
Journal of Scientific Computing (2019) 78:531–548
https://doi.org/10.1007/s10915-018-0777-8

An Adaptive Multi-step Levenberg–Marquardt Method

Jinyan Fan1 · Jianchao Huang2 · Jianyu Pan3

Received: 20 March 2017 / Revised: 22 June 2018 / Accepted: 23 June 2018 / Published online: 28 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We propose an adaptive multi-step Levenberg–Marquardt (LM) method for nonlinear equa-
tions. The adaptive scheme can decide automatically whether an iteration should evaluate
the Jacobian matrix at the current iterate to compute an LM step, or use the latest evaluated
Jacobian to compute an approximate LM step, so that not only the Jacobian evaluation but
also the linear algebra work can be saved. It is shown that the adaptive multi-step LMmethod
converges superlinearly under the local error bound condition, which does not require the
full column rank of the Jacobian at the solution. Numerical experiments demonstrate the
efficiency of the adaptive multi-step LM method.

Keywords Nonlinear equations · Levenberg–Marquardt method · Trust region method

Mathematics Subject Classification 65K05 · 65K10 · 90C30

1 Introduction

We consider the system of nonlinear equations

F(x) = 0, (1.1)

where F(x) : Rn → Rm is a continuously differentiable function. Nonlinear equations
have wide applications in technology, mechanics, economy and so on. For example, physical
models that are expressed as nonlinear partial differential equations become systems of
nonlinear equations when discretized [5].

The first author was supported in part by NSFC Grant 11571234. The third author was supported in part by
NSFC Grant 11371145 and 11771148, and Science and Technology Commission of Shanghai Municipality
Grant 13dz2260400..

B Jinyan Fan
jyfan@sjtu.edu.cn

1 School of Mathematical Sciences, and Key Lab of Scientific and Engineering Computing (Ministry
of Education), Shanghai Jiao Tong University, Shanghai 200240, China

2 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

3 School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University,
Shanghai 200241, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0777-8&domain=pdf


532 Journal of Scientific Computing (2019) 78:531–548

It is natural to transform the nonlinear equations (1.1) to the nonlinear least squares
problem

min
x∈Rn

‖F(x)‖2, (1.2)

where ‖ · ‖ refers to the 2-norm. Obviously, (1.1) has a solution if and only if the minimal
value of (1.2) is zero. The Gauss–Newton method is the most well-known method for (1.2).
At the k-th iteration, it computes the Gauss–Newton step

dG N
k = − (J T

k Jk)
−1 J T

k Fk, (1.3)

where Fk = F(xk) and Jk = F ′(xk) is the Jacobian at xk . However, when the Jacobian is
not of full rank, the Gauss–Newton step is not well-defined. To overcome this difficulty, the
Levenberg–Marquardt (LM) method introduces a positive parameter λk > 0 and computes
the LM step

dk = − (J T
k Jk + λk I )−1 J T

k Fk . (1.4)

Both the Gauss–Newton method and the Levenberg–Marquardt method have quadratic con-
vergence for (1.1) under the assumptions that the Jacobian J (x) is Lipschitz continuous,
J (x)T J (x) is nonsingular at the solution and the LMparameter is chosen suitably. Yamashita
and Fukushima [13] proved that if the LM parameter is chosen as λk = ‖Fk‖2, then the LM
method converges quadratically for (1.1) under the local error bound condition, which is
weaker than the nonsingularity condition. Fan and Yuan [4] took λk = ‖Fk‖δ and showed
that the LM method preserves the quadratic convergence for any δ ∈ [1, 2] under the local
error bound condition.

The LMmethod evaluates the Jacobian at every iteration. When F(x) is complicated or n
is large, the cost of Jacobian evaluations may be expensive. To save the Jacobian evaluations
aswell as the linear algebrawork, Fan [2] proposed amodifiedLMmethod.At every iteration,
it uses the evaluated Jacobian to compute not only an LM step but also an approximate LM
step. More generally, a multi-step LM method was given in [3]. At the k-th iteration, it
computes one LM step and p − 1 approximate LM steps as follows:

dk,i = − (J T
k Jk + λk I )−1 J T

k F(xk,i ), i = 0, . . . , p − 1, (1.5)

where p ≥ 1 is a given integer and xk,i = xk,i−1 + dk,i−1 with xk,0 = xk , then set the trial
step as

dk =
p−1∑

i=0

dk,i . (1.6)

That is, the multi-step LM method uses Jk as an approximation of J (xk,i ) to compute the
approximate LM step dk,i . Hence, the Jacobian evaluation and the matrix factorization are
done after every p computations of the step. Counting as a complete iteration of the full p
steps between the Jacobian evaluation and thematrix factorization, themulti-step LMmethod
converges with Q-order p + 1 under the local error bound condition.

It looks like that the bigger the p, the more Jacobian evaluations could be saved. However,
the bigger p, meanwhile, implies the possibly worse approximation of the Jacobian at the
iterate. On the other hand, different problems may prefer to different p. But, the best p for a
problem is usually not known. These observations motivate us to develop an adaptive scheme
to automatically decidewhether an iteration should evaluate the Jacobian at the current iterate
to compute an LM step or use the latest evaluated Jacobian to compute an approximate LM

123



Journal of Scientific Computing (2019) 78:531–548 533

step. That is, the number of approximate LM steps could vary at different iterations, but it is
at most t − 1 to avoid worse approximation of the Jacobian, where t ≥ 1 is a given integer.

Counting every LM step and every approximate LM step as a single iteration, in this paper,
we compute the trial step dk by solving

(
GT

k Gk + λk I
)

d = − GT
k Fk, (1.7)

where Gk is the Jacobian Jk or the Jacobian used at the last iteration. If dk is satisfactory and
less than t − 1 approximate LM steps are computed, we regard Gk as a good approximation
of the Jacobian at the current iterate, and use it to compute another approximate LM step at
next iteration.

Define the ratio of the actual reduction to the predicted reduction of the merit function
‖F(x)‖2 at the k-th iteration as

rk = Aredk

Predk
= ‖Fk‖2 − ‖F(xk + dk)‖2

‖Fk‖2 − ‖Fk + Gkdk‖2 . (1.8)

The ratio rk exploits the most relevant information on the step’s quality at the iterate. It plays
an important role in deciding whether dk is acceptable. If rk is positive (i.e., the iteration is
successful), we accept dk . Usually, we set

xk+1 =
{

xk + dk, if rk ≥ p0,

xk, otherwise,
(1.9)

where p0 is a small positive constant. Suppose s − 1 approximate LM steps that used the
latest evaluated Jacobian have been computed. If the iteration is very successful and s is less
than t , we regard the latest evaluated Jacobian as a good approximation at the iterate and
keep it, otherwise, we evaluate the exact one. That is, we set

Gk+1 =
{

Gk, if rk ≥ p1 and s < t,

Jk+1, otherwise,
(1.10)

where 0 < p0 < p1 < 1. Meanwhile, we update the LM parameter as follows:

λk+1 =
{

λk, if rk ≥ p1 and s < t,

μk+1‖Fk+1‖δ, otherwise,
(1.11)

where

μk+1 =

⎧
⎪⎨

⎪⎩

c1μk, if rk < p2,

μk, if p2 ≤ rk ≤ p3,

max{c2μk, μmin}, if rk > p3.

