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Abstract
In this paper we analyze the convergence properties of V -cycle multigrid algorithms for the
numerical solution of the linear system of equations stemming from discontinuous Galerkin
discretization of second-order elliptic partial differential equations on polytopic meshes.
Here, the sequence of spaces that stands at the basis of the multigrid scheme is possibly non-
nested and is obtained based on employing agglomeration algorithmswith possible edge/face
coarsening. We prove that the method converges uniformly with respect to the granularity of
the grid and the polynomial approximation degree p, provided that the minimum number of
smoothing steps, which depends on p, is chosen sufficiently large.

Keywords Discontinuous Galerkin · Polygonal grids · Multi-level methods · V -cycle ·
Non-nested spaces

Mathematics Subject Classification 65F10 · 65M55 · 65N22

1 Introduction

The discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill for the
discretization of the neutron equation [59]. Then, DG methods have been proposed to deal
with elliptic and parabolic problems: some of the most relevant earlier works include Baker
[15], Wheeler [65] and Arnold [12], whose contributions put the basis for the development
of the interior penalty DG methods. In the last forty years the scientific and industrial com-
munity has shown a growing interest in DGmethods—see for example [36,37,52,60] and the
references therein for an overview. On the one hand, the features of DG methods have been
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naturally enhanced by the recent development of High Performance Computing technologies
as well as the growing request for high-order accuracy. In particular, as the discrete polyno-
mial space can be defined locally on each mesh element, DG methods feature a high-level
of intrinsic parallelism. Moreover, the local conservation properties and the possibility to
use meshes with hanging nodes make DG methods interesting also from a practical point of
view. Recently, it has been shown that DG methods can be extended to computational grids
characterized by polytopic elements, cf. Ref. [3–6,8,10,17–19,34,49,57,66]. In particular, the
efficient approach presented in [34] is based on defining a local polynomial discrete space
by making use of the bounding box of each element [48]: this technique together with a
careful choice of the discontinuity penalization parameter allow for polytopic elements that
can be characterized by faces of arbitrarily small measure and, as shown in [32], see also [8],
possibly by an unbounded number of faces.

The development of fast solvers and preconditioners for the linear system of equations
stemming from (high-order) DG discretizations has been an intensive research area in recent
years. A recent strand of the literature has focused on Schwarz domain decomposition
methods, cf. Ref. [1,2,6,9,31,41,42,44–46,54,64], and two-level and multigrid/multilevel
techniques, cf. Ref. [8,11,14,18,19,28–30,38,50]. The efficiency of those methods can be
further improved in the case of polygonal grids, because the flexibility of the element shape
couples very well with the possibility of defining agglomerated meshes, which is the key
ingredient for the development of multigrid algorithms. In [8] a two-level scheme and W -
cycle multigrid methods are analyzed to solve the linear system of equations arising from
high-order DG discretizations on polytopic grids. One iteration of the proposed methods
consists of an iterative application of the smoothing Richardson operator and a recursive
subspace correction step. In particular, the latter is based on a nested sequence of discon-
tinuous discrete polynomial spaces, where the underlying polytopic grids are defined by
agglomeration. While being perfectly suited for multilevel schemes, the process of element
agglomeration might feature itself some limitations. Indeed, agglomeration leads to coarser
grids with an increasing number of faces and this might affect the conditioning of the coarser
components of the solver and the overall efficiency.

In this paper we aim at overcoming this issue by analyzing a multigrid method charac-
terized by a sequence of non-nested agglomerated meshes in order to make sure that the
number of faces of the agglomerates does not blows up as the number of levels of our
multigrid method increases. This can be achieved, for example, based on employing edge-
coarsening techniques in the agglomeration procedure. The flexibility in the choice of the
computational sub-grids leads to the definition of a non-nested multigrid method character-
ized by a sequence of non-nested multilevel discrete spaces and where the discrete bilinear
forms are chosen differently on each level, cf. Ref. [20,69,70]. The first non-nestedmultilevel
method was introduced by Bank and Dupont in [16]; a generalized framework was devel-
oped by Bramble, Pasciak and Xu in [26], and then widely used in the analysis of non-nested
multigrid iterations, cf. Ref. [21–25,27,51,61,67,68]. The method of [26], to whom we will
refer as the BPX multigrid framework, is able to generalize also the multigrid framework
that we will develop in this paper, but the convergence analysis relies on the assumption that
A j (I

j
j−1u, I jj−1u) ≤ A j−1(u, u), which might not be guaranteed in the DG setting, as we

will see in Sect. 4.2. Here A j (·, ·) and A j−1(·, ·) are the bilinear forms on two consecu-

tive levels, and I jj−1 is the prolongation operator whose definition is not trivial, differently
from the nested case. For this reason the convergence analysis will be presented based on
employing the abstract setting proposed by Duan, Gao, Tan and Zhang in [43], which permits
to develop a full analysis of V -cycle multigrid methods in a non-nested framework relax-
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ing the hypothesis A j (I
j
j−1u, I jj−1u) ≤ A j−1(u, u). We prove that our V -cycle scheme

with non-nested spaces converges uniformly with respect to the discretization parameters,
namely the mesh size h and the polynomial degree p, provided that the number of smoothing
steps, which depends on p, is chosen sufficiently large. This result extends the theory of [8]
whereW -cycle multigrid methods for high-order DG methods with nested spaces have been
proposed and analyzed.

The paper is organized as follows. In Sect. 2 we introduce the interior penalty DG scheme
for the discretization of second-order elliptic problems on general meshes consisting of
polygonal/polyhedral elements. In Sect. 3, we recall some preliminary results concerning this
class of schemes. In Sect. 4we define themultilevel BPX framework for theV -cyclemultigrid
solver based on non-nested grids, and present the convergence analysis of our algorithm. The
main theoretical results are validated through a series of numerical experiments in Sect. 5. In
Sect. 6 we propose an improved version of the algorithm, obtained by choosing a smoothing
operator based on a domain decomposition preconditioner. Finally, in Sect. 7 we draw some
conclusions.

2 Model Problem and Its DG Discretization

We consider the weak formulation of the Poisson problem, subject to homogeneous Dirichlet
boundary conditions: find u ∈ V = H2(Ω) ∩ H1

0 (Ω) such that

A(u, v) =
∫

Ω

∇u · ∇v dx =
∫

Ω

f v dx ∀v ∈ V , (1)

with Ω ⊂ R
d , d = 2, 3, a convex polygonal/polyhedral domain with Lipschitz boundary

and f ∈ L2(Ω). The unique solution u ∈ V of problem (1) satisfies

‖u‖H2(Ω) ≤ C‖ f ‖L2(Ω). (2)

In view of the forthcoming multigrid analysis, let {T j }Jj=1 be a sequence of tessellation
of the domain Ω , each of which is characterized by disjoint open polytopic elements κ of
diameter hκ , such that Ω = ⋃

κ∈T j
κ̄ , j = 1, . . . , J . The mesh size of T j is denoted by

h j = maxκ∈T j hκ . For the sake of simplicity, we assume that on each level the mesh T j is
quasi-uniform. To each T j we associate the corresponding discontinuous finite element space
Vj , defined as

Vj = {v ∈ L2(Ω) : v|κ ∈ Pp j (κ), κ ∈ T j },
where Pp j (κ) denotes the space of polynomials of total degree at most p j ≥ 1 on κ ∈ T j .

Remark 1 For the sake of brevity we use the notation x � y to mean x ≤ Cy, where C > 0
is a constant independent from the discretization parameters. Similarly we write x � y in
lieu of x ≥ Cy, while x � y is used if both x � y and x � y hold.

A suitable choice of {T j }Jj=1 and {Vj }Jj=1 leads to the non-nested hp-multigrid schemes.

This method is based on employing a set of non-nested polytopic partitions {T j }Jj=1, such
that the coarse level T j−1 is independent from T j , with the only constraint

h j−1 � h j ≤ h j−1 ∀ j = 2, . . . , J . (3)

We also assume that the polynomial degree varies from one level to another such that

p j−1 ≤ p j � p j−1 ∀ j = 2, . . . , J . (4)
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Additional assumptions on the grids {T j }Jj=1 are outlined in the following paragraph.

