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Abstract

In this paper, we formulate and analyze discontinuous Galerkin (DG) methods to solve several
partial differential equations (PDEs) with high order spatial derivatives, including the heat
equation, a third order wave equation, a fourth order equation and the linear Schrodinger
equation in one dimension. Following the idea of local DG methods, we first rewrite each
PDE into its first order form and then apply a general DG formulation. The numerical fluxes
are introduced as linear combinations of average values of fluxes, and jumps of the solution
as well as the auxiliary variables at cell interfaces. The main focus of the present work is
to identify a sub-family of the numerical fluxes by choosing the coefficients in the linear
combinations, so the solution and some auxiliary variables of the proposed DG methods are
optimally accurate in the L? norm. In our analysis, one key component is to design some
special projection operator(s), tailored for each choice of numerical fluxes in the sub-family,
to eliminate those terms at cell interfaces that would otherwise contribute to the sub-optimality
of the error estimates. Our theoretical findings are validated by a set of numerical examples.

Keywords Heat equation - Schrédinger equation - High order wave equation -
Discontinuous Galerkin method - Numerical flux - Error estimate

1 Introduction

In this paper, we propose discontinuous Galerkin (DG) methods with optimal accuracy for

solving several partial differential equations (PDEs) with high order spatial derivatives in
one dimension. They include:
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e The even order equations
— the heat equation
Uy — uyy = 0; (1.1)
— the fourth order equation
Ur + tyxxx = 0; (1.2)
— the equation of an arbitrary even order,
w4 (=1)2u® =0, (1.3)

with n being any positive even integer. Here 1" denotes the n-th derivative of u with
respect to x.

e The third order wave equation

U + txxx = 0; (1.4)
e The linear Schrodinger equation

iu + uyy =0. (1.5)

The boundary conditions are assumed to be periodic. These equations provide classical
mathematical models for many important physical and engineering applications. The heat
equation (1.1) models the heat conduction. The third order wave equation belongs to the KdV-
type equations, which describe the propagation of waves in a variety of dispersive media [3].
The fourth order problem (1.2) has wide applications in modeling of thin beams and plates,
strain gradient elasticity, and phase separation in binary mixtures [20]. The last equation we
consider is the linear Schrodinger equation which has broad applications in fluid dynamics,
nonlinear optics, and plasma physics [4,18].

DG methods are a class of finite element methods using a completely discontinuous
piecewise polynomial space for the numerical solution and test functions. The first DG
method was introduced by Reed and Hill [26] for the linear neutron transport equation. It
was then developed for time-dependent nonlinear hyperbolic conservation laws, coupled
with high order Runge-Kutta time discretizations, by Cockburn et al. in [12-15,17]. DG
methods have grown their popularity over the past few decades in many applications due to
their flexibility with meshing and local approximations, their compactness and high parallel
efficiency, their excellent dispersion property in wave simulations, and their suitability for
various types of differential equations (see, e.g. [24,27]). Particularly the methods find their
success in solving time-dependent PDEs with high order spatial derivatives, with several
ideas proposed, such as the penalty methods [2,21] that add penalty terms at cell interfaces
for numerical stability; the local DG (LDG) methods [1,16,20,31] that are formulated based on
the first order form of the equations by introducing auxiliary variables; the hybrid DG (HDG)
methods [7,8,11,19] that, in addition to working with the first order form as in LDG methods,
also include the trace of some variables on mesh skeletons as the additional unknowns in
order to create opportunity for the ultimate implementation efficiency; the ultra-weak DG
(UWDG) methods [10] that are based on repeated applications of integration by parts with all
spatial derivatives moved to the test function in the weak formulation; the direct DG (DDG)
methods [25] that are based on a more standard weak formulation of a second order diffusive
operator; the conservative DG methods [5] that are based on certain weak formulation derived
from repeated integration by parts for the dispersive term and a globally defined projection
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to preserve the energy for the KdV equation. All the methods mentioned above except the
penalty type depend on the suitable design of one (such as in DDG methods) or multiple
numerical fluxes (e.g. in LDG, HDG, and UWDG methods) in order to achieve numerical
stability, (sub-)optimal accuracy of one (e.g. in DDG and UWDG methods) or more (e.g. in
LDG and HDG methods) unknowns, and even implementation efficiency (e.g. in LDG and
HDG methods).

In this work, we design DG methods for solving the PDEs (1.1)—(1.5) with high order
spatial derivatives. Just as in LDG methods, we start with the first order form of each PDE,
and apply a general DG formulation. The numerical fluxes are introduced as some linear
combinations of average values of fluxes and jumps of the solution as well as the auxiliary
variables at cell interfaces, and they involve a set of parameters as the expansion coefficients.
Standard LDG methods can be obtained if one takes special values of these parameters
to ensure that all the auxiliary variables can be expressed locally in terms of the original
unknown. Instead of requiring such local elimination property, we here identify a sub-family
of these parameters so that the respective DG methods are optimal in accuracy for the original
unknown and also for some auxiliary variables. The LDG methods in [6,16,20,29-32] for
solving Egs. (1.1)—(1.5) are special cases of what proposed here. Similar numerical fluxes
as well as a special sub-family (termed «o-fluxes) are investigated in [9] to solve the one-
dimensional two-way wave problem, and they lead to a class of L? stable and optimally
accurate DG methods.

The optimal error estimates of our proposed methods reply on two ingredients. One is
the energy equations related to numerical stability and the other is the projection operators
that measure the approximation property of the discrete spaces and ensure the optimality of
the accuracy. For PDEs with high order spatial derivatives, it was discovered in [20,30] that,
to prove optimal accuracy, more than one energy equation may be needed in the presence
of the auxiliary variables within the first order forms. These energy equations in general
are not trivial to find. Fortunately the stability analyses for LDG methods have partially
addressed this aspect for the even order PDEs in [20] (see Remark 3.6) and for the third
order wave equation in [30] , and for the linear Schrodinger equation in [30] (see Remark
5.2). As for the projection operators, we will follow [9] and work with some similar type
of projection operators that are tailored for each choice of numerical fluxes in the identified
special sub-family, to eliminate those terms at cell interfaces that would otherwise contribute
to the sub-optimality of the error estimates.

For the proposed semi-discrete DG methods, we further apply in time the implicit ver-
sion of the spectral deferred correction (SDC) methods [22]. Such methods can be easily
constructed to have arbitrary order of accuracy, and they only need to store the numer-
ical solution at the n-th time level in order to compute the solution at (n + 1)-th time
level. In [28], Xia et al demonstrated that the implicit SDC methods provide efficient
time discretizations for the LDG methods to solve PDEs with high order spatial deriva-
tives.

The remaining of this paper is organized as follows. In Sect. 2, notations are intro-
duced for meshes, discrete spaces and projection operators. In Sects. 3-5, we propose
and analyze DG methods for even-order equations (1.1)—(1.3), the third order wave equa-
tion (1.4), and the linear Schrodinger equation (1.5), respectively. The presentation in
each section starts with the method, energy relations for numerical stability, and error
estimates. Parameters in the numerical fluxes are identified for the L? stability and for
the optimality of the accuracy of the proposed methods. In Sect. 6, numerical exam-
ples are presented to verify our theoretical results. The concluding remarks are given in
Sect. 7.
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2 Discrete Spaces and Projections

Let the computational domain be 2 = [Xin, Xmax ], With a partition or mesh x,,,;, = x1 <

2
JETEy ] denote an element with the length
. j+.% — xj_%, and‘h = max <<y Axj. Define T, = {I; : j =1,2,..., N}. The
following discrete space will be used,

X3 < +o0 < Xy, 1 = Xpax. Let I[; = [x
3 N+1 max Jj [
Axj =x

Vi ={v vl € P VI € Ty}, 2.1)
+

it3
from the right element /; 1 and from the left

where Pk(lj) is the space of polynomials with degree at most k in /;. For any v € vk v

and v, denote the limit values of vaatx._ 1
Jj+ 7 Jjt 2
element /;, respectively. As usual, {v}., 1 = Lot v, Jand[v]. 1 =@ , —vT
J P y {}J_;,_% 2( j+%+ j+%) []H‘% (j+% j+%)
represent, respectively, the average and the jump of the function v at x i+l for any j. We also
2
define

Fi(p, ¥, B) = {¢} + ale] + i[V]. 22
(Y, 9, B2) = {¥} — aly] + Balo], (2.3)

at cell interfaces, where «, 1, B> are constants that are O (1) and they will be specified when
being used, while ¥, ¢ € H L(T,) are piecewise-defined with respect to the mesh and have
well-defined left and right traces at mesh nodes. Note that both F| and F, involve the same
parameter «, and we omit the «-dependence in notation for brevity.

For square integrable functions on a given domain K, the standard notations are used for
the inner product and the L? norm, namely,

(v, w)g := / vwdx, |v|g =+, v)g, Yv,we L2(K). 24
K

When K = 2, we also write (v, w) and ||v]|.

Next, we will introduce the standard L? projection Py, that projects a function v € L?(2)
onto the discrete space Vﬁ, and the Gauss-Radau projections P, that project a function
v e HY(T),) onto Vﬁ. They are defined as follows,

(Ppv — v)wdx =0, Yw e P*(I)), 2.5)
1

/ (P;rv —vwdx =0, Ywe Pk_l(lj) and Ph+v <xj+ ) =v (x+ l), (2.6)
1.

B

/ (P, v—v)wdx =0, Ywe Pk_l(lj) and P, v <x;+,> =v (xf l), 2.7
I; 2

[
+
[S7]

forany j = 1, ..., N, and have the following approximation property:

lo=mvl +5 ) (@ =mv)f, )F < Ch™ 2ol Yo e @), 28)
J

where 1, = Ph1L or Py, and C, is a positive constant depending on k but not on /4 or v.
Throughout, the standard notations are used for the Sobolev space H k+1(Q) and its norm

” . ||Hk+l(Q).
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In our error estimates, we will frequently use the following linear operator that maps from
HY(Q) x H'(Q) onto V§ x Vk,

o, (w) .: (H},«o, v, m)) _ (P,j ((% +a)p+Biy) + Py (G — e — ﬂlllf))
v) T \I; (. 9, Bo) PH (GG =)y +Bo)+ P, (G+a)y —pag) )’
2.9)

One would want to keep in mind that the operator I1; should have been written as l'[‘;f’ﬂ 1.2

and we omit the parameter dependence for brevity. Associated with the operator ITj, we
define (1, ny)T as

— (e, ¥,
<77<p> :: ((p) o, ((p) _ (v ,;(w v @.10)
Let o, ¥, € Vﬁ be some approximations for ¢ and i, respectively, we will also use the
following notation in our analysis

nl ) ) -
<§¢> =TI, (Gﬂ) _ (Qﬂh) _ g(‘ﬂ VB =) @.11)
Sy v Vh I, (¥, ¢, B2) — ¥
Note that the following decomposition of the errors e, = ¢ — ¢;, and ey, = ¥ — ;, holds
ep =1+ %, ey =ny +y. (2.12)

The operator I, was first introduced in [9], and its main properties are summarized in
the following lemma.

Lemma 2.1 (Lemma 2.4 in [9]). Consider (¢, ) € H*1(Q) x H*(Q). For any given «,
B1, Ba, the operator T1y, has the following properties:

(i) /r](/,vxdx:(), /n,/,wxdx:O, Vo,we VK, V), (2.13)
I; j

IJ
o () ()

<Cy (I+]arl+max (|1, |B20) B (101l et iy Il st ) -

(2.14)

If we further assume o> + 1 = %, we have
(iii) Tlj defines a projection, that is (l'Ih)2 = Iy, (2.15)
(v) Fi(ng, ny. B1);_1 =0, Fa(ny,ng, f2); 1 =0, Vj. (2.16)

3 DG Methods for Even Order Equations

In this section, we consider even order equations, which include the heat equation (1.1),
a fourth order equation (1.2), and the arbitrary even order equations (1.3). The boundary
conditions are periodic. For each equation, we will start with its first order form, and apply
a general DG formulation. The numerical fluxes are given as the linear combinations of
averages values of fluxes, jumps of the solution and the auxiliary variables at cell interfaces,
and they involve several parameters. We then identify the conditions on these parameters,
such that the DG methods will be L2 stable; the parameters are further specified in order for
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the solution and some of auxiliary variables to be optimally accurate in the L? norm. To prove
the optimality of the schemes analytically, one or more than one projection operator will be
designed, tailored for each choice of the numerical fluxes, in order to eliminate those terms
at cell interfaces that would otherwise contribute to the sub-optimality of the error estimates.
We want to point out that Sects. 4 and 5 follow a similar structure in the presentation.

