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Abstract
This paper is concerned with developing accurate and efficient numerical methods for fully
nonlinear second order elliptic and parabolic partial differential equations (PDEs) in mul-
tiple spatial dimensions. It presents a general framework for constructing high order local
discontinuous Galerkin (LDG) methods for approximating viscosity solutions of these fully
nonlinear PDEs. The proposed LDG methods are natural extensions of a narrow-stencil
finite difference framework recently proposed by the authors for approximating viscosity
solutions. The idea of the methodology is to use multiple approximations of first and second
order derivatives as a way to resolve the potential low regularity of the underlying viscosity
solution. Consistency and generalized monotonicity properties are proposed that ensure the
numerical operator approximates the differential operator. The resulting algebraic system has
several linear equations coupled with only one nonlinear equation that is monotone in many
of its arguments. The structure can be explored to design nonlinear solvers. This paper also
presents and analyzes numerical results for several numerical test problems in two dimensions
which are used to gauge the accuracy and efficiency of the proposed LDG methods.
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1 Introduction

In this paper we consider the following general fully nonlinear second order elliptic and
parabolic PDEs in high dimensions:

F[u] := F
(
D2u,∇u, u, x

) = 0, x ∈ Ω (1)

and
ut + F

(
D2u,∇u, u, x, t

) = 0, (x, t) ∈ ΩT := Ω × (0, T ] (2)

which are complemented by appropriate boundary and initial conditions for Ω ⊂ Rd(d =
2, 3) a given bounded (possibly convex) domain. In particular, we are concernedwith directly
approximating C0(Ω) (or bounded) solutions of fully nonlinear problems that correspond to
the two prototypical fully nonlinear operators

F[u] = det (D2u) and F[u] = inf
θ∈�

(Lθu − fθ ) ,

where Lθ is a second order linear elliptic operator with

Lθu := Aθ : D2u + bθ · ∇u + cθu

for A : B the Frobenius inner product for matrices A, B ∈ Rd×d . The first nonlinear
operator defines theMonge–Ampère equation, [25], and the secondnonlinear operator defines
the Hamilton–Jacobi–Bellman equation, [15,16]. It should be noted that some parabolic
counterparts of elliptic Monge–Ampère type equations may not have the form of (2) (cf.
[21]). Fully nonlinear second order PDEs arise from many scientific and engineering fields
[5]; they are a class of PDEs which are very difficult to analyze and even more challenging
to approximate numerically.

Due to their fully nonlinear structures, fully nonlinear PDEs do not have variational (or
weak) formulations in general. Theweak solutions are often defined as viscosity solutions (see
Sect. 2 for the definition). The non-variational structure prevents the applicability of standard
Galerkin type methods such as finite element methods. On the other hand, to approximate
very low regularity solutions of these PDEs, it is natural to use totally discontinuous piecewise
polynomial functions (i.e., DG functions) due to their flexibility and the larger approximation
spaces. As expected, such a method must be nonstandard (again) due to the fully nonlinear
structure of these PDEs. Indeed, a class of nonstandard mixed interior penalty discontinuous
Galerkin methods was developed by the authors in [11] that works well in both 1-D and
high dimensions provided that the viscosity solutions belong to C0(Ω) ∩ H1(Ω) and the
polynomial degree is greater than or equal to 1. Their extensions to local discontinuous
Galerkin (LDG) methods were done only in the 1-D case so far. There were several non-
trivial barriers preventing the extensions in the high dimensional case.

The goal of this paper is to generalize the one-dimensional LDG framework and methods
of [10] to approximate the PDEs (1) and (2) in high dimensions (i.e., d ≥ 2). Specifically,
we shall design and implement a class of local discontinuous Galerkin (LDG) methods
which are based on a nonstandard mixed formulation of (1) and (2). Our interest in an LDG
approach over the interior-penalty (IP) approach found in [11] is threefold. The first reason
is due to the known increased potential for approximating gradients of regular solutions
when compared with IPDG methods. The second motivation is due to the fact that the LDG
approach will allow us to form two numerical gradients when discretizing fully nonlinear
operators that formally involve the gradient of the viscosity solution. As already mentioned
above, the formulation for the IPDG methods in [11] assumed the viscosity solutions were
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in the space C0(Ω) ∩ H1(Ω). By forming two numerical gradients, the LDG methods
can naturally be formulated for viscosity solutions in the space C0(Ω)\H1(Ω). Third, as
will be seen in the following, the numerical derivatives associated with the LDG approach
naturally generalize the corresponding difference quotients associated with a finite difference
(FD) approach. Thus, we can potentially gain further insight into various FD methods for
fully nonlinear problems by studying their LDG counterparts while also having a stronger
theoretical foundation for the LDG methods proposed in this paper.