2.1 Grid Assumptions

For any T j , we define the faces of the mesh T j , j = 1, . . . , J , as the intersection of the
(d − 1)-dimensional facets of neighboring elements. This implies that, for d = 2, a face
always consists of a line segment, whereas for d = 3, the faces of T j are general shaped
polygons. Thereby, we assume that each face of an element κ ∈ T j can be subdivided into
a set of co-planar (d − 1)-dimensional simplexes and we refer to them as faces. In order to
introduce theDG formulation, it is helpful to distinguish between boundary and interior faces,
denoted as F B

j and F I
j , respectively. In particular, we observe that F ⊂ ∂Ω for F ∈ F B

j ,

while for any F ∈ F I
j , F ⊂ ∂κ±, where κ± are two adjacent elements in T j . Furthermore,

we denoted by F j = F I
j ∪F B

j the set of all mesh faces of T j . With this notation, we assume
that the sub-tessellation of element interfaces into (d − 1)-dimensional simplexes is given.
Moreover, for the forthcoming analysis, we require that the following assumptions hold, cf.
[32,33].

Assumption 1 For any j = 1, . . . , J , given κ ∈ T j there exists a set of non-overlapping
d-dimensional simplexes Tl ⊂ κ , l = 1, . . . , nκ , such that for any face F ⊂ ∂κ it holds that
F = ∂κ ∩ ∂Tl , for some l, ∪nκ

l=1Tl ⊂ κ , and the diameter hκ of κ can be bounded by

hκ � d|Tl |
|F | ∀ l = 1, . . . , nκ .

Assumption 2 For any κ ∈ T j , j = 1, . . . , J , we assume that hdκ ≥ |κ| � hdκ , where
d = 2, 3 is the dimension of Ω .

Assumption 3 Every polytopic element κ ∈ T j , j = 1, . . . , J , admits a sub-triangulation
into at most mκ shape-regular simplexes {si }mκ

i=1, for some mκ ∈ N, such that κ = ∪mκ

i=1si
and

|si| � |κ| ∀i = 1, . . . ,mκ ,

Assumption 4 For each T j , j = 1, . . . , J , we assume that there exists a covering T #
j = {Sκ }κ

of T j consisting of shape-regular d-dimensional simplexes Sκ , such that, for any κ ∈ T j ,
there is Sκ ∈ T #

j satisfying κ ⊂ Sκ and hSK := diam(SK ) � hκ . We also assume that for
any j = 1, . . . , J , it holds

max
κ∈T j

card
{
κ ′ ∈ T j : κ ′ ∩ Sκ �= ∅,Sκ ∈ T #

j such that κ ⊂ Sκ

}
� 1.

Remark 2 Assumption 1 is needed in order to obtain the trace inequalities of Lemmas 1 and 2
below. Assumptions 2 and 3 are required for the inverse estimates of Lemma 5 and Theorem 5
below. Assumption 4 guarantees the validity of the approximation result and error estimates
of Lemma 4 and Corollary 1, respectively.

Remark 3 Assumption 1 allows to employ very general polygonal and polyhedral elements.
Indeed, if κ ∈ T j is a polygonal/polyhedral element and F ⊂ ∂κ is one of its faces, then
Assumption 1 allows the size of F to be small compared to the diameter hκ of κ , provided
that the height of the related simplex Tl , with base F , is comparable to hκ . We refer to [32]
for more details.
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2.2 DG Formulation

In order to introduce the DG discretization of (1), we first need to define suitable jump and
average operators across the faces F ∈ F j , j = 1, . . . , J . Let τ and v be sufficiently smooth
functions. For each internal face F ∈ F I

j , such that F is shared by κ± ∈ T j , let n± be the
outward unit normal vector to ∂κ±, and let τ± and v± be the traces of τ and v on F from
κ±, respectively. The jump and average operators across F are then defined as follows:

�τ � = τ+ · n+ + τ− · n−, {{τ }} = τ+ + τ−

2
, F ∈ F I

j ,

�v� = v+n+ + v−n−, {{v}} = v+ + v−

2
, F ∈ F I

j .

If F ∈ F B
j is a boundary face, we set accordingly {{τ }} = τ , �v� = v n, cf. [13]. Let

R j : [L1(F j )]d → [Vj ]d be the lifting operator defined as∫
Ω

R j (q) · η = −
∫
F j

q · {{η}} ds ∀ η ∈ [Vj ]d ,

cf. [13].
With this notation, the bilinear formA j (·, ·) : Vj ×Vj → R corresponding to the symmetric
interior penalty DG method on the j-th level is defined by

A j (u, v) =
∑
κ∈T j

∫
κ

[
∇u · ∇v + R j (�u�) · ∇v + R j (�v�) · ∇u

]
dx

+
∑
F∈F j

∫
F

σ j �u� · �v� ds, (5)

where, according to [39,40], σ j ∈ L∞(F j ) denotes the interior penalty stabilization function,
which is defined by

σ j (x) = C j
σ

p2j
{hκ }H , x ∈ F ∈ F j , (6)

with C j
σ > 0 independent of p j , |F | and |κ|, and where {·}H is the harmonic average given

by

{hκ }H =
⎧⎨
⎩

2hκ+hκ−

hκ+ + hκ−
, F ∈ F I

j , F ⊂ ∂κ+ ∩ ∂κ−,

hκ , F ∈ F B
j , F ⊂ ∂κ ∩ ∂Ω.

Remark 4 Formulation (5) is based on the lifting operators R j and allows to introduce the
discrete gradient operator G j : Vj → [Vj ]d , defined as

G j (v) = ∇ jv + R j (�v�) ∀ j = 1, . . . , J , (7)

where ∇ j is the piecewise gradient operator on the space Vj . The role of G j will be clear in
Sect. 4.2.

The goal of this paper is to develop non-nested V -cycle multigrid schemes to solve the
following problem posed on the finest level VJ : find uJ ∈ VJ such that

AJ (uJ , vJ ) =
∫

Ω

f vJ dx ∀vJ ∈ VJ . (8)
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3 Preliminary Results

In this section we recall some preliminary results that form the basis of the convergence
analysis presented in the next section.

Lemma 1 Assume that the sequence of meshes {T j }Jj=1 satisfies Assumption 1. Let κ ∈ T j ,
the following bound holds

‖v‖2L2(∂κ)
� ε

hκ

‖v‖2L2(κ)
+ hκ

ε
|v|2H1(κ)

∀v ∈ H1(κ),

where hκ is the diameter of κ and ε > 0 is a positive number.

The proof of Lemma 1 combines Assumption 1 with the idea of [37, Proof of Lemma 1.49].

Lemma 2 Assume that the sequence of meshes {T j }Jj=1 satisfies Assumption 1. Let κ ∈ T j ,
the following bound holds

‖v‖2L2(∂κ)
�

p2j
hκ

‖v‖2L2(κ)
∀v ∈ Pp j (κ).

We refer to [32] for the proof.
We endow each discrete space Vj , j = 1, . . . , J , with the following DG norm:

‖w‖2DG, j =
∑
κ∈T j

∫
κ

|∇w|2 dx +
∑
F∈F j

∫
F

σ j |�w�|2 ds. (9)

The well-posedness of the DG formulation (8) on each level j = 1, . . . , J is established in
the following lemma.

Lemma 3 The following continuity and coercivity bounds, respectively, hold:

A j (u, v) � ‖u‖DG, j‖v‖DG, j ∀u, v ∈ Vj ,

A j (u, u) � ‖u‖2DG, j ∀u ∈ Vj .

The second bound holds provided that the constants C j
σ , j = 1, . . . , J , appearing in (6) are

chosen sufficiently large.

Next, we recall the following approximation result, which is an analogous bound pre-
sented in [34, Theorem 5.2]. This result exploits the properties of the extension operator
E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v and ‖Ev‖Hs (Rd ) � ‖v‖Hs (Ω),
introduced in [62].

