for x1 and x2 in terms of ξ1 and ξ2 through the
mapping χe, consider a rearrangement of this series in terms of monomials, so that

u(x) =
i+ j≤p∑

i, j=0

ai j x
i
1x

j
2 + Dp+1(ζ ). (3)

In this form, ai j are summations of constants which depend on x∗ and the partial derivatives
of u up to order i + j evaluated at x∗.

Before proceeding further, to help clarify the coming argument, we first outline the
relationship between the true solution u and its representation in world-space Ke and
reference-space K . Recall that these spaces are related through the polynomial mapping
χe : K → Ke. The true solution u can therefore either be viewed as a function in the
world-space element Ke, or alternatively in the reference element K through the mapping
v := u ◦ χe. However, we note that since (χe)−1 is not necessarily polynomial, the interpo-
lation operator πu (with respect to x) is a smooth, but not necessary polynomial, function.
Hence when we interpolate in world space we are not forming an interpolating polynomial
(in world space) but an interpolating function. We therefore opt to consider u in its mapped
coordinate v, under which the interpolation πv is a polynomial function, and leverage the
fact that ‖u − πu‖L∞ = ‖v − πv‖L∞ .

To achieve this, we apply the mapping (2) to Eq. (3) to obtain the expression

v(ξ) =
i+ j≤p∑

i, j=0

⎛

⎜
⎝ai j

⎡

⎣
k+l≤q∑

k,l=0

αkl,1ξ
k
1 ξ l2

⎤

⎦

i ⎡

⎣
k+l≤q∑

k,l=0

αkl,2ξ
k
1 ξ l2

⎤

⎦

j
⎞

⎟
⎠ + Dp+1(ζ ), (4)

which allows us to “view” the function u(x) as defined in Eq. (3) on the reference element,
which we denote by v(ξ).
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Now let πv denote the polynomial interpolant of v, which we note is a polynomial of
total degree p in ξ . In this case, πv is a summation of monomials ξ i1ξ

j
2 such that i + j ≤ p.

We note from Eq. (4) that under the application of χe, the interpolation error v(ξ) − πv(ξ)

now contains monomials up to order pq , which is greater than the remainder term of order
p + 1 for all q > 1. We therefore determine the order of convergence as the minimum value
of i + j such that monomials inside the inner summations are of order less than or equal
to p + 1, since these are the only values that can be supported under the expansion of total
degree p.

Finally then, we consider the maximum value of each inner summation where k + l = q .
This choice of k and l for a given p and q have corresponding leading-order monomials
ξ ik1 ξ il2 ξ

jk
1 ξ

jl
2 of total degree q(i + j). The convergence order is therefore given by the min-

imum integer n = i + j such that qn ≥ p + 1, which is clearly given by n = �p/q� + 1.
��

2.4 Bounds on Interpolation Error

We now consider the effects of the projection operator and its impact on the interpolation
error. Considering an expansion in terms of Lagrange interpolants from Eq. (1), we aim to
construct an expression of v(ξ̂k) which includes the mapping terms so that an explicit bound
can be constructed on πv(ξ). One such representation would be given by substituting ξ̂k
into Eq. (4); however this would then yield a monomial expansion in terms of ξ̂k which is
difficult to manipulate. Instead, we start by examining a slightly different Taylor expansion
than the one utilised for u(x) in Eq. (3). Namely, we consider the expansion evaluated at a
world-space nodal position xk = χe(ξ̂k) around a general position x ∈ Ke, giving

u(xk) = u(x) +
i+ j≤p∑

i, j=1

ãi j x
i
1x

j
2 + Dp+1(ζ̃ ).

In the above expression, we have used a similar technique as before to amalgamate terms
involving xk into the constants ãi j , which we note are different from the ai j terms in Eq. (3).
Additionally, ζ̃ is a point on the line segment connecting x and xk . The mapping function
can then be substituted into the above expression, yielding

v(ξ̂k) = v(ξ) +
⎛

⎝
0<(i+ j)≤pq∑

i, j=1

bi j,kξ
i
1ξ

j
2

⎞

⎠ + Dp+1(ζ̃ ),

where, as before, v denotes the composition of u and the inverse mapping (χe)−1. By sub-
stituting the above into the polynomial expansion of Eq. (1) we obtain

πv(ξ) =
N (p)∑

k=1

λk(ξ)

⎡

⎣v(ξ) +
⎛

⎝
0<(i+ j)≤pq∑

i, j=1

bi j,kξ
i
1ξ

j
2

⎞

⎠ + Dp+1(ζ̃ )

