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Abstract
This paper is concerned with the numerical solution of auto-convolution Volterra integral
equations. A composite quadrature method based on linear barycentric rational interpolation
is introduced. The method is easy to be implemented because only a linear equation needs
to be solved in each time step. Collocation method is used as the starting procedure. The
boundedness and convergence of the numerical solution are studied in detail. Some numerical
experiments are carried out to confirm the theoretical results.

Keywords Auto-convolution Volterra integral equation · Linear barycentric rational
interpolation · Barycentric rational quadrature · Collocation method

1 Introduction

Volterra equations play an important role in describing many phenomena in physics. A
wide range of numerical methods have been developed for solving this kind of equations.
Popular methods include, but are not limited to, collocation methods, direct quadrature meth-
ods, Runge–Kutta methods, linear multistep methods, spectral methods and boundary value
methods (see [1,3,4,6–11,14–24,26,27,29–31,33] and references therein). Many of them are
based on polynomial interpolation, i.e., the approximation solution is a polynomial or piece-
wise polynomial. Recently, Berrut et al. [4] introduced two direct quadrature methods for
second kind Volterra integral equations based on linear rational interpolation, and studied
their convergence. Hosseini and Abdi [14] further investigated the stability of the composite
barycentric rational quadrature method. Linear rational interpolation has polynomial inter-
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polation as a special case. In the case of equidistant nodes, however, it can avoid the Runge
phenomenon of high degree polynomial interpolation if certain parameter value is selected.
This is beneficial to construct high order methods with uniform meshes.

Nonstandard Volterra equations received attention only recently. Guan et al. [13] investi-
gated collocation methods for the equation

u(t) = g(t) +
∫ t

0
K (t, s, u(t), u(s))ds, t ∈ I := [0, T ]. (1)

Zhang et al. [32] considered collocation methods for auto-convolution Volterra integral equa-
tions (AVIEs) of the form

u(t) = g(t) +
∫ t

0
K (t, s)u(t − s)u(s)ds, t ∈ I := [0, T ], (2)

where u(t) is an unknown solution, and g ∈ C(I ), K ∈ C(D) (D = {(t, s) : 0 ≤ s ≤ t ≤
T }) are given functions. The existence, uniqueness, and regularity of the exact solution were
studied, and the convergence order of the collocation solution was given.

In this paper, we also consider AVIEs. We will introduce direct quadrature methods based
on linear barycentric rational interpolation [12] and the idea of composite quadrature [4], and
we use the collocation method in [32] as the starting procedure. For the resulting composite
barycentric rational quadrature method, we study the boundedness and convergence of the
numerical solution in detail. Compared with the existent methods, this composite barycentric
rational quadraturemethod is easier to be implemented because only one linear equation needs
to be solved in each time step so that the method is essentially explicit. We also mention that
the integrand in (2) does not satisfy a global Lipschitz condition because of the existence of
the term u(t − s), so that the analysis techniques in [4] cannot be applied to this case directly.

This paper is organized as follows. The barycentric rational interpolation and quadrature
methods are discussed in Sect. 2. In Sect. 3, collocation starting procedure is presented.
And then, the barycentric rational quadrature method and its convergence analysis are given
in Sect. 4. In Sect. 5, some numerical experiments are given to validate the efficiency and
accuracy of the methods. Finally, some conclusions are drawn in the last section.

2 The Composite Barycentric Rational Quadrature Rule

In this section, we first review the barycentric rational interpolation, and then consider the
corresponding global quadrature and composite quadrature methods.

2.1 Barycentric Rational Interpolation

The polynomial barycentric interpolation was introduced in [5] systematically. For given
function g(t) : [0, T ] → R and interpolating nodes 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ T , it has the
following form

rn(t) =
∑n

j=0
τ j
t−t j

g j∑n
j=0

τ j
t−t j

, τ j = 1∏n
i=0,i �= j (t j − ti )

.