(1.12)

Here 0 < c2 < 1 < c1, 0 < p0 < p2 < p1 < p3 < 1, 1 ≤ δ ≤ 2 and μmin > 0 are
positive constants. Based on (1.7)–(1.12), we propose an adaptive multi-step LMmethod for
nonlinear equations (1.1) and show it converges superlinearly under the local error bound
condition.

The paper is organized as follows. In Sect. 2, we propose an adaptive multi-step LM algo-
rithm for (1.1). It is shown that the algorithm converges globally under certain assumptions.
In Sect. 3, we discuss the convergence rate of the algorithm under the local error bound
condition. Some numerical results are given in Sect. 4. Finally, we conclude the paper in
Sect. 5.

123



534 Journal of Scientific Computing (2019) 78:531–548

2 An Adaptive Multi-step LM Algorithm and Global Convergence

In this section, we first propose the adaptive multi-step LM algorithm, then show it converges
globally under certain assumptions.

The adaptive multi-step LM algorithm is presented as follows.

Algorithm 1: An adaptive multi-step Levenberg–Marquardt algorithm
Input: x1 ∈ Rn , c1 > 1 > c2 > 0, 0 < p0 < p2 < p1 < p3 < 1, 1 ≤ δ ≤ 2, t ≥ 1, μ1 > μmin > 0.

1 Set G1 = J1, λ1 = μ1‖F1‖δ , k := 1, s := 1, i := 1, ki = 1.

2 while ‖GT
ki

Fki ‖ �= 0 do
3 Compute dk by solving (1.7).
4 Compute rk = Aredk/Predk by (1.8), and set xk+1 by (1.9).
5 Update Gk+1, λk+1 and μk+1 by (1.10), (1.11) and (1.12), respectively.
6 Set k := k + 1. If Gk is the Jacobian at xk , set s := 1, i := i + 1, ki = k, otherwise set s := s + 1.
7 end

We denote by S̄ = {ki : i = 1, 2, . . .} the set of numbers at which iterations the Jacobians
J (xki )(i = 1, 2, . . .) are used to compute LM steps. Let

si = ki+1 − ki . (2.1)

Since at most t − 1 approximate LM steps are computed, we have si ≤ t .
For any k, there exist ki and 0 ≤ q ≤ si − 1 such that

k = ki + q. (2.2)

Note that

Gki = Gki +1 = · · · = Gki +si −1 = Jki , (2.3)

thus the linear equations (1.7) can also be written as
(

J T
ki

Jki + λki I
)

d = − J T
ki

Fk (2.4)

for k = ki , . . . , ki + si − 1.
It can be easily checked that dk is not only the minimizer of the convex minimization

problem

min
d∈Rn

‖Fk + Gkd‖2 + λk‖d‖2 � ϕk(d), (2.5)

but also the solution of the trust region problem

min
d∈Rn

‖Fk + Gkd‖2

s.t . ‖d‖ ≤ �k � ‖dk‖. (2.6)

Due to Powell’s result [10, Theorem 4], we have the following lemma.

Lemma 2.1 Let dk be computed by (1.7), then

‖Fk‖2 − ‖Fk + Gkdk‖2 ≥ ‖GT
k Fk‖min

{
‖dk‖, ‖GT

k Fk‖
‖GT

k Gk‖

}
. (2.7)

123



Journal of Scientific Computing (2019) 78:531–548 535

Lemma 2.1 indicates that the predicted reduction of the merit function is always nonneg-
ative. It plays a crucial role in guaranteeing the global convergence of Algorithm 1. In the
following, we show that, from the optimization point, at least one of the accumulation points
of the sequence generated by Algorithm 1 is a stationary point of the merit function ‖F(x)‖2.

Theorem 2.2 Suppose F(x) is continuously differentiable, both F(x) and J (x) are Lipschitz
continuous, i.e., there exist positive constants κl f and κl j such that

‖F(y) − F(x)‖ ≤ κl f ‖y − x‖, ∀x, y ∈ Rn, (2.8)

and

‖J (y) − J (x)‖ ≤ κl j‖y − x‖, ∀x, y ∈ Rn . (2.9)

Then, we have

lim inf
k→∞ ‖J T

k Fk‖ = 0. (2.10)

Proof Suppose that (2.10) is not true. Then, there exists a constant ε > 0 such that

∥∥∥J T
k Fk

∥∥∥ ≥ ε, ∀k. (2.11)

By (2.8) and (2.9), we have

‖J (x)‖ ≤ κl f , ∀x ∈ Rn (2.12)

and

‖F(y) − F(x) − J (x)(y − x)‖ ≤ κl j‖y − x‖2, ∀x, y ∈ Rn . (2.13)

Denote the index set of successful iterations by

S = {k : rk ≥ p0} . (2.14)

We consider S in two cases.
Case 1: S is finite. Then, there exists k̃ such that rk < p0 < p1 for all k ≥ k̃. Hence,

Gk = Jk for all k ≥ k̃. Since {‖Fk‖} is nonincreasing, by (1.12), μk+1 = c1μk with c1 > 1.
So, μk → +∞.

By (2.11) and (2.12), for k ≥ k̃,

‖GT
k Fk‖ ≤ ‖Gk‖‖Fk‖ ≤ κl f ‖F1‖ (2.15)

and

‖Fk‖ ≥ ‖GT
k Fk‖

‖Gk‖ ≥ ‖J T
k Fk‖
κl f

≥ ε

κl f
. (2.16)

This, together with λk = μk‖Fk‖δ and μk → +∞, gives λk → +∞. Hence, by the
definition of dk , we get dk → 0.