The main difficulty addressed in this paper is how to extend the one-dimensional frame-
work of [10] to the high-dimensional setting. First, we will need to design a consistent way
for forming multiple discrete gradient and Hessian approximations. To this end, we will uti-
lize the conventions introduced in [12] where a finite element DG numerical calculus was
developed based upon a discontinuous Galerkin methodology and choosing various fluxes to
characterize various numerical derivative operators. To extend ideas to the high-dimensional
setting we will discretize partial derivatives directly as a way to define various gradient
approximations. We will need to introduce nonstandard trace operators that are consistent
with the idea that each partial derivative is treated independently. Second, we will extend
the framework to second order problems where the fully nonlinear differential operator also
involves the gradient operator, as represented by the general problems (1) and (2). Third,
on noting that the LDG formulation will introduce a large set of auxiliary equations, we
will explore various solver techniques and the potential for variable reduction to reduce the
computational cost.

We note that typically aDG formulation for a fully nonlinear problem is based upon a semi-
Lagrangian approach or strong structure assumptions that guarantee a monotonicity property
of the scheme (see [4,6,18,22,24,26,28] and the review article [5]). As such, the methods
are limited to piecewise linear basis functions. Inspired by the work of Yan and Osher in
[29], we seek to formulate DG methods that allow the use of high order polynomials and can
achieve high-order accuracy. The methods proposed in this paper extend the narrow-stencil
FD approach in [7,8,19] to high-order and to unstructured triangular meshes. As with the
LDG methods for Hamilton–Jacobi equations in [29], the only analytic convergence result
for the proposed LDG methods corresponds to choosing piecewise constant basis functions.
In this special case, the proposed LDG methods reduce to the FD methods of [8]. Moreover,
we are able to establish a link between the proposed LDGmethods and the vanishingmoment
method of Feng and Neilan [14]. Heuristically such a link also helps to justify the proposed
LDGmethods for fully nonlinear second order PDEs in the sameway the link to the vanishing
viscosity method motivates the LDG methods of [29] for Hamilton–Jacobi equations.

The remainder of this paper is organized as follows. In Sect. 2 we introduce some back-
ground for the viscosity solution notion. In Sect. 3 we define key concepts of consistency
and generalized monotonicity for numerical operators that will serve as the foundation of the
proposed LDG framework. We also introduce the numerical operators that will be used in the
design of our methods. The proposed LDG formulation for the nonlinear elliptic equation (1)
is presented in Sect. 4.We use twomain ideas in the formulation: the numerical viscosity bor-
rowed from the discretization of first-order Hamilton–Jacobi equations and a novel concept
of numerical moments. We also discuss various techniques for solving the resulting nonlin-
ear (large) algebraic systems. In Sect. 5 we consider both explicit and implicit in time fully
discrete LDG methods for the fully nonlinear parabolic equation (2) based on the method
of lines approach. In Sect. 6 we present many numerical experiments for the proposed LDG
methods. These numerical experiments verify the accuracy and demonstrate the efficiency
of the new methods. The experiments also explore the role of the numerical moment in the
formulation. Lastly, in Sect. 7, we provide some concluding remarks.
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2 Preliminaries

We first recall the viscosity solution concept for fully nonlinear second order problems. For
a bounded open domain Ω ⊂ Rd , let B(Ω), USC(Ω), and LSC(Ω) denote, respectively,
the spaces of bounded, upper semi-continuous, and lower semi-continuous functions on Ω .
For any v ∈ B(Ω), we define

v∗(x) := lim sup
y→x

v(y) and v∗(x) := lim inf
y→x

v(y).

Then, v∗ ∈ USC(Ω) and v∗ ∈ LSC(Ω), and they are called the upper and lower semicon-
tinuous envelopes of v, respectively.