After that, some scholars replaced the barycentricweights τ j with othermore suitable rational
weights β j that are independent of the interpolated functions. The merit lies in that this new
kind of weights β j may remove some bad properties of barycentric weights τ j , such as unsta-
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ble Runge phenomenon for equidistant nodes. Additionally, the convergence and stability
properties are guaranteed. One of typical examples is the barycentric rational interpolation
given by Floater and Hormann [12],

rn(t) =
∑n

j=0
β j
t−t j

g j∑n
j=0

β j
t−t j

, (3)

with weights

β j =
∑
i∈J j

(−1)i
i+d∏

k=i,k �= j

1

t j − tk
, J j = {i ∈ {0, . . . , n − d} : j − d ≤ i ≤ j}, (4)

where d is a nonnegative integer not exceeding n. In addition, if the interpolating nodes
{t j }nj=0 are equidistant, we can alternatively use

β j = (−1) j−d

2d
∑
i∈J j

(
d

j − i

)
, J j = {i ∈ {0, . . . , n − d} : j − d ≤ i ≤ j}. (5)

Let p j (t) be the interpolant polynomial whose degree does not exceed d , and which is
generated by interpolating values g j · · · g j+d at the d + 1 nodes t j < · · · < t j+d , then rn(t)
satisfies

rn(t) =
∑n−d

j=0 λ j (t)p j (t)∑n−d
j=0 λ j (t)

, and λ j (t) = (−1) j

(t − t j ) · · · (t − t j+d)
. (6)

Formore details, we can refer to [12]. In this paper, we use Floater andHormann interpolation
with barycentric form (3), which can also be represented as

rn(t) =
n∑
j=0

g(t j )l
(β)
j (t), l(β)

j (t) =
β j
t−t j∑n
j=0

β j
t−t j

. (7)

And the interpolation error estimate is given by the following lemma.

Lemma 1 [12] Suppose d ≥ 0 and g ∈ Cd+2[0, T ], and let h := max
0≤i≤n−1

(ti+1− ti ). If n−d

is odd, then

‖rn − g‖ ≤ hd+1(1 + μ)T
‖g(d+2)‖
d + 2

.

If n − d is even, then

‖rn − g‖ ≤ hd+1(1 + μ)

(
T

‖g(d+2)‖
d + 2

+ ‖g(d+1)‖
d + 1

)
.

Here,
‖g‖ := max

0≤x≤T
|g(x)|,

and

μ =
{

max
1≤i≤n−2

min{ ti+1−ti
ti−ti−1

,
ti+1−ti

ti+2−ti+1
}, if d = 0,

0, if d > 0.

For the case of d = 0, if the nodes {ti }ni=0 are equidistant, then we have μ = 1.
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2.2 Barycentric Rational Quadrature

For simplicity, we consider in the following sections a uniform mesh Ih of size h on [0, T ],
i.e.,

ti = ih, h = T /N , 0 ≤ i ≤ N .

Now, we consider
∫ tn
t0

g(t)dt , where the integrand is approximated by rn(t). Then, we have
the barycentric rational quadrature formula,

Qn(g) =
n∑
j=0

∫ tn

t0
l(β)
j (t)dt g(t j ) = h

n∑
j=0

w
(n)
j g(t j ), (8)

with the rational quadrature weights

w
(n)
j =

∫ n

0

β j
v− j∑n
l=0

βl
v−l

dv, j = 0, 1, . . . , n. (9)

Remark 1 In general, w
(n)
k cannot be calculated analytically. We need to use a numerical

approximation method. As mentioned in [4], let w(n)D
k be the approximate weights. Thanks

to the Chebfun system in Matlab [2,28], as well as Jacobi–Gauss type quadrature methods
in [25], we can choose those methods whose orders are higher than the barycentric rational
approximation. In this way, we can ignore the discretization error generated by using w

(n)D
k

to approximate w
(n)
k .

Remark 2 Since w
(n)
k changes with n, we need to compute integral (9) for n + 1 times to

obtain the numerical solution un in each time step when the global quadrature method is
applied to integral equations (see Sect. 4). Thus, the computational cost will increase with n.
When n is large enough, the calculation will cost a lot of time. So it is more suitable to use
the composite quadrature method to reduce computation as well as to save time.