123



536 Journal of Scientific Computing (2019) 78:531–548

Case 2: S is infinite. It follows from (2.12) and Lemma 2.1 that

‖F1‖2 ≥
∑

k∈S

(‖Fk‖2 − ‖Fk+1‖2
)

≥
∑

k∈S

p0Predk ≥
∑

k∈S∩S̄

p0Predk

≥
∑

k∈S∩S̄

p0‖J T
k Fk‖min

{
‖dk‖, ‖J T

k Fk‖
‖J T

k Jk‖

}

≥
∑

k∈S∩S̄

p0εmin

{
‖dk‖ ,

ε

κ2
l f

}
. (2.17)

We claim that the set S ∩ S̄ is infinite. Suppose to the contrary that it is finite. Let kī be
the largest index in it. Then, for i > ī , rki < p0 < p1. By (1.10), Gki +1 = Jki +1. Thus,
ki+1 = ki + 1. Moreover, ki+1 /∈ S. Deducing by induction, we obtain that rk < p0 for all
sufficiently large k, which contradicts to the infinity of S. Hence, S ∩ S̄ is infinite.

Note that ki ∈ S̄ according to the definition of S̄. By (2.17), we obtain dki → 0 for
ki ∈ S. Since dki = 0 for ki /∈ S, we have dki → 0. This, together with ‖Gki ‖ ≤ κl f ,
‖GT

ki
Fki ‖ = ‖J T

ki
Fki ‖ ≥ ε and (1.7), gives λki → +∞.

By (2.12) and (2.13), for k = ki + 1, . . . , ki + si − 1,

‖dk‖ =
∥∥∥−(GT

k Gk + λk I )−1GT
k Fk

∥∥∥

≤
∥∥∥(J T

ki
Jki + λki I )−1 J T

ki
Fki

∥∥∥ +
∥∥∥∥∥∥
(J T

ki
Jki + λki I )−1 J T

ki
Jki

⎛

⎝
k−1∑

j=ki

d j

⎞

⎠

∥∥∥∥∥∥

+ κl j

∥∥∥(J T
ki

Jki + λki I )−1 J T
ki

∥∥∥

∥∥∥∥∥∥

⎛

⎝
k−1∑

j=ki

d j

⎞

⎠

∥∥∥∥∥∥

2

≤ ‖dki ‖ +
k−1∑

j=ki

‖d j‖ + κl f κl j

λki

⎛

⎝
k−1∑

j=ki

‖d j‖
⎞

⎠
2

. (2.18)

Since λki → +∞, we have

‖dki +1‖ ≤ 3‖dki ‖ (2.19)

and

‖dki +2‖ ≤ ‖dki ‖ + ‖dki ‖ + ‖dki +1‖ + κl f κl j

λki

(‖dki ‖ + ‖dki +1‖
)2

≤ 21‖dki ‖ (2.20)

for sufficiently large ki . By induction, there exists a positive constant ĉ such that, for k =
ki + 1, . . . , ki + si − 1,

‖dk‖ ≤ ĉ‖dki ‖ (2.21)

123



Journal of Scientific Computing (2019) 78:531–548 537

holds for all sufficiently large ki . Since si ≤ t for all i , we have dk → 0 and

‖Jk − Gk‖ = ‖Jk − Jki ‖ ≤ κl j

k−1∑

j=ki

‖d j‖ → 0. (2.22)

Hence, by (2.11),
∥∥∥GT

k Fk

∥∥∥ ≥
∥∥∥J T

k Fk

∥∥∥ −
∥∥∥(Jk − Gk)

T Fk

∥∥∥ ≥
∥∥∥J T

k Fk

∥∥∥ − ‖Jk − Gk‖‖F1‖ ≥ ε/2 (2.23)

holds for sufficiently large k. Since ‖Fk‖ ≥ ∥∥GT
k Fk

∥∥ /‖Gk‖ ≥ ε
2κl f

, by the definition of dk

and λk , we have λk → +∞ and μk → +∞.
Therefore, no matter S is infinite or not, we obtain

dk → 0, λk → +∞, μk → +∞, (2.24)

moreover, (2.22) and (2.23) hold true. It then follows from (2.12), (2.13), (2.22), (2.23),
Lemma 2.1 and ‖Fk‖ ≤ ‖F1‖ that

|rk − 1| =
∣∣∣∣

Aredk − Predk

Predk

∣∣∣∣ =
∣∣∣∣∣
‖Fk+1‖2 − ‖Fk + Gkdk‖2
‖Fk‖2 − ‖Fk + Gkdk‖2

∣∣∣∣∣

≤
∣∣‖Fk + Jkdk‖2 − ‖Fk + Gkdk‖2

∣∣ + 2κl j ‖Fk + Jkdk‖ ‖dk‖2 + κ2
l j ‖dk‖4

∥∥GT
k Fk

∥∥min

{
‖dk‖,

∥∥GT
k Fk

∥∥
∥∥GT

k Gk
∥∥

}

≤
(∥∥J T

k Jk
∥∥ + ∥∥GT

k Gk
∥∥) ‖dk‖2 + 2 ‖Jk − Gk‖ ‖Fk‖ ‖dk‖

ε
2 min

{
‖dk‖ , ε

2κ2l f

}

+ 2κl j‖F1‖‖dk‖2 + 2κl jκl f ‖dk‖3 + κ4
l j‖dk‖4

ε
2 min

{
‖dk‖ , ε

2κ2l f

}

→ 0. (2.25)

Thus, rk → 1. So, by (1.10)–(1.12), there exists a positive μ̂ such that μk ≤ μ̂ holds for
all sufficiently large k, which is a contradiction to (2.24). Hence, (2.11) can not be true.
Therefore, we obtain (2.10). �


3 Local Convergence

In this section, we first investigate the properties of the trial step, then show that the LM
parameter is bounded, finally we prove that Algorithm 1 converges superlinearly under the
local error bound condition. We make the following assumptions.

Assumption 3.1 The sequence {xk} generated by Algorithm 1 satisfies dist(xk, X∗) → 0,
and there exist x∗ ∈ X∗ and 0 < r < 1 such that ‖xk − x∗‖ ≤ r/2 for all large k.

Assumption 3.2 F(x) is continuously differentiable, and J (x) is Lipschitz continuous on
N (x∗, r) = {x : ‖x − x∗‖ ≤ r}, i.e., there exists a constant κl j > 0 such that

‖J (y) − J (x)‖ ≤ κl j‖y − x‖, ∀x, y ∈ N (x∗, r). (3.1)

123



538 Journal of Scientific Computing (2019) 78:531–548

Assumption 3.3 ‖F(x)‖ provides a local error bound on N (x∗, r), i.e., there exists a constant
κleb > 0 such that

‖F(x)‖ ≥ κleb dist(x, X∗), ∀x ∈ N (x∗, r). (3.2)

By Assumption 3.2,

‖F(y) − F(x) − J (x)(y − x)‖ ≤ κl j‖y − x‖2, ∀x, y ∈ N (x∗, r), (3.3)

and there exists a constant κl f > 0 such that

‖F(y) − F(x)‖ ≤ κl f ‖y − x‖, ∀x, y ∈ N (x∗, r). (3.4)

Denote by x̄k the vector in X∗ that satisfies

‖x̄k − xk‖ = dist(xk, X∗). (3.5)

Then, for all large k,

‖x̄k − xk‖ ≤ ‖x∗ − xk‖ ≤ r

2
(3.6)

and

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖ + ‖x∗ − xk‖ ≤ r , (3.7)

so x̄k ∈ N (x∗, r). In the following, the iterations k we consider are large.