⎤

⎦ . (5)

Ashas been shown for linear interpolation over a triangle [7] and for quadratic interpolation
over a triangle [6], we will show that the following lemma holds true for shape functions
associated with polynomial interpolation of a solution over a triangle so as to reduce the
equation above.
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Lemma 1
N (p)∑

k=1

λk(ξ) = 1 (6)

N (p)∑

k=1

λk(ξ)

⎛

⎝
0<(i+ j)≤p∑

i, j=1

bi j,kξ
i
1ξ

j
2

⎞

⎠ = 0. (7)

Note that the summation terminates when (i + j) = p, not when (i + j) = pq.

Proof Just as it has been obtained by Johnson [7] and in our previous paper [6], the proof of
the lemma is obtained by constructing appropriate polynomial functions w for every point in
the domain K . To show Eq. (6), let w(ξ) = c be a constant function. Then clearly w = πw,
giving c = πw(ξ) = ∑

i λi (ξ)w(ξ) = c
∑

i λi (ξ) and
∑

i λi (ξ) = 1. To show Eq. (7) for
known values of partial derivatives (up to p-th order) of a function at a given point, a p-th
order polynomial function w can be constructed such that the polynomial’s value and partial
derivatives are identical to the original function. Moreover, this is exactly evaluated by the
interpolation technique. Since we can construct these functions at any point, for every point
in the domain, Eq. (7) holds. ��

By substituting the lemma above into Eq. (5) and rearranging the terms, we obtain

πv(ξ) − v(ξ) =
N (p)∑

k=1

λk(ξ)

⎛

⎝
(i+ j)>p∑

(i, j)

bi j,kξ
i
1ξ

j
2 + Dp+1(ζ̃ )

⎞

⎠ .

This again highlights that the error is bounded by coefficients of ξiξ j , where i + j > p.
Furthermore, since we assume that v has sufficient regularity, we may take an explicit form
of Dp+1 so as to obtain a bound on the interpolation error as in [6], which leads to the
following theorem:

Theorem 2 The interpolation error |u(x) − πu(x)| over K e obeys the inequality

|u(x) − πu(x)| ≤ c

(p + 1)!
N (p)∑

i=1

|λei (x)|‖x − x̂i‖p+1
2 (8)

where c is the upper bound on the (p + 1)-th derivative of u, ‖ · ‖2 is the Euclidean norm on
R
2 and λei = λi ◦ (χe)−1.

Note that in the above statement, there is no explicit appearance of the mapping order q .
Upon first glance therefore, it might be inferred that the interpolation error scales at order
p+1 based on the term ‖x − x̂i‖p+1

2 , which lies in contradiction of Theorem 1. However, we
note that q does appear implictly and nontrivially in the definition of the shape functions λei ,
since these are defined using the reference-to-world mapping χe. We will further investigate
the validility and tightness of this bound numerically in Sect. 3.2.

3 Numerical Experiments

In this section, we perform a number of numerical experiments to validate the theory of the
previous section. In Sect. 3.1, we consider a series of convergence tests on uniformly-refined
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Fig. 2 High-order structured mesh using N = 5 subdivisions at geometry order q = 3. The original, straight-
sidedmesh is shown on the left. On the right we see the resulting curvilinearmesh once the perturbation process
is applied, which is used for convergence testing. Colouring of the curved mesh denotes the magnitude of the
scaled Jacobian of ∇χe for each element (Color figure online)

grids of geometric orders up to q = 6 and validate the order of convergence as �p/q� + 1,
as proven in Theorem 1. In Sect. 3.2, we examine the error bound on the interpolation error
and investigate the tightness of the bound derived in Theorem 2 in the context of anisotropic
grids.

3.1 Validation of Convergence Order

In this section, we provide a validation of the convergence order result proven in Theorem 1
and in [1]. In these tests, we consider the interpolation of the smooth function u(x) =
sin(πx) sin(π y) onto a polynomial space of degree six. For geometry orders 1 ≤ q ≤ 6, we
then construct a series of h-refined triangular meshes and examine the order of convergence
for each refinement respectively, comparing it to the theoretical result. Our methodology
is therefore a significant expansion from the results presented in [1], given that the domain
adopts triangular elements as opposed to quadrilaterals, andwe observe the theoretical results
across a broader range of geometry orders than the quadratic orders considered in [1].