3.1 DG Methods for the Heat Equation

In this subsection, we will formulate and analyze DG methods for the heat equation (1.1).
Start with the first order form of the equation,

u—px =0, p—u,=0. 3.1

A general DG method can be given as follows. Look for uy, pj, € V];l such that for any v, w

c \72, and for any j,
(W) v) 1; + (pro v, — (va’)j+% + (va+)j_% =0, (3.2)
(Phw) 1; + (up, we) g, — (Fuw_)H% - (Fuw+)j,% =0. (33)

Here, F), and F), in (3.2)—(3.3) are numerical fluxes, which are single-valued functions defined
on the cell interfaces and should be designed to ensure the numerical stability and accuracy
of numerical solutions. We here consider a family of numerical fluxes, namely,

Fp = Fi(pn,un, B1), Fu = F2un, pr, B2), 349

and they will correspondingly define a family of DG methods. Note that the numerical fluxes
(3.4) include some commonly used ones, such as the central fluxes witha = 1 = B> =0,
and the alternating fluxes with o = :i:%, B1 = B2 = 0. When B, = 0, the auxiliary variable
pn could be locally expressed in terms of uj,, and the DG methods (3.2)—(3.4) become LDG
methods.

With the periodic boundary conditions, we sum up the scheme (3.2)—(3.3) over j and
reach a more compact form of the scheme: look for uy, py € V’;, such that

B(up, pr;v,w) =0, Yo, we VK, (3.5)

where

8]

B(up, ppiv,w) = /Q(uh)zvdx +y (/1 phvxdx + (Fp[v])jl)
- .

J
+/phwdx+z<
Q X

J

Nl

/ Upwydx + (Fu[w])j_ ) . 3.6)

1

3.1.1 L2 Stability
In this subsection, the L2 stability is established for the semi-discrete DG method (3.2)—(3.3)

with the general numerical fluxes (3.4). The conditions on the parameters «, 81, B2 in the
numerical fluxes are identified to ensure the stability.
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Theorem 3.1 With B > 0, B2 > 0, the semi-discrete DG scheme (3.2)—(3.3) (or (3.5)) with
the numerical fluxes (3.4) satisfies

T
lun(T) g +2 / I palledt < llun(0)[1g, (3.7)
0
where T is the final time.

Proof We start with introducing H (¢, ) = > H;(¢, ), where
J

Hi(p. ) = /1 Vgadx = (B BT 41 + (FIW 0. BTy

+/1 pYxdx — (Fae, ¥, B2V ) ;41 + (Fale, ¥, ﬂz)l/ﬁ)j_l- (3.8)
i

2
Using the definitions of the fluxes Fy, F; in (2.2)—(2.3), we have
— _ _ 2 2
Hp.v) =) (lovl+ Filgl+ RIVD;_y =) (Ailel + AlVE), . (G9)
J J
We now take the test functions v = uy, w = pj, in (3.5), and with the definition of
numerical fluxes F), F, in (3.4), we get

1d
B(uh,Phiuh,Ph):**/ u%dx+/ p,%dx—FH(uh,Ph)
2dt Jo Q

1d

_ld —0.
2dt Jo

u%,dx + /Q p;z,dx + Z (B [unl® + ﬂz[ph]z)j_
J

1
2
(3.10)

Finally under the conditions 81 > 0 and B, > 0, we reach the energy stability relation,

1d 2 2 2 2
EE Quhdx-i-/gphdx = —ij(ﬁl[uh] +/32[ph] )j—% EO (31])
Integrating (3.11) over [0, T'], we get (3.7) about stability for Eq. (1.1). O

3.1.2 L2 Error Estimates

In this subsection, we will establish that the DG methods (3.2)—(3.3) with a sub-family of the
numerical fluxes (3.4) are optimally accurate in the L? norm when the exact solution is suffi-
ciently smooth. The analysis is based on the energy relation in Theorem 3.1, approximation
properties of the discrete space VK and a special choice of a projection operator.

Theorem 3.2 For the semi-discrete DG scheme (3.2)—(3.3) with the numerical fluxes (3.4)

where the parameters satisfy o + B1pr = % and B; > 0,1 = 1,2, the following error

estimates hold when the exact solution u is sufficiently smooth,
T
=t} < CH2 [ = pulfade = CH2, (3.12)
0

Here p = uy, and the constant C depends on k, the final time T, |[ul| Lo ((0,7): pt+2(q)) and
Nuell oo 0, 1) E+1 (2)) but not on h.
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Proof Since the numerical fluxes (3.4) are consistent, the exact solution u of the heat equation
(1.1) and p = u, satisfy

B, p;v,w)=0, Vv,w EV];“ (3.13)
hence we get the error equation
Bley, ep;v,w) =0, Yv,we Vk, (3.14)

where e, = p — pj, and e, = u — uy,. By using the following projection,

I} (p,u, Br)
I, <p>: P Py (3.15)
u I}, (u, p, B2)
we can decompose the errors e, and e, into e, = 1, + ¢, and e, = n, + ¢, based on
(2.10)—(2.11). With the linearity of B, the error equation (3.14) becomes

B(Cus Lpi v, w) = —B(u, p v, w), Vv, w e VE. (3.16)

We now take v = ¢, w = ¢, in (3.16). Following the similar derivation to get (3.10) and
the definition of B in (3.6), we have

2

B(Gus pi Gus Ep) = 5 7 /;MH/ Gpdx+ ) (Bilel + Balgpl); 1. BT
7

By, Np; Cus é‘p) = /Q(’]u)tgudx + /&:2 npgpdx + Z/I- (np(gu)x + nu(gp)x)dx
j J

+ Z (Fl(nps Nus BOLGU] + F2(0u, NMps ,32)[§p])j,% . (3.18)
J
Under the assumption o2 + 818, = %, we can use the properties of I1; in Lemma 2.1 and
get

/ Np(u)xdx = 0,/ Nu(&p)xdx =0, Fi(np, nu, P1) =0, F2(ny, np, B2) = 0.
I; I;

(3.19)
Combining (3.16)—(3.19), we obtain

o / c2dx + / g,%dx+2 BilLr + e, ),y = / ()i Cudx — /Q IpLpd

< % / @07 + (p))dx + / (o +2¢,)dx. (3.20)
Q Q

Based on the approximation property (2.14) of I, and (1,); = nu,, we know [|(17,): ]| <
Ch**1'and |In,|| < Ch**!. Therefore,

—/ ¢ dx+/ ;,de+22 (Bile + Bale, ), 1 < CHAH2 4 /;%zx (G21)

2

Note that we use the initialization uy (x, 0) = Pju(x, 0) which can be bounded by

T3 e p. B2) — un,_y = |3 . p. B2) — u+u — Ppu,_, < Ch*H!. (3.22)
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Now we can apply the Gronwall’s inequality and obtain

T
16 DI < CHH2, /0 ¢y l2dt < CH.

Finally, using the approximation results in (2.14), we reach

lu — unldy < 2(016lE + Inalid) < CH*F2,
T T
/0 Ip — plldr < /0 2113 + InpIB)dr < CH2H2,

Through the proof, the constant C depends on k, the finial time 7', ||u|| (0, 7); r+2(g)) and
”u[ ”LOC((O.T);H,(#J Q) but not on 4. o

Remark 3.3 Similar as in [9], the DG methods with the more general fluxes
Fp ={pn} +ailpn] + Bilunl, Fu = {up}+azlup] + B2lpnl,

where 8; > 0,i = 1,2 and (o] + @)? < 481 B2, also have the energy stability (3.7). Such
DG methods however are often sub-optimal in their accuracy.

Remark 3.4 Just as in Theorem 2.6 of [9], the condition o2 + B1B2 = % on the parameters
in the numerical fluxes can be further relaxed in order for the proposed schemes to be L2
optimal when solving the heat equation. For instance, we can require

, min(By, B2) > 0,

N =

2 1 )
o —|—,31/32=Z+ch, >

where c is a constant independent of /.

3.2 DG Methods for a Fourth Order Equation

In this subsection, we will formulate and analyze DG methods for the fourth order equation
(1.2). We start with rewriting the equation into its first order system,

ur+px =0, p=gqx, q=rx, =1y, (3.23)

and then apply a general DG method. That is, to look for uy, pn, gn, rn € V’Z such that for
any v, w, z, g € \72 and for any j

(wn)es ) 1; = (s )iy + (Fpu7) 1 = (Fpo™) ;1 =0, (3.24)
(pns w) 1; 4 (qn, wa)1; — (qu‘)Hl (Fqw™);_1 1=0, (3.25)
@ D) 1y + 201, = (F27) 0+ (Fr2); 1 =0, (3.26)
(rie &) 1, + . 81, = (Fug™) 1+ (Fug™),_y = 0. (3.27)

The terms F), F,, F, and F, are numerical fluxes. They are defined as linear combinations
of the averages of fluxes and the jumps of the unknown solutions uj, and py, g, and rj, and
are chosen as

Fp=F1(pn,un, —Pp1), Fy = F2lqn.rn, B2), Fr = Fi(rp, qn, B1), Fu = F2(up, pr, —p2).
(3.28)
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In order for simplifying the conditions and flexibly extending to general even-order equations,
the parameter « is the same for all F),, Fy, F,, F,;, while B, B in F),, F,, are related to those
in Fy, Fy.

With the periodic boundary conditions, we sum up all the equations in (3.24)—(3.27) over
J and obtain a more compact form of the scheme: look for uy, pn, gn, rn € V’;l such that

B(un, prs qn ths v, w, 2, 8) =0, Vv, w,z, g € Vi, (3.29)

where

B(un, pr, qn, rn; v, w,z,g)=/ ((up)rv + ppw + qpz +rpg) dx
Q
+§ /(—phvx+qhwx+rhzx+uhgx)dx
—JI;
J J

+ 3 (—Fplvl + Fylw] + Frlzl + Fulgl) ;1 . (3.30)
j

[ ]

3.2.1 L2 Stability

In this subsection, the L2 stability is established for the semi-discrete DG method (3.24)-
(3.27) with the general numerical fluxes (3.28). Just as in [20], in order for the proposed
methods to be optimally accurate, more than one energy equation is needed in the presence
of multiple auxiliary unknowns, also see Remark 3.6.

o The first energy equation By taking the test functions v = up, w =rp,z = gqpand g = —py,
in (3.29), we obtain

0= B(un, phsQqn, Ths Whs Ths Ghs —Ph) = / ((un)eun + qf) dx
Q

[ST]

+ Y (lwnpn) = [gnrn) = Fplunl + Fylral + Frlan] = Fulpal),_1 . 33D
J

Using the definitions of F),, F,, F,, F, in (3.28), we get

0= Bun, Ph» qns Ths Wy Thy Gn> —Ph) = / (un)eun + qff) dx
Q

+ ) (Biunl + lgnl® + Bapnl® + 1) 1 - (3.32)

J=2
J

o The second energy equation We next take the time derivative for the Eq. (3.27) and sum it
up, together with (3.24)—(3.26), over j. By taking the test functions v = —%Clh, w = %ph,
7= %(uh)t and g = %rh, we get

0=8B (rn) Lo ! 1( ) ! 1/(24-( )irn)d
= s Phs Ghs (Th)ts —=4qhs = Phs = ,<Ih | = = R T,
Uhs Phs Ghs \Th)t 2‘]h 2Ph ) Un)t 5 h 2 ) Pn h)tVh)ax

1
+ 3 E / (Pr(gn)x + an(pr)x +ra(up)ex + Wp)(rp)x) dx
jool

1
+ 5 2 (Foland + Fylpal + Folun)i] + (Fulral) (3.33)

J

1
2
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Using the definitions of F,, Fy, F;, F, in (3.28), we have

1 1

1 1 1
0=8B (uh, Phs qns (e —5ah- 3 Ph: E(uh)z, 5%) =5 fQ (P} + (rn)ern) dx

1
+t3 Z (Brgnln)e] = [unllgnD) + B2([rnllpn] — [(pr)edlrnD) ;1. (3.34)
J

o The third energy equation Here, we take the time derivative for the Egs. (3.26)—(3.27) and
sum it up, together with (3.24)—(3.25), over j. Then, we take the test functions v = %(uh)t,
w = %(rh),, 7= %qh and g = —%ph. Using the definitions of (3.29) and F), Fy, F, F, in
(3.28), we have

1 1 1 1 1
0=818B (Mha Pns (qn)e, (rn)is E(uh)t’ E(rh)t’ ECIhy _Eph) = ) /Q ((“h)f2 + l]h(Qh)t) dx

J—x

1
+ 5 2 (@) prl—lanw)l=Fplun)il + Foleu)d + (Fr)ilgn] = (Fuilpal)
J

/Q (wn)? + (qn)eqn) dx

| =

1
+ 5 D _Br(l@n) lgn] + [uallGun)e) + B2(radlw)] + () dlpal); ) (339)
J

e The fourth energy equation We take the time derivative for (3.25)—(3.27) and sum them
up with (3.24) over j. Using the definition of B in (3.29) and taking the test functions
v = _%(qh),’ w = %Ph, 7= %(uh), and g = %(rh)t, we obtain

1 1 1 1 1 5
0= B(un, (pn)es (qn)s> rndes —5(51/1)1, Eph, E(uh)t’ E(rh)t) = ) /;2 ((Ph)tph + ((rn)e) )dx

1
+3 Z (L) rw)e] = [pnan)ed + Fpl(an)id + (Fg)ilpnl + (Fr)il(un)e] + (Fu)[[(rh)t])j
J

1
2

1
=> / (Pwepn + (@0)0)?) dx
Q

2
1
+3 Z(ﬁl (Lgn)e ) Cun)e] = [gn)eun D) + B2 (L) dpn] = [(pn)eJ[Grn)iD) ;1 - (3.36)
; B
o The fifth energy equation Finally we take the time derivative for Egs. (3.24)—(3.27), sum
them up over j. With the test functions v = (up);, w = (rp)s, 2 = (qn)s and ¢ = —(pn)s,
we get

0= B((un)t, (pn)es (qn)es Tides @ndes Tides (qn)es —(prde) = /Q ((”h)tt(uh)t + (‘]h)tz) dx

(3.37)

NI—=

j—

+ Y (B @n) P + [gn) 1) + B2 (i)l + 1) 1)
Jj

Combining (3.32) and (3.34)—(3.37), we have
1d

- (2u%+p£+q,§+r,§+2(uh),2) dx—i-l/ (Zq;%—i-p,%-i-(uh)tz—i-(rh),z—l—Z(qh)tz) dx
4dt Jo 2 Ja
+ 3 (B A L lan). (@)D + AU, il Il [01D) -, =0,
J 2

(3.38)

@ Springer



Journal of Scientific Computing (2019) 78:816-863 827

where A(a, b, ¢, d) is a non-negative quadratic form, defined as
1
A(a, b, c,d) :a2+b2+cz+d2+E(ab+cd+bc—ac+bd—ad) >0. (3.39)

If we require 8; > 0, B2 > 0, then (3.38) gives
1d 1 1
—— | Qup+pi+ar+ri+2wn)y) dx—l—f Q3= prrid = ()2 +(gn)? ) dx < 0.
4dt Jo Q 2 2
(3.40)
This leads to the following theorem.