Given a function F : Sd×d × Rd × R × Ω → R, where Sd×d denotes the set of d × d
symmetric real matrices, the general second order fully nonlinear PDE takes the form

F(D2u,∇u, u, x) = 0 in Ω. (3)

Note that here we have used the convention of writing the boundary condition as a disconti-
nuity of the PDE (cf. [1, p. 274]).

The following two definitions can be found in [1,2,17].

Definition 1 Equation (3) is said to be elliptic if for all (q, λ, x) ∈ Rd ×R × Ω there holds

F(A,q, λ, x) ≤ F(B,q, λ, x) ∀A, B ∈ Sd×d , A ≥ B, (4)

where A ≥ B means that A − B is a nonnegative definite matrix.

Equation (3) is said to be proper elliptic if for all (q, x) ∈ Rd × Ω there holds

F(A,q, a, x) ≤ F(B,q, b, x) ∀A, B ∈ Sd×d , A ≥ B, a, b ∈ R, a ≤ b. (5)

We note that when F is differentiable, ellipticity can also be defined by requiring that the
matrix ∂F

∂A is negative semi-definite (cf. [17, p. 441]).

Definition 2 A function u ∈ B(Ω) is called a viscosity subsolution (resp. supersolution) of
(3) if, for all ϕ ∈ C2(Ω), if u∗ − ϕ (resp. u∗ − ϕ) has a local maximum (resp. minimum) at
x0 ∈ Ω , then we have

F∗(D2ϕ(x0),∇ϕ(x0), u
∗(x0), x0) ≤ 0

(resp. F∗(D2ϕ(x0),∇ϕ(x0), u∗(x0), x0) ≥ 0). The function u is said to be a viscosity solu-
tion of (3) if it is simultaneously a viscosity subsolution and a viscosity supersolution of
(3).

Remark 1 It can be proved that it is sufficient only to consider ϕ ∈ P2, the space of all
quadratic polynomials, in Definition 2 (see [2, page 20]).

Definition 3 Problem (3) is said to satisfy a comparison principle if the following statement
holds. For any upper semi-continuous function u and lower semi-continuous function v on
Ω , if u is a viscosity subsolution and v is a viscosity supersolution of (3), then u ≤ v on Ω .

We remark that if F and u are continuous, then the upper and lower ∗ indices can be
removed in Definition 2. The definition of ellipticity implies that the differential operator F
must be non-increasing in its first argument in order to be elliptic. It turns out that ellipticity
and a comparison principle provide sufficient conditions for Eq. (3) to fulfill a maximum
principle (cf. [2,17]). It is clear from the above definition that viscosity solutions in general
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do not satisfy the underlying PDEs in a tangible sense, and the concept of viscosity solutions
is nonvariational. Such a solution is not defined through integration by parts against arbitrary
test functions; hence, it does not satisfy an integral identity. The non-variational nature of
viscosity solutions is the main obstacle that prevents the direct construction of Galerkin-type
methods.

3 A GeneralizedMonotone Nonstandard LDG Framework

Our methodology for directly approximating viscosity solutions of second-order fully non-
linear PDEs is based on several motivational ideas which we explain below. Since integration
by parts cannot be performed on Eq. (1), the first key idea is to introduce the auxiliary vari-
ables P := D2u and q := ∇u and rewrite the original fully nonlinear PDE as a system of
PDEs:

F(p, q, u, x) = 0, (6a)

q − ∇u = 0, (6b)

P − ∇q = 0. (6c)

To address the fact that ∇u and D2u may not exist for a viscosity solution u ∈ C0(Ω), the
second key idea is to formally replace q := ∇u by two possible values of ∇u, namely, the
left and right (possibly infinite) limits, and P := ∇q by two possible values for each possible
q , namely, the left and right (possibly infinite) limits. Thus, we have the auxiliary variables
q−, q+ : Ω → Rd and P−−, P−+, P+−, P++ : Ω → Rd×d such that

[
q−(x)

]
i = lim

σ→0+ [∇u(x − σei )]i , (7a)
[
q+(x)

]
i = lim

σ→0+ [∇u(x + σei )]i , (7b)
[
P−−(x)

]
i j = lim

σ→0+
[∇q−(x − σe j )

]
i j , (7c)

[
P−+(x)