The starting point for this series of tests is a square domain Ω with corners at (x, y) =
(1, 1) and (3, 3) respectively. We generate a series of structured, straight-sided triangular
meshes of equal size through the subdivision of each side ofΩ into N equally-sized segments,
so that the element size h = 2/N , as shown in the left hand image of Fig. 2. We consider
subdivisions in the range 100 ≤ N ≤ 102 so that the coarsest mesh consists of two triangles
and the finest of 2 × 104 triangles. To generate meshes at each geometry order q , we first
generate a straight-sided high-order mesh so that each edge of the triangle consists of q + 1
points lying on a line segment. The q−1 edge-interior nodes of each triangle are then shifted
by a small, random amount in the edge-normal direction. This is done in an alternating
fashion, so that neighbouring edge nodes use both the interior-facing and exterior-facing
normal directions. This process then guarantees the mesh is of the desired order q . The
interior nodes locations are then calculated through a standard Gordon-Hall blending, and
the perturbation is reduced appropriately at higher orders so as to ensure that every mesh is
valid. An example of these high-order meshes can be seen in the right-hand image of Fig. 2,
which shows an N = 5 subdivided mesh at geometry order q = 3. This figure also shows
the validity and randomised nature of the mesh by visualising the scaled Jacobian
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Fig. 3 Interpolation error ‖u − πu‖L∞ for the function u(x1, x2) = sin(πx1) sin(πx2) and its sixth-order
polynomial interpolant πu (Color figure online)

J es = minξ∈K {det∇χe(ξ)}
maxξ∈K {det∇χe(ξ)}

associated with each element Ke, with reference-to-physical space map χe. In particular J es
is positive across the mesh, so that every element is valid.

We use the Nektar++ spectral/hp element framework [10] to perform the polynomial
interpolation πu at an order of p = 6 of the function u. This is performed on every
mesh generated at different subdivisions N and geometry orders q . Figure 3 shows the
interpolation error recorded in each case, where the error is sampled using N (20) = 231
points within each element in order to obtain an accurate representation of the error. We
note that this error saturates at a small value of around 10−13, as seen in the results of
q = 1 and q = 2, past which further h-refinement does not lead to reduction in the
error.

The results show a clear trend in a reduction of convergence order as q is increased in a
‘fan’ of error curves, in line with the theoretical results of the previous section. In particular,
convergence rates obtained through a simple linear regression are calculated as 1.86, 1.91,
1.89, 3.01, 4.31 and 6.45 for q = 6 to q = 1 respectively, which alignwell with the theoretical
order of �p/q� + 1.

From these results we can therefore conclude that the geometry order has a significant
impact of the order of convergence for even moderate polynomial orders. For example, using
even the smallest amount of curvature (i.e. q = 2) leads to a reduction of convergence order
of nearly a factor of two.

3.2 Examination of Error Bounds

In this section, we present results that show the correlation between the derived error bound
of Eq. (8) and the actual interpolation error for various smooth functions. To highlight the
usefulness of these bounds for adaptive mesh refinement, in which grids tend to be refined
in an anisotropic fashion, we adjust our methodology to observe the interpolation error and
bound on a sequence of grids that are constructed at various levels of anisotropy.
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Fig. 4 Illustration of grid generation process under the deformation map g with f (x) = x4. Undeformed
mesh on the left hand side and deformed grid on the right hand side. High-order nodes are constructed after
deformation and are shown at order p = 5. a Initial undeformed grid. b Deformed anisotropic grid

3.2.1 Generation of Straight-Sided Anisotropic Grids

In order to generate anisotropic meshes that form the starting point of these experiments, we
consider a regular straight-sided triangulation of the same square domain Ω with corners
at (1, 1) and (3, 3) as in the previous section. We initially consider a grid with N = 5
equally-sized elements along each edge of the square, as shown in Fig. 4a. The grid is then
deformed into one that is anisotropic (as in Fig. 4b) by transforming each coordinate of the
triangular vertices according to a one-dimensional function g f : [1, 3] → [1, 3]. This is
defined analytically as

g f (x) = f −1 [ 1
2 ( f (3) − f (1))(x − 1) + f (1)

]
,

where f : [1, 3] → R is a smooth, invertible, strictly increasing function that controls the
spacing of the elements. Under this definition, the endpoints of the domain are preserved
since g f (1) = 1 and g f (3) = 3, but the spacing of element edges grows according to f . An
example of this process for f (x) = x4 is shown in Fig. 4. Additionally, it is important to note
that g f is only applied to the three linear vertices of each triangle and not to the high-order
nodes—these are constructed after the mesh is deformed.