Theorem 3.5 Using the numerical fluxes (3.28) with 81 > 0 and By > 0, the numerical
solutions of the semi-discrete DG method (3.29) for the fourth order equation satisfy
20un ()G + Il (TG + g (DG + (TG + 21l @wn)e (T I,
< 20unO)Ig + 1 1 OIS, + 1grO) g + I1ra )1 + 21 1) (0) -
Here T is the final time.
Remark 3.6 Compared with the analysis in [20], more energy equations are needed in our
analysis to ensure the optimal accuracy of the proposed methods due to the extra parameters

B1, P2 and a (a # j:%). When g1 = B> = 0, only the first and the second energy equations
are needed just as in [20].

3.2.2 L2 Error Estimates

In this subsection, we will prove the optimal a priori L* error estimate for the DG method
(3.29) for the fourth order equation when the exact solution is sufficiently smooth, under the
following assumption for the parameters in the numerical fluxes (3.28)

) 1
a”+ B = —,
4
Since the numerical fluxes (3.28) are consistent, the exact solution u, r = uy, g = ry, and

P = gy satisfy

B1 =0, B2 =>0. (3.41)

B, p.g.r;v,w,z,8) =0, Yv,w,z g€V, (3.42)
hence we get the error equation
Bley, ep,eqer;v,w,2,8) =0, Vv, w,z,ge€Vkh. (3.43)

Here ey = ¢ — ¢p, with ¢ = u, p, g, r are error functions. To ensure the error estimates to
be optimal, we use the special projections

1 1
p I, (p, u, —,31)> <V> (l'lh(r, q. ﬁl))
I = , 10 = , 3.44
" (u) <n%,<u,p, ) "\q) T \mi.r. b G40
with which the error functions can be decomposed into ey = ng + ¢y, ¢ = u, p, g, r based
on (2.10)—(2.11), and the error equation becomes
B(Cus $ps Cqv 63 U W, 2, ) = —B(us ps Mgy 3 v, w, 2, 8), Vv, w, 2,8 € Vi, (3.45)

We choose to set the initial condition py, (x, 0) as follows,

pr(x,0) = Pl p(x,0), p(x,0) = txrx(x,0). (3.46)
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Using pp(x,0), we can further define the initial data g (x, 0), rp(x, 0), up(x,0) € vk,
satisfying

(Pre w1, + (@ne wlr, = @w )1 + @w*)lj_y =0, Yw €V},

with g, = ¢, (x,0) and /Qqh(x, 0)dx = /Qq(x, 0)dx, (3.47)
(n w1, + Ony wlr; = w1+ Gwh)l_ =0, Yw e Vj,

with7), = r;(x, 0) and /;Zrh(x,O)dx = /Qr(x, 0)dx, (3.48)
e )y + G wolr, = @w )1+ @wHl;_1 =0, Yw e Vj,

with uy, = u; (x,0) and /Quh(x, 0)dx = /Qu(x, 0)dx. (3.49)

Following a similar analysis for Lemma 5.1 in [23], we can prove that the initial conditions
above are well-defined with optimal accuracy. And similar to the analysis for Lemma 2.4
in [30], we have the optimal error estimates about ||u; — (up);|| at t = 0. The results are
summarized next with the proof omitted.

Lemma 3.7 Assuming u(x, 0) is sufficiently smooth, the initial conditions in (3.46)—(3.49)
are well defined and satisfy the following estimates

[1p(x,0) — pr(x,0)|lg < CA**L, |lg(x, 0) — gn(x, 0)]lq < CA*HY,
llu(x, 0) — up(x, 0)|lg < CEFL |1r(x, 0) — ru(x, 0)|lq < CA¥HY,
g (x, 0) — (up)e (x,0)||g < CHFTL,

Here (up);(x, 0) is determined by (3.24) with F), = pZ‘ (x,0) att = 0. And C depends on
[lu(x, )| gr+3 (), and r(x, 0) = uy(x, 0), g(x, 0) = uxx(x, 0).

Next, we will follow the analysis of energy stability and get five error equations to obtain
the error estimates.
o The first error equation We start with the error equation (3.45) and take the test functions
tobev=2¢,, w=2¢,2=204,8 =—(p,and get

B(¢u, Cps8qs &3 Cus ry Egs _é'p) = —B(u, Nps Ngs Mrs Sus Crs g —Cp). (3.50)

Following the derivation of the first energy equation (3.32), we have

B(;u’ ;P’ §q9 ;r; {u» ;rs fq’ _é'p) = /Q ((;u)t{u + ;.qZ) dx
+ 2 (Bral® + 16 + Ballep P + 1617) -

J
(3.51)

And from (3.30),
B(nu, Nps Ngs Nrs us Crs Egs _Cp) = /;2 ((nu)zgu + nplr +1g8q — nr{p) dx

+y /1 (1) @)+ 19 (@)x + 1) = Mu(Ep)x) dx
j J
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+Z ple + Fylo) + Frlgg) — Fulgpl);_

N

= /Q ((nu)ffu + np&r +1g8q — ﬂrgp) dx. (3.52)

Here, the properties (2.13) and (2.16) of IT;, in Lemma 2.1 are used. Combining (3.50)—(3.52),
we get

/Q (Gt +¢2) dx + ; (BLUGl + [8g1) + B2(15p P + 16 1)) ;s

= _/S; ((nu)té-u + Nplr +ng8q — nrgp) dx. (3.53)

e The second error equation Following a similar procedure to get the energy equation (3.34),
we have

1 1
B(Cus &p, {qv(é‘)‘)t;_icq» 5{1)7 (;u)la r)

1
2
1 1
=-B (Um’?pv’?q,(ﬂr)z;—ifq’ifp 2(§u)t, >7
and
111 1 1 5
B(Euv §p’ ;qv (gr)t, _qus Egp’ E(fu)tv Efr) = E /;2 (fp + ({r)t{r) dx
1
+ 5 2 (g @0 = [6leg D + B206 1161 =[G D),y (G54
J

Using the definition of B in (3.30) and the properties (2.13), (2.16) of ITj, we get
1 1 1 1
B\ nu,mp,ng, Mr)e; _quv EQN E(gu)ta E{r
1
= ) / (_(nu)tgq +nplp +ngGu): + (nr)tgr) dx, (3.55)
Q

hence

1 1
3 fQ (;,%+<;r)tcr)dx+2;(/31([cq][(cu)t]—[cu][;q])wz([gr][cp] [¢pIED);

I\J

2

e The third error equation Following a similar procedure to get the energy equation (3.35),
we have

1
= —= /Q (_(Uu)té‘q + T]pfp + g (G + (nr)tfr) dx. (3.56)

B Cp (C)es (6005 (@t 2@ 2 — 2 )—lf ()2 + £ (8y)) dx
us Spsr \Sqlt» rt72uts2rt,2qa 2]7_29 uly q\Sq)t
1
3 DB+ EAEND + A+ (@G, y. (5D
J

Using the definition of (3.30) and the properties (2.13), (2.16) of I1;, we obtain
1 1 1 1
B\ Nus nps (ﬂq)t» (GIIS E({u)t, E(gr)ts qua _Egp

1
= E /;2 ((Uu)t({u)t + Up({r)t + (T}q)qu — (nr)tfp) dx,
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therefore

1 1
3 /Q (@uty + @7 ) dx+ 3 ;wl([@qm[m + (6@ + B2 1@ + (€A

1
=3 /Q (0 @de +1p(E)e + (g)itq — (r)igp) dx. (3.58)

e The fourth error equation Here, we follow the procedure to derive (3.36) and have

1 11 1 1 5
B (;u, ©p)es Ces G)es =5 e 58ps 5@, 580 ) = 5/9((;;,)@,, + ((¢)1)7) dx

(S}

1
+t5 D (BrACE)AE)] = 181D + Ba([(@)i1Ep] — [EplED); -
J

(3.59)
And from (3.30) and the properties (2.13), (2.16) of ITj,, we get

1 1 1 1
B <77u, (Up)t, (Uq)ty M) —E(fq)ts Efp’ E(é‘u)tv 5(9)1)

1
= 5 /;2 (_(Uu)t(fq)z + (Up)tfp + (ﬂq)t(fu)z + (Ur)t(fr)z) dx, (3.60)

therefore

1 1
3 /Q (@)itp + (@)0?) dx + 5 3 (BUE)i )il = (61 ])
J

+ B2(L@IEp] = [Ep)IED) ;1

[N}

1
= _E /S; (_(nu)t(gq)t + (ﬂp)tfp + (nq)t(gu)t + (nr)t(fr)t) dx. (3.61)

e The fifth error equation Last, we follow the procedure to get the fifth energy equation (3.37)
and have

B((Gue> (Cp)ts Cgdes (6r)es (Cudes (Grdes (Cgdes —(Ep)e)) = /Q ((fu)tt(é'u)t + (é‘q)?) dx
+ > (BIAE) P + (@) ) + B[ + 1@ D) (3.62)

] oL
Combining the Eq. (3.30) and properties (2.13), (2.16) of I1;, we obtain
B((mu)es Mp)es gdes r)es (Cdes )iy (q)es —(Ep)i))
= /Q (e Gade + Mp)e G + (1g)i Cg)r — )i (Ep)e) dx. (3.63)

Thus, we have

fQ (@@ + (@g)7) dx + 3 (B AP + L)1) + B2 + 1€ D),
J

= —/;2 ((nu)tt(gu)t + M) (&) + (1g)e(Cg)e — (Ur)t({p)t) dx. (3.64)
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We sum up (3.53), (3.56), (3.58), (3.61) and (3.64), and get
14
4 dt
+ Z (ﬁll\([{u], ()il [8q]s [(Cg)e D) + B2 AL(Ep)e ] [6p], [Er], [(Z")’])>j_1

j 2

(26 46+ i 42607 ) dr+ f (262 + 62+ @7 + @)F +26)7) dx

=P+Ph+01++Ri+R+T+T (3.65)

Here A(a, b, ¢, d) is anon-negative quadratic form asin (3.39), while Py, P>, QO1, Q2, Ry, Ra,
T, T, are defined and bounded as below,

1 1 1
P =- fQ (577,7 =+ 5 (1), 5 (n»t) ¢pdx < Ch*H2 4 / ¢rdx,
Py = / ), (cp),dx
Q
1
01 =- / ( (nu>, (q)l) ggdx < Ch*H% 4 [ ¢odx,

/ (61, = 5 00, ) &) ax = €242 [ () a
(( (nr ) )dxgc;ﬁk” / ¢2dx,

1 1
Ry =~ f (5 ()i + 51 + (np),) &)y dx = Ch*F2 4 2 f (&7 dx.
Q Q

_/ (Mu)y Cudx < Ch?*+2 4 / Czdx
Q

1

T=-3 /Q (ng + (ng), + 1)y +2 (0)yy) (G) dx < CH*F2 /Q (€u)7 dx.

With 81 > 0, B2 > 0 and the inequalities above, we get
1d
4 dt
1
< Ch%*+2 4 i f Qei+e) + 60 + 87 +2)]dx + Py (3.66)
Q

(262462 + 2+ 82 2007 ) dx
Q

For P,, we have

T T
1
/0 Pydt = f ()igpdx |5 — fo /Q (P )utpdxdt < Ch2k+2+§||;p||ém

f / ¢pdxdt.