]
i j = lim

σ→0+
[∇q−(x + σe j )

]
i j , (7d)

[
P+−(x)

]
i j = lim

σ→0+
[∇q+(x − σe j )

]
i j , (7e)

[
P++(x)

]
i j = lim

σ→0+
[∇q+(x + σe j )

]
i j (7f)

for all i, j ∈ {1, 2, . . . , d}, where ei denotes the i th canonical basis vector for Rd . The third
key idea is to replace (6a) by

F̂(P++, P+−, P−+, P−−, q+, q−, u, x) = 0, (8)

where F̂ , which is called a numerical operator, should be some well-chosen approximation
to F that incorporates the multiple gradient and Hessian variables.

Thenext step is to address the key issue aboutwhat criterionor properties “good”numerical
operators F̂ should satisfy.A large part of our framework revolves arounddescribing sufficient
conditions on the choice of numerical operators, as reflected in the following definitions that
generalize the one-dimensional definitions given in [10].

Definition 4 (i) A function F̂ : (
Rd×d

)4 × (
Rd

)2 × R × Ω → R is called a numerical
operator.
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(ii) Let P ∈ R
d×d

, q ∈ R
d
, v ∈ R, and x ∈ Ω . A numerical operator F̂ is said to be

consistent (with the differential operator F) if F̂ satisfies

lim inf
Pμν→P;μ,ν=−,+
q±→q,λ→v,ξ→x

F̂(P++, P+−, P−+, P−−, q+, q−, λ, ξ) ≥ F∗(P, q, v, x), (9)

lim sup
Pμν→P;μ,ν=−,+
q±→q,λ→v,ξ→x

F̂(P++, P+−, P−+, P−−, q+, q−, λ, ξ) ≤ F∗(P, q, v, x), (10)

where F∗ and F∗ denote, respectively, the lower and the upper semi-continuous
envelopes of F . Thus, we have

F∗(P, q, v, x) := lim inf
P̃→P ,̃q→q,
ṽ→v,̃x→x

F
(
P̃, q̃, ṽ, x̃

)
,

F∗(P, q, v, x) := lim sup
P̃→P ,̃q→q,
ṽ→v,̃x→x

F
(
P̃, q̃, ṽ, x̃

)
,

where P̃ ∈ Rd×d , q̃ ∈ Rd , ṽ ∈ R, and x̃ ∈ Ω . Note that when F and F̂ are continuous,
the above definition can be simplified to

F̂(P, P, P, P, q, q, v, x) = F(P, q, v, x). (11)

(iii) A numerical operator F̂ is said to be g-monotone if for all x ∈ Ω , there holds
F̂(P++, P+−, P−+, P−−, q+, q−, v, x) is monotone increasing in P++, P−−, q−,
and v and monotone decreasing in P+−, P−+, and q+. More precisely, the numerical
operator F̂ is g-monotone if for all Pμν ∈ Rd×d and qμ ∈ Rd , μ, ν ∈ {+,−}, for all
v ∈ R, and for all x ∈ Ω , there holds

F̂
(
A, P+−, P−+, P−−, q+, q−, v, x

) ≤ F̂
(
B, P+−, P−+, P−−, q+, q−, v, x

)
,

F̂
(
P++, A, P−+, P−−, q+, q−, v, x

) ≥ F̂
(
P++, B, P−+, P−−, q+, q−, v, x

)
,

F̂
(
P++, P+−, A, P−−, q+, q−, v, x

) ≥ F̂
(
P++, P+−, B, P−−, q+, q−, v, x

)
,

F̂
(
P++, P+−, P−+, A, q+, q−, v, x

) ≤ F̂
(
P++, P+−, P−+, B, q+, q−, v, x

)
,

for all A, B ∈ Sd×d such that A � B, where A � B means that B − A has all
nonnegative components,

F̂
(
P++, P+−, P−+, P−−, a, q−, v, x

) ≥ F̂
(
P++, P+−, P−+, P−−, b, q−, v, x

)
,

F̂
(
P++, P+−, P−+, P−−, q+, a, v, x

) ≤ F̂
(
P++, P+−, P−+, P−−, q+, b, v, x

)
,

for all a, b ∈ Rd such that ai ≤ bi for all i = 1, 2, . . . , d , and

F̂
(
P++, P+−, P−+, P−−, q+, q−, a, x

) ≤ F̂
(
P++, P+−, P−+, P−−, q+, q−, b, x

)

for all a, b ∈ R such that a ≤ b.