3.1 Properties of the Step dk

In this subsection, we show the relationship between the size of dk and the distance from xki

to the solution set.

Lemma 3.4 Under Assumptions 3.1–3.3, there exists a constant c > 0 such that

‖dk‖ ≤ c‖x̄ki − xki ‖, k = ki , . . . , ki + si − 1. (3.8)

Proof It follows from (1.12) and (3.2) that

λki = μki ‖Fki ‖δ ≥ μminκ
δ
leb‖x̄ki − xki ‖δ. (3.9)

Since dki is the minimizer of ϕki (d), by (3.6), (3.3), 0 < r < 1 and 1 ≤ δ ≤ 2, we have

‖dki ‖2 ≤ ϕki (dki )

λki

≤ ϕki (x̄ki − xki )

λki

= ‖Fki + Jki (x̄ki − xki )‖2
λki

+ ‖x̄ki − xki ‖2

≤ κ2
l j

μminκ
δ
leb

‖x̄ki − xki ‖4−δ + ‖x̄ki − xki ‖2

≤ c0‖x̄ki − xki ‖, (3.10)

where c0 =
√

μ−1
minκ

−δ
lebκ2

l j + 1.

123



Journal of Scientific Computing (2019) 78:531–548 539

For k = ki + 1, . . . , ki + si − 1, by (3.3),

‖dk‖ =
∥∥∥∥−

(
J T

ki
Jki + λki I

)−1
J T

ki
Fk

∥∥∥∥

≤
∥∥∥∥−

(
J T

ki
Jki + λki I

)−1
J T

ki
Fki

∥∥∥∥ +
∥∥∥∥∥∥
−

(
J T

ki
Jki + λki I

)−1
J T

ki
Jki

⎛

⎝
k−1∑

j=ki

d j

⎞

⎠

∥∥∥∥∥∥

+ κl j

∥∥∥∥−
(

J T
ki

Jki + λki I
)−1

J T
ki

∥∥∥∥

∥∥∥∥∥∥

k−1∑

j=ki

d j

∥∥∥∥∥∥

2

≤ ‖dki ‖ +
k−1∑

j=ki

‖d j‖ + κl j

∥∥∥∥
(

J T
ki

Jki + λki I
)−1

J T
ki

∥∥∥∥

⎛

⎝
k−1∑

j=ki

‖d j‖
⎞

⎠
2

. (3.11)

By (3.9),
∥∥∥∥
(

J T
ki

Jki + λki I
)−1

J T
ki

∥∥∥∥ =
∥∥∥∥
(

J T
ki

Jki + λki I
)−1

J T
ki

Jki

(
J T

ki
Jki + λki I

)−1
∥∥∥∥
1/2

≤
∥∥∥∥
(

J T
ki

Jki + λki I
)−1 (

J T
ki

Jki + λki I
) (

J T
ki

Jki + λki I
)−1

∥∥∥∥
1/2

=
∥∥∥∥
(

J T
ki

Jki + λki I
)−1

∥∥∥∥
1/2

≤ 1√
λki

≤ 1

μ
1
2
minκ

δ
2

leb

‖x̄ki − xki ‖− δ
2 . (3.12)

So, it follows from (3.6), (3.10) and 1 ≤ δ ≤ 2 that

‖dki +1‖ ≤ ‖dki ‖ + ‖dki ‖ + κl jμ
− 1

2
minκ

− δ
2

leb c0‖dki ‖‖x̄ki − xki ‖1−
δ
2

≤ 2‖dki ‖ + c̄‖dki ‖
= c1‖dki ‖, (3.13)

where c̄ = κl jμ
− 1

2
minκ

− δ
2

leb c0 and c1 = 2 + c̄ are positive constants. Similarly,

‖dki +2‖ ≤ ‖dki ‖ + ‖dki ‖ + ‖dki +1‖ + κl jμ
− 1

2
minκ

− δ
2

leb c0(1 + c1)
2‖dki ‖‖x̄ki − xki ‖1−

δ
2

≤ (
2 + c1 + c̄(1 + c1)

2) ‖dki ‖
= c2‖dki ‖, (3.14)

where c2 = 2 + c1 + c̄(1 + c1)2. Let

c j = 2 + c1 + · · · + c j−1 + c̄(1 + c1 + · · · + c j−1)
2, j = 3, . . . , t − 1. (3.15)

Then, by induction, we have

‖dki +q‖ ≤cq‖dki ‖, q = 3, . . . , si − 1. (3.16)

Since si ≤ t for all i , ct−1 > ct−2 > · · · > c2 > c1 > 1, by (3.10), we obtain (3.8), where
c = c0ct−1. �


123



540 Journal of Scientific Computing (2019) 78:531–548

3.2 Boundedness of the LM Parameter

The updating rule of μk indicates that μk is bounded below. In the following, we show that
μk is bounded above.

Lemma 3.5 Under Assumptions 3.1–3.3, there exists a constant μmax > 0 such that

μk ≤ μmax (3.17)

holds for all sufficiently large k.