Lemma 4 Let Assumption 4 be satisfied, and let v ∈ L2(Ω) such that, for some k ≥ 0,
v ∈ Hk(κ) and Ev|Sκ ∈ Hk(Sκ ) for each κ ∈ T j , with Sκ ∈ T #

j as defined in Assumption 4.

Then, there exists a projection operator Π̃ j : L2(Ω) → Vj such that

∑
κ∈T j

‖v − Π̃ jv‖Hq (κ) �
∑
κ∈T j

hs−q
κ

pk−q
κ

‖Ev‖Hk (Sκ ), f or 0 ≤ q ≤ k,

where s = min{p j + 1, k} and p j ≥ 1.
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Remark 5 From Lemma 4, for uniform orders pκ = p j and hκ = h j ∀ j = 1, . . . , J , we
point out that, if v ∈ Hk(Ω), the following bound follows:

‖v − Π̃ jv‖Hq (T j ) �
hs−q
j

pk−q
j

‖v‖Hk (Ω), f or 0 ≤ q ≤ k.

The result presented in Lemma 4 leads to the following error bounds for the underlying
interior penalty DG scheme, which follows from the energy norm error bounds that have
been proved in [34], see also [32] in the general case. The corresponding L2-estimates can
be found in [8].

Corollary 1 Assume that Assumptions 1 and 4 hold. Let u j ∈ Vj , j = 1, . . . , J , be the DG
solution of problem (8) posed on level j , i.e.,

A j (u j , v j ) =
∫

Ω

f v j dx ∀v j ∈ Vj .

If the solution u of (1) is sufficiently regular, i.e. u ∈ Hk(Ω) ∩ H1
0 (Ω), k ≥ 2, then

‖u − u j‖DG, j �
hs−1
j

p
k− 3

2
j

‖u‖Hk (Ω), ‖u − u j‖L2(Ω) �
hsj

pk−1
j

‖u‖Hk (Ω),

where s = min{p j + 1, k} and p j ≥ 1.

Remark 6 We point out that the bounds in Corollary 1 are optimal in h and suboptimal in p of

a factor p
1
2 and p for the DG-norm and the L2-norm, respectively. Optimal error estimates

with respect to p can be shown, for example, by using the projector of [47] for quadrilateral
meshes providing the solution belongs to a suitable augmented Sobolev space. The issue of
proving optimal estimates as the ones in [47] on polytopic meshes is an open problem and it
is under investigation. In the following, we will write:

‖u − u j‖DG, j �
hs−1
j

p
k−1− μ

2
j

‖u‖Hk (T j )
, ‖u − u j‖L2(Ω) �

hsj

pk−μ
j

‖u‖Hk (T j )
,

where s = min{p j + 1, k}, p j ≥ 1, and μ ∈ {0, 1} for optimal and suboptimal estimates,
respectively.

We also need to introduce an appropriate inverse inequality, cf. [8].

Lemma 5 Assume that Assumptions 2 and 3 hold. Then, for any v ∈ Vj , j = 1, . . . , J , the
following inverse estimate holds

‖∇u‖2L2(κ)
� p4j h

−2
κ ‖u‖2L2(κ)

∀κ ∈ T j .

Thanks to the inverse estimate of Lemma 5, it is possible to obtain the following upper bound
on the maximum eigenvalue ofA j (·, ·). We refer to [7] for a similar result on standard grids,
and to [8] for its extension to polygonal grids.

Theorem 5 Let Assumptions 1, 2 and 3 be satisfied. Then

A j (u, u) �
p4j
h2j

‖u‖2L2(Ω)
∀u ∈ Vj , j = 1, . . . , J .
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4 The BPX-Framework for the V -cycle Algorithms

The analysis presented in this section is based on the general multigrid theoretical framework
of [26] for multigrid methods with non-nested spaces and non-inherited bilinear forms. In
order to develop a geometric multigrid, the discretization at each level Vj follows the one
already presented in [11], where a W -cycle multigrid method based on nested subspaces is
considered. The key ingredient in the construction of our proposed multigrid schemes is the
inter-grid transfer operators.

First, we introduce the operators A j : Vj → Vj , defined as

(A jw, v)L2(Ω) = A j (w, v) ∀w, v ∈ Vj , j = 1, . . . , J , (10)

and we denote by Λ j ∈ R the maximum eigenvalue of A j , j = 2, . . . , J . Moreover, let Id j

be the identity operator on the level Vj . The smoothing scheme, which is chosen to be the
Richardson iteration, is given by

Bj = Λ j Id j j = 2, . . . , J .

The prolongation operator connecting the coarser space Vj−1 to the finer space Vj is

denoted by I jj−1. Since the two spaces are non-nested, i.e. Vj−1 �⊂ Vj , it cannot be chosen
as the natural injection operator. The most natural way to define the prolongation operator is
the L2-projection, i.e. I jj−1 : Vj−1 → Vj

(I jj−1vH , wh)L2(Ω) = (vH , wh)L2(Ω) ∀wh ∈ Vj , (11)

The restriction operator I j−1
j : Vj → Vj−1 is defined as the adjoint of I jj−1 with respect to

the L2(Ω)-inner product, i.e.,

(I j−1
j wh, vH )L2(Ω) = (wh, I

j
j−1vH )L2(Ω) ∀vH ∈ Vj−1.

For our analysis, we also need to introduce the operator P j−1
j : Vj → Vj−1

A j−1(P
j−1
j wh, vH ) = A j (wh, I

j
j−1vH ) ∀vH ∈ Vj−1, wh ∈ Vj .

According to (10), problem (8) can be written in the following equivalent form: find
uJ ∈ VJ such that

AJu J = f J , (12)

where f J ∈ VJ is defined as ( f J , v)L2(Ω) = ∫
Ω

f v dx ∀v ∈ VJ . Given an initial guess
u0 ∈ VJ , and choosing the parametersm1,m2 ∈ N, the multigrid V -cycle iteration algorithm
for the approximation of uJ is outlined inAlgorithm1. In particular,MGV (J , f J , uk,m1,m2)

represents the approximate solution obtained after one iteration of our non-nested V -cycle
scheme, which is defined by induction: if we consider the general problem of finding z ∈ Vj

such that

A j z = g, (13)

with j ∈ {2, . . . , J } and g ∈ L2(Ω), thenMGV ( j, g, z0,m1,m2) represents the approximate
solution of (13) obtained after one iteration of the non-nested V -cycle scheme with initial
guess z0 ∈ Vj and m1, m2 pre-smoothing and post-smoothing steps, respectively. The
recursive procedure is outlined in Algorithm 2, where we also observe that on the level j = 1
the problem is solved exactly.
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Algorithm 1Multigrid V -cycle iteration for the solution of problem (12)
Initialize u0 ∈ VJ ;
for k = 0, 1, . . . do

uk+1 = MGV (J , f J , uk ,m1,m2);
uk = uk+1;

end for

Algorithm 2 One iteration of the Multigrid V -cycle scheme on the level j ≥ 2
if j=1 then

MGV (1, g, z0,m1,m2) = A−1
1 g.

else
Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) + B−1
j (g − A j z

(i−1));
end for

Coarse grid correction:

r j−1 = I j−1
j (g − A j z

(m1));
e j−1 = MGV ( j − 1, r j−1, 0,m1,m2);

z(m1+1) = z(m1) + I jj−1e j−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 + m2 + 1 do

z(i) = z(i−1) + B−1
j (g − A j z

(i−1));
end for

MGV ( j, g, z0,m1,m2) = z(m1+m2+1).
end if

4.1 Convergence Analysis

We first define the following norms on each discrete space Vj

|||v|||s, j =
√

(As
jv, v)L2(Ω) ∀ s ∈ R, v ∈ Vj , j = 1, . . . , J .

To analyze the convergence of the algorithm, for any j = 2, . . . , J , we setG j = Id j−B−1
j A j

and define G∗
j as its adjoint with respect toA j (·, ·). Following [43], we make three standard

assumptions in order to prove convergence of Algorithm 1:

A.1 Stability estimate: ∃ CQ > 0 such that

|||(Id j − I jj−1P
j−1
j )vh |||1, j ≤ CQ |||vh |||1, j ∀vh ∈ Vj , j = 2, . . . , J .