The condition can be summarized by F̂(↑,↓,↓,↑,↓,↑,↑, x), where the monotonicity
with respect to the matrix entries is enforced component-wise.

The final concern for the framework is how to design numerical operators that are both
consistent and g-monotone. Inspired by Lax–Friedrichs numerical Hamiltonians used for
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Hamilton–Jacobi equations [27], we propose the following Lax–Friedrichs-like numerical
operator:

F̂(P++, P+−, P−+, P−−, q+, q−, λ, ξ) := F

(
P−+ + P+−

2
,
q− + q+

2
, λ, ξ

)

− β · (
q− − q+) + α : (

P++ − P+− − P−+ + P−−)
, (12)

where α ∈ Rd×d is an undetermined positive semi-definite matrix and β ∈ Rd is an unde-
termined nonnegative vector. A : B stands for the Frobenius inner product for matrices
A, B ∈ Rd×d . The second to last term β · (q− −q+) is referred to as the numerical viscosity
and is directly borrowed from Lax–Friedrichs numerical Hamiltonians, and the last term
α : (P++ − P+− − P−+ + P−−) is referred to as the numerical moment. It is trivial to verify
that F̂ is consistent with F when F is continuous. By choosing α and β correctly, we can
also ensure g-monotonicity. In practice, we typically choose β = b1 and α = a1 I + a21 for
sufficiently large positive constants a1, a2, and b, where 1 is the vector/matrix with all entries
equal to one and I is the identity matrix. We note that the g-monotonicity condition can be
realized for a2 sufficiently large and a1 = 0. By also choosing a1 large, we can additionally
enforce the g-monotonicity condition using the partial order based on SPD matrices.

Remark 2 (a) Due to the definition of ellipticity for F , the g-monotonicity constraints on F̂
with respect to P−+

i i and P+−
i i are natural. Consistency is used to pass to a single matrix

argument and ellipticity is used to guarantee the correct monotonicity with respect to the
partial ordering induced by SPD matrices.

(b) By choosing the numerical viscosity and the numerical moment correctly, the numerical
operator F̂ will behave like a strongly elliptic operator even if the PDE operator F
is a degenerate elliptic operator. The consistency assumption then guarantees that the
numerical operator is still a reasonable approximation for the PDE operator.

(c) When F is differentiable, while it may not be possible to globally bound ∂F
∂∇u and ∂F

∂D2u
,

it may be sufficient to choose values for β and α such that the g-monotonicity property is
preserved over each iteration of the nonlinear solver for a given initial guess. The same
remark holds if F is locally Lipschitz. Thus, the values depend upon the solution and
not just the operator F . Similarly, the values for β and α could be chosen locally as done
with adaptively defined numerical viscosities for Hamilton–Jacobi equations.

4 Formulation of Nonstandard LDGMethods for Elliptic PDEs

We now formulate our nonstandard LDG methods for approximating viscosity solutions of
fully nonlinear elliptic PDEs which are based on the mixed formulation (7) and (8). We
also provide a detailed explanation of how to treat the boundary traces in the formulation.
Lastly we use the DG formulation to better understand the numerical viscosity and numerical
moment appearing in our Lax–Friedrichs-like numerical operator and explore two algorithms
for solving the resulting nonlinear algebraic systems.

4.1 DG Notation

To formulate our LDG methods, we need to introduce some notation and conventions which
are standard and can be found in [12]. Let Ω be a polygonal domain and Th denote a locally
quasi-uniform and shape-regular partition of Ω with h = maxK∈Th (diamK ). We introduce
the broken H1-space and broken C0-space
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H1(Th) :=
∏

K∈Th

H1(K ), C0(Th) :=
∏

K∈Th

C0(K )

and the broken L2-inner product

(v,w)Th :=
∑

K∈Th

∫

K
vw dx ∀v,w ∈ L2(Th).

Let E I
h denote the set of all interior faces/edges of Th , E B

h denote the set of all boundary
faces/edges of Th , and Eh := E I

h ∪ E B
h . Then, for a set Sh ⊂ Eh , we define the broken

L2-inner product over Sh by

〈v,w〉Sh :=
∑

e∈Sh

∫

e
v w ds ∀v,w ∈ L2(Sh).