Proof We first prove that

‖Fk‖2 − ‖Fk + Gkdk‖2 ≥ κleb

2
‖Fk‖min {‖dk‖, ‖x̄k − xk‖} (3.18)

holds for sufficiently large k.
It follows from (3.1), (3.3), Lemma 3.4 and si ≤ t that, for k = ki , ki +1, . . . , ki + si −1,

‖Fk + Gk(x̄k − xk)‖ ≤ ‖Fk + Jk(x̄k − xk)‖ + ‖Gk − Jk‖‖x̄k − xk‖

≤ κl j‖x̄k − xk‖2 + κl j

⎛

⎝
k−1∑

j=ki

‖d j‖
⎞

⎠ ‖x̄k − xk‖

≤ κl j‖x̄k − xk‖2 + κl j ct‖x̄ki − xki ‖‖x̄k − xk‖. (3.19)

Note that ‖x̄k − xk‖ → 0 and ‖x̄ki − xki ‖ → 0, we obtain that

‖Fk + Gk(x̄k − xk)‖ ≤ κleb

2
‖x̄k − xk‖ (3.20)

holds for sufficiently large k.
We consider in two cases.
Case 1: ‖x̄k − xk‖ ≤ ‖dk‖. Since dk is a solution of the trust region problem (2.6), by

(3.2) and (3.20),

‖Fk‖ − ‖Fk + Gkdk‖ ≥ ‖Fk‖ − ‖Fk + Gk(x̄k − xk)‖
≥ κleb‖x̄k − xk‖ − κleb

2
‖x̄k − xk‖ ≥ κleb

2
‖x̄k − xk‖ (3.21)

holds for sufficiently large k.
Case 2: ‖x̄k − xk‖ > ‖dk‖. Similarly, by (3.2) and (3.20),

‖Fk‖ − ‖Fk + Gkdk‖ ≥ ‖Fk‖ −
∥∥∥∥Fk + ‖dk‖

‖x̄k − xk‖Gk(x̄k − xk)

∥∥∥∥

≥ ‖dk‖
‖x̄k − xk‖ (‖Fk‖ − ‖Fk + Gk(x̄k − xk)‖)

≥ ‖dk‖
‖x̄k − xk‖

κleb

2
‖x̄k − xk‖

≥ κleb

2
‖dk‖. (3.22)

Combining (3.21) with (3.22), we get

‖Fk‖2 − ‖Fk + Gkdk‖2 ≥ κleb

2
(‖Fk‖ + ‖Fk + Gkdk‖)min {‖dk‖, ‖x̄k − xk‖}

≥ κleb

2
‖Fk‖min {‖dk‖, ‖x̄k − xk‖} , (3.23)

123



Journal of Scientific Computing (2019) 78:531–548 541

which yields (3.18).
It then follows from (3.2), (3.3), Lemma 3.4 and ‖Fki + Jki dki ‖ ≤ ‖Fki ‖ that

|rki − 1| =
∣∣∣∣

Aredki − Predki

Predki

∣∣∣∣ =
∣∣∣∣
‖Fki +1‖2 − ‖Fki + Jki dki ‖2
‖Fki ‖2 − ‖Fki + Jki dki ‖2

∣∣∣∣

≤
∣∣∣∣∣
2‖Fki + Jki dki ‖‖dki ‖2 + κ2

l j‖dki ‖4
κleb
2 ‖Fki ‖min{‖dki ‖, ‖x̄ki − xki ‖}

∣∣∣∣∣

→ 0. (3.24)

This implies that rki → 1. Note that for k /∈ S̄,Gk+1 = Gk and rk ≥ p1 > p2, soμk+1 ≤ μk .
By (1.10)–(1.12), there exists a constant μmax > 0 such that (3.17) holds true. �


3.3 Convergence Rate of Algorithm 1

Due to the results given by Behling and Iusem in [1], we assume that rank(J (x̄)) = r for all
x̄ ∈ N (x∗, b) ∩ X∗. Suppose the SVD of J (x̄ki ) is

J (x̄ki ) = Ūki �̄ki V̄ T
ki

= (
Ūki ,1, Ūki ,2

) (
�̄ki ,1

0

) (
V̄ T

ki ,1
V̄ T

ki ,2

)

= Ūki ,1�̄ki ,1V̄ T
ki ,1, (3.25)

where �̄ki ,1 = diag(σ̄ki ,1, σ̄ki ,2, . . . , σ̄ki ,r ) with σ̄ki ,1 ≥ · · · ≥ σ̄ki ,r > 0. Suppose the SVD
of J (xki ) is

Jki = Uki �ki V T
ki

= (
Uki ,1, Uki ,2

) (
�ki ,1

�ki ,2

) (
V T

ki ,1
V T

ki ,2

)

= Uki ,1�ki ,1V T
ki ,1 + Uki ,2�ki ,2V T

ki ,2, (3.26)

where �ki ,1 = diag(σki ,1, σki ,2, . . . , σki ,r ) with σki ,1 ≥ · · · ≥ σki ,r > 0 and �ki ,2 =
diag(σki ,r+1, σki ,r+2, . . . , σki ,n) with σki ,r+1 ≥ · · · ≥ σki ,n ≥ 0.

By (3.1) and the theory of matrix perturbation [12], we obtain
∥∥diag

(
�ki ,1 − �̄ki ,1, �ki ,2

)∥∥ ≤ ‖Jki − J (x̄ki )‖ ≤ κl j‖x̄ki − xki ‖. (3.27)

Lemma 3.6 Under Assumptions 3.1–3.3, there exist positive constants l1 and l2 such that

‖dk‖ ≤ l1‖x̄ki − xki ‖k−ki +1, k = ki , . . . , ki + si − 1, (3.28)

‖Fk + Gkdk‖ ≤ l2‖x̄ki − xki ‖k−ki +2, k = ki , . . . , ki + si − 1. (3.29)

Proof We prove by induction. It was shown in [2] that the results hold true for k = ki and
k = ki + 1.

Suppose the results hold true for k − 1(ki + 2 < k < ki + si − 1), that is, there exist
constants l̄1 and l̄2 such that

‖dk−1‖ ≤ l̄1‖x̄ki − xki ‖k−ki , (3.30)

‖Fk−1 + Gk−1dk−1‖ ≤ l̄2‖x̄ki − xki ‖k−ki +1. (3.31)

123



542 Journal of Scientific Computing (2019) 78:531–548

It then follows from (3.1), (3.3) and Lemma 3.4 that

‖Fk‖ = ‖F(xk−1 + dk−1)‖
≤ ‖Fk−1 + Jk−1dk−1‖ + κl j‖dk−1‖2
≤ ‖Fk−1 + Gk−1dk−1‖ + ‖ (Jk−1 − Gk−1) dk−1‖ + κl j‖dk−1‖2
= ‖Fk−1 + Gk−1dk−1‖ + ∥∥Jk−1 − Jki

∥∥ ‖dk−1‖ + κl j‖dk−1‖2

≤ l̄2‖x̄ki − xki ‖k−ki +1 + κl j

k−2∑

j=ki

‖d j‖‖‖dk−1‖ + κl j l̄
2
1‖x̄ki − xki ‖2(k−ki )

≤ l̄3‖x̄ki − xki ‖k−ki +1, (3.32)

where l̄3 = l̄2 + κl j ct l̄1 + κl j l̄21 . Hence,
∥∥∥Uki ,1U T

ki ,1Fk

∥∥∥ ≤ ‖Fk‖ ≤ l̄3‖x̄ki − xki ‖k−ki +1. (3.33)