Integrating in time for (3.66) over [0, T], we obtain
1 1
2 /Q (253 IR TR s 2(9,),2) dx|i—7

1 (T 1
< Ch*+2 4 - 202 4+~ 2+ 22+ 02 +2(¢0)? ) dxdr. (3.67)
4Jo Ja 27k
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Here we used the approximation property (2.14) of IT; as well as the optimal error of
the initialization in Lemma 3.7, and the constant C depends on k, the final time T,

lull oo (0, 7; i+ () e Nl oo (0, 7: mt+4 (2))» AN el oo 0,7); ¥+2(2)) -
Finally we apply the Gronwall’s inequality and the triangle inequality, and reach the
following theorem.

Theorem 3.8 Forthe semi-discrete DG scheme (3.24)—(3.27) with the numerical fluxes (3.28),

where the parameters satisfy «*> + B1fr = % and B;i > 0,1 = 1,2, the following error

estimates hold when the exact solution u of the Eq. (1.2) is sufficiently smooth,
lu = unllG + 1P — pallg + lg = anllg + lIr = rallg + llue — @)l < Ch*+2. (3.68)

Here r = uy, g = ry, and p = qy. And the constant C depends on k, the final time T,
letll oo 0, 7y; mt+4 () Nttell oo 0, 7y: rt+4 () @nd ttar ll oo 0,1y 4422

3.3 Extension to General Even-Order Equations

The DG methods with the special family of numerical fluxes in the previous Sect. 3.2, as
well as the theoretical analysis for stability and optimal error estimates can be extended to
the general even-order PDEs in (1.3). The key lies in a careful choice of numerical fluxes.
In this subsection, we will particularly give the formulation of the methods as well as the
theoretical results for the sixth order equation (1.3) with n = 6. Consider

u —u'® =0, (3.69)
with the periodic boundary condition. We first rewrite (3.69) into a first order system
Uu; — ui =0, uw = ui, ut = ui, ul = ui, u? = ui, u' = Uy, (3.70)

then apply a DG method: look for (u, uZ, ui, uZ, ui, u}l) with u;, € V];l, u’h e V’;l, i =

1,..., 5 such that for any (v, v, vt 03, 02 ) withv € VE i € Vﬁ,i =1,...,5and j
(@) )1, + G v, = (G741 + (D), =0, (7D
wh, o)1, + i vy, — @)1+ @), ) =0, (3.72)
wh v, + @ oD, — @GN,y + @Y, =0, (373
W v, + @ oD — @),y + @D,y =0, (3.74)
@, V), + b, vd)y, — h@?)7) bt (b (v)h) -1 =0, (3.75)
@ D)1, + v, = @D 1+ @EHT);_ =0, (3.76)

o~

Here, i}, and u’h i =1,...,5are numerical fluxes defined as

uy = Fi@u, up, B1), uh = Fa(up, uy, —p2), uy = Fi(uj, uj, p1),
uj = Fa(ujy, uy, B2), u)y = Fi(uy, uy, —B1), ih = Fa(un, uj, Ba). (3.7

Under the similar assumptions for the parameters «, 1, B2 in the numerical fluxes as for
the fourth order problem in Sect. 3.2, and following the similar analysis and definitions of
initial conditions, one can carry out the L? stability and optimal error estimates of the DG
methods above. The next two theorems summarize the results without the proofs.
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Theorem 3.9 With 81 > 0, 8y > 0, the semi-discrete DG scheme (3.71)—(3.76) with the
numerical fluxes (3.77) for the sixth order equation (1.3) satisfies

€A (D> < €4 O],

where |1E4(T)1* = (8llunllgy + llup gy + lupliy + lup g + Nug g + luj gy + 81l (un)s
I1%) li=7.
Theorem 3.10 For the semi-discrete DG scheme (3.71)—(3.76) with the numerical fluxes
(3.77), where the parameters satisfy o> + B1 > = % and B; > 0,1 = 1, 2, the following error
estimates hold when the exact solution u of the Eq. (1.3) with n = 6 is sufficiently smooth,
e — wnligy + llu' = up g + lu? — wilig + w® — uj g + lu® — uill,
+ 1w — G + llus = un)ellg < CH*F2, (3.78)

Here u' = u)((i*]),i = 1,2,...,5. And the constant C depends on k, the final time T,

lell Lo 0.7y v+ (@) Nl oo 0,7y b+ (@) NttellLoo 0, 7); 46 (0))-

4 DG Methods for the Third Order Wave Equation

In this section, we will propose a family of DG methods for the third order wave equation
(1.4), with the optimally accurate LDG method in [30] as a special case. Following the
analysis in [30], we will establish the L? stability and optimal error estimates of a sub-family
of the proposed methods when the boundary conditions are periodic.

To formulate the DG methods for (1.4), we start with the first order form of the equation,

ur+pyr =0, p—g:=0, g—uy=0. 4.1

Based on this system, a DG method is to find uy, pn, g5 € Vﬁ such that for any v, w, z € Vﬁ
and for any j,

()i )1, = (i v)r, + (Fpv7) 1y — (Fpu®),_y =0, (42
(i) 1+ an ws, — (Fgw™) oy + (Fpw?) =0, @3)
(gn, 2) I; + (un, Zx)](,- - (Fllz_)‘/+% + (Fuz+)j_% =y 4.4

Here, F), F; and F, in (4.2)~(4.4) are single-valued numerical fluxes and they could take
very general forms. To avoid overwhelmingly too many parameters, in this paper, we choose

Fp = Fi(ph,un.B1). Fg=q;, Fu= F(up. pn. B, 4.5)

that involve three parameters «, B1, 2. The conditions on these parameters will be further
specified along with our analysis for stability and error estimates.

By summing up (4.2)—(4.4) over j, we reach a compact form of the scheme: look for
Un, Ph>qh € V];l such that

B(up, ph, qn; v, w,2) =0, Vv, w,z eV, (4.6)

where

B(up, p»qn: v, va):/Q(uh)tde_Z</; thxdx-l-(Fp[v])j_;)

J
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j J
+/ qnzdx + Z (/ upZedx + (Fu[Z])j;) . 4.7)
Q 7 I;

4.1 L? Stability

In this subsection, we present the L? stability analysis for the DG scheme (4.6)—(4.7) with
the numerical fluxes (4.5) under some assumptions on the parameters «, f; and B,. Similar
to the analysis for the LDG method in [30], we first obtain four energy equations, and then
prove the L? stability for the numerical solution u;, and the auxiliary variables pj, g,. Note
that just as for the fourth and sixth order equations, more than one energy equation is needed
in order for us to later establish optimal error estimates.

e The first energy equation To obtain the energy equation related to ||uy | o, we take the test
functions v = uy, w = ¢qp, and z = — pp, in (4.6). Then, the following equality is obtained

0 = B(up, pr, qn; un, gn, —pn) = / (up)iupdx — Z (
Q

J

/ Ph(uh)xdx + (Fp[uh])j_é>

1

+ /Q Prgndx + ) (/ qn(qn)xdx + (Fq[qh])j_é)
’ _

I

- /QCJhphdx - Z (/ up(pr)xdx + (Fu[ph])jl>
- :

[S]

1]
1d [, T
=57 Quth‘F;(z[Qh]j_é —Hj(uh,l’h)>-

(4.8)
Here, we use the definition of H; in (3.8). Combing (4.8) with (3.9), we have
B(un, pn» qns Whs Ghs —Ph)

1d

1
=3ar o ujdx + ; (5[@/1]2 — Bilunl* — ﬂz[phlz)i_é =0. (4.9)

o The second energy equation In the next step, we take the time derivative in (4.3)—(4.4), sum
them up with (4.2) over j and have

B(un, (pn)i, (qn)e; v, w, 2) =0, Vv, w,z € VK. (4.10)
By taking the test functions v = —(qp);, w = pj and z = (up,); in (4.10), we obtain

0 = Bun, (pn)e» @n)e: —(qn)e> Prs n)r)

=- /;Z(Mh)t(Qh)tdx +> (/1 Ph(gn)ixdx + (Fp[(qh)t])j£>
j J

+ /Q(Ph)tphdx +y (/1 (gn)i(pn)xdx + ((Fq)t[ph])j_%)
J i
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/ (gn)e(up)edx + Z (/ (p)eup)exdx + ((Fy )t[(uh)t])j> . 4.11)
Using the definition of F),, F; and F), in (4.5), we have the second energy equation as

1d
0= Bun, (p)s, (qn)es —(qn)s, pr, (up)e) = **/ pjdx
2dt Jg

1
+ Z ( ()] (a + 5) [pnll(gn)e] + Bilunll(gn):] + ﬂZ[(ph)z][(uh)t]) '
J=2
4.12)

e The third energy equation Taking the time derivative in (4.2)—(4.4) and summing them up
over j, we get

B((un)e, (p)e. (qn)es v w.2) =0, Yv,w,z e V. (4.13)

Similar to Eq. (4.8), we take v = (up);, w = (qn); and z = —(pp); in (4.13). Using the
definition of F),, F,; and F, in (4.5) and H; in (3.8), we obtain

0 = B(un)e, (Pn)e> (@n)es @n)e, (qn)es —(Pi)e)
d 1
=5 /Q(uh)?dx + Z (5[(qh)?]j,% — Hj((up);, (ph),)>

=50 / (uh>2dx+2( [(gn):l* = Bil(un)i1® — Bal(pn)i] ) IR CR

i=3

o The fourth energy equation In this step, we take the time derivative in (4.4), sum it up with
(4.2)—(4.3) over j, and have

B(un, pn, (qn)i; v, w,2) =0, Vv, w,z € V. (4.15)

By taking the test function v = 0, w = %(uh), and z = %qh in (4.15), we obtain

1 1
0=8B (Mh, Ph> (qn)i; 0, E(uh)z, 5%)

1 1
=5 /Q Ph(up)dx + 5 2]: (/1, qn(up)ixdx + (Fq[(uh),])j_é)
/ (@n)rgndx + = Z (/ (un)e(gn)xdx + (Fu)elgn]) ;_ ) (4.16)

Using the definitions of F,, F; and Fy in (4.5), we finally have

1
0 = B(un, pn, (qn)s; 0, E(Mh)t’ qh) f(Ph(uh)t + (gn)qn)dx

=3
4.17)

+ 3 Z ((5_a)[q}t][(Mh)t]+,32[(Ph)t][CIh]>
J

Now we are ready to state the L? stability of the proposed DG methods.
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Theorem 4.1 Under the conditions
2 _
a”+ pi1f =

1 1 3
Aprtda<pp, at2p=—o. 8ptTu<—5+ P, (4.18)

the semi-discrete DG method (4.6)—(4.7) with the numerical fluxes (4.5) satisfies
2 2 2 1 2
lun(Dllg + e (T llig + 1@n): (T g + *II%(T)IIQ

T

2

(IIuh(O)IIQ + 1P O)IG + @) (0 1S + *”qh(o)”§2> (4.19)

where T is the final time. Particularly, when « = —5 Land By = Bo = 0, the stability result
(4.19) can be replaced by

1
lun(D) g + I P (DG + 1 @n) (DG + EHCIh(T)”%z
2 T ., 2 r 2 1 2 (4o
< lurn(O)llg + > + 1) IlpnO)lig + 7 + 1) 1 un): Oy + 3 lgnO)llg. (4.20)
Proof Summing up the four energy equations (4.9), (4.12), (4.14) and (4.17), we have

1d 5 5 , 1 2 1
0= 737 unlie +llpallg + 1@nilie + Zlanls | + 5 (pa, (wn)e)

+Z( P+ (—a—BD[un) P+ [(qhm —Bilun] —ﬁz[Ph]Z—,Bz[(Ph)t]2>

(Sl

j_

+ Z ((a + 5)[ph][(qh)t] + B2l (pr)ell(un):] + ,31[Mh][(61h)t]>
J

=

j_

1 1
t3 Z ((5 = o)lgnll(un)] + ﬂz[(ph)z][%]) L 4.21)
J 72
Now we introduce two symmetric matrices S1 and S,
~p 0 & TR
a+ 2 4 4
Si=1 0 —ﬁzfz > = 22 g £ (4.22)
+
2 aTZ 3 & L2 -p
and a set of vector-valued functions Uy and Uz, j =1,..., N,
= (lunl, [pnl Ugn)eD ;1 = (lgnl. [@n)ed, [pa)eD ;1 (4.23)
Then, the Eq. (4.21) can be rewritten into
1d 2 2 5 1 ) 1
0= 575 lunlla + Ipnlig + 1@n)dlig + Ellthlg + E(ph, (un)t)
+3 (Ufj $1Uy; +UJ,5:U; j) . (4.24)
J

In order to obtain conditions on «, 81 and B such that both S; and S, are positive semi-
definite, we follow the sufficient and necessary condition “all the k-th principal minors are
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nonnegative, with k = 1,2,3”, as well as the relation a? + Bi1B = % (to simplify the
conditions), the details are given in “Appendix B”. This leads to (4.18), and under these
conditions (4.24) becomes

d 2 2 2 1 2 1
5 7 Ulenlig + 1pallg + @i lig + S lanlie ) + 5 (s @a)o) < 0. (4.25)
Now apply [(pa, un))| < S(lpall% + (un)e13). and we can obtain

d 1 1
o (nuhné + 1pnllg + N @n)lg + Enqhné) <~ (Ipaldy + ) lly)  (4.26)

1 2 2 2 1 2 49
< 7 lunlla + Ipnlig + 1un)dlig + 2||qh||Q . (4.27)

The stability result in (4.19) follows from the Gronwall’s inequality.
Finally we consider a special case when o = —% and B = B2 = 0. Note that for this
case, (4.12) and (4.14) imply

Ipn®lle < IPrO)lle, @) ®lle < I(ur)i(O)le, V> 0. (4.28)

Integrating (4.26) over [0, T'], we get

1
lun (T + I pr (T IF + 1 @n) (T3 + Enqh('f)n%z

17 1
< ifo (1A RO + 16w O)1R) di + T ) + 1 PO + 1) O3 + 5191 (O0) -
(4.29)

The stability relation (4.20) follows from (4.29) and (4.28). ]

Remark 4.2 When o = —% and B1 = B2 = 0, our proposed DG method will become the
LDG method in [30] with one set of alternating numerical fluxes. And the stability result
(4.20) was also established in [30].