3.2.2 Methodology

In the experiments that follow, we aim to measure the interpolation error of various smooth
functions u(x) at polynomial orders p ≤ 5, along with the error bounds of Eq. (8) derived in
the previous section. The error between u and its resulting interpolant πu is calculated using
a 10-th order set of high-order nodes within each element in order to obtain an accurate value
of the error. The upper bound on the (p + 1)-th derivative of u, represented as c in Eq. (8),
is calculated at the same set of points. Finally, in order to assess the asymptotic properties of
the tightness of the bound according to the anisotropic nature of the meshes, we report the
L∞ error and bound in only the smallest element of the mesh.
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Table 1 The error bounds and the actual interpolation error over a domain with meshes of varying polynomial
order p

f (x) p = 1 p = 2

Error Bound Ratio Error Bound Ratio

(a) Linear and quadratic finite element meshes

x4 5.0516 × 10−4 1.7983 × 10−3 2.809 × 10−1 1.2579 × 10−6 5.3251 × 10−5 2.362 × 10−2

x3 8.3045 × 10−4 3.0258 × 10−3 2.745 × 10−1 2.7023 × 10−6 1.1519 × 10−4 2.345 × 10−2

x2 1.5101 × 10−3 5.7049 × 10−3 2.647 × 10−1 6.8295 × 10−6 2.9422 × 10−4 2.321 × 10−2

x 3.0407 × 10−3 1.2165 × 10−2 2.500 × 10−1 2.0502 × 10−5 8.9722 × 10−4 2.285 × 10−2

sin(·) 4.5336 × 10−3 1.8913 × 10−2 2.397 × 10−1 3.8745 × 10−5 1.7137 × 10−3 2.260 × 10−2

ex 7.0366 × 10−4 2.5425 × 10−3 2.768 × 10−1 2.0933 × 10−6 8.9012 × 10−5 2.351 × 10−2

f (x) p = 3 p = 4

Error Bound Ratio Error Bound Ratio

(b) Cubic and quartic finite element meshes

x4 5.3574 × 10−9 2.5123 × 10−6 2.132 × 10−3 1.0649 × 10−11 9.7307 × 10−8 1.094 × 10−4

x3 1.4560 × 10−8 6.9880 × 10−6 2.083 × 10−3 3.7729 × 10−11 3.4800 × 10−7 1.084 × 10−4

x2 4.8588 × 10−8 2.4177 × 10−5 2.009 × 10−3 1.7468 × 10−10 1.6310 × 10−6 1.070 × 10−4

x 2.0010 × 10−7 1.0543 × 10−4 1.897 × 10−3 1.0702 × 10−09 1.0171 × 10−5 1.052 × 10−4

sin(·) 4.5028 × 10−7 2.4739 × 10−4 1.820 × 10−3 3.0483 × 10−09 2.9321 × 10−5 1.039 × 10−4

ex 1.0432 × 10−8 4.9652 × 10−6 2.101 × 10−3 2.4728 × 10−11 2.2737 × 10−7 1.087 × 10−4

f (x) p = 5

Error Bound Ratio

(c) Quintic finite element meshes

x4 3.2152 × 10−13 3.2581 × 10−9 9.868 × 10−5

x3 3.7925 × 10−13 1.4982 × 10−8 2.531 × 10−5

x2 9.4169 × 10−13 9.5124 × 10−8 9.899 × 10−6

x 7.5297 × 10−12 8.4833 × 10−7 8.875 × 10−6

sin(·) 2.5532 × 10−11 3.0042 × 10−6 8.497 × 10−6

ex 3.4927 × 10−13 9.0016 × 10−9 3.880 × 10−5

The function being interpolated is u(x) = sin
( xπ
10

) + sin
( yπ
10

)