A.2 Regularity-approximation property: ∃ CA > 0 such that

∣∣A j ((Id j − I jj−1P
j−1
j )vh, vh)

∣∣ ≤ CA
|||vh |||22, j

Λ j
∀vh ∈ Vj , j = 2, . . . , J .

A.3 Smoothing property: ∃ CR > 0 such that

‖vh‖L2(Ω)

Λ j
≤ CR

(
Rvh, vh

)
L2(Ω)

∀vh ∈ Vj , j = 2, . . . , J ,

where R = (
Id j − G∗

j G j
)
A−1
j .
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The convergence analysis of the V -cycle method is stated in the following theorem that gives
an estimate for the error propagation operator related to the j-th level iteration with m1 and
m2 pre- and post-smoothing steps, respectively. The error propagation operator is defined as

{
E1,m1,m2v = 0, j = 1,

E j,m1,m2v = G
∗
j,m2

(Id j − I jj−1P
j−1
j + I jj−1E j−1,m1,m2 P

j−1
j )G j,m1v, j > 1,

where G j,m = (G j )
m and G

∗
j,m = (G∗

j )
m , m ≥ 1.

Theorem 6 If Assumptions A.1, A.2 and A.3 hold, then
∣∣A j (E j,m,mu, u)

∣∣ ≤ δ jA j (u, u) ∀u ∈ Vj , j = 2, . . . , J

where δ j = CACR
m−CACR

< 1, provided that m > 2CACR.

We refer to [43] for the proof of Theorem 6 in an abstract setting. In the following, we prove
the validity of Assumptions A.1, A.2 and A.3 for our algorithm. We start with a two-level
approach, i.e. J = 2, and we consider the two-level method for the solution of (8), based on
two spaces VJ−1 �⊂ VJ . The generalization to the V -cycle method will be given at the end
of this section.

4.2 Validity of AssumptionA.1

In order to verify Assumption A.1 for the two-level method we first show a stability result of
the prolongation operator I JJ−1. In the following, we also consider the L

2-projection operator
on the space VJ defined as

QJ : L2(Ω) → VJ , such that (QJw, vJ )L2(Ω) = (w, vJ )L2(Ω) ∀vJ ∈ VJ .

Remark 7 From the definition of I JJ−1 given in (11), it holds I JJ−1 = QJ |VJ−1 .

Moreover, we need the following approximation result which shows that any v j ∈ Vj , j =
J − 1, J , can be approximated by an H1-function, see [9]. Let G j be the discrete gradient
operator (7) introduced in Remark 4, and consider the following problem: ∀v j ∈ Vj , find
H(v j ) ∈ H1

0 (Ω) such that
∫

Ω

∇H(v j ) · ∇w dx =
∫

Ω

G j (v j ) · ∇w dx ∀w ∈ H1
0 (Ω). (14)

It is shown in [9] that H(·) possesses good approximation properties in terms of providing
an H1-conforming approximant of the discontinuous function v j :

Theorem 7 Let Ω be a bounded convex polygonal/polyhedral domain in R
d , d = 2, 3.

Given v j ∈ Vj , we writeH(v j ) ∈ H1
0 (Ω) to be the approximation defined in (14). Then, the

following approximation and stability results hold:

‖v j − H(v j )‖L2(Ω) � h j

p j
‖σ

1
2
j �v j �‖L2(Fh)

, |H(v j )|H1(Ω) � ‖v j‖DG, j . (15)

We make use of the previous result in order to show the following stability result of the
prolongation operator:
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Lemma 6 There exists a positive constant Cstab = Cstab(pJ ), independent of the mesh size
such that

‖I JJ−1vH‖DG,J ≤ Cstab(pJ ) ‖vH‖DG,J−1 ∀vH ∈ VJ−1.

Here Cstab(pJ ) = O(pJ ).

Proof Let vH ∈ VJ−1, by the definition of the DG norm (9), we need to estimate:

‖I JJ−1vH‖2DG,J = ‖∇J (I
J
J−1vH )‖2L2(TJ )

+ ‖σ
1
2
J |�I JJ−1vH �|‖2L2(FJ )

. (16)

We next bound each of the two terms on the right hand side separately. For the first one we
let HH = H(vH ) be defined as in (14). Then:

‖∇J (I
J
J−1vH )‖2L2(TJ )

≤ ‖∇J (I
J
J−1vH − Π̃J (HH ))‖2L2(TJ )

+ ‖∇J (HH − Π̃J (HH ))‖2L2(TJ )
+ |HH |2H1(Ω)

, (17)

where we have added and subtracted the terms ∇J Π̃J (HH ) and ∇HH . The second term of
the right hand above side can be estimated using the interpolation bounds of Lemma 4, the
Poincaré inequality for HH ∈ H1

0 (Ω) and the second bound of (15):

‖∇J (HH − Π̃J (HH ))‖2L2(TJ )
� |HH |2H1(Ω)

� ‖vH‖2DG,J−1.

In order to estimate the first term on the right hand side in (17) we observe that, since
I JJ−1vH − Π̃J (HH ) ∈ VJ , it is possible to make use of the inverse inequality of Lemma 5,
that leads to the following bound:

‖∇J (I
J
J−1vH − Π̃J (HH ))‖2L2(TJ )

� p4J h
−2
J ‖I JJ−1vH − Π̃J (HH )‖2L2(TJ )

. (18)

By adding and subtracting HH to ‖I JJ−1vH − Π̃J (HH )‖2
L2(TJ )

we obtain

‖I JJ−1vH − Π̃J (HH )‖2L2(TJ )
� ‖I JJ−1vH − HH‖2L2(TJ )

+ ‖HH − Π̃J (HH )‖2L2(TJ )
.

(19)

Using Lemma 4 and the Poincaré inequality (since HH ∈ H1
0 (Ω)) we have

‖HH − Π̃J (HH )‖2L2(TJ )
�

h2J
p2J

‖HH‖2H1(Ω)
�

h2J
p2J

‖vH‖2DG,J−1,

whereas the term ‖I JJ−1vH − HH‖2
L2(TJ )

can be estimate as follow:

‖I JJ−1vH − HH‖2L2(TJ )
� ‖I JJ−1vH − QJ (HH )‖2L2(TJ )

+ ‖HH − QJ (HH )‖2L2(TJ )

Using Remark 7, the continuity of QJ with respect to the L2-norm, Lemma 4 and (15) we
have

‖I JJ−1vH − HH‖2L2(TJ )
� ‖QJ (vH − HH )‖2L2(TJ )

+ ‖HH − QJ (HH )‖2L2(TJ )

� ‖vH − HH‖2L2(TJ )
+ ‖HH − Π̃J (HH )‖2L2(TJ )

�
h2J
p2J

‖σ
1
2
J �vH �‖2L2(FJ )

+ h2J
p2J

‖HH‖2H1(Ω)
�

h2J
p2J

‖vH‖2DG,J−1.
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Thanks to the previous estimates and inequality (19), we obtain

‖I JJ−1vH − Π̃J (HH )‖2L2(TJ )
�

h2J
p2J

‖vH‖2DG,J−1. (20)

The above estimate, together with (18), (17) and the second bound of (15) lead to

‖∇J (I
J
J−1vH )‖2L2(TJ )

� p2J ‖vH‖2DG,J−1. (21)

Next we bound the second term on the right hand side in (16). By the definition of the
jump term and remembering that �HH � = 0 ∀F ∈ FJ since HH ∈ H1

0 (Ω), it holds

‖σ
1
2
J �I JJ−1vH �‖2L2(FJ )

�
p2J
h J

∑
κ∈TJ

(
‖I JJ−1vH − Π̃J (HH )‖2L2(∂κ)

+ ‖Π̃J (HH ) − HH‖2L2(∂κ)

)
, (22)

where we also used the definition of σJ . Now, we first observe that we can use the trace
inequality of Lemma 2 in order to obtain

‖I JJ−1vH − Π̃J (HH )‖2L2(∂κ)
�

p2J
h J

‖I JJ−1vH − Π̃J (HH )‖2L2(κ)
. (23)

To bound the second term on the right hand side in (22), we first exploit the continuous trace
inequality on polygons of Lemma 1 with ε = pJ , obtaining

‖Π̃J (HH ) − HH‖2L2(∂κ)
� pJ

h J
‖Π̃J (HH ) − HH‖2L2(κ)

+ hJ

pJ
|Π̃J (HH ) − HH |2H1(κ)

,

then, by summing over κ ∈ TJ , using the approximation property of Lemma 4 and the
Poincaré inequality, we obtain

∑
κ∈TJ

‖Π̃J (HH ) − HH‖2L2(∂κ)
� pJ

h J

h2J
p2J

‖HH‖2L2(Ω)
+ hJ

pJ
‖HH‖2H1(Ω)

� hJ

pJ
|HH |2H1(Ω)

.