Moreover, by (3.2),

‖x̄k − xk‖ ≤ κ−1
leb‖Fk‖ ≤ κ−1

leb l̄3‖x̄ki − xki ‖k−ki +1. (3.34)

Let J̃ki = Uki ,1�ki ,1V T
ki ,1

and ũk = − J̃+
ki

Fk . Then, ũk is the least squares solution of the

problem min
u∈Rn

‖Fk + J̃ki u‖. By (3.1), (3.3) and (3.27),

∥∥∥Uki ,2U T
ki ,2Fk

∥∥∥ = ‖Fk + J̃ki ũk‖ ≤ ‖Fk + J̃ki (x̄k − xk)‖
≤ ‖Fk + Jk(x̄k − xk)‖ + ‖Jki − Jk‖‖x̄k − xk‖ + ‖ J̃ki − Jki ‖‖x̄k − xk‖

≤ κl j‖x̄k − xk‖2 + κl j

k−1∑

j=ki

‖d j‖‖x̄k − xk‖ +
∥∥∥Uki ,2�ki ,2V T

ki ,2

∥∥∥ ‖x̄k − xk‖

≤ l̄4‖x̄ki − xki ‖k−ki +2, (3.35)

where l̄4 = κl jκ
−1
leb l̄3(κ

−1
leb l̄3 + ct + 1).

Note that {xk} converges to X∗. By (3.27), we know

∥∥∥�−1
ki ,1

∥∥∥ = 1

σki ,r
≤

∣∣∣∣
1

σ̄ki ,r − κl j‖x̄ki − xki ‖
∣∣∣∣ ≤ 2

σ̄ki ,r
(3.36)

holds for sufficiently large ki . By (3.9),

∥∥∥λ−1
ki

�ki ,2

∥∥∥ = ‖�ki ,2‖
λki

≤ κl j

μminκ
δ
leb

‖x̄ki − xki ‖1−δ. (3.37)

It then follows from (3.33), (3.35)–(3.37), Lemma 3.5 and 1 ≤ δ ≤ 2 that

‖dk‖ =
∥∥∥−Vki ,1

(
�2

ki ,1 + λki I
)−1

�ki ,1U T
ki ,1Fk − Vki ,2

(
�2

ki ,2 + λki I
)−1

�ki ,2U T
ki ,2Fk

∥∥∥

≤
∥∥∥�−1

ki ,1

∥∥∥
∥∥∥U T

ki ,1Fk

∥∥∥ +
∥∥∥λ−1

ki
�ki ,2

∥∥∥
∥∥∥U T

ki ,2Fk

∥∥∥

≤ l1‖x̄ki − xki ‖k−ki +1, (3.38)

123



Journal of Scientific Computing (2019) 78:531–548 543

where l1 = 2σ̄−1
ki ,r

l̄3 + κl jμ
−1
minκ

−δ
leb l̄4, and

‖Fk + Gkdk‖
=

∥∥∥λki Uki ,1
(
�2

ki ,1 + λki I
)−1

U T
ki ,1Fk + λki Uki ,2

(
�2

ki ,2 + λki I
)−1

U T
ki ,2Fk

∥∥∥

≤ μki ‖Fki ‖δ
∥∥∥�−2

ki ,1

∥∥∥
∥∥∥U T

ki ,1Fk

∥∥∥ +
∥∥∥U T

ki ,2Fk

∥∥∥

≤ l2‖x̄ki − xki ‖k−ki +2, (3.39)

where l2 = 4μmaxκ
δ
l f σ̄

−2
ki ,r

l̄3 + l̄4. The proof is completed. �

Based on Lemma 3.6, we have the following main result.

Theorem 3.7 Under Assumptions 3.1–3.3, there exists a constant l3 > 0 such that

‖dki+1‖ ≤ l3‖dki ‖si +1. (3.40)

Consequently, Algorithm 1 converges q-superlinearly to some solution of (1.1).

Proof It follows from (3.2), (3.3), Lemma 3.4 and Lemma 3.6 that

κleb‖x̄ki+1 − xki+1‖ ≤ ‖F(xki+1)‖ = ‖F(xki +si −1 + dki +si −1)‖
≤ ‖Fki +si −1 + Jki +si −1dki +si −1‖ + κl j‖dki +si −1‖2
≤ ‖Fki +si −1 + Gki +si −1dki +si −1‖ + ‖(Jki +si −1 − Gki +si −1)dki +si −1‖

+ κl j‖dki +si −1‖2

≤ ‖Fki +si −1 + Gki +si −1dki +si −1‖ +
ki +si −2∑

j=ki

‖d j‖‖dki +si −1‖

+ κl j‖dki +si −1‖2
≤ (

l2 + tcl1 + κl j l
2
1

) ‖x̄ki − xki ‖si +1. (3.41)

Since

‖x̄ki − xki ‖ ≤ ‖x̄ki+1 − xki ‖ ≤ ‖x̄ki+1 − xki+1‖ +
ki+1−1∑

j=ki

‖d j‖, (3.42)

by (3.16) and (3.41),

‖x̄ki − xki ‖ ≤ 2
ki+1−1∑

j=ki

‖d j‖ ≤ 2si csi −1‖dki ‖ (3.43)

holds for sufficiently large k.
Let l̄5 = κ−1

leb (l2 + tcl1 + κl j l21). It then follows from (3.41), Lemmas 3.4 and 3.6 that

‖dki+1‖ ≤ c‖x̄ki+1 − xki+1‖ ≤ cl̄5‖x̄ki − xki ‖si +1

≤ cl̄5(2si csi −1)
si +1‖dki ‖si +1

≤ cl̄5(2tct−1)
t+1‖dki ‖si +1. (3.44)

Letting l3 = cl̄5(2tct−1)
t+1, we obtain (3.40).