Weconsidermeshes generated through the choice of f (x) = xn for 1 ≤ n ≤ 4which leads
to a series of increasingly anisotropic meshes. Additionally, we consider two non-polynomial
mappings f (x) = sin(πx/10) and f (x) = exp(x). For the experiments below, two orders of
geometry are considered. We first perform experiments for straight-sided meshes on which
q = 1, so as to recover the ‘classical’ result that convergence order is dictated by the (p+1)-
th order derivatives. We then consider meshes at order q = 2, which are constructed in a
similar manner to Sect. 3.1 by slightly perturbing the mid point of all the interior edges. This
results in a mesh where every element is curved. Since the perturbation is small, the elements
remain valid (i.e. the determinant of the Jacobian is greater than 0 at all points inside every
element).
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Table 2 The error bounds and the actual interpolation error over a domain with meshes of varying polynomial
order p

f (x) p = 1 p = 2

Error Bound Ratio Error Bound Ratio

(a) Linear and quadratic finite element meshes

x4 1.1958 × 10−1 1.8313 × 10−1 6.529 × 10−1 1.2459 × 10−3 5.4227 × 10−3 2.297 × 10−1

x3 1.9330 × 10−1 3.0274 × 10−1 6.385 × 10−1 2.5974 × 10−3 1.1526 × 10−2 2.253 × 10−1

x2 3.4231 × 10−1 5.5557 × 10−1 6.161 × 10−1 6.2611 × 10−3 2.8653 × 10−2 2.185 × 10−1

x 6.6066 × 10−1 1.1361 5.815 × 10−1 1.7413 × 10−2 8.3797 × 10−2 2.077 × 10−1

sin(·) 9.5474 × 10−1 1.7147 5.567 × 10−1 3.1083 × 10−2 1.5536 × 10−1 2.000 × 10−1

ex 1.6478 × 10−1 2.5600 × 10−1 6.436 × 10−1 2.0339 × 10−3 8.9626 × 10−3 2.269 × 10−1

f (x) p = 3 p = 4

Error Bound Ratio Error Bound Ratio

(b) Cubic and quartic finite element meshes

x4 1.2844 × 10−5 2.5583 × 10−4 5.020 × 10−2 1.0614 × 10−2 9.9091 × 10−1 1.071 × 10−2

x3 3.4312 × 10−5 6.9918 × 10−4 4.907 × 10−2 3.6498 × 10−7 3.4819 × 10−5 1.048 × 10−2

x2 1.1143 × 10−4 2.3545 × 10−3 4.732 × 10−2 1.6086 × 10−6 1.5884 × 10−4 1.012 × 10−2

x 4.3920 × 10−4 9.8473 × 10−3 4.460 × 10−2 9.0936 × 10−6 9.5001 × 10−4 9.572 × 10−3

sin(·) 9.5647 × 10−4 2.2429 × 10−2 4.264 × 10−2 2.4383 × 10−5 2.6583 × 10−3 9.172 × 10−3

ex 2.4737 × 10−5 4.9994 × 10−4 4.947 × 10−2 2.4187 × 10−7 2.2894 × 10−5 1.056 × 10−2

f (x) p = 5

Error Bound Ratio

(c) Quintic finite element meshes

x4 7.8782 × 10−10 3.3179 × 10−7 2.374 × 10−3

x3 3.4779 × 10−09 1.4990 × 10−6 2.320 × 10−3

x2 2.0724 × 10−08 9.2636 × 10−6 2.237 × 10−3

x 1.6701 × 10−07 7.9231 × 10−5 2.107 × 10−3

sin(·) 5.4881 × 10−07 2.7236 × 10−4 2.015 × 10−3

ex 2.1204 × 10−09 9.0636 × 10−7 2.339 × 10−3

The function being interpolated is u(x) = ex + ey

3.2.3 Results for q = 1

In Table 1, we compare the error bounds and the interpolation error for the function u(x) =
sin(xπ/10) + sin(yπ/10) when it is being interpolated on the meshes described above. The
results clearly indicate a monotonic relationship between the theoretical interpolation error
bound and the actual error.We also verified that the bounds were respected for every point for
which the error was sampled. In most cases, for high-order expansions, as the error bounds
increase, the interpolation error also increases. For a given p−order expansion, the ratio (as
computed from the columns in the table) of the bound and the error is nearly a constant. We
also see that the bounds are “tighter” for the lower-order expansions than they are for higher-
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Table 3 The error bounds and the actual interpolation error over a domain with meshes of varying polynomial
order p

f (x) p = 1 p = 2

Error Bound Ratio Error Bound Ratio

(a) Linear and quadratic finite element meshes

x4 1.8406 × 101 1.9010 × 101 9.682 × 10−1 2.4130 × 10−1 5.6290 × 10−1 4.286 × 10−1