We want to point out that the parameter conditions (4.18) do not include another set
of alternating fluxes, that is, the numerical fluxes (4.5) with o = %, B1 = P =0, or
equivalently, ), = p,;", F, = q; , Fy = u,, . The corresponding DG method has quite
different properties from that in [30] and also from those in Theorem 4.1, and its L? stability
needs to be established separately. In the next Theorem, we state the energy stability result
for this somewhat different DG method, and the proof is given in “Appendix A”.

Theorem 4.3 Use the numerical fluxes (4.5) with o = %, B1 = Bo = 0, the semi-discrete

DG scheme (4.6)—(4.7) satisfies the energy stability

1
llun (T)II3, + Enph(nné + 1) (T + Ngn(TIE + g (T3

1 T T
< [lun(0)I3 + 5||ph(0)||§z + (5 + 1) I@n)e O 13 + llgn(O) 13 + (5 + 1) I(gn)e 011
(4.30)
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4.2 L2 Error Estimates

In this subsection, the optimal a priori L? error estimates will be proved for the DG method
(4.6)—(4.7) for the third order equation when the exact solution is sufficiently smooth, under
the conditions in (4.18) on the parameters «, B1, B> in the numerical fluxes (4.5). Particularly,
the relation o2 + B1 82 = % holds. Since the numerical fluxes (4.5) are consistent, the exact
solution u, ¢ = uy, and p = g, satisfy

B(u,p,q;v,w,z) =0, Vv,w,ze\?ﬁ, 4.31)
therefore we get the error equation
B(eu, ep, eq; v, w,2) =0, Yv, w,z € V}. (4.32)

Here ey = ¢ — ¢y, with ¢ = u, p, g, are the error functions. In order to obtain the optimal
error estimates, the following projection is used

p ) (p,u, ﬂl))
I1 = , 4.33
" (u) (n%,(u,p,ﬂz) (:33)
and e, e, will be decomposed into ey = ng + ¢4, ¢ = u, p based on (2.10)—(2.11), while
eq = ng + &, where 1, :q—Pthqandgq = P]jq—qh.
For the third order equation (1.4), we choose the initial condition pj (x, 0) = P, p(x, 0)

with p(x,0) = wuyy(x,0). Based on pp(x,0), we can further define the initial data
qn(x,0), up(x,0) € V¥, satisfying

(P w1, + (@ne wolr, = @w )1 + @ wHl;_y =0, Yw e Vj,

with g, :q,f(x,O) and /qh(x,O)dx :/ q(x,0)dx, (4.34)
Q Q
(qn. w1, + (e w)lg; = (w1 + @w ™)l =0, Yw € Vj,
with 7}, =u;(x,0) and [uh(x,O)dx=/ u(x, 0)dx. (4.35)
Q Q

Similar to the analysis for Lemma 5.1 in [23] and Lemma 2.4 in [30], the following lemma
can be established.

Lemma 4.4 Assuming u(x, 0) is sufficiently smooth, the initial conditions described above
are well defined and satisfy the following estimates

[p(x,0) — pr(x,0)llg < CA**L, |lg(x,0) — gn(x, 0)]lo < CA*T,
lu(x, 0) — up(x, 0)|lg < CAXFY Jjuy (x, 0) — (up)i (x, 0)||g < CHFFY, (4.36)

Here (up)(x,0) is determined by (4.2) with F, = p, (x,0) att = 0. And C depends on
[lu(x, 0)|| yr+3 () and q(x, 0) = uy(x, 0).

To obtain the optimal error estimates, we follow the idea of the energy stability analysis
and get four important error equations.

4.2.1 The First Error Equation

Since B is linear, the error equation (4.32) can be written as

B(Cus Lps g3 0y w, 2) = —B (s s 113 v, 0, 2), VYo, w, z € VK. (4.37)
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We then take the test functions v = ¢, w = ¢; and z = —¢, all from Vﬁ, and get

1d 1
B(;u,;p,gq;gu,;q,_g,,):EafgzggderZ(E[cq]Z—ﬁl[zu]z—ﬁz[zp]z)' o438
J

iz

B0 T 145 s Sq —5p) = / (i Gudx — Z( / Mo @adx + (Fi Gl s /ﬁ)[gD]_)

npfqu + Z nq (Cq)xdx + ((nq)+[§q])j_é)

nqdex - ( nu(Cp) dx + (F2(n, Mp» ﬂz)[é“p 2)

= ‘/Q ((Tlu)tfu +1p8q — anp) dx. (4.39)

Here we have used (2.6) and the properties (2.13) and (2.16) in Lemma 2.1. Now combining
(4.37)—(4.39), we obtain

1d 1
2ar o Gidx + ZJ: (5[@]2 — Bile]” - ﬂz[;p]z)

J—3

= _/Q ((Uu)zfu +nplq — 77q§p) dx. (4.40)

4.2.2 The Second Error Equation

Following the similar procedure to derive (4.10) in the stability analysis, we get an error
equation in the following form,

B(Gus €p)is (Eg)is v, w, 2) = =B (s Mp)es (g)i v, w,2), Yo, w,z € V. (441)

Now we take the test functions v = —(¢,);, w = ¢), and z = ({,);, use the property (2.6) of
P,j and (2.13), (2.16) in Lemma 2.1, and obtain

1d
B(&u, (fp)t, (fq)ﬁ —(Cq)h Eps o) = EE /Q ng

1
+ Z ( al (@) l* + (@ + 5)[:,;][(421);] + Bil&ull(Cg)e] + ﬂz[(é“p)t][({u)t]) e
J72

(4.42)

B(nu, (ﬂp)t» (nq)z§ —(fq)ta Cp, (Gu)t) = j;z (—(ﬂu)t(fq)z + (np)tgp =+ (ﬂq)t({u)t) dx.
(4.43)

They, combined with (4.41), will lead to

1
3 dt | cpdx+ Z ( ~al @) + @ DI+ LI + ﬂz[@p)t][(cu);]) |
i

0=

= - ‘/;2 (_(nu)t(fq)t + (T]p)tgp + (qu)t(gu)t) dx. (444)
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4.2.3 The Third Error Equation

Similar to how we derive (4.13), we can have the following error equation

B((;u)tv (gp)h (;q)lv v, w, Z): - B((nu)ls (np)ta (T}q)t’ v, w, Z)? Vl), w,z € V];, (445)

With the test functions taken to be v = (£,);, w = (§y); and z = —({p),, the terms in (4.45)
become

B((&u)ts Cples Cgdes (Gudes (Gg)es —(Ep)e)

1d
=ar J @ 2dx+2< (&) ) — [(g»]z—ﬂz[(;p»]z) . (4.46)

=3

B((nu):, (np)t, (rlq)t; (&wrs (é‘q)ty —(fp)t) = /Q ((nu)n(s“u)t + (Up)t(fq)z - (Uq)t(fp)t) dx.

(4.47)
Combining (4.45) with (4.46)—(4.47), we obtain
1
55 ()7dx + Z (5[(;,),12 - Bil@) ) — ﬂz[@p)t]"‘)jé
- /Q (O1)er e + p)i g — )t (Ep)e) dx. (4.48)
4.2.4 The Fourth Error Equation
Last, we use the error equation
B(&u, Cp, (é'q)ti v, w,2) = =By, Mp> (nq)l; v,w,z), Yv,w,z€ Vﬁ (4.49)

Similar to the Eq. (4.16), we take the test functions v = 0, w = %({u), and z = %;“q in
(4.49), and obtain

1 1 1
B (é‘uv é'py (gq)t; O» i(gu)ls §§q> = 5/ (é'p(é'u)t + (é-q)tgq) dx
Q

1 1
t3 ; ((5 - Of) (AAAES ﬂz[@p)t][m)

=2
(4.50)
and
1 1 1
B (Uu, Nps (nq)t; 0, i(gu)tv §§q> = E/ (np(fu)t + (nq)tgq) dx, 4.51)
Q
hence we have
1 1 1
5 /Q(Cp(Cu)z + (&Pitg)dx + B 2]: ((E - "‘) (841G ] + ﬂQ[(gp)t][Cq])j;
1
=5 [ oG+ (i) . (4.52)
Q

We are now ready to establish the optimal error estimates for the proposed DG methods.
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Theorem 4.5 For the semi-discrete DG scheme (4.6)—(4.7) with the numerical fluxes (4.5),
where the parameters satisfy (4.18), the following error estimates hold when the exact solution
u of the Eq. (1.4) is sufficiently smooth,

lewlldy + lleplls + llegI1d + (e If < Ch*FF2. (4.53)

Hereq = uy, p = qx, andthe constant C depends onk, the finaltime T, |[ul| L (0. 7): H*+3 ()
el Lo 0,7); 43 () @nd Nlusell oo (0,7; 443 ()

Proof Summing up the four error equations (4.40), (4.44), (4.48) and (4.52), we have

1d

S (ncu I + 125118 + 1 NIG + ||;:,||Q> + Z (VI;$1V1 + V1 8:V2) =F + G,

where VI, = (161, 18,1, [G)iD; 1. V2, = (81, @)1, (@)D _y with j=1,..., N

and

F= _/Q ((Uu)t{u +0plq — Epng + p)ie&p + Mg): (Gdr + M 1e (Cude
1
+ E”p(;u)t (ﬂq)zfq dx f Ep(Gu)rdx, (4.54)

G=-— /Q (o) = @i (1) — ()i (G )r) dix. (4.55)

For F, we can bound it by
nt2 , 1 2 1 2, 3 2 2
|F| < Ch t3 ||§u||g+ZIICqIIQ+ZII§pIIQ+Il(é“u)rllg . (4.56)
For G, we integrate it in ¢ over [0, T'], apply an integration by parts, and get
T T
| ear= [ (o= g+ o) 1§ = [ [ (e = oy + gty e
a2, | 2, 1 2 Lt 2 2
<Ch +t3 ”{pHQ‘i’E”{q”Q |t=T+§/ (IICpIIQ-I—IICqIIQ)dt. (4.57)
0

Here, we have used the property of projections I, and P;", as well as the optimal initial
error estimates in Lemma 4.4.
Combining the two estimates above, we have

r 1 [T 1
fo (F+G)dr < Ch¥+ 4 5/0 (ncu I+ 50l + eI+ ||<;u>,||é> di

1 2 1 2
+ ZI|§p||Q+§II§qIIQ lr=7- (4.58)

Recall that S1 and S, are positive semi-definite under the conditions (4.18), and this further
gives

1 1
3 (ncun?2 + 5||cq||§2 +llgpll% + ||(cu),||§z) li=1

1 /7 1
< Ch*+2 4 5/0 (nr;u 5+ Euzqné +1gplE + ||<;u)t||%2> dt
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1 2 1 2
+ 4IICpIIQ-i-SIICqIIQ lr=7, (4.59)

and therefore

1
g (12l + 1Eg 11 + 1Ep11E + 1€ lIE) li=r
1 T
< Ch?+2 4 5/0 (12l + 15118 + 111 + 12 1IG) dt. (4.60)
Now we can apply the Gronwall’s inequality, and reach
ICullg + 112418 + 1EplE + 1) lIE < CH*F2. (4.61)

Throughout the proof, the constant C depends on k, the final time 7', [[u| oo (0, 7): HE+3(02))>
et ll oo 0.7): Hr+3()y @nd llue |l oo (0, 1); HF+3(g2))- Finally, we can get the error estimates
(4.53) by combining (4.61) with the projection errors (2.8) and (2.14). ]

Remark 4.6 We point out that for the semi-discrete DG method with the alternating flux
o= %, B1 = B2 = 0(associated with Theorem 4.3), we just get its suboptimal error estimates
because of the difficulty to find the well-defined initial conditions satisfying ||(g;)(x, 0) —
(gn):(x, 0)] |2 < Ch**t!. Here, we omit the proof of error estimates.