123



544 Journal of Scientific Computing (2019) 78:531–548

By Lemma 3.4, we have ‖dki ‖ → 0. Hence, there exist N and 0 < q < 1 such that
max{‖dki ‖, l3‖dki ‖} ≤ q < 1 for all i ≥ N . Since si ≥ 1, we have

‖dki+1‖ ≤ l3‖dki ‖si +1 ≤ l3‖dki ‖2 ≤ q‖dki ‖, ∀i ≥ N . (3.45)

Then,
∞∑

i=N

‖dki ‖ ≤ ‖dkN ‖ + q‖dkN ‖ + q2‖dkN ‖ + · · ·

= ‖dkN ‖
1 − q

. (3.46)

This implies that
∑∞

i=N ‖dki ‖ converges, so does
∑∞

i=1 ‖dki ‖.
By (3.15) and si ≤ t , we have

‖xki+1 − xki ‖ =
∥∥∥∥∥∥

si −1∑

j=0

dki + j

∥∥∥∥∥∥
≤ tct−1‖dki ‖. (3.47)

So,
∑∞

i=1 ‖xki+1 − xki ‖ converges, which implies that
∑∞

i=1(xki+1 − xki ) converges. Thus,
{xki } converges to some x̂ ∈ X∗. By (3.40), we have

‖xki+1 − x̂‖ ≤ q̃‖xki − x̂‖si +1 (3.48)

for some q̃ > 0. Therefore, Algorithm 1 converges q-superlinearly. �


4 Numerical Results

We tested Algorithm 1 on some singular problems and compared it with the LM algorithm,
the modified LM algorithm [2] as well as the multi-step LM algorithm with m = 3 [3]. The
experiments are implemented on a laptop with an Intel Core i7-7500U CPU and 8GB of
RAM, using Matlab R2015b.

The test problems are created by modifying the nonsingular problems given by Moré,
Garbow and Hillstrom in [8]. They have the same form as in [11]

F̂(x) = F(x) − J (x∗)A
(

AT A
)−1

AT (x − x∗), (4.1)

where F(x) is the standard nonsingular test function, x∗ is its root, and A ∈ Rn×k has full
column rank with 1 ≤ k ≤ n. Obviously, F̂(x∗) = 0 and

Ĵ (x∗) = J (x∗)
(

I − A
(

AT A
)−1

AT
)

has rank n − k.
We set p0 = 0.0001, p1 = 0.50, p2 = 0.25, p3 = 0.75, c1 = 4, c2 = 0.25, μ1 = 10−5,

μmin = 10−8 and t = 10 for the tests. Algorithm 1 stops when ‖J T
ki

Fki ‖ ≤ 10−5 or the
iteration number exceeds 100 × (n + 1).

We chose the rank of Ĵ (x∗) to be n − 1 by using

A ∈ Rn×1, AT = (1, 1, . . . , 1).

The results are given inTables 1 and 2. In the tables, x0, 10x0 and 100x0 in the third column are
starting points, where x0 is suggested in [8]. “NF” and “NJ” represent the numbers of function

123



Journal of Scientific Computing (2019) 78:531–548 545

Table 1 Results on the singular problems with rank n − 1 in small scale

Prob. n x0 LM Modified LM Multi-step LM (m = 3) Adaptive LM
NF/NJ/NF+n*NJ NF/NJ/NF+n*NJ NF/NJ/NF+n*NJ NF/NJ/NF+n*NJ

1 2 1 15/15/45 21/11/43 46/10/66 27/8/43

10 17/17/51 25/13/51 31/11/53 34/9/52

100 21/21/63 29/15/59 37/13/63 40/10/60

2 4 1 10/10/50 13/7/41 16/6/40 18/5/38

10 13/13/65 19/10/59 22/8/54 25/7/53

100 16/16/80 23/12/71 28/10/68 32/8/64

4 4 1 16/16/80 23/12/71 28/10/68 30/8/62

10 19/19/95 27/14/83 34/12/82 36/9/72

100 22/22/110 31/16/95 40/14/96 43/11/87

5 3 1 8/8/32 11/6/29 13/5/28 38/4/50

10 8/8/32 9/5/24 28/10/58 53/6/71

100 8/8/32 19/10/49 31/11/64 250/47/391

9 30 1 2/2/62 3/2/63 4/2/64 2/1/32

10 14/9/284 27/14/447 37/13/427 25/5/175

100 9/9/279 13/7/223 16/6/196 20/4/140

10 30 1 6/6/186 7/4/127 10/4/130 9/2/69

10 7/7/217 11/6/191 13/5/163 33/5/183

100 10/10/310 13/7/223 16/6/196 20/4/140

12 30 1 18/18/558 25/13/415 31/11/361 35/9/305

10 20/20/620 27/14/447 34/12/394 38/10/338

100 23/23/713 33/17/543 40/14/460 46/12/406

13 30 1 9/9/279 13/7/223 16/6/196 17/4/137

10 14/14/434 19/10/319 25/9/295 26/7/236

100 17/17/527 25/13/415 31/11/361 34/9/304

14 30 1 12/12/372 17/9/287 22/8/262 23/6/203

10 18/18/558 27/14/447 31/11/361 36/10/336

100 24/24/744 35/18/575 43/15/493 46/13/436

Table 2 Results on the singular problems with rank n − 1 in large scale

Prob. n x0 LM Modified LM Multi-step LM (m = 3) Adaptive LM
NF/NJ/TIME NF/NJ/TIME NF/NJ/TIME NF/NJ/TIME

8 4000 1 9/9/12.39 13/7/10.66 16/6/9.70 18/5/6.65

9 4000 1 1/1/0.23 1/1/0.22 1/1/0.22 1/1/0.22

10 3/3/3.36 5/3/3.85 7/3/4.08 7/1/1.67

100 4/4/4.89 7/4/5.50 7/3/4.11 12/2/3.34

10 4000 1 7/7/100.15 11/6/102.80 13/5/91.07 13/3/68.12

13 4000 1 9/9/13.16 13/7/11.16 16/6/9.66 16/4/6.69

10 14/14/21.55 19/10/16.72 25/9/15.64 26/7/11.47

100 17/17/26.77 25/13/22.22 31/11/19.42 34/9/14.92

123



546 Journal of Scientific Computing (2019) 78:531–548

Table 2 continued

Prob. n x0 LM Modified LM Multi-step LM (m = 3) Adaptive LM
NF/NJ/TIME NF/NJ/TIME NF/NJ/TIME NF/NJ/TIME

14 4000 1 12/12/18.77 17/9/15.20 22/8/14.10 23/6/10.33

10 18/18/28.83 27/14/24.57 31/11/20.05 35/9/15.69

100 24/24/39.00 35/18/32.10 43/15/28.10 46/13/22.39

Table 3 Results on the singular problems with rank 1 in small scale

Prob. n x0 LM Modified LM Multi-step LM (m = 3) Adaptive LM
NF/NJ/NF+n*NJ NF/NJ/NF+n*NJ NF/NJ/NF+n*NJ NF/NJ/NF+n*NJ