x3 2.9577 × 101 3.1427 × 101 9.411 × 10−1 5.0344 × 10−1 1.1964 4.207 × 10−1

x2 5.1866 × 101 5.7671 × 101 8.993 × 10−1 2.1463 2.9743 7.216 × 10−1

x 9.8457 × 101 1.1794 × 102 8.348 × 10−1 3.8058 8.6987 4.375 × 10−1

sin(·) 1.4039 × 102 1.7800 × 102 7.887 × 10−1 3.4262 1.6128 × 101 2.124 × 10−1

ex 2.5268 × 101 2.6574 × 101 9.508 × 10−1 3.9412 × 10−1 9.3037 × 10−1 4.236 × 10−1

f (x) p = 3 p = 4

Error Bound Ratio Error Bound Ratio

(b) Cubic and quartic finite element meshes

x4 2.3854 × 10−3 2.6557 × 10−2 8.982 × 10−2 1.2688 × 10−5 1.0286 × 10−3 1.233 × 10−2

x3 6.4234 × 10−3 7.2579 × 10−2 8.850 × 10−2 4.4270 × 10−5 3.6144 × 10−3 1.224 × 10−2

x2 2.1121 × 10−2 2.4441 × 10−1 8.641 × 10−2 1.9966 × 10−4 1.6488 × 10−2 1.210 × 10−2

x 8.4889 × 10−2 1.0222 8.304 × 10−2 1.1716 × 10−3 9.8617 × 10−2 1.188 × 10−2

sin(·) 1.8751 × 10−1 2.3283 8.053 × 10−2 3.2306 × 10−3 2.7595 × 10−1 1.170 × 10−2

ex 4.6177 × 10−3 5.1897 × 10−2 8.897 × 10−2 2.9184 × 10−5 2.3765 × 10−3 1.228 × 10−2

f (x) p = 5

Error Bound Ratio

(c) Quintic finite element meshes

x4 3.0600 × 10−8 3.4441 × 10−5 8.884 × 10−4

x3 1.3819 × 10−8 1.5560 × 10−4 8.881 × 10−4

x2 8.5389 × 10−8 9.6161 × 10−4 8.879 × 10−4

x 7.3032 × 10−7 8.2247 × 10−3 8.879 × 10−4

sin(·) 2.5105 × 10−6 2.8273 × 10−2 8.879 × 10−4

ex 8.3561 × 10−8 9.4085 × 10−5 8.881 × 10−4

The function being interpolated is u(x) = x6 + x5 + x4 + 4x3 + x2 + x + y6 + y5 + y4 + 4y3 + y2 + y

order expansions, i.e., the ratio of the error to the bound was close to one for lower-order
expansions then the higher-order expansions.

Table 2 provides the results for interpolation of the function u(x) = ex + ey . The error
is a larger value here because the function values themselves are larger, and they grow faster
than the previous function, but the trends are identical. The bounds and error reduce as the
order of expansion grows, and the monotonic relationship between them is maintained.

Finally, Table 3 shows the results for the polynomial function x6 + x5 + x4 + 4x3 + x2 +
x + y6 + y5 + y4 + 4y3 + y2 + y. The bounds and the error are much closer to each other
because the growth of the function is limited in a polynomial function due to its vanishing
seventh derivative. The trend is identical to the previous two cases.
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Table 4 The error bounds and the actual interpolation error over a domain with curved meshes of varying
polynomial order p

f (x) p = 2 p = 3

Error Bound Ratio Error Bound Ratio

(a) Quadratic and cubic finite element meshes

x4 2.7367 × 10−4 6.6713 × 10−4 4.102 × 10−1 1.0760 × 10−4 7.1280 × 10−4 1.510 × 10−1

x3 4.5058 × 10−4 1.1213 × 10−3 4.018 × 10−1 1.8627 × 10−4 1.1934 × 10−3 1.561 × 10−1

x2 8.2179 × 10−4 2.0902 × 10−3 3.932 × 10−1 3.5739 × 10−4 2.2263 × 10−3 1.605 × 10−1

x 1.7668 × 10−3 4.3163 × 10−3 4.093 × 10−1 7.4876 × 10−4 4.6165 × 10−3 1.622 × 10−1

sin(·) 2.6894 × 10−3 6.4607 × 10−3 4.163 × 10−1 1.0996 × 10−3 6.9221 × 10−3 1.588 × 10−1

ex 3.8076 × 10−4 9.4667 × 10−4 4.022 × 10−1 1.5679 × 10−4 1.0094 × 10−3 1.553 × 10−1

f (x) p = 4 p = 5

Error Bound Ratio Error Bound Ratio

(b) Quartic and quintic finite element meshes

x4 5.1423 × 10−7 9.1774 × 10−6 5.603 × 10−2 2.1453 × 10−7 1.0946 × 10−5 1.960 × 10−2