From the previous inequality and the bound (23), (22) becomes:

‖σ
1
2
J �I JJ−1vH �‖2L2(FJ )

�
p4J
h2J

‖I JJ−1vH − Π̃J (HH )‖2L2(TJ )
+ pJ |HH |2H1(Ω)

� p2J‖vH‖2DG,J−1,

where we also used inequality (20). This estimate together with (21) leads to

‖I JJ−1vH‖DG,J ≤ Cstab(pJ ) ‖vH‖DG,J−1 ∀vH ∈ VJ−1.

where Cstab(pJ ) = O(pJ ). ��
We can use the previous result in order to prove that Assumption A.1 holds. We first

observe that also the operator P J−1
J satisfies a similar stability estimate as the one of I JJ−1,

that is

‖P J−1
J vh‖2DG,J−1 � AJ−1(P

J−1
J vh, P

J−1
J vh) = AJ (vh, I

J
J−1P

J−1
J vh)
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� ‖vh‖DG,J‖I JJ−1P
J−1
J vh‖DG,J � Cstab(pJ ) ‖vh‖DG,J‖P J−1

J vh‖DG,J ,

from which it follows

‖P J−1
J vh‖DG,J−1 � Cstab(pJ ) ‖vh‖DG,J .

Proposition 1 Assumption A.1 holds with CQ � p2J .

Proof Let vH ∈ VJ−1, making use of Lemma 3 we have

AJ (I
J
J−1vH , I JJ−1vH ) � ‖I JJ−1vH‖2DG,J � p2J ‖vH‖2DG,J−1 � p2J AJ−1(vH , vH ).

Similarly, it holds

AJ−1(P
J−1
J vh, P

J−1
J vh) � p2J AJ (vh, vh) ∀vh ∈ VJ . (24)

Let vh ∈ VJ and set vH = P J−1
J vh , then the following inequality holds:

AJ (I
J
J−1P

J−1
J vh, I

J
J−1P

J−1
J vh) � p2J AJ−1(P

J−1
J vh, P

J−1
J vh). (25)

By adding and subtracting vh to both arguments ofAJ (·, ·) on the left hand side of (25), and
using (24) we obtain

AJ ((IdJ − I JJ−1P
J−1
J )vh, (IdJ − I JJ−1P

J−1
J )vh)︸ ︷︷ ︸

=|||(IdJ−I JJ−1P
J−1
J )vh |||21,J

�
(
p2J

(
p2J − 2

) + 1
)

︸ ︷︷ ︸
≤p4J

AJ (vh, vh),

that concludes the proof. ��

4.3 Validity of Assumption A.2

In order to show the validity of Assumption A.2 we need the following standard approxima-
tion result, which is proved in “Appendix”.

Lemma 7 Let Assumptions 1–4 hold. Then

‖(IdJ − I JJ−1P
J−1
J )vJ‖L2(Ω) �

h2J
p2−μ
J

|||vJ |||2,J ∀vJ ∈ VJ . (26)

Thanks to Lemma 7, it is possible to show the following result.

Theorem 8 The regularity-approximation property A.2 holds with CA � p2+μ
J , μ = 0, 1.

Proof Theorem 5 gives the following bound of the maximum eigenvalue of AJ : ΛJ � p4J
h2J

.

Using Lemma 7, the above bound on ΛJ , and the symmetry of AJ (·, ·) we have, for all
v ∈ VJ :

AJ ((IdJ − I JJ−1P
J−1
J )v, v) ≤ |||v|||2,J |||(IdJ − I JJ−1P

J−1
J )v|||0,J �

h2J
p2−μ
J

|||v|||22,J

� p2+μ
J

|||v|||22,J
ΛJ

,

and the proof is complete. ��
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4.4 Validity of Assumption A.3

Proposition 2 Assumption A.3 holds with CR = O(1).

Proof We have:

R = (
IdJ − G∗

J G J
)
A−1
J =

( 2

ΛJ
AJ − 1

Λ2
J

AJ AJ

)
A−1
J = 1

ΛJ

(
IdJ +

(
IdJ − 1

ΛJ
AJ

))
,

and so

(
Ru, u

)
L2(Ω)

= ‖uh‖L2(Ω)

ΛJ
+

((
IdJ − 1

ΛJ
AJ

)
u, u

)
L2(Ω)

.

We now prove that
(
IdJ − 1

ΛJ
AJ

)
is a positive definite operator. By contradiction, let us

suppose that there exists a function u ∈ VJ , u �= 0, such that

ΛJ (u, u)L2(Ω) < AJ (u, u). (27)

By Lemma 3 and the symmetry of the bilinear form AJ (·, ·), the eigenfunctions {φ J
k }NJ

k=1
satisfy

AJ (φ
J
k , v) = λJ

k (φ J
k , v)L2(Ω) ∀v ∈ VJ ,

where 0 < λJ
1 ≤ λJ

2 ≤ · · · ≤ λJ
NJ

= ΛJ . The set of eigenfunctions is an orthonormal basis

for the space VJ , i.e. (φ J
i , φ J

j )L2(Ω) = δi j , and satisfiesAJ (φ
J
i , φ J

j ) = λJ
i δi j , where δi j is the

Kronecker symbol. Since {φ J
k }NJ

k=1 is a basis of the space VJ , we can write u = ∑NJ
k=1 ckφ

J
k ,

so that (27) becomes

ΛJ

NJ∑
i, j=1

c j (φ
J
j , φ

J
i )L2(Ω)ci <

NJ∑
i, j=1

c jAJ (φ
J
j , φ

J
i )ci =

NJ∑
i, j=1

c jλ
J
i (φ J

i , φ J
j )L2(Ω)ci ,

⇒ ΛJ

NJ∑
i=1

c2i <

NJ∑
i, j=1

c2i λ
J
i ,

which is a contradiction. We then deduce that
(
IdJ − 1

ΛJ
AJ

)
is a positive definite operator.

��
Remark 8 We observe that, as we need to satisfy the condition m > 2CACR of Theorem 6,
we can guarantee the convergence of the method based on employing a number of smoothing
steps such that m � p2+μ

J , which is in agreement to what proved for W -cycle algorithms in
[11] and [8] in the case of nested grids.

Remark 9 The analysis of this section can be generalized to the full V -cycle algorithm with
J > 2 as follows: Assumption A.3 is verified with CR = O(1) also on the arbitrary levels
j, j − 1, because each level j satisfies Assumption A.3 with constant C j

R = O(1). Assump-

tions A.2 and A.1 are satisfied with CA = max j {C j
A} and CQ = max j {C j

Q}, respectively,
where C j

A and C j
Q are the same as the ones defined in the previous analysis but on the level

j .
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5 Numerical Results

In this section we present several numerical results to test the theoretical convergence esti-
mates provided in Theorem 6 and to demonstrate the capability of our algorithm also in
practical cases.We focus on a two dimensional problemposed on the unit squareΩ = (0, 1)2.
For the simulations, we consider the sets of polygonal grids shown in Figure 1. Each polyg-
onal mesh is generated by using the software package PolyMesher [63]. In particular the
finest grids (Level 4) of Fig. 1 consist of 512 (Set 1), 1024 (Set 2), 2048 (Set 3) and 4096
(Set 4) elements. Starting from the number of elements of each initial mesh, a sequence of
non-nested partitions is generated: each coarsemesh is built independently from the finer one,
with the only constrain that the number of element is approximately 1/4 of the corresponding
finer one.