Before we introduce the composite quadrature formula, the parameters d andm should be
given in advance. Let d ≥ 0,m ≥ 1, d ≤ m ≤ n and p := �n/m	−1, where �x	 is the largest
integer that does not exceed x . In each subinterval [t jm, t( j+1)m] ( j = 0, 1, . . . , p − 1),

we use the nodes t jm, t jm+1, . . . , t( j+1)m to construct the rational interpolant r ( j)
m (t). In

the last subinterval [tpm, tn], we use the nodes tpm, tpm+1, . . . , tn to construct the rational

interpolant r (p)
n−pm(t). Then we integrate them over their respective intervals to obtain the

corresponding quadrature formulae. It is easy to observe that for all the subintervals of
length mh, the quadrature weights w

(m)
k remain unchanged. Hence, we have the following

composite quadrature formula

∫ tn

t0
g(t)dt =

p−1∑
j=0

∫ t( j+1)m

t jm
g(t)dt +

∫ tn

tpm
g(t)dt

≈ h
p−1∑
j=0

m∑
k=0

w
(m)
k g(t jm+k) + h

n−pm∑
k=0

w
(n−pm)
k g(tpm+k), n ≥ m + 1, (10)

where

w
(l)
k = l

∫ 1

0

βk
ls−k∑l
j=0

β j
ls− j

ds, l = m,m + 1, . . . , 2m − 1. (11)

123



Journal of Scientific Computing (2019) 78:549–564 553

We remark that whenm < n < 2m, (10) is a global quadrature formula which is the same as
(8) since p = 0 and

∑−1
j=0 means empty. And we do not use composite quadrature formula

(10) until n ≥ 2m.

Theorem 1 Assume that n, m ≤ n are positive integers, parameter d (0 ≤ d ≤ m) is
nonnegative integer, and g ∈ Cd+2[0, tn]. Then the absolute quadrature error corresponding
to the composite quadrature method (10) with equidistant nodes is bounded by Chq , where

q =
{
d + 1, m − d is even,

d + 2, m − d is odd,
(12)

and the constant C depends on d and m, on the derivatives of g, and on the interval length
tn − t0.

Proof Since m is fixed and n − pm < 2m, we have

∣∣∣∣
p−1∑
j=0

∫ t( j+1)m

t jm
(r ( j)

m (t) − g(t)) dt +
∫ tn

tpm
(r (p)

n−pm(t) − g(t)) dt

∣∣∣∣

≤
p−1∑
j=0

mh max
t jm≤t≤t( j+1)m

|r ( j)
m (t) − g(t)| + (n − pm)h max

tpm≤t≤tn
|r (p)
n−pm(t) − g(t)|

≤ Chq ,

where we have used Lemma 1 and in particular, the quantity T in the estimate of Lemma 1
is replaced by the lengths of subintervals [t jm, t( j+1)m] and [tpm, tn], respectively. ��

3 Collocation Starting Procedure

In this section, we consider how to solve AVIE (2) over the interval [t0, tm]. We regard [t0, tm]
as one collocation interval and apply the method in [32], i.e., we find a polynomial uh of
degree not exceeding m − 1 such that:

uh(cimh) = g(cimh) +
∫ cimh

0
K (cimh, s)uh(cimh − s)uh(s)ds, i = 1, 2, . . . ,m,

where c1, c2, . . . , cm are collocation parameters. Let

l j (s) =
m∏

l=1,l �= j

s − cl
c j − cl

,

and let U0,i := uh(cimh). Then we have

U0,i = g(cimh) + mh
m∑

j,k=1

∫ ci

0
K (cimh, smh)l j (ci − s)lk(s)ds U0, jU0,k,

i = 1, 2, . . . ,m. (13)

Denote

a(i)
j,k =

∫ ci

0
K (cimh, smh)l j (ci − s)lk(s)ds,
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then

U0,i = g(cimh) + mh(U0,1,U0,2, . . .U0,m)

⎛
⎜⎜⎜⎜⎝

a(i)
11 a(i)

12 · · · a(i)
1m

a(i)
21 a(i)

22 · · · a(i)
2m

.

.

.
.
.
.

. . .
.
.
.

a(i)
m1 a(i)

m2 · · · a(i)
mm

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

U0,1

U0,2
.
.
.

U0,m

⎞
⎟⎟⎟⎠ , i = 1, . . . ,m.

(14)
The convergence of collocation method (14) has been studied in [32]. Here, we only

consider the error of the collocation solution at collocation points on the first collocation
interval [t0, tm]. The following result is implied in the proof of Theorem 4.3 in [32].