For a fixed integer r ≥ 0, we define the standard DG finite element space V h ⊂ H1(Th) ⊂
L2(Ω) by

V h :=
∏

K∈Th

Pr (K ),

where Pr (K ) denotes the set of all polynomials on K with degree not exceeding r .
For K , K ′ ∈ Th , let e = ∂K ∩ ∂K ′ ∈ E I

h . Without a loss of generality, we assume that the
global labeling number of K is smaller than that of K ′ and define the following (standard)
jump and average notations:

[v] := v|K − v|K ′ , {v} := v|K + v|K ′

2
(13)

for any v ∈ Hm(Th). We also define ne := nK = −nK ′ as the normal vector to e. When
e ∈ E B

h , ne denotes the unit outward normal for the underlying boundary simplex. We note
that the function values defined on E B

h will be handled in a nonstandard way in our LDG
methods by allowing the boundary function values to depend on the degree of the polynomial
basis r . However, when r ≥ 1, the boundary function values can be treated in a more standard
way as in [12].

4.2 Formulation of LDGMethods

We now present an element-wise formulation for our LDGmethods. First we introduce some
local definitions. For any e ∈ E I

h with e = ∂K∩∂K ′ for some K , K ′ ∈ Th and for any v ∈ V h ,
let v(x I ) denote the value of v(x) on ∂K from the interior of the element K and v(x E ) denote
the value of v(x) on ∂K from the interior of the element K ′. Using these limit definitions,
we then define the local boundary flux operators: T+, T− : Pr (K ) → (∏

e⊂∂K Pr (e)
)d by

T−
i (vh)(x) :=

⎧
⎪⎨

⎪⎩

vh(x I ), if ni (x) > 0,

vh(x E ), if ni (x) < 0,

{vh(x)}, if ni (x) = 0,

(14a)

T+
i (vh)(x) :=

⎧
⎪⎨

⎪⎩

vh(x E ), if ni (x) > 0,

vh(x I ), if ni (x) < 0,

{vh(x)}, if ni (x) = 0

(14b)
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for all i ∈ {1, 2, . . . , d}, x ∈ e, and vh ∈ V h . The definition of T±
i (v) for v ∈ V h on

each e ∈ E B
h will be delayed to Sect. 4.3. Observe that, for e ∈ E I

h , we can also rewrite the
labelling-dependent trace operators as

T±
i (vh) = {

vh
} ∓ 1

2
sgn(n(i)

e )
[
vh

]
where sgn(y) =

⎧
⎪⎨

⎪⎩

1 if y > 0,

−1 if y < 0,

0 if y = 0

(15)

for all y ∈ R, where n(i)
e denotes the i-th component of ne ( the unit outward normal to e).

Note that the trace operators are nonstandard in that their values depend on the individual
components of the edge normal ne. The standard definition assigns a single-value (called a
numerical flux) based on the edge normal vector as a whole.

We are now ready to formulate our LDGmethods for system (7)–(8). First, we approximate
the (fully) nonlinear Eq. (8) by its broken L2-projection into V h , namely,

a0
(
uh, q

+
h , q−

h , P++
h , P+−

h , P−+
h , P−−

h ;φ0h
) = 0 ∀φ0h ∈ V h, (16)

where

a0(u, q+, q−, P++, P+−, P−+, P−−;φ0)

= (
F̂(P++, P+−, P−+, P−−, q+, q−, u, ·), φ0

)
Th

.

Next, we discretize the six linear equations in (7) locally with respect to each component
using the integration by parts formula:

∫

S
vxi ϕ dx =

∫

∂S
v ϕ ni ds −

∫

S
v ϕxi dx ∀ϕ ∈ C1(S) (17)

for i = 1, 2, . . . , d . Thus, the above formula yields an integral characterization for the partial
derivative vxi on the set S for all v ∈ H1(S). Using the preceding identity, we define our
gradient approximations qμ

h ∈ (V h)d , μ ∈ {+,−}, by
∫

K
qμ
i φ

μ
i dx +

∫

K
u (φ

μ
i )xi dx =

∫

∂K
Tμ
i (u) ni φ

μ
i (x I ) ds ∀φ

μ
i ∈ V h (18)

for i = 1, 2, . . . , d , μ = +,−.
Similarly, we define our Hessian approximations Pμν

h ∈ (V h)d×d , μ, ν ∈ {+,−}, by
∫

K
Pμν
i, j ψ

μ ν
i, j dx +

∫

K
qμ
i (ψ

μ ν
i, j )x j dx =

∫

∂K
T ν
j (qμ

i ) n j ψ
μν
i, j (x I ) ds (19)

for all ψμν
i, j ∈ V h and i, j = 1, 2, . . . , d , μ, ν = +,−.

Thus, in order to approximate the viscosity solution u for the fully nonlinear PDE (1)
paired with a Dirichlet boundary condition

u = g on ∂Ω (20)

for a given function g ∈ C0(∂Ω), we seek functions uh ∈ V h ; q+
h ,q

−
h ∈ (V h)d ; and P++

h ,
P+−
h , P−+

h , P−−
h ∈ (V h)d×d such that Eq. (16) holds as well as Eqs. (18) and (19) for all

K ∈ Th , where uh forms the approximation for u. We note that the implementation of the
Dirichlet boundary condition into the definition of the boundary flux/trace operator in (18)
and (19) will be described in Sect. 4.3.
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By summing the definitions ofq±
h and Pμ,ν

h overTh and using (15),we obtain the following
global (labeling-dependent) formulations for the proposed LDG methods:

(
qμ
i , ϕ

μ
i

)
Th

+ aμ
i

(
uh, ϕ

μ
i

) = 0 ∀ϕ
μ
i ∈ V h, (21a)

(
Pμν
i j , ψ

μν
i j

)
Th

+ aν
j

(
qμ
i , ψ

μν
i j

) = 0 ∀ψ
μν
i j ∈ V h (21b)

for i, j = 1, 2, . . . , d and μ, ν = −,+, where

a±
i

(
v, φ

) := (
v, φxi

)
Th

−
〈
{v} ∓ 1

2
sgn(n(i)

e )[v], [φ]n(i)
e

〉

E I
h

−〈
T±
i (v), φ ni

〉
EB
h

(22)

for all v, φ ∈ V h . Then, the proposed LDG methods correspond to solving the global for-
mulation (16) and (21).

Remark 3 Since the approximations are piecewise totally discontinuous polynomials, the
sided limits in (7) only need to be enforced along the faces/edges. By [12], we know that the
proposed auxiliary variables provide proper meanings for the limits in (7) since the various
derivative approximations coincide with the L2 projections of distributional derivatives onto
V h with variable strengths on the interior faces/edges depending on the choices of the traces,
where the traces are chosen such that the sided limits in (7) are consistent.

4.3 Numerical Boundary Fluxes

In this section, we extend the definition for the boundary flux operators, given by (14), to the
set E B

h . To this end, we will introduce a set of constraint equations that express all exterior
limits in terms of interior limits and known data. The Dirichlet boundary data will serve as an
exterior constraint on the sought-after numerical solution. We will consider two cases based
on whether the order of the DG space V h is zero or nonzero, i.e., r = 0 or r ≥ 1. When
r ≥ 1, we will enforce a “continuity” assumption across the boundary ∂Ω , and when r = 0,
we will prescribe an alternative approach that will more closely resemble the introduction of
“ghost values” commonly used in FD methods.

Prior to introducing the constraint equations, we specify a convention to be used for all
boundary faces/edges. Let K ∈ Th be a boundary simplex, and let e ∈ E B

h such that e ⊂ ∂K .
Suppose vh ∈ V h such that vh is supported on K . Then, we define vh(x) := vh(x I ) for all
x ∈ e.