First of all, we verify the estimate of Lemma 6, by numerically evaluating Cstab(p), where
p is the polynomial approximation degree. To this aim we consider three pairs of non-nested
grids, where the number of elements of the coarser grid is the number of the finer divided by
4: for each pair, we compute the value of Cstab(p) as a function of p. Figure 2 show that, as
expected, Cstab(p) depends linearly on p and is independent of the mesh-size h.

We now consider the grids shown in Set 1 and in Set 2 of Fig. 1 and numerically
evaluate the constant δ j in Theorem 6 based on selecting the Richardson smoother with

Set 1 Set 2 Set 3 Set 4

Level 4

Level 3

Level 2

Level 1

Fig. 1 Sets of non-nested grids employed for numerical simulations

123



640 Journal of Scientific Computing (2019) 78:625–652

Fig. 2 Estimates of Cstab(p) in
Lemma 6 as a function of p for
three couples of non-nested
Voronoi meshes as shown in
Fig. 1
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Fig. 3 Estimates of δ2 and δ3 in Theorem 6 as a function of p, withm1 = m2 = 3p2 and two polygonal grids
of 256 (left) and 512 (right) elements

m1 = m2 = m = 3p2, cf. Fig. 3. Here, we observe that δ2 and δ3 are asymptotically con-
stant, as the polynomial degree p increases showing that our two-level andV -cycle algorithms
are uniformly convergent also with respect to p provided that m � p2.

Next, we investigate the performance of the V -cycle algorithm with non-nested partitions
presented in Sect. 4. In order to do that, we compute the iteration counts needed by our
V -cycle algorithm to reduce the relative residual error below a given tolerance of 10−8, by
varying the polynomial degree and the granularity of the finest grid. In Table 1 we report the
computed convergence factor

ρJ = exp

(
1

Nit,J
ln

‖rNit,J ‖
‖r0‖

)
,

where Nit,J is the iteration counts needed to reduce the residual below the given tolerance
by the h-version of the V -cycle scheme with J levels, where J = 2, 3, 4, while rNit,J and
r0 are the final and initial residual vectors, respectively. Here, the polynomial approximation
degree on each level is chosen as p j = 1, j = 1, . . . , J , while we vary the number of
elements of the finest grid and the number of smoothing steps (m1 = m2 = m). According
to Theorem 6, the convergence factor is independent from the spatial discretization step h.
Indeed, for a fixed J ∈ {2, 3, 4} and a fixed number of smoothing steps m, the convergence
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Table 1 Converge factor ρJ of the V -cycle multigrid method as a function of m (C j
σ ≡ Cσ = 10, p = 1)

Set 1 Set 2

2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

m = 3 0.77 0.83 0.83 0.82 0.84 0.85

m = 5 0.69 0.76 0.78 0.74 0.77 0.79

m = 8 0.63 0.69 0.72 0.66 0.70 0.73

Set 3 Set 4

2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

m = 3 0.79 0.85 0.93 0.78 0.84 0.87

m = 5 0.72 0.79 0.82 0.71 0.78 0.81

m = 8 0.65 0.72 0.76 0.64 0.72 0.74

Table 2 Converge factor ρJ (and iteration counts) of the V -cycle method as a function of the number m of

smoothing steps (C j
σ ≡ Cσ = 10, p = 3)

Set 1 Set 2

2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

m = 3 0.99 (3306) 0.98 (992) 0.98 (955) 0.97 (616) 0.98 (852) 0.98 (1024)

m = 5 0.96 (429) 0.97 (566) 0.97 (591) 0.95 (396) 0.96 (523) 0.97 (626)

m = 8 0.94 (296) 0.95 (367) 0.95 (388) 0.94 (277) 0.95 (339) 0.95 (403)

Set 3 Set 4

2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

m = 3 – 0.98 (1061) 0.98 (860) – 0.97 (699) 0.98 (823)

m = 5 0.96 (428) 0.97 (648) 0.97 (527) 0.95 (392) 0.96 (435) 0.96 (508)

m = 8 0.94 (288) 0.96 (418) 0.95 (341) 0.93 (273) 0.94 (290) 0.95 (335)

factor is roughly constant. In particular, this means that the number of iterations needed by
our V -cycle method to attain convergence is independent of the granularity of the underlying
grid. As expected, the convergence factor is reduced by increasing the number of smoothing
step.

We have repeated the same set of experiments employing p j = 3, ∀ j = 1, . . . , J ; the
results are reported in Table 2 together with the corresponding iteration counts (between
parenthesis). First, a comparison between Tables 1 and 2 shows that the convergence factor
increases as p grows if the number of smoothing steps is kept fixed. We also observe that,
if the number of smoothing step is not chosen sufficiently large, the algorithm might fail to
converge. Indeed, according to Theorem 6, in order to attain a uniform convergence (also
with respect to p) the number of smoothing steps m must satisfy m > 2CACQ � p2+μ, cf.
also Fig. 3.

6 Additive Schwarz Smoother

In order to improve the performance of our V -cycle algorithm, we define in this section a
domain decomposition preconditioner that can be used as a smoothing operator in place of
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of the Richardson one. To this aim, let T j and T j−1 be a pair of consecutive (non-nested)
coarse/fine meshes, satisfying the grid assumptions given in Sect. 2.1. We next introduce the
local and coarse solvers, that are the key ingredients in the definition of the smoother on the
space Vj , j = 2, . . . , J .

Local Solvers. Let us consider the finest mesh T j with cardinality N j , then for each
element κi ∈ T j , we define a local space V i

j as the restriction of the DG finite element space
Vj to the element κi ∈ T j :

V i
j = Vj |κi ≡ Pp j (κi ) ∀i = 1, ..., N j ,

and for each local space, the associated local bilinear form is defined by

Ai
j : V i

j × V i
j → R, Ai

j (ui , vi ) = A j (R
T
i ui , R

T
i vi ) ∀ui , vi ∈ V i ,

where RT
i : V i

j → Vj denotes the classical extension by-zero operator from the local space

V i
j to the global Vj .

Coarse Solver. The natural choice in our contest is to define the coarse space V 0
j to be

exactly the same used for theCoarse grid correction step of the V -cycle algorithm introduced
in Sect. 4, that is

V 0
j = Vj−1 ≡ {v ∈ L2(Ω) : v|κ ∈ Pp j−1(κ), κ ∈ T j−1},

the bilinear form on V 0
j is then given by

A0
j : V 0

j × V 0
j → R, A0

j (u0, v0) = A j−1(u0, v0) ∀u0, v0 ∈ V 0
j .

Here, we define the injection operator from V 0
j to Vj as the prolongation operator introduced

in Sect. 4, that is RT
0 : V 0

j → Vj , RT
0 = I jj−1. By introducing the projection operators

Pi = RT
i P̃i : Vj → Vj , i = 0, 1, . . . , N j , where

P̃i : Vj → V i
j , Ai

j (P̃ivh, wi ) = A j (vh, R
T
i wi ) ∀wi ∈ V i

j , i = 1, . . . , N j ,

P̃0 : Vj → V 0
j , A0

j (P̃0vh, w0) = A j (vh, R
T
0 w0) ∀w0 ∈ V 0

j ,

the additiveSchwarz operator is definedby Pad = ∑N j
i=0(R

T
i (Ai

j )
−1Ri )A j ≡ B−1

ad A j ,where

B−1
ad = ∑N j

i=0(R
T
i (Ai

j )
−1Ri ) is the preconditioner. Then, the Additive Schwarz smoothing

operator with m steps consists in performing m iterations of the Preconditioned Conjugate
Gradientmethod using Bad as preconditioner. In Algorithm 3we show the V -cycle multigrid
method using Pad as a smoother. Here, MGAS( j, g, z0,m1,m2) denotes the approximate
solution of A j z = g obtained after one iteration, with initial guess z0 and m1, m2 pre- and
post-smoothing steps, respectively. The smoothing step is given by the algorithm ASPCG,
i.e., z = ASPCG(A, z0, g,m) represents the output of m steps of Preconditioned Conju-
gate Gradient method applied to the linear system of equations Ax = g, by using Bas as
preconditioner and starting from the initial guess z0.