5 DG Methods for the Linear Schrodinger Equation

In this section, we consider the linear Schrédinger equation (1.5), and will formulate and
analyze DG methods to solve it. Given the solution is complex-valued, throughout the section,
the L? inner product and its induced norm

(w, v)k =/va*dK, vl = v (v, v)k, (3.1

are used for complex-valued square integrable functions in a domain K, and we will also
work with the complex-valued discrete space CV’;, defined as

Vh={v=r+is:rl; € PXU;). sl € PXI), VI € Tyl (5.2)
To obtain the DG methods for (1.5), we start with the first order form of the equation,
iuy +px=0, p—u,=0. (5.3)

Based on (5.3), our proposed DG method is to look for uj,, p, € CV’Z such that for any v, w €
CV',; and for any j,

i/ (uh),vdx—/ phvxdx—i—(va_)jJr% —(va‘*‘)F% =0, 5.4
1 1

— + _
/Ij phwdx—i-/lj upwedx — (Fyw )/'+% + (F,w )j_% =0. (5.5)

Here F), and F,, are numerical fluxes, taken as

Fp(pn,up) = {pn} +alppl +iBilurl,  Fu(up, pp) = {up} — alup] +ipalpnl, (5.6)

and the parameters «, 1, B> are O(1) and real-valued, and they will be specified later for
stability and optimal accuracy. By summing up (5.4)—(5.5) over j, we obtain a compact form
of the scheme: look for uj,, p, € CV’Z such that
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B(un, pn; v, w) =0, Vv, w €V}, (5.7)
where

B(up, pp; v, w) =1 /Q(Mh)tvdx - Z (/ Prvydx + (Fp[v])j_é)
J /

1

+/ prwdx + Z (/ upwydx + (Fu[w])j_5> . (5.3
Q A\

5.1 L2 Stability

In this subsection, the L2 stability is established for the DG method (5.7)—(5.8) with the
numerical fluxes (5.6) under some assumptions on the parameters. The analysis relies on
three energy equations.

e The first energy equation First, we take the test functions v = uj, w = pj in (5.7), and
obtain

0 = B(upn, pp: uyy, py) =i /Q(uh)zuﬁdx - Z (/1 pr(up)dx + (Fp[uZ])jé)

j J

+/ phpi,‘dx+Z<
Q -

J

/ uh(PZ)xdx + (Fu[p;,k])j_ 1) . (5.9

I 2
We then subtract the conjugate of (5.9) from itself, and get

d
id[/QIMhde-i-ZiIm(E (/1 (PZ(uh)x+uh(pZ)x)dX+(Fu[pZ]+(Fp)*[uh]).f5)) -
- .

J

This, together with the definition of the numerical fluxes in (5.6), leads to

d
T /Q JunPdx +2 | Y (=Bilunllup] + Bolpalipjl),_1 | =0.  (5.10)

J

=

e The second energy equation We here want to derive the energy equation for pj,. By taking
the time derivative of (5.5), summing it up with (5.4) over j, we get

0= B(uh,(ph)t;v,w)zi/Q(uh)tvdx—Z</ thxdx‘i'(Fp[U])j_é)
- .

1j

+/Q(Ph)Ide+ E ( ] (uh)thdx+((Fu)t[w])j_é)~
j j
(5.11)

With the test functions being v = —(u}); and w = pj;, (5.11) becomes

0 = B(un, (pn); =), py) = —i /Q(uh);(uﬁ)zdx + Z </I pi(up)ixdx + (Fp[(uZ)t])j_;>
j J
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+ [ onnridx+ 3 (/, () (p)sdx +((Fu>t[p7;])j;>.
;o\ ’
(5.12)

Taking the conjugate of (5.12) and summing it up with (5.12), we have
d
0= 4 [ 1miPar+ Y ( [ r e+ i o+ (Flan)i1+ (F)i o ,_1)
tJa 7 I J=3
+y ( f; (P un)ex + @n)e (PPx)dx + (Fp)*[un)e] + (F)ipi)) j;) : (5.13)
j J

Combining (5.13) with the definition of F),, F,, in (5.6), we have

d
o /Q |plPdx +2Im | Y (=Bilunll@i)id + Bolpi)dpn));_1 | =0. (5.14)
Jj

(S]

o The third energy equation We start with taking the time derivative of (5.7), and then follow
a similar procedure as to derive the first energy equation, except the test functions being taken
as v = (u});, w = (py;);. This leads to the third energy equation,

d
o /Q (e Pdx +2) 7 (=Ailn) @) + Bl d(pi)i]);_y = 0. (5.15)
J

By summing up the three energy equations (5.10), (5.14) and (5.15), we now have

d
% | (a1t ) dx = 26 (; (1n? + 1) AP + Im((us 11 @5):D) )

i3

2

+28 (Z (|[ph]|2 + ) 1* + Im<[<p;;),][ph1))j7 1 ) =0, (5.16)
J

and this readily give us the L? stability result in the next Theorem.

Theorem 5.1 With By < 0 and By > 0, the semi-discrete DG scheme (5.7)—(5.8) with the
numerical fluxes (5.6) satisfies

lun (TYIZ + 1P (DIE + 1) (TIE < lun O + 1 paO) 1% + @) 0) 13- (5.17)

Remark 5.2 Compared with the Lemma 4.3 in [30], the proof for Theorem 5.1 requires an
additional energy equation for (u;,), with the presence of the parameters 1, 8. This energy
relation is also important in error estimates to control both p;, and (up);.

Remark 5.3 The proof for Theorem 5.1 is also different from the L2 stability in Sect. 3.1.1
for the heat equation. Here we can not directly get the L2 stability for p;, unless we also have
the energy relation for (uy);.
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5.2 L2 Error Estimates

In this subsection, we will prove the optimal a prior L? error estimate for the DG method
(5.7)—(5.8) for the linear Schrodinger equation (1.5) when the exact solution is sufficiently
smooth, under the following assumption for the parameters in the numerical fluxes (5.6),

|
o’ — Bifr = 3 PO prz0. (5.18)

Since the numerical fluxes (5.6) are consistent, the exact solution u and p = u, satisfy
B(u, p;v,w) =0, Yv,w e Vk, (5.19)
hence we get the error equation
B(ey,ep;v,w) =0, Vv, we€ cVﬁ. (5.20)

Here ey = ¢ — ¢y, with ¢ = u, p are error functions. To ensure the error estimates to be
optimal, we use a special projection,

uy Ph+ ((l_O{)ll-i-iﬂzp)—i—P]; ((l +(¥)M—iﬂ2p))
Jp <p) B <P,j_ ((§+(¥)P+iﬂ1u)+Ph_ ((j _‘X)P—iﬂlu) (5.21)

that maps from . H ' () x .H' (L) onto CV’}; X CV’}‘I, <H' () denotes the function space with
the real and the imaginary parts in H'(2). Using I, the error functions can be decomposed
into ep = n¢ + ¢p, ¢ = u, p based on (2.10)—(2.11), with ITj, replaced by ITj.

The operator I1; is motivated by IT, in (2.9) (also see [9]), and it is tailored for the
numerical flux (5.6). Following a similar proof for Lemma 2.4 in [9], we can show the
following Lemma.

Lemma 5.4 For any given «, B1, B2, the operator Iy, has the following properties:

(i) /I nuprdx =0, /[ npYidx =0, Vo, ¥ € Vi, V], (5.22)
j j
(ii) H (Z) —.TI) (;) H < C, (Ilal+max(IB1], 1B2D) B (lull s oy + 12l g @) -
(5.23)
If we further assume o — Bipo = %, we have
(iii) Iy, defines a projection, that is (Cl'lh)2 = Iy, (5.24)
V) FpOpsma); 1 =0, Fulnnp); 1 =0, Vj. (5.25)

Here F,, and F, are defined in (5.6), and (u, p) € (H**1(Q) x (H*T1(Q).

We choose the initial condition pp(x,0) = P, p(x,0) with p(x, 0) = uy(x, 0). Using
pr(x,0), we can further define the initial data up (x, 0) € V’;l which satisfies

(P w1, + (s w)lgy = @rw )l + @)y =0, Yw €V},
with @), = u; (x,0) and / up(x, 0)dx = f u(x, 0)dx. (5.26)
Q Q

Then, following the analysis for Lemma 5.1 in [23] and Lemma 2.4 in [30], we have the
following estimates for the initial data.
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Lemma 5.5 Assuming u(x, 0) is sufficiently smooth, the initial conditions described above
are well defined and satisfy the following

1p(x,0) — pr(x, 0l < CAETL Jlu(x, 0) — up(x, 0)||q < CH*F!,
g (x, 0) — (up) (x, 0)|l@ < CH*FL. (5.27)

Here (up);(x, 0) is determined by (5.4) with F, = p; (x,0) att = 0, and C depends on
| |M(.X, 0)||Hk+2(9)

To obtain the optimal error estimates, we follow the line of stability analysis and get three
error equations.

5.2.1 The First Error Equation

Taking the test functions v = ¢ and w = {; in the error equation (5.20), we have

B(é‘ua{p;§;’§;)+B(nus77p;§:’§;):0~ (5.28)

Now we follow a similar procedure to get the first energy equation (5.9), and use the definition
of B in (5.8), and get

B(¢u, Cp;g,fv g;):l/;z(;u)t;;dx_z</; {p(C;)xdx+(Fp[§;])j_1)
j J

(¥l

+ fg Cplpdx + ) ( /1 CuE)edx + (FuE0D ,_;) . (529
; j

B(us nps &u's €5) =i/Q(nu)zC;kdx+/an{;dx. (5.30)

Here, we have used the properties (5.22) and (5.25) of the projection .I1;, for (5.30). Now
we subtract (5.28) by its conjugate, and use (5.29) and (5.30), this will lead to

d E *
& [ 1abar+ 2 3 (<) + pale,ic;))

J

= —2Re </ (nu),g,;"dx> — 2Im </ npggdx) . (5.31)
Q Q

5.2.2 The Second Error Equation

i=3

Following the second energy equation (5.11) and replacing u,, pj, by ey, ep, we have
B(Gu, (€p)e vsw) + B, ()5 v,w) =0, Vo, w € V. (5.32)
Taking the test functions v = —(¢;); and w = ;7 in (5.32), we get

B(Gu, (&p)es =815 &) = =By p)es —(E)es $5)s (5.33)
with
7

B(Gu, (&p)es =&, &) = —i /Q(Eu)x(;“:)tdx + Z </1 Ep(C)dx + (Fp[@;*)r]),»_1>
j J
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+ A({p)tcgdx + Z (/; (gu)t(g;)k)xdx + ((Fu)t[g;])]%> )
j J

(5.34)
B, ()i~ £8) = —i /Q ()i (G + /Q (p)Cidx, (5.35)
We now add (5.33) and its conjugate and get
- fg 6 Pdx +2Im (Z (=BilalE + ﬂz[(;;)t][qp])j_l)
- 2
= —ZIm/;Z(nu),({:),dx - 2Re/Q(77p),§;dx. (5.36)

Here, the definition of F),, F, in (5.6) and the properties (5.22), (5.25) of the projection .ITj,
are used.

5.2.3 The Third Error Equation

In the last step, we follow the third energy equation (5.15). Similar to the equation (5.28),
the test functions are taken to be v = (), w = (;;),. Then, we have

B((Gu)es Cp)es (€05 (€)0) = =B()es p)es (65 (€5)0)- (5.37)
We subtract (5.37) by its conjugate, and get

d
- fg |(;u>,|2dx+2(ij (=BIENED + BaAEIEN) )

= —2Re (/Q(nu)tz(é“:)de> —2Im (/Q(np)t({;)zdx> : (5.38)

Once we have the three error equations, (5.31), (5.36) and (5.38), we sum them up and
get

d
E/Q(|(§u)t|2+|§p|2+|§u|2)dx

=261 ) (16l + Im(& DD + 11GAP) ;)

J

[S]

+262 3 (11617 + I, @D + 1) 12)
J
= 2Re(0) 4 2Im(I") + 2Im(A). (5.39)

j*l

I

Here, ®, I', A denote
0=- fQ (e + p)ets + L)) dx, (5.40)

h= _/Q (7085 + (@) dx. A=~ /Q(np)t(c;‘),dx. (5.41)
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Related to A, we have

T T
[ adi== [ @pepaxis+ [ [ apuciar (5.42)
0 Q 0 Q

hence

T 1 1 T
/ Im(A)dr <Ch*+2 4 = / £y 2dx + < f f |¢p 2 dxdt. (5.43)
0 4 Ja 8Jo Ja

As for ® and I', we have

1 1
Re(®) < Ch*+2 4 3 /Q Qlgul® + 1) > + 5|cp|2>dx,

1 1
Im() = CHH2 4 / (@l + 516D, (5.44)
Q

thus

r 1 [T 1
f (Re(©) + Im(T))dt < CHAH2 4 1 f / <|;u|2+|(;u>z|2+f|¢p|2)dxdz.
0 4 Jo Ja 2
(5.45)

Here, we have used the Young inequality and the optimal error estimates in Lemma 5.5 from
the initialization. Now we combine (5.39)—(5.45) with 81 < 0 and B, > 0, and get

1
fQ (|(;u>t|2 + E|cp|2 + |;u|2) li=rdx < Ch?*+?