We first consider r ≥ 1, in which case we make the “continuity” assumption

vh(x
E ) = vh(x) (23)

for all x ∈ e and vh ∈ V h such that e ∈ E B
h . Since problem (1) and (20) does not provide a

Neumman boundary data, we simply treat q±
i (x) as an unknown for all i = 1, 2, . . . , d and

x ∈ e with e ∈ E B
h . Alternatively, when defining the boundary flux values for uh , we use the

Dirichlet boundary condition given by (20). Thus, for r ≥ 1, we wish to impose

uh (x) = g(x)

for all x ∈ ∂Ω . However, g may not be a polynomial of degree r . Thus, we enforce this
condition weakly by imposing the following constraint equations:

d∑

i=1

〈
uh(x), ϕh(x)ni

〉
EB
h

=
d∑

i=1

〈
g(x), ϕh(x)ni

〉
EB
h

∀ϕh ∈ V h, (24)
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where n denotes the unit outward normal vector along ∂Ω . Observe that when a boundary
simplex has more than one face/edge in E B

h , we are treating all of the boundary simplex’s
faces/edges in E B

h as a single (d-1)-dimensional surface.
We now consider the case r = 0. Extending the definition for the boundary flux operators,

given by (14), to the set E B
h is less straightforward in this case.We can see this by observing the

fact that when fixing the interior limit of a boundary value on a boundary simplex, we actually
fix the function value on the entire simplex. Thus, strictly enforcing a Dirichlet boundary
condition for uh may result in a boundary layerwith respect to the overall approximation error
when measured in low-order norms such as the L∞- or L2-norm. Our goal is to prescribe
boundaryfluxvalues in away that results in a potential boundary layer that corresponds to only
high-order error, i.e., boundary layers that only appear when measuring the approximation
error in the W 1,∞- or H1-semi-norms, when defined.

In order to motivate our choice of boundary flux values when r = 0, we observe that, for
this special case, the DG gradient approximations q±

h are actually equivalent to the forward
and backward difference quotients used in FD methods for interior simplexes when Th is a
Cartesian partition labelled with the natural ordering (see [12]). By extending the equivalence
of the proposed LDG methods and the FD methods defined in [9,19] to the boundary of the
domain, we can derive the necessary boundary flux values for uh and q±

h on E B
h . To this

end, we will need to develop a methodology for extending the solution u to the exterior of
the domain Ω . We now define a way to do such an extension that is consistent with the
interpretation of the auxiliary variables and consistent with the FD strategy of introducing
“ghost values” for a grid function, where the underlying grid will be defined by the midpoints
of the Cartesian partition Th .

We first describe the extension for the approximation function uh . Given the Dirichlet
boundary data for the viscosity solution u, it is natural to assume that the approximation
function uh has a constant extension beyond each individual boundary face/edge. Thus, we
wish to define the exterior boundary fluxes using the Dirichlet boundary condition by setting
u(x E ) = g(x) for all x ∈ ∂K ∩ ∂Ω . However, a given boundary simplex may have multiple
faces/edges in E B

h . Therefore, we introduce a “ghost simplex” exterior to each individual
face/edge in E B

h , and we define the exterior value as ge, where

d∑

i=1

〈
ge, n

(i)
e

〉
e =

d∑

i=1

〈
g, n(i)

e

〉
e ∀e ∈ E B

h . (25)

Then, we define
uh(x

E )
∣∣
e:= ge ∀e ∈ E B

h . (26)

Observe that, for r = 0, we only apply the Dirichlet boundary condition to the exterior
function limits. Furthermore, we define the exterior function limits to be edge-dependent.
Since the function value is constant on each simplex K , we do not extend the Dirichlet
boundary condition to the interior of the domain by strongly enforcing (20). Instead, we treat
the value of uh on K as an unknown whenever K is a boundary simplex. We use the edge-
dependent definition to mimic the use of ghost values when r = 0, which are introduced for
each coordinate direction when using a FD methodology. When Th is a Cartesian partition,
our methodology does in fact result in the introduction of a fixed exterior boundary flux
value for each individual coordinate direction. The result of the methodology will be a more
weighted approximation on a boundary simplex based upon the boundary condition along
each boundary face/edge independently and on the PDE for the interior of the simplex.
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Next, we describe how we assign boundary values for q±
h for r = 0. Since we do not have

Neumman boundary data, we will have to enforce auxiliary boundary conditions. Assuming
Th is a Cartesian partition labelled with the natural ordering, throughout the interior of the
domain there holds

q−
i

∣
∣
K= q+

i

∣
∣
K−
i
, q+

i

∣
∣
K= q−

i

∣
∣
K+
i

(27)

for all i = 1, 2, . . . , d and all interior simplexes K ∈ Th due to the equivalence with FD
forward and backward