The computed iteration counts based on employing Algorithm 3 are reported in Tables 3,
4 and 5, for the corresponding V -cycle algorithmwith J = 2, 3, 4 levels. The simulations are
similar to the ones described in the previous section: herewe used the grids of Set 2, 3 and 4, cf.
Fig. 1, and we varied the polynomial degree p ∈ {1, 3, 5}. First, we observe that, also in this
case, the iteration counts seem to be independent of the number of elements in the underlying
mesh for a fixed number of smoothing steps m. Moreover, the results show that a minimal
number of smoothing steps is not needed to attain the convergence as p increases. Finally,
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Algorithm 3 One iteration of Multigrid V -cycle scheme with AS-smoother
Pre-smoothing:
if j=1 then

MGAS (1, g, z0,m1,m2) = A−1
1 g.

else
Pre-smoothing:

z(m1) = ASPCG(A j , z0, g,m1);

Coarse grid correction:

r j−1 = I j−1
j (g − A j z

(m1));
e j−1 = MGAS ( j − 1, r j−1, 0,m1,m2);

z(m1+1) = z(m1) + I jj−1e j−1;

Post-smoothing:

z(m1+m1+1) = ASPCG(A j , z
(m1+1), g,m2);

MGAS ( j, g, z0,m1,m2) = z(m1+m2+1).
end if

Table 3 Iteration counts of the V -cycle solver with the Additive Schwarz smoother as a function of m

(C j
σ ≡ Cσ = 10, p = 1)

Set 2 Set 3 Set 4

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 18 18 18 18 18 18 20 20 20

m = 5 9 9 9 9 9 9 10 10 10

m = 8 5 5 5 5 5 5 5 5 5

Table 4 Iteration counts of the V -cycle solver with the Additive Schwarz smoother as a function of m

(C j
σ ≡ Cσ = 10, p = 3)

Set 2 Set 3 Set 4

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 63 64 64 57 59 59 59 60 60

m = 5 27 27 27 25 25 25 26 26 26

m = 8 13 13 13 13 14 14 14 14 14

Table 6 shows the computed convergence factor, where different polynomial approximation
degrees are employed on different levels. Also in this case we observe that the iteration counts
seem to be independent of the granularity of the underlying grid.

6.1 Applications to Domains with Curved Boundaries

In this section we consider two examples where the coarser grid does not conform to the
boundary. Indeed, in these cases the agglomeration process with edge-coarsening might lead
to coarse meshes whose boundary do not fit the geometry, cf. Fig. 4 for an example.

In the following we present two examples showing that the convergence properties of our
multigrid method seems not to deteriorate for such problems and that our approach seems to
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Table 5 Iteration counts of the V -cycle solver with the Additive Schwarz smoother as a function of m

(C j
σ ≡ Cσ = 10, p = 5)

Set 2 Set 3 Set 4

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 148 156 156 125 132 132 149 158 157

m = 5 59 59 58 51 51 51 59 60 60

m = 8 26 26 26 24 24 24 27 27 27

Table 6 Iteration counts of the hp-version of the V -cycle solver with the Additive Schwarz smoother as a
function of m. Here the polynomial degree on each space is p j = j for j = 1, 2, 3, 4

Set 2 Set 3 Set 4

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 85 86 86 79 80 80 83 85 84

m = 5 35 35 35 32 32 32 33 33 33

m = 8 17 17 17 17 17 17 17 18 17

Fig. 4 Examples of fine Th (solid line) and coarse TH (dashed line) grids for a domain with a curved boundary

be competitive in practical cases. The results of this section have been obtained with the AS
smoother, cf. Sect. 6. First, we consider problem (1) with a constant forcing term f = 1, and
choose the computational domain to be a circular crownΩ = Ω1 \Ω2, whereΩ1 andΩ2 are
two concentric circles of radius r1 = 2 and r2 = 2

3 , respectively. We have tested the V -cycle
method by defining three sequences of uniform Voronoi grids (set 1, set 2, set 3) as the ones
reported in Fig. 5, where, for each set of grids, the first three levels of refinement are shown.
Here, each polygonal mesh at different levels is defined independently from the previous one
with the only constrain that the cardinality of each coarser grid is approximately 1

4 of that of
the finer level. Tables 7 and 8 show the computed convergence factors for p = 1 and p = 2,
respectively, by choosing m = 3, 5, 8 smoothing steps. As expected, the results confirm that
the convergence rate depends on p but it is independent of the granularity of the underlying
grid as well as the number of levels employed.
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Level 1 Level 2 Level 3

set 1

set 2

set 3

Fig. 5 Circular crown test case: for any set of grids the first three levels of non-nested meshes are shown

Next, we consider the airfoil geometry of [35], which is characterized by a more compli-
cated geometry Ω = Ω1 \ Ω2, where Ω1 is the circle of radius r1 = 3

2 , and Ω2 is the airfoil
profile NACA0015 [56]. As before, we consider three sequences of non-nested polygonal
meshes (set 1, set 2, set 3), cf. Fig. 6. The grids have been obtained by firstly defining a
non-uniform triangular mesh on Ω with the tool DistMesh [58], and then by agglomerating
based on employing METIS [55]. The results for p = 1 and p = 2 are shown in Tables 9
and 10, respectively. Also in this case we observe that, by fixing the number of smoothing
steps m and the polynomial degree p, the convergence factor seems to be independent of
the mesh size. Moreover, the performance of the method seems not to deteriorate even if the
underlyingmesh is characterized by elements of different size, and suggest that our algorithm
seems to be well suited for the solution of problems characterized by a local refinement or
applications with mesh adaptation.

7 Conclusions

In this paper we have extended theW -cycle multigrid convergence analysis on nested polyg-
onal/polyhedral grids of [8] to V -cycle algorithms with non-nested meshes. We have focused
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Table 7 Convergence factor of the h-version of the V -cycle solver with the Additive Schwarz smoother as a
function of m (circular crown test case, p = 1)

Set 1 Set 2 Set 3

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 0.268 0.268 0.268 0.274 0.257 0.257 0.325 0.325 0.325

m = 5 0.098 0.098 0.098 0.093 0.093 0.093 0.086 0.086 0.086

m = 8 0.013 0.013 0.013 0.011 0.011 0.011 0.010 0.010 0.010

Table 8 Convergence factor of the h-version of the V -cycle solver with the Additive Schwarz smoother as a
function of m (circular crown test case, p = 2)

Set 1 Set 2 Set 3

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 0.578 0.598 0.598 0.585 0.592 0.592 0.582 0.584 0.583

m = 5 0.340 0.340 0.340 0.362 0.367 0.367 0.325 0.332 0.332

m = 8 0.105 0.105 0.105 0.125 0.125 0.125 0.121 0.121 0.121

Level 1 Level 2 Level 3

set 1

set 2

set 3

Fig. 6 Airfoil profile test case: for any set of grids the first three levels of non-nested grids are shown
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Table 9 Convergence factor of the h-version of the V -cycle solver with the Additive Schwarz smoother as a
function of m (airfoil profile test case, p = 1)

Set 1 Set 2 Set 3

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 0.312 0.318 0.318 0.325 0.315 0.315 0.320 0.334 0.334

m = 5 0.121 0.124 0.124 0.105 0.107 0.107 0.115 0.124 0.124

m = 8 0.020 0.020 0.020 0.022 0.022 0.022 0.021 0.021 0.021

Table 10 Convergence factor of the h-version of the V -cycle solver with the Additive Schwarz smoother as
a function of m (airfoil profile test case, p = 2)