x3 1.0924 × 10−6 2.0145 × 10−5 5.423 × 10−2 4.4396 × 10−7 2.4029 × 10−5 1.848 × 10−2

x2 2.7401 × 10−6 5.2170 × 10−5 5.252 × 10−2 1.0519 × 10−6 6.2255 × 10−5 1.690 × 10−2

x 8.1510 × 10−6 1.6064 × 10−4 5.074 × 10−2 2.8435 × 10−6 1.9207 × 10−4 1.480 × 10−2

sin(·) 1.5162 × 10−5 3.0584 × 10−4 4.958 × 10−2 4.6923 × 10−6 3.6767 × 10−4 1.276 × 10−2

ex 8.5210 × 10−7 1.5530 × 10−5 5.487 × 10−2 3.5501 × 10−7 1.8501 × 10−5 1.919 × 10−2

The function being interpolated is u(x) = sin
( xπ
10

) + sin
( yπ
10

)

3.2.4 Results for q = 2

We now consider the interpolation of the same functions as in the section above, but at an
increased geometric order of q = 2. To avoid superparametric mappings where q > p, we
consider polynomial orders p > 1.The results from the experiments are reported inTables 4, 5
and 6. The observed results are consistent with those obtained for the linear meshes above,
where again the ratios of actual error and the error bounds are nearly constant for a given order
p. Consequently, the theoretical error bound and the actual error are asymtotically related.
We also see that the bounds are “tighter” for lower-order expansions than for higher-order
expansions.

3.2.5 Summary

Our results show that the theoretical error bound and the actual error are asymptotically
related, i.e., when the theoretical bounds are large or small, the actual error is also large or
small, respectively. The theoretical bounds are functions of the appropriate derivatives of
the function being interpolated. Thus, our paper shows that the appropriate derivative ought
to be used to estimate the interpolation error and adaptively refine the mesh. The algorithm
that should be to used refine the mesh, however, is an entirely different problem. Currently,
mesh refinement algorithms tend to use estimates for the Hessian to drive refinement of the
mesh as these are reasonably straightforward to compute, as seen in, for example, Ref. [11].

123



1060 Journal of Scientific Computing (2019) 78:1045–1062

Table 5 The error bounds and the actual interpolation error over a domain with curved meshes of varying
polynomial order p

f (x) p = 2 p = 3

Error Bound Ratio Error Bound Ratio

(a) Quadratic and cubic finite element meshes

x4 6.4982 × 10−2 1.6781 × 10−1 2.872 × 10−1 2.5493 × 10−2 1.7930 × 10−1 1.422 × 10−1

x3 1.0528 × 10−1 2.8207 × 10−2 3.733 × 10−1 4.3512 × 10−2 3.0021 × 10−1 1.449 × 10−1

x2 1.8725 × 10−1 5.2580 × 10−1 3.561 × 10−1 8.1472 × 10−2 5.6003 × 10−1 1.455 × 10−1

x 3.8358 × 10−1 1.0857 3.533 × 10−1 1.6364 × 10−1 1.1613 1.409 × 10−1

sin(·) 5.6426 × 10−1 1.6252 3.472 × 10−1 2.3244 × 10−1 1.7412 1.335 × 10−1

ex 8.9481 × 10−2 2.3813 × 10−1 3.758 × 10−1 3.6826 × 10−2 2.5391 × 10−1 1.450 × 10−1

f (x) p = 4 p = 5

Error Bound Ratio Error Bound Ratio

(b) Quartic and quintic finite element meshes

x4 5.0731 × 10−4 9.4691 × 10−3 5.358 × 10−2 2.0494 × 10−4 1.1294 × 10−2 1.815 × 10−2

x3 1.0459 × 10−3 2.0422 × 10−2 5.121 × 10−2 4.0313 × 10−4 2.4360 × 10−2 1.655 × 10−2

x2 2.5010 × 10−3 5.1476 × 10−2 4.859 × 10−2 8.7661 × 10−4 6.1428 × 10−2 1.427 × 10−2

x 6.8745 × 10−3 1.5201 × 10−1 4.522 × 10−2 2.0356 × 10−3 1.8176 × 10−1 1.120 × 10−2

sin(·) 1.2006 × 10−2 2.8094 × 10−1 4.274 × 10−2 2.9168 × 10−3 3.3774 × 10−1 8.636 × 10−3

ex 8.2486 × 10−4 1.5844 × 10−2 5.206 × 10−2 3.2876 × 10−4 1.8876 × 10−2 1.742 × 10−2

The function being interpolated is u(x) = ex + ey

Our results, on the other hand, along with other previous work in this area (such as [6,12]),
highlight that higher-order derivatives should be used to refine the mesh.