Lemma 2 [32]Assume that the given functions g and K in AVIE (2) are m times continuously
differentiable on their respective domains. Then there exists an h̄ > 0, such that for any
h ∈ (0, h̄) and any choice of the collocation parameters {ci }mi=1, we have

max
1≤i≤m

∣∣u(cimh) −U0,i
∣∣ ≤ Chm+1, (15)

where C depends on the collocation parameters {ci }mi=1 and on u(m) but not on h.

Remark 3 We use the collocation solutions as the starting values of the quadrature methods
introduced in the next section, i.e., we take collocation parameters ci = i

m and u j = U0 j ( j =
1, 2, . . . ,m). From (15) it follows that {u j }mj=1 are accurate of order m + 1.

Remark 4 It is worth noting that (14) is an m dimensional nonlinear system, which can be
solved by Newton iteration. But the iteration relies on the selection of initial values. Thus,
Newton downhill method is often used in practical application.

4 The Barycentric Rational Quadrature Method

In this section, we first introduce a barycentric rational quadrature method for AVIE (2) based
on the composite quadrature formula (17). Then we study the existence, uniqueness and uni-
form boundedness of the numerical solution. We finally give the corresponding convergence
result. Before proceeding further, let us recall the regular properties of the exact solution of
AVIE (2) in the following lemmas.

Lemma 3 [32] Assume that the given functions in AVIE (2) satisfy g ∈ C(I ), K ∈ C(D).
Then AVIE (2) has a unique solution u ∈ C(I ).

Lemma 4 [32] Assume that the given functions in AVIE (2) satisfy g ∈ Cm(I ), K ∈ Cm(D)

for some integer m ≥ 1. Then AVIE (2) has a unique solution u ∈ Cm(I ).

Since the starting values u j ( j = 1, . . . ,m) have been given by the collocation method
in the previous section, we can give the numerical calculation scheme by apply the global
rational quadrature method (8) to AVIE (2),

un = g(tn) + h
n∑

k=0

w
(n)
k K (tn, tk)un−kuk, m + 1 ≤ n ≤ N . (16)
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However, as noted in Remark 2, for global quadrature method, we need to recalculate all
the weights w

(n)
k in each time step. If n is large enough, the cost of computation is huge.

Hence, it is more reasonable to use the composite quadrature method based on (10) to reduce
computation. For n = m + 1, . . . , N , the composite barycentric rational quadrature method
for AVIE (2) is as follows,

un = g(tn) + h
p−1∑
j=0

m∑
k=0

w
(m)
k K (tn, t jm+k)un− jm−ku jm+k

+ h
n−pm∑
k=0

w
(n−pm)
k K (tn, tpm+k)un−pm−ku pm+k, (17)

where w
(m)
k and w

(n−pm)
k are defined in (11).

Remark 5 It is worth pointing out that collocation method is used for the firstm nodes. When
m < n < 2m, (17) is actually a global method which is the same as (16) because p = 0
and

∑−1
j=0 means empty. When n ≥ 2m, (17) is different from (16), and we begin to use

composite quadrature method. Besides, quadrature weights w
(m)
k remain unchanged for all

integrals with interval length mh.

4.1 The Uniform Boundedness of Numerical Solution

Wemainly investigate the uniform boundedness of numerical solution in this subsection. The
idea of the following lemma comes from [29].

Lemma 5 Let

I (λ) = sup
t∈[0,T ]

∫ t

0
e−2λs(t−s)ds, λ ∈ (0,∞)

then
lim

λ→+∞ I (λ) = 0.

Proof It is easy to see I (λ) ≥ 0. For any ε > 0, letting δ = ε
2 and Λ = 1

δε
, we prove that

I (λ) < ε for all λ ≥ Λ. In fact,

I (λ) = max

{
sup

t∈[0,δ]

∫ t

0
e−2λs(t−s)ds, sup

t∈[δ,T ]

∫ t

0
e−2λs(t−s)ds

}
.

For the first term on the right-hand side, it is easy to find

sup
t∈[0,δ]

∫ t

0
e−2λs(t−s)ds < δ < ε.

For the second term on the right-hand side, we have

sup
t∈[δ,T ]

∫ t

0
e−2λs(t−s)ds = sup

t∈[δ,T ]
( ∫ δ

0
e−2λs(t−s)ds +

∫ t

δ

e−2λs(t−s)ds
)

≤ ε

2
+ sup

t∈[δ,T ]

∫ t

δ

e−2λδ(t−s)ds
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<
ε

2
+ 1

2λδ

≤ ε.