Set 1 Set 2 Set 3

2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

m = 3 0.866 0.848 0.848 0.842 0.848 0.843 0.865 0.864 0.865

m = 5 0.621 0.630 0.630 0.629 0.636 0.637 0.655 0.661 0.660

m = 8 0.331 0.332 0.334 0.353 0.354 0.355 0.374 0.374 0.376

on the solution of the linear systems of equations stemming from high-order discontinuous
Galerkin discretizations of second-order elliptic partial differential equations on polytopic
meshes. Here, the possibility of employing non-nested polytopic meshes allows to choose
the sequence of grids standing at the basis of the multigrid method based on employing
agglomeration procedures together with edge-coarsening. The key aspect of our method is
the projection operator which is defined as the L2-projection between two consecutive (non-
nested) partitions. By following the general framework introduced in [26] for non-nested
multigrid methods, we have proved that our non-nested multigrid method converges uni-
formly with respect of the number of degree of freedom and the number of multigrid levels,
provided that the number of smoothing steps is chosen sufficiently large. More precisely
we have proved that the convergence rate is independent of the granularity of the underly-
ing (fine) grid, the polynomial approximation degree p and the number of levels, provided
that the number of smoothing steps is chosen of order p2+μ, μ ∈ {0, 1}. We have also
proposed a further improvement of the method by considering a Schwarz-type smoother.
We demonstrated through several numerical experiments the effectiveness of the proposed
algorithm, also for geometries with curved boundaries, where the coarser grid does not fit
the geometry. From the implementation point of view, we point out that the assembly of
the prolongation and projection matrices needs the knowledge of the intersections between
elements of two consecutive levels. Our computations make use of the tool PolygonClipper
[53], but its extension to the three dimensional case could be expensive. In three dimensions,
agglomeration-based procedures which make use of edge-coarsening techniques can also be
used to generate the sequence of meshes in the three dimensional case.

Acknowledgements The authors are grateful to the anonymous Reviewers for their valuable comments and
constructive suggestions.
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Appendix: Proof of Lemma 7

In order to show Lemma 7, we follow the analysis presented in [43]. We first show two
preliminary results making use of the properties of Sect. 3.

Lemma 8 Let Assumptions 1–4 hold and let Π̃ j be the projection operator on Vj as defined
in Lemma 4, for j = J , J − 1. Then

‖Π̃Jw − I JJ−1Π̃J−1w‖L2(Ω) �
h2J
p2J

‖w‖H2(Ω) ∀w ∈ H2(Ω).

Proof Using the triangular inequality, Remark 7 and the approximation estimates of Lemma 4
we have:

‖Π̃Jw − I JJ−1Π̃J−1w‖L2(Ω)

≤ ‖Π̃Jw − w‖L2(Ω) + ‖w − QJw‖L2(Ω) + ‖QJw − I JJ−1Π̃J−1w‖L2(Ω)

= ‖Π̃Jw − w‖L2(Ω) + min
zh∈VJ

‖w − zh‖L2(Ω) + ‖QJ (w − Π̃J−1w)‖L2(Ω)

≤ ‖Π̃Jw − w‖L2(Ω) + ‖ w − Π̃Jw‖L2(Ω) + ‖w − Π̃J−1w‖L2(Ω)

�
h2J
p2J

‖w‖H2(Ω) + h2J−1

p2J−1

‖w‖H2(Ω) �
h2J
p2J

‖w‖H2(Ω),

where in the last inequality we also used hypotheses (3) and (4). ��
Lemma 9 Let Assumptions 1–4 hold. Let g ∈ L2(Ω) and denote by w j ∈ Vj the solution of
A j (w j , v) = (g, v)L2(Ω) ∀v ∈ Vj with j = J − 1, J . Then the following inequality holds:

‖wJ − I JJ−1wJ−1‖L2(Ω) + ‖wJ−1 − P J−1
J wJ‖L2(Ω) �

h2J
p2−μ
J

‖g‖L2(Ω). (28)

Proof Consider the unique solution w ∈ V of the problem

A(w, v) = (g, v)L2(Ω) ∀v ∈ V .

Using Corollary 1, we have

‖w − w j‖L2(Ω) �
h2j

p2−μ
j

‖w‖H2(Ω), j = J − 1, J . (29)

Using the triangular inequality and Remark 7 we have:

‖wJ − I JJ−1wJ−1‖L2(Ω) ≤ ‖wJ − w‖L2(Ω) + ‖w − Π̃Jw‖L2(Ω)

+ ‖Π̃Jw − I JJ−1Π̃J−1w‖L2(Ω) + ‖I JJ−1Π̃J−1w − QJw‖L2(Ω)

+ ‖QJw − I JJ−1wJ−1‖L2(Ω)

= ‖wJ − w‖L2(Ω) + ‖w − Π̃Jw‖L2(Ω) + ‖Π̃Jw − I JJ−1Π̃J−1w‖L2(Ω)

+ ‖QJ (Π̃J−1w − w)‖L2(Ω) + ‖QJ (w − wJ−1)‖L2(Ω)

≤ ‖wJ − w‖L2(Ω) + ‖w − Π̃Jw‖L2(Ω) + ‖Π̃Jw − I JJ−1Π̃J−1w‖L2(Ω)

+ ‖Π̃J−1w − w‖L2(Ω) + ‖w − wJ−1‖L2(Ω).
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Using (29), Lemmas 4 and 8, we have

‖wJ − I JJ−1wJ−1‖L2(Ω) �
h2J
p2−μ
J

‖w‖H2(Ω) + h2J
p2J

‖w‖H2(Ω) + h2J
p2J

‖w‖H2(Ω)

+ h2J−1

p2J−1

‖w‖H2(Ω) + h2J−1

p2−μ
J−1

‖w‖H2(Ω).

From the elliptic regularity assumption (2) and hypotheses (3) and (4), we can write

‖wJ − I JJ−1wJ−1‖L2(Ω) �
h2J
p2−μ
J

‖g‖L2(Ω). (30)

Now, let z j ∈ Vj be the solution of:

A j (z j , q) = (wJ−1 − P J−1
J wJ , q j )L2(Ω) ∀q j ∈ Vj , j = J − 1, J ;

Using (30) we get the following estimate:

‖z J−1 − I JJ−1z J−1‖L2(Ω) �
h2J
p2−μ
J

‖wJ−1 − P J−1
J wJ‖L2(Ω).

Then, we have:

‖wJ−1 − P J−1
J wJ‖2L2(Ω)

= AJ−1(z J−1, wJ−1 − P J−1
J wJ )

= AJ−1(z J−1, wJ−1) − AJ (I
J
J−1z J−1, wJ )

= (z J−1, g) − (I JJ−1z J−1, g) = (g, z J−1 − I JJ−1z J−1)

� ‖g‖L2(Ω)

h2J
p2−μ
J

‖wJ−1 − P J−1
J wJ‖L2(Ω),

from which, together with (30), inequality (28) follows. ��
Proof (of Lemma 7) For any vJ ∈ VJ we consider the following equality:

‖(IdJ − I JJ−1P
J−1
J )vJ‖L2(Ω) = sup

0 �=φ∈L2(Ω)

(
φ, (IdJ − I JJ−1P

J−1
J )vJ

)
L2(Ω)

‖φ‖L2(Ω)

. (31)

Next, consider the solution z j of the following problems

A j (z j , v j ) = (
φ, v j

) ∀v j ∈ Vj , for j = J , J − 1.

By using the definition of P J−1
J and Lemma 9, we have:

(
φ, (IdJ − I JJ−1P

J−1
J )vJ )

)
L2(Ω)

= AJ (z J , vJ ) − AJ−1(P
J−1
J z J , P

J−1
J vJ )

= AJ (z J − I JJ−1z J−1, vJ ) + AJ (I
J
J−1(z J−1 − P J−1

J z J ), vJ )

≤ |||vJ |||2,J
(
‖z J − I JJ−1z J−1‖L2(Ω) + ‖z J−1 − P J−1

J z J‖L2(Ω)

)

� |||vJ |||2,J h2J
p2−μ
J

‖φ‖L2(Ω).

Using the last inequality together with (31) we get (26). ��
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