4 Conclusion and FutureWork

We have provided an alternative derivation from first principles, using a Taylor series expan-
sion, for the interpolation error bounds for curvilinear finite elements. Specifically, we have
demonstrated the effect of reference-to physical mapping on the order of convergence of the
interpolation error under h-refinement. We characterized and visualized the error bounds for
certain types of curved high-order elements. We have shown its implications on adaptive
refinement of high-order meshes through carefully designed numerical experiments. Our
results indicate that the (�p/q� + 1)-th order partial derivative should direct adaptation for
p-th order finite element meshes for q-th order geometries..

As mentioned in Sects. 1 and 2, node placement in a high-order element is typically
dictated by Lebesgue constant minimization. This approach assumes that the properties of
the function being interpolated are unknown. In engineering applications, however, partial
derivatives can be estimated through sophisticated techniques [13–17]. Thus, minimization
of our error bounds is likely to produce an element whose error bounds are smaller. For some
applications, such as in solid mechanics, the derivatives of the solution are more important
than the solution itself. In such cases, too, minimization of our error bounds is likely to be
ideal. Future research efforts should be carried out to determine suitable node placement
using our error bounds.
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Table 6 The error bounds and the actual interpolation error over a domain with curved meshes of varying
polynomial order p

f (x) p = 2 p = 3

Error Bound Ratio Error Bound Ratio

(a) Quadratic and cubic finite element meshes

x4 1.0011 × 101 2.6335 × 101 3.801 × 10−1 3.9247 2.8138 × 101 1.395 × 10−2

x3 1.6129 × 101 4.4265 × 101 3.644 × 10−1 6.6660 4.7112 × 101 1.415 × 10−2

x2 2.8424 × 101 8.2514 × 101 3.445 × 10−1 1.2371 × 101 8.7885 × 101 1.408 × 10−2

x 5.7127 × 101 1.7039 × 102 3.353 × 10−1 2.4447 × 101 1.8224 × 102 1.341 × 10−2

sin(·) 8.2804 × 101 2.5504 × 102 3.247 × 10−1 3.4241 × 101 2.7325 × 102 1.253 × 10−2

ex 1.3736 × 101 3.7370 × 101 3.676 × 10−1 5.6524 3.9847 × 101 1.419 × 10−2

f (x) p = 4 p = 5

Error Bound Ratio Error Bound Ratio

(b) Quartic and quintic finite element meshes

x4 9.8301 × 10−2 1.8273 5.380 × 10−2 3.9751 × 10−2 2.1794 1.824 × 10−2

x3 2.0282 × 10−1 3.9410 5.146 × 10−2 7.8280 × 10−2 4.7009 1.665 × 10−2

x2 4.8546 × 10−1 9.9337 4.887 × 10−2 1.7040 × 10−1 1.1854 × 101 1.438 × 10−2

x 1.3354 2.9335 × 101 4.552 × 10−2 3.9539 × 10−1 3.5075 × 101 1.127 × 10−2

sin(·) 2.3318 5.4215 × 101 4.301 × 10−2 5.6445 × 10−1 6.5175 × 101 8.660 × 10−3

ex 1.5991 × 10−1 3.0575 5.230 × 10−2 6.3813 × 10−2 3.6424 1.752 × 10−2

The function being interpolated is u(x) = x6 + x5 + x4 + 4x3 + x2 + x + y6 + y5 + y4 + 4y3 + y2 + y

Our bounds can be modified for Hermite finite elements in which even the partial deriva-
tives of the solution of PDEs are computed directly from the FEM. A study of error bounds
and their effect on the AMR for such meshes will be interesting for both researchers and
engineers. We note that it is relatively difficult to adapt Bramble-Hilbert lemma-based proofs
for anisotropic functions and Hermite elements. As the Taylor series proof is based on first
principles, and it directly incorporates the use of shape functions, all the objective can be
achieved relatively easily for any type of element and function.

Finally, we note that there has been little effort to characterize the conditioning of the
stiffnessmatrix as a function of the (geometric) curvature of a triangle for high-order elements.
Several open problems in the area need to addressed for the high-order FEM to be used for
engineering applications, and in theory our perspective on the error bounds facilitates this
type of study.
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