A combination of two cases gives the desired conclusion. ��

Theorem 2 Assume that the given functions in AVIE (2) satisfy g ∈ C(I ), K ∈ C(D). Then
there exists an h̄ > 0, such that for all h ∈ (0, h̄), the numerical solution {un}Nn=0 is uniquely
existent and uniformly bounded by

max
0≤n≤N

|un | ≤ (2G + 1)eλT 2
,

where

G := max
t∈I |g(t)|, K̄ := max

(t,s)∈D |K (t, s)| and λ := inf

{
z > 0 : I (z) ≤ 1

16W K̄ (2G + 1)

}
.

Proof Some notations in the following come from the references [29,32]. Let

W := max
m≤l≤2m−1

max
0≤k≤l

|w(l)
k |,

U := (u0, u1, . . . , uN )T and G := (g(t0), g(t1), . . . , g(tN ))T . Similarly to [29], we first
introduce a new norm by

‖U‖λ = max

{
max

0≤n≤m
|un |, max

m+1≤n≤N
e−λt2n |un |

}
.

It is easy to verify that

e−λT 2‖U‖∞ ≤ ‖U‖λ ≤ ‖U‖∞.

And we define operators TN : RN+1 → R
N+1 and TN : RN+1 → R

N+1 by

(TNU )n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, n = 0,

mh
∑m

j,k=1 a
(n)
j,ku j uk, n = 1, 2, . . . ,m,

h
∑p−1

j=0

∑m
k=0 w

(m)
k K (tn, t jm+k)un− jm−ku jm+k

+ h
∑n−pm

k=0 w
(n−pm)
k K (tn, tpm+k)un−pm−ku pm+k, n = m + 1, . . . , N .

and
(TNU )n = g(tn) + (TNU )n .

Consider the setC(0,G) := {U ∈ R
N+1 : ‖U‖λ ≤ 2G + 1}. For anyU ∈ C(0,G), we have

‖TNU‖λ ≤ ‖G‖λ + ‖TNU‖λ

≤ G + max

{
max

0≤n≤m
|(TNU )n |, max

m+1≤n≤N
e−λt2n |(TNU )n |

}
.

(18)

It follows from Section 3 of [32] that there exists h1 > 0, such that for h ∈ (0, h1),

max
1≤n≤m

|(TNU )n | ≤ 2G + 1

2
. (19)

In addition, for m + 1 ≤ n ≤ N
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max
m+1≤n≤N

e−λt2n |(TNU )n |

≤ max
m+1≤n≤N

e−λt2n

(
h

p−1∑
j=0

m∑
k=0

|w(m)
k ||K (tn, t jm+k)||un− jm−k ||u jm+k |

+ h
n−pm∑
k=0

|w(n−pm)
k ||K (tn, tpm+k)||un−pm−k ||u pm+k |

)

≤ max
m+1≤n≤N

2hW K̄e−λt2n

n∑
k=0

|un−k ||uk |

= max
m+1≤n≤N

2W K̄h
n∑

k=0

e−λt2n+λt2n−k+λt2k e−λt2n−k |un−k | e−λt2k |uk |

≤ 2W K̄‖U‖2λ max
m+1≤n≤N

h
n∑

k=0

e−λt2n+λt2n−k+λt2k

= 2W K̄‖U‖2λ max
m+1≤n≤N

h
n∑

k=0

e−2λtk tn−k .

Let ε = 1
16W K̄ (2G+1)2

, the definition of definite integral reveals that there exists h2 > 0, such

that for h ∈ (0, h2),

max
m+1≤n≤N

h
n∑

k=0

e−2λtk tn−k < I (λ) + ε.

Then, for any U ∈ C(0,G),

max
m+1≤n≤N

e−λt2n |(TNU )n | ≤ 2W K̄‖U‖2λ (I (λ) + ε)

≤ 2W K̄‖U‖2λ
(

1

16W K̄ (2G + 1)
+ 1

16W K̄ (2G + 1)2

)

≤ 1

4
(G + 1).

(20)

Combining (18), (19) and (20), we conclude that there exists 0 < h̄ < min{h1, h2} such that
for h ∈ (0, h̄),

TN : C(0,G) −→ C(0,G).

Moreover, for all φ,ψ ∈ C(0,G),

‖TNφ − TNψ‖λ = max

{
max

0≤n≤m
|(TNφ − TNψ)n |, max

m+1≤n≤N
e−λt2n |(TNφ − TNψ)n |

}
.

On the one hand, from Section 3 of [32] it follows that there exists h1 > 0, such that for
h ∈ (0, h1),

max
1≤n≤m

|(TNφ − TNψ)n | ≤ 1

2
max
1≤i≤m

|(φ − ψ)i | ≤ 1

2
‖φ − ψ‖λ.

On the other hand, when h ∈ (0, h̄)

max
m+1≤n≤N

e−λt2n |(TNφ − TNψ)n |
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≤ max
m+1≤n≤N

e−λt2n

∣∣∣∣h
p−1∑
j=0

m∑
k=0

w
(m)
k K (tn, t jm+k)(φn− jm−kφ jm+k − ψn− jm−kψ jm+k)

+ h
n−pm∑
k=0

w
(n−pm)
k K (tn, tpm+k)(φn−pm−kφpm+k − ψn−pm−kψpm+k)

∣∣∣∣

≤ h max
m+1≤n≤N

e−λt2n

( p−1∑
j=0

m∑
k=0

|w(m)
k ||K (tn, t jm+k)||φn− jm−kφ jm+k − ψn− jm−kψ jm+k |

+
n−pm∑
k=0

|w(n−pm)
k ||K (tn, tpm+k)||φn−pm−kφpm+k − ψn−pm−kψpm+k |

)

≤ 2h max
m+1≤n≤N

W K̄e−λt2n

n∑
k=0

∣∣(φn−kφk − φn−kψk) + (φn−kψk − ψn−kψk)
∣∣

≤ 2h max
m+1≤n≤N

W K̄e−λt2n

n∑
k=0

(| φn−k | + | ψn−k |) | φk − ψk |

≤ max
m+1≤n≤N

2W K̄h
n∑

k=0

e−λt2n+λt2n−k+λt2k e−λt2n−k (| φn−k | + | ψn−k |) e−λt2k |φk − ψk |

≤ 2W K̄ (‖φ‖λ + ‖ψ‖λ) max
m+1≤n≤N

h
n∑

k=0

e−2λtk tn−k‖φ − ψ‖λ ≤ 1

2
‖φ − ψ‖λ.

The last inequality above can be obtained by the same process as in (20). Thus, TN :
C(0,G) −→ C(0,G) is a contractionmapping.ByBanach contractivemapping theorem,we
can conclude that there exists a unique uniformly bounded solution U = (u0, u1, . . . , uN )T

in C(0,G). Hence, the conclusion follows immediately. ��

4.2 Consistency

As in [19], we first introduce some preliminary consistency definitions, which are necessary
and convenient for our theoretical analysis.

Definition 1 Let u be the solution of Eq. (2). The function

δ(h, tn) :=
p−1∑
j=0

∫ t( j+1)m

t jm
K (tn, s)u(tn − s)u(s)ds

− h
m∑

k=0

w
(m)
k K (tn, t jm+k)u(tn − t jm+k)u(t jm+k)

+
∫ tn

tpm
K (tn, s)u(tn − s)u(s)ds

− h
n−pm∑
k=0

w
(n−pm)
k K (tn, tpm+k)u(tn − tpm+k)u(tpm+k),

(21)

is called the local error of barycentric quadrature method (17) for (2) at tn .
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Definition 2 [19] Let Θ be a class of equations of the form (2). If for every equation in Θ ,

lim
h→0

max
m+1≤n≤N

‖δ(h, tn)‖ = 0,

then the approximation method (17) is said to be consistent with (2) for the class of equations
in Θ . If for every equation in Θ , there exists a constant C which is independent of h, such
that

max
m+1≤n≤N

‖δ(h, tn)‖ ≤ Chp,

then the method is said to be consistent of order p in Θ .

4.3 Convergence

Lemma 6 [19] Let the sequence ξ0, ξ1, . . . satisfy

|ξn | ≤ A
n−1∑
i=0

|ξi | + Bn, n = r , r + 1, . . . ,

where

A > 0, |Bn | ≤ B,

r−1∑
i=0

|ξi | ≤ η.

Then
|ξn | ≤ (1 + A)n−r (B + Aη), n = r , r + 1, . . . .

Moreover, if A = hK̄ , tn = nh, then

|ξn | ≤ (B + hK̄η)eK̄ tn .

With the prior preliminary results, we can give the following convergence theorem.

Theorem 3 Assume that

(i) The given functions in the AVIE (2) satisfy g ∈ Cm+2(I ), K ∈ Cm+2(D).
(ii) Collocation method (14) with m collocation parameters ci = i

m is used in the starting
procedure.

(iii) After the starting procedure, AVIE (2) is approximated by barycentric rational quadrature
method (17) with integer parameter d (0 ≤ d ≤ m).

Then the convergence result is described by,

max
i=m+1,...,N

∣∣u(ti ) − ui
∣∣ ≤ Chq , (22)

where

q =
{
d + 1, m − d is even,

d + 2, m − d is odd.
(23)

Proof Let εn = u(tn) − un . Then, for n = m + 1, . . . , N , we have

εn = u(tn) − un

=
p−1∑
j=0

( ∫ t( j+1)m

t jm
K (tn, s)u(tn − s)u(s)ds − h

m∑
k=0

w
(m)
k K (tn, t jm+k)un− jm−ku jm+k

)
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+
∫ tn

tpm
K (tn, s)u(tn − s)u(s)ds − h

n−pm∑
k=0

w
(n−pm)
k K (tn, tpm+k)un−pm−ku pm+k .

One can see from (21) that,

εn = δ(h, tn) + h
p−1∑
j=0

m∑
k=0

w
(m)
k K (tn, t jm+k)

[
u(tn − t jm+k)u(t jm+k)

− un− jm−ku(t jm+k) + un− jm−ku(t jm+k) − un− jm−ku jm+k
]

+ h
n−pm∑
k=0

w
(n−pm)
k K (tn, tpm+k)

[
u(tn − tpm+k)u(tpm+k)

− un−pm−ku(tpm+k) + un−pm−ku(tpm+k) − un−pm−ku pm+k
]

= δ(h, tn) + h
p−1∑
j=0

m∑
k=0

w
(m)
k K (tn, t jm+k)

[
εn− jm−ku(t jm+k) + un− jm−kε jm+k

]

+ h
n−pm∑
k=0

w
(n−pm)
k K (tn, tpm+k)

[
εn−pm−ku(tpm+k) + un−pm−kεpm+k

]
.

According to Lemma 3 and Theorem 2, when h is small enough, the exact solution
and the numerical solution of AVIE (2) are uniformly bounded. Without loss of gen-
erality, let C be their common upper bound, K̄ be upper bound of K (t, s) on D and
W = max

m≤l≤2m−1
max
0≤k≤l

|w(l)
k |. Hence,

|εn | ≤ |δ(h, tn)| + 2hW K̄C
n∑

i=0

|εi | + 2hW K̄C
n∑

i=0

|εn−i |,

which gives,

|εn | ≤ 4hW K̄C

1 − 4hW K̄C

n−1∑
i=0

|εi | + |δ(h, tn)|
1 − 4hW K̄C

.

Applying Lemma 6 to the above inequality yields

|εn | ≤ 1

1 − 4hW K̄C

{
max

m+1≤i≤n
|δ(h, ti )|+4hW K̄C

m∑
i=0

|εi |
}
e

4W K̄C
1−4hW K̄C

tn , n = m+1, . . . , N .

(24)
Since u0 = u(t0) = g(t0), we have ε0 = 0. And it follows from Lemma 2 that

|εi | = |ui − u(ti )| = O(hm+1), i = 1, . . . ,m.

Theorem 1 implies that the barycentric rational quadrature method (17) is consistent of order
q , i.e.,

max
m+1≤i≤N

|δ(h, ti )| ≤ Chq ,

whereq is stated in (23). Then, the convergence result stated in (22) and (23) follows from (24)
immediately. ��
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Fig. 1 The convergence order of composite barycentric rational quadrature method (17) with (m, d) = (5, 2)
and (m, d) = (5, 3) for Example 1

5 Numerical Experiments

In this section,we apply composite quadraturemethod (17) to some auto-convolutionVolterra
integral equations, to demonstrate the efficiency and accuracy of the proposed scheme.

Example 1 Consider the equation

u(t) = g(t) +
∫ t

0
cos(t − s)u(t − s)u(s)ds, t ∈ [0, 1],

where
g(t) = t2 + 3 − (21sin(t) − 6t + t2sin(t) − 6t cos(t)),

such that the equation has the exact solution u(t) = t2 + 3.

Collocation method with 5 collocation points is used in the starting procedure. Fig-
ure 1 shows the maximal absolute errors of the composite barycentric rational quadrature
method (17) for the rest grid points with (m, d) = (5, 2) and (m, d) = (5, 3). For
(m, d) = (5, 2), because m − d is odd, the theoretical order of convergence should be
d + 2 = 4. And for (m, d) = (5, 3), since m − d is even, the corresponding convergence
order should be d + 1 = 4. One may observe that all the numerical convergence orders are
approximately p = 4 from Fig. 1, which matches the theoretical results in Theorem 3.

Example 2 Secondly, we consider the auto-convolution Volterra integral equation

u(t) = g(t) +
∫ t

0
(t + s)2u(t − s)u(s)ds, t ∈ [0, 1],

where

g(t) = t3 − 41

2520
t9,

such that the exact solution is u(t) = t3.

Collocation method with 3 collocation parameters is implemented in the starting proce-
dure. And the composite barycentric rational quadrature method (17) with (m, d) = (3, 2)
and (m, d) = (3, 3) are used for the rest grid points. For (m, d) = (3, 2), because m − d
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Fig. 2 The convergence order of composite barycentric rational quadrature method (17) with (m, d) = (3, 2)
and (m, d) = (3, 3) for Example 2

Table 1 Values of max
{|εi |, i = m + 1, . . . , N

}
corresponding to (17) for Example 3

N (m, d) = (5, 2) (m, d) = (5, 4) (m, d) = (5, 5)
Error Rate Error Rate Error Rate

20 4.4134e−07 – 5.1319e−10 – 5.2328e−10 –

40 2.8316e−08 3.9622 1.1123e−11 5.5279 8.2395e−12 5.9889

80 1.7903e−09 3.9833 2.1677e−13 5.6812 1.9101e−13 5.4308

160 1.1243e−10 3.9931 3.3862e−15 6.0004 3.1641e−15 5.9157

320 7.0417e−12 3.9970 1.6653e−16 4.3458 1.6653e−16 4.2479

is odd, the theoretical order of convergence should be d + 2 = 4. And for (m, d) = (3, 3),
since m − d is even, the corresponding convergence order should be d + 1 = 4. We display
the convergence results in Fig. 2. It can be seen that all the numerical convergence orders are
approximately p = 4, which confirms the theoretical results in Theorem 3 well.

Example 3 Finally, we consider the example in [32]

u(t) = βte−γ t − β2e−γ t [2sin(t) − t − tcos(t)] +
∫ t

0
K (t, s)u(t − s)u(s)ds, t ∈ [0, 1],

with K (t, s) = cos(t − s). And the exact solution is u(t) = βte−γ t .

We also choose γ = 1, β = 1 in this numerical test. 5 collocation points are chosen
in the starting procedure, and the composite rational quadrature methods with parameter
d = 2, 4, 5 are used for the rest nodes respectively. Convergence results are shown in Table 1.
For (m, d) = (5, 5), since m − d is even, the theoretical order of convergence is d + 1 = 6.
And for the cases of (m, d) = (5, 2) and (m, d) = (5, 4), since m − d are odd, theoretical
convergence order should be d + 2 = 4 and 6 respectively. And from Table 1, one can
observe that the numerical results coincide with the theoretical ones. Note that the case of
(m, d) = (5, 4) and (m, d) = (5, 5), they reach machine precision when N = 160, which
explains why the experimental orders of the last row in Table 1 are smaller than 6.
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6 Conclusion

In this paper, the barycentric rational quadrature method is applied to AVIEs, and the con-
vergence analysis is established. Since the cost of the global quadrature method is huge, we
choose the composite barycentric rational quadrature method to reduce computation cost.
This method only needs to solve a linear equation in each time step and can achieve a high
order of convergence if parameter d is appropriately large. Both theoretical analysis and
numerical tests show that the composite barycentric rational quadrature method is efficient
for the numerical solution of AVIEs.
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