1 2 1 15/15/45 21/11/43 25/9/43 28/7/42

10 17/17/51 25/13/51 31/11/53 34/9/52

100 21/21/63 29/15/59 37/13/63 40/10/60

2 4 1 10/10/50 13/7/41 16/6/40 18/5/38

10 13/13/65 19/10/59 22/8/54 25/7/53

100 16/16/80 23/12/71 28/10/68 32/8/64

4 4 1 16/16/80 21/11/65 28/10/68 30/8/62

10 19/19/95 27/14/83 31/11/75 35/9/71

100 22/22/110 31/16/95 37/13/89 42/11/86

5 3 1 15/15/60 21/11/54 25/9/52 29/8/53

10 15/15/60 21/11/54 25/9/52 21/3/30

100 15/15/60 21/11/54 25/9/52 28/5/43

9 30 1 2/2/62 3/2/63 4/2/64 2/1/32

10 3/3/93 5/3/95 7/3/97 5/1/35

100 19/10/319 37/10/337 34/12/394 17/4/137

10 30 1 3/3/93 3/2/63 4/2/64 5/2/65

10 8/8/248 15/6/195 — 112/9/382

100 23/14/443 727/265/867 — 36/6/216

12 30 1 18/18/558 25/13/415 31/11/361 35/9/305

10 20/20/620 27/14/447 34/12/394 38/10/338

100 23/23/713 33/17/543 40/14/460 46/12/406

13 30 1 9/9/279 13/7/223 16/6/196 15/4/135

10 13/13/403 19/10/319 22/8/262 26/7/236

100 17/17/527 23/12/383 28/10/328 32/8/272

14 30 1 11/11/341 15/8/255 19/7/229 22/6/202

10 17/17/527 25/13/415 31/11/361 33/9/303

100 23/23/713 33/17/543 40/14/460 43/12/403

evaluations and Jacobian evaluations, respectively. “—” represents that the algorithm fails
to find a solution in 100 × (n + 1) iterations. Note that, the evaluation of the Jacobian is
generally n times of the function evaluation. So we also presented the values “N F +n ∗ N J”
for comparisons of the total evaluations. However, if the Jacobian is sparse, this kind of value

123



Journal of Scientific Computing (2019) 78:531–548 547

Table 4 Results on the singular problems with rank 10 in large scale

Prob. n x0 LM Modified LM Multi-step LM (m = 3) Adaptive LM
NF/NJ/TIME NF/NJ/TIME NF/NJ/TIME NF/NJ/TIME

8 4000 1 9/9/12.61 13/7/10.64 16/6/9.53 18/5/6.89

9 4000 1 1/1/0.22 1/1/0.23 1/1/0.23 1/1/0.22

10 3/3/3.41 3/2/2.00 4/2/2.14 3/1/1.72

100 9/9/14.42 15/8/12.72 13/5/7.92 26/4/7.41

10 4000 1 6/6/85.63 7/4/64.68 10/4/71.46 9/3/57.73

13 4000 1 8/8/11.78 11/6/9.16 16/6/9.67 15/4/6.88

10 13/13/20.24 19/10/16.21 22/8/13.50 26/7/12.06

100 17/17/26.88 23/12/19.81 28/10/17.22 33/9/14.25

14 4000 1 11/11/17.27 15/8/13.16 19/7/11.81 21/6/9.16

10 17/17/27.64 23/12/20.28 31/11/19.78 33/9/16.03

100 23/23/37.60 31/16/27.79 40/14/25.47 43/12/21.28

does not mean much. For large scale problems, we presented the running time of the problem
instead of the total evaluations.

We also chose the rank of Ĵ (x∗) to be 1 and 10, where A ∈ Rn×(n−1) and A ∈ Rn×(n−10)

are generated randomly. The results are given in Tables 3 and 4, respectively.
From the tables, we can see that the adaptive LM algorithm usually takes the least Jaco-

bian calculations as well as the total calculations to find a solution of small scale nonlinear
equations, while it usually takes the least time to find a solution of large scale nonlinear
equations, no matter the rank of the problem is. The reason is that it makes full use of the
available evaluated Jacobians and matrix factorizations to compute approximate LM steps.
Since it takes much less efforts to compute approximate LM steps, the overall cost of the
adaptive LM algorithm is usually much less.

5 Conclusion

Weproposed an adaptivemulti-stepLevenberg–Marquardt algorithm for nonlinear equations.
It uses the latest evaluated Jacobian to calculate an approximate LM step, if the ratio of
the actual reduction to the predicted reduction of the merit function at the iterate is good.
Under the local error bound condition, which is weaker than the nonsingularity condition,
the adaptive LM algorithm converges superlinearly to some solution of (1.1). Compared to
the LM algorithm, the Jacobian calculations, the total calculations, as well as the running
time of the adaptive multi-step LM algorithm are significantly reduced.

References

1. Behling, R., Iusem, A.: The effect of calmness on the solution set of systems of nonlinear equations.
Math. Program. 137, 155–165 (2013)

2. Fan, J.Y.: The modified Levenberg–Marquardt method for nonlinear equations with cubic convergence.
Math. Comput. 81, 447–466 (2012)

3. Fan, J.Y.: A Shamanskii-like Levenberg–Marquardt method for nonlinear equations. Comput. Optim.
Appl. 56, 63–80 (2013)

123



548 Journal of Scientific Computing (2019) 78:531–548

4. Fan, J.Y., Yuan, Y.X.: On the quadratic convergence of the Levenberg–Marquardt method without non-
singularity assumption. Computing 74, 23–39 (2005)

5. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms. SIAM,
Philadelphia (2003)

6. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math.
2, 164–166 (1944)

7. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear inequalities. SIAM J. Appl.
Math. 11, 431–441 (1963)

8. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans.
Math. Softw. (TOMS) 7, 17–41 (1981)

9. Moré, J.J.: The Levenberg–Marquardt Algorithm: Implementation and Theory. In: Watson, G.A. (ed.)
Lecture Notes in Mathematics 630: Numerical Analysis, pp. 105–116. Springer, Berlin (1978)

10. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. Nonlinear Program. 2,
1–27 (1975)

11. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843
(1984)

12. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory, (Computer Science and Scientific Computing).
Academic Press, Boston (1990)

13. Yamashita, N., Fukushima,M.: On the rate of convergence of the Levenberg–Marquardt method. Comput.
Suppl. 15, 237–249 (2001)

14. Yuan, Y.X.: Recent advances in trust region algorithms. Math. Program. Ser. B 151, 249–281 (2015)

123


	An Adaptive Multi-step Levenberg–Marquardt Method
	Abstract
	1 Introduction
	2 An Adaptive Multi-step LM Algorithm and Global Convergence
	3 Local Convergence
	3.1 Properties of the Step dk
	3.2 Boundedness of the LM Parameter
	3.3 Convergence Rate of Algorithm 1

	4 Numerical Results
	5 Conclusion
	References