1 (7 1
+5f /(|;u|2+|(¢u>,|2+5|;p|2>dxdr.
0 Q
(5.46)

In this Section, C depends on k, T, ||u||L°°((0,T);Hk+2(Q))’ ||ut||L°°((0,T);Hk+2(Q)) and
Nueell Loo (0.7 A +2(q2))- Finally we apply the Gronwall’s inequality to (5.46), and reach the
following theorem.

Theorem 5.6 For the semi-discrete DG scheme (5.7)—(5.8) with the numerical fluxes (5.6)
under the conditions in (5.18), the following error estimate holds when the exact solution u
of the Eq. (1.5) is sufficiently smooth,

lewlldy + I en) 1B + llepliy < Ch* T2, (5.47)

Here p = uy, and C depends on |ullpeo, ). m+2)) Nuelliooqo,r): HE+2 () and
Netsell oo 0, 7y; HE+2 (2))-

6 Numerical Examples

In this section, we present numerical examples to demonstrate the performance of the pro-
posed methods, and to verify our theoretical results in previous sections. In our numerical
experiments, the implicit (k 4 1)-th order SDC method in [22,28] is utilized as the time dis-
cretization for the DG methods when the P* polynomial spaces are used. The implicit SDC
temporal discretization allows the time step to be At = O (h) and can be easily implemented
to have arbitrary order of accuracy. In all numerical tests, uniform meshes with N cells are
used.
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6.1 The Heat Equation

In this subsection, we consider the one dimensional heat equation (1.1), with the initial data
u(x,0) =sin(x), on (0,2m), (6.1)

and the periodic boundary condition. The exact solution is u(x, ) = e~ sin(x). We test the
problem with different sets of «, 81, B2, and compute up to 7 = 5 based on pk approx-
imations with k = 1,2, 3. The time step is taken as At = h. Tables 1 and 2 show L2
errors and orders of accuracy of the numerical solution u;, and the auxiliary variable pj;. We
observe that both uj, and p;, from the proposed DG methods for the Eq. (1.1) are (k + 1)-
th order accurate with k = 1, 2, 3 when the numerical fluxes (3.4) satisfy the conditions,
o+ Bifr = %, B1 >0, B2 > 0, and this verifies our theoretical results. On the other hand,
when the numerical fluxes are central (with « = 81 = f» = 0), and it does not satisfies
o+ B = %, the numerical solutions are suboptimal when k is odd.

6.2 The Fourth Order Equation

Here, we consider the fourth order equation (1.2) with the initial condition
u(x,0) =sin(x), on (0,27). (6.2)

Periodic boundary condition is used. The exact solution is u(x,#) = e ' sin(x). Several
sets of the parameters «, 81, B2 are used in the numerical fluxes (3.28) to test the proposed
DG methods, and the problem is computed up to T = 5 based on P* approximation with
k = 1,2, 3. For this test, we use the time step At = h. The numerical results are shown
in Table 3 for the L2 errors and orders of accuracy of the numerical solution uj, and they
confirm the (k + 1)-th order of accuracy for u with k = 1,2, 3, when the parameter set
satisfies a2 + Bi1B2 = %, B1 > 0, B2 > 0. The DG method with the central flux, which does
not satisfy the condition above, yields the suboptimal rate when £ is odd.

In Table 4, we present the L? errors and orders of accuracy of the auxiliary variables
Thyqh, ph With r = uy,q = ry, p = ¢y from the DG methods which use the numerical

fluxes (3.28) with o« = 0.499, 1 = B2 = ‘/i —a?and a = —0.5, 81 =0, B = 0.5. The
auxiliary variables are optimally accurate for these choices. When the remaining parameter
choices from Table 3 are used, similar observations as for u; are observed for the auxiliary
variables in terms of the convergence orders, and the results are not reported here.

6.3 The Third Order Wave Equation

In this subsection, we test the third order wave equation (1.4) with the initial condition
u(x,0) =sin(x), on (0,27), (6.3)

and the periodic boundary condition. The exact solution is u(x, t) = sin(x + t). We test the
problem with several sets of the parameters «, 81, 82, and compute the problem up to time
T = 5 based on P approximations with k = 1,2, 3. The time step is taken as Ar = h.
In Table 5, we report the results for the L2 errors and orders of accuracy of the numerical
solution uy,. From these results, we see that the numerical solution uy, is optimal i.e (k + 1)-th
order with k = 1, 2, 3, when «, 1, B2 satisfy the flux conditions in (4.18). We also note that
the central flux, which does not satisfies a2 + g8, = 4l, yields the suboptimal rate when
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k is odd. In Table 6, we present the L2 errors and orders for the auxiliary variables gy, py,
with ¢ = uy, p = gy, using the parameters @ = —0.499, 81 = B = —+/0.25 — 0.4992,
a =—-058 =0,8 = —-05and o = B = B = 0. We observe that the auxiliary
variables pp, g, have the same accuracy as uj, with one exception when the central fluxes
are used for uy, and pj, and Fy = q;“ for gp,. In this case, gy, is always optimal, while uj, and
pi are suboptimal when £ is odd.

6.4 The Linear Schrodinger Equation

Finally, we test the one dimensional linear Schrodinger problem (1.5) with the initial data
u(x,0) =sin(x), on (0,2m), (6.4)

and with the periodic boundary condition. The exact solution is u(x, 1) = ¢!*~_ We test
this problem with different sets of , 81, B2, and compute up to 7 = 5 based on P* approxi-
mations with k = 1, 2, 3. In our test for this problem, the CFL constraint for the method with
central flux (¢ = B1 = B> = 0) is taken to be 0.2 and 1.0 for other choices of parameters in
numerical fluxes. We show the numerical results in Tables 7 and 8 for L2 errors and orders of
accuracy of the numerical solutions u;, and the auxiliary variable pj,. From these results, we
see both the numerical solution u;, and auxiliary variable p; have the optimal accuracy with
k = 1,2, 3 under the conditions «? — B1B2 = %, B1 <0, B2 > 0. On the other hand, the DG
method with the central flux (with « = 81 = B, = 0) yields the suboptimal accuracy.

7 Conclusion

In this paper, we have developed DG methods for solving the even-order equations (including
the heat and a fourth order equation), a third order wave equation, and the linear Schrodinger
equation in one dimension. A general class of numerical fluxes is identified to ensure the
optimal accuracy of the numerical solution and of some auxiliary variables. A set of energy
relations, as well as the design of special projection operators are the key to achieve the opti-
mality of the error estimates. In future work, we want to extend the study to high dimensions
and to nonlinear models.

A The Proof of Theorem 4.3

In this appendix, we prove the L? stability of the DG scheme (4.6)—(4.7) with the numerical
fluxes (4.5) and o = %, B1 = B2 = 0, namely

Fy=pf. Fy=q;, F.=u,. (A.1)

Five energy equations will be derived first.
e The first energy equation. With o = %, B1 = P2 = 0, the first energy equation (4.9)
becomes
0= Bl pi g —pi) = 550 [ dar+ 3 Ylal . a2)
2dt Q 2 T J—

2

@ Springer



Journal of Scientific Computing (2019) 78:816-863

856

10¢  L0—HI9€E 00r  80—HH9T 00F  80—H99C 00F  80—H99C 00r  80—HS9T 00r  80—H99C 0ce
€0¢  90—dI6T 00v  LO—HITY 00%  LO—HSTY 00F  LO—HSTY 00Y  LO—HVTY 00v  LO—HSTY 091
Tre SO—H6ET 66 90—HAL9 66'€  90—HSL9 66'€  90—H8L9 66'¢  90—HLL9 66'€  90—HS8L9 08
See $0—H80T 66¢  F0—HS0'T 66¢  $0—HS0'1 66'¢  FO—HS0'I 66€  F0—HS0'T 66¢  F0—HS0'1 or
9°¢ €0—dIIT 86'¢  €0—HILl 86'¢  €O—HILI 86'¢  €O—HILI YOy €O—HILT 86'¢  €O—HILI 0T
- T0—HI9T - T0—H89C - C0—dILT - 20—dILT - 70—H£87T - 2T0—H0LT 01 od
00€  90—H66'C 00¢  90—HE0'E 00¢  90—HE0'E 00¢  90—HE0'E 00¢  90—HI0¢ 00¢  90—HE0'E 0ce
10¢  SO—H6£T 10¢  SO—HEFT 00¢  SO—HIY'T 10¢  SO—HEPT 00€  SO—HIY'T 10¢  SO—HEFT 091
10¢  $0—HT6'T 10€  $0—H96'T 10€  v0—aV6'T 10€  $0—H96'1 10€  Y0—HV6'T 10¢  H0—HS6'T 08
10¢  €0—HSS'T 10¢  €0—H8S'T 00 €0—H9S'T 10¢  €0—H8S’1 00€  €0—H9S'T 10¢  €0—H8S’T or
L6T  T0—HSTI 6T  T0—HLTI 96T T0—HST1 96T  T0—HLT1 96T  C0—HST1 96T  T0—HLT1 0T
- T0—H6L6 - T0—H98°6 - 10—HEL6 - 20—H88°6 - T0—H0L6 - 0—H886 01 zd
0T €0—HSLE 86T  $0—H88E 86’1  ¥O—dbbE L6T  $0—HTr'E 86’1  YO—drK'E L6T  $O—HEvE 0ce
LOT  €0—HIYL S6T  €0—HEST S6T  €0—HIE'T 6T €0—AVET S6T  €0—HSET Y6l €0—HVET 091
0TT  20—H6S'T 68T  €0—H06'S 06T  €0—HSTS L8T  €0—HPIS 06T  €0—HSTS LT €0—HST'S 08
LET  TO—HSYE LT T0—H6IT 8L T0—H96'I OLT  T0—HL8'1 LT T0—H961 OLT  T0—Hd88'1 ov
0T C0—HEr6 PP C0—HOE'L 651 TO—HELY ST T0—HOI'9 ST T0—HOL9 ¢S To—dIl9 0T
- 10—HI€T - 10—Hd86'1 - 10—HS6'T - 10—H8L1 - 10-HE6T - 10—HLLT 01 d
hotuo JOIID N\N Hvﬁho JOIID N\N .HQUHO JOIID N‘N uo_uuo JOIID NQ HU@HO JOIID N\N .Hvﬁho JOIID N\N
id —d b — b id —d b — b id — d Y — b
0=4Y=1go=n so—=o=1lg‘co—=n» 2667'0 — STONM— = = Ig‘66v0— = » N y

¢ = L dwn e (1) uonenba aAem 1op1o par oy 10y ¥b *d sojquLres AIeI[IXnE JO ASEINDIT JO SIOPIO PUE SIOLD T 9 3]qe)

pringer

as



857

Journal of Scientific Computing (2019) 78:816-863

€8°C LO—H98'S  00F 80—HILE 00v 80—HILE 00% 80—HIL'€E 00F 80—HSLE 00+ 80—HIL'E 00+ 80—HILE 0TE
0TT 90—dLI'Y 00t LO—HEG'S 00t LO—Hr6'S 00Y LO—HIO9 00t LO—H009 00 L0—H00'9 00+ LO—HIOY9 091
PPE SO—HC6'T  66'€ 90—HLY'6 66'¢ 90—H8Y'6 66'¢ 90—H656 66'€ 90—H8S'6 66'C 90—H6S'6 66'€ 90—H6S'6 08
98¢ $0—Hd80CT  66'¢ FO—HISI 66'¢ YO—HIS'T 66'¢ YO—HES'T 66'€ YO—HES'T 66'€ FO—HES'T 66'¢ PO—HEST OF
¥9°¢ €0—HE0'E  86'€ €0—HOKT 86'¢ €0—HO¥'T 86'¢ €0—HEY'T 86'¢ €0—HIFT 86'C €0—HIFT 86'¢ €O—HEFT 0T
- T0-d6LE - 70—d8L¢ - 70—-d8L¢ - T0-Hde8¢ - T0—HT8¢ - T0—HE8¢ - T0—d8¢ 01 d
00€ 90—dcTt  00°€ 90—HITY 00'€ 90—dETY 00€ 90—H8EY 00'€ 90—HLT¥ 00°€ 90—H6TH 00€ 90—d8CTH 0T
10°€ S0—d8¢'€  10°€ SO—H6EE 00€ SO—H6EE 00°€ SO—HEY'E 00°¢ SO—Hcr'e 10°€ SO—dpF'e 00€ SO—HEF'E 091
10€ $0—HILT  10€ $0—HILT 10€ $0—HIL'T 10€ $0—HSL'T 10 $0—HSL'T 10€ $0—HLLT 10€ ¥0—HSLT 08
10 €0—d61'C 10 €0—H6I'T 10 €0—H61°C 00¢ €0—HITT 00¢ €0—HITT 10°€ €0—HdETT 00€ €0—dITT OF
L6T TO—HIL'T 96T TO—HIL'T 96T TO—HIL'T 96T TO—HLL'T 96T TO—HLLT 96T TO—HOS'T 96T TO—HLLT 0T
- 10—d8¢'T - 10—HLET - 10—HLE'T - 10—H8¢'T - 10—HLET R (e (0 - 10—d8€T 01 od
00T 2T0—H60'T  L6T ¥0—H6LY 86'l $0—HO8'V 86l YO—HLSV 86’1 ¥O—HISY L6'T FO—HSSY 861 PO—HLSV 0TE
001 CO—d81'C 61 €0—H88'l S6'1 €0—H68'1 S6'1 €0—HT6'] S6'1 €0—HI6'T ¥6'1 €0—HO6'T 96’1 €0—H6'T 091
680 TO—dret 881 €0—HSTL 68’1 €0—H8TL 06'T €0—HEY'L 06’1 €0—HcrL L8T1 €0—H6TL 061 €O—dbrL 08
TL0 TO—HdC0'8  €L'T TO—HL9T vLT TO—H69T LL'T TO—HLLT LL'T TO—HLLT OLT TO—H99CT LLT TO—HS8LT OF
91 10—dceT  TST TO—HS8'8 TST T0—H86'8 ST TO—H9Y'6 TST TO—HISY'6 TS'T TO—H99'8 TST TO—HIS6 0T
- 10—d£9°¢ - 10—9¥ST - 10—HLST - 10—H0LT - 10—HOLT - 10—H6¥'C - 10—d2LT 01 d
Iapio Jou 7 Iapio Jo1 .7 Iapio 10112 -7 Iapio 10112 -7 Iaplo Jo1R 7 I9plo 10112 77 I3pio Jo1R .7
0=%=14 co=%o=1 ¢co=%YTo—=19 o0=UW'co—=19 66V0—STON=70¢d=1g— 0=t =14 0o=°t=1g
0="n SO=n 900—STONr—=0 go—=» 667'0— =0 so=mn So—=0 N ¥

¢ = L 38 (¢'T) uonenba I2FUIPQIYDS TESUI] AU} 10 1 10J AGLIOOT JO SIOPIO PUE SIOLID .7 /£ 3|qelL

pringer

Qs



Journal of Scientific Computing (2019) 78:816-863

858

€0°¢ 90—HL8E  00F S0—HOL'E 00t 80—H8L'E 007 80—H68°€¢ 00F 80—HILE 00+ 80—HIL'E 00+ 80—HIL'E 0TE
8I'¢ SO—HLI'E 00 LO—H009 00t L0—HS0'9 00Y LO—HTT9 00t LO—HIO9 00F LO—HIO9 00+ LO—H009 091
79T 0—H88T  66'€ 90—H656 66'¢ 90—H99'6 66'¢ 90—HE6'6 66'€ 90—H09'6 66'€ 90—H6S'6 66'€ 90—H6S'6 08
8L'0 €0—H9LT  66'C PO—HES' 66'¢ ¥0—drS’1 66'¢ ¥0—H8S'I 66'€ YO—HES'T 66'€ FO—HES'T 66'¢ PO—HEST OF
¥9°¢ €0—HE0'E  86'C €0—HIKT 86'¢ €0—HAVY'T 86'¢ €0—HIST 86'¢ €O—HEFT 86'C €O—HEFT 86'¢ €0—HIFT 0T
- T0-d6LE - 70—Hde8¢ - T0—-HdS8¢ - T0—H96°¢ - T0—HE8¢ - T0—HT8¢ - T0—d8¢ 01 d
00€ 90—dcTt  00°€ 90—H6TH 00'€ 90—d6T ¥ 00€ 90—dLY'¥ 00'€ 90—H6T¥ 00°€ 90—HSTH 00€ 90—H6TH 0TE
10°€ S0—d8¢'€  10°€ SO—dpbeE 10 SO—dLY'E 10 S0—H68°€ 106 SO—HSF'E 00€ SO—HEFE 10€ SO—APYE 091
10€ $0—HdILT  10€ $0—HLLT 10€ $0—H6L'T 10€ $0—H68'C 106 $0—HLLT 10°€ $0—HSLT 10€ $0—HLLT 08
10 €0—d61'C  10€ €0—HETT 10 €0—HSTT 10 €0—HEET 10¢ €0—HFCC 00€ €0—HITT 10€ €0—HdETT OF
L6T TO—HIL'T  S6'T TO—HOS'T S6'C TO—HT8’1 S6'C T0—H88'l 96T TO—HO8'T 96T TO—HLLT 96T TO—HOS'T 0T
- 10—d8¢'T - 10—H6¢'T - 10—dIt'T - 10—H9%' - 10—HO¥'I - 10—Hd8¢'1 - 10—HO¥'I 01 d
86'0 TO—ASKF1 L6l YO—HAYSY L6'T $0—H88b L6'T $0—HT0°S L6'T $O—HSSY 86’1 FO—HLSYV L6T FO—HSSV 0TE
060 C0—dL8T 61 €0—H06'I Y61 €0—HI6T €6’ €0—H96'1 P61 €0—HO6'T 96’1 €0—HI6'T +6'1 €0—H06'T 091
LY'0 TO—H8¢S  L8T €0—HSTL 981 €0—HIEL 981 €0—HISL L8T €0—HOEL 06T €0—dSHFL L81 €0—H6TL 08
790 To—dck'L  OL'T TO—HS9T 69'T T0—H99°C 69’1 TO—HTILT OL'T TO—H99'C LLT TO—H6LT OLT TO—H99CT OF
69T 10—drl'l ST TO—HI9'8 ST TO—HT9'8 8S'T TO—HLLS €61 TO—HE98 TSI TO—A¥S'6  €ST TO—HEYS 0T
- 10—d89°¢ - 10—H0SC - 10—HCST - 10—H29°C - 10—H6¥'C - 10—HELT - 10—d6¥T 01 d
Iapio Jou 7 Iapio Jo1 .7 Iapio 10112 -7 Iapio 10112 -7 Iaplo Jo1R 7 I9plo 10112 77 I3pio Jo1R .7
0=%=14 co=%o=1 ¢co=%YTo—=19 o0=UW'co—=19 66V0—STON=70¢d=1g— 0=t =14 0=Ctg=1g
0="n SO=n 900—STONr—=0 go—=» 667'0— =0 so=mn So—=0 N ¥

¢ = 1 18 (S'1) uonenbo 1o3urpoiyog 1eaur] ay) 10j ¥n = d yum Yd 10} KovINdIR JO SIOPIO pUB SIOLID <1 83|qel

pringer

as



Journal of Scientific Computing (2019) 78:816-863 859

o The second energy equation. We take the test functions v = —%(qh),, w = % prandz =0
in (4.10), use the definition of F),, F; and F), in (A.1), and obtain

1 1
0 = B(up, (pn)e, (qn)s; _E(qh)tv Eph, 0)

1 1
= _E /Q(“h)t(CIh)th + E XJ: </;, Pr(qn)ixdx + (Fp[(Qh)t])j_%)

1 1
+3 fﬂ (Pr)epndx + 5 ZJ: ( /1 (@ P+ (i) /—é)
_ ] d ! A3
=5 /Q(—(uh)z(%)z + (Pn)ipn)dx + 5 XJ: (Lpnllgn)eD) ;1 - (A3)

e The third energy equation. With o = % B1 = P2 =0, (4.14) becomes

2

1d 5 1 5
0 =B ()i, (p)is (@n)es W) (@), =(pw)) = 5 — /Q wn)idx + 2 Il .
J

(A4)
e The fourth energy equation. Here we take the test functions v = —pp, w = (up); and
z = gp, in (4.15), use the definition of F,, F; and F, in (A.1), and obtain
0= B (un, pn- (qn); s —Ph- Wn)¢ - qn)
= —/ (up); prdx + Z (/ Ph (pn)y dx + (Fp[ph])jé>
Q - I;
J J
+ / pr (up);dx + Z (f qn (Up)ix dx + (Fq[(uh)t])jé>
Q , I;
J J
+ / (qn); qndx + ) (/ Wn); (qn)x dx + ((Fu), [Qh])j_%>
Q - I;
J J
1d 5 1 2
= —-— d = - . A5
VT /Q (gn)* dx + 5 ;[ph].,,% (A5)
o The fifth energy equation. We take the time derivative of (4.15) and get
B((un)e, (pn)i. (qn)ers vow, 2) =0, Vo, w,z € V. (A.6)
With the test functions in (A.6) taken as v = —(pp);, w = (up)y and z = (qp);, using the

definition of F,, F, and F, in (A.1), we have

2

1
0= B(@n)i, ()i @n)er; —(pi)es i), (@n)e) = f (@0 (gnydx + 2 3 [l
@ j

(A7)

e Proof of Theorem 4.3
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Proof We sum up the energy equations (A.2)—(A.5) and (A.7), and get

d 2 1 2 2 2 2\ 1
0 lunla + 2 lprllg + un)dllg + llgnllg + I1(gn): g 2((Qh)ts (un)r)

~2ar
1
+3 Z (lan)® + an) P + [(pw)el* + Lol + [pallan)i]) ;_y - (A.8)
J
Thus, we have

1d

> 1 2 2 2 2 ! 2 2
577 \unlg + SUpalie +1@nidig + llanlie + Ign:die ) = 7 U@n:lig + I@n)illg)-

(A.9)

We integrate (A.9) with respect to time over [0, 7], and obtain
2 1 2 2 2 2
lupn(Dlig + EHPh(T)”Q + 1 un) (DG + llgn (DG + 1gn): (TG
1 2 2
=5 A Ugn): OIIg + 1) @) lIg)dt

1
+ (nuh(mné + Quph«))né + 1 @n) O 1% + lgr OIS + ||<qh)t<0)||%z> . (A10)
From the third energy equation (A.4) and the fifth energy equation (A.7), we have

Iwn)e(OIE < 1) O)F, 1@ Ol < @) O, Vi = 0. (A.11)

Therefore, we can obtain the L2 stability in Theorem 4.3. O

B The Derivation of the Conditions (4.18)

In this appendix, we will give the derivation of the conditions (4.18) that are to ensure the
matrices S; and S, in (4.22) to be positive semi-definite. For this, we use the following
sufficient and necessary condition for an n x n matrix to be positive semi-definite: all the
principal minors Dy are nonnegative,k = 1, ...n. Here, Dy is formed by deleting any n —k
rows and the corresponding columns. Additionally, we require the relation o + 818, = 1

e
which helps with simplifying the conditions and is also needed for optimal accuracy.
For the matrix S, the first principal minors are
1
Diy=—p1, Dip=—p2, Di3= X (B.1)
the second principal minors are
_p, a+05 _B Bi _
i B 0
Dy1=|405 1 |» D= 11, D23 :‘ ; (B.2)
5 3 53 0 —h
and the third principal minor is
Dy=15i= gt Lzt Lo (et 1) ®3)
3=l =gkt bib+ g bilat+ o) .
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N 8,=-1/8
& o -4 £
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- .

15} Ml e

A .
» 8 N i L -
] 2 -1.5 -1 -0.5 0

Fig.1 The region of B1, B> in the condition (4.18) for the stability. Left: « = 7,/% — B1B2; Right: a = 7‘]—‘

Let the first principal minors be nonnegative, we have f; < 0 and 8, < 0. From the second
principal minors being nonnegative, we obtain

1\2
2/32+<0t+5> =0, Bi2+B) =0, Bif2=0. (B.4)

Let the third principal minor D3 be nonnegative, with 8; < 0 and the assumption a+ Bi1B =
%, we get

2/32+/31,32+(01+%)2=2,32+oc+%SO. (B.5)

We observe that, with 818, > 0, the inequality (B.5) will automatically ensure the first
inequality in (B.4). Combining all we have so far, the following conditions are derived to
ensure S| be positive semi-definite

1 1
—2=p1 =0, f50, 2ptas—3, 0t2+ﬁ1,32=1- (B.6)

For the matrix S>, we follow the similar analysis as for Sj. By requiring all the first and
the second principal minors being nonnegative, we get

Bi+a =<0, B =0, (B.7)

1 2 1
8(B1 +a) + (5 - oz) <0, BB+ p2) =0, (¢+pB1)p2— Zﬂzz >0, (B3
Let the third order principal minor of S, be nonnegative, also with $, > 0, we obtain
1 2 1
8(B1 +a) + 5« + f2 5T« + BB + ) =28

1 2 3
=8(B1+ o)+ (5 - Ot> + B2(B1 — 5) <0. (B.9)
Using B> < 0 and assuming 1 < 0, one can see that (B.9) implies the first inequality in
(B.8), which on the other hand ensures the first inequality in (B.7). Combining (B.7)—(B.9)
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with a2 + B1B2 = %, we have the conditions for S> as

1 3 1
o’ +Bifa= T B1 <0, =8 <2 <0, 4B +a) < fa, 861 + Ta — Eﬂz <-3 (B.10)

Finally, we reach the conditions in (4.18) by putting (B.6) and (B.10) together. To get some
idea about these conditions in (4.18), we present two plots in Fig. 1. In the left figure, we

plot those pairs (S, B2) such that with the respective ¢ = —,/ % — B1B2, the conditions in

(4.18) are all satisfied. In the right figure, we fix ¢ = —i, and plot (81, B>) satisfying the

conditions in (4.18). Note that such (81, B2) form part of the parabola: 818> = % —a?= %,

see the solid line in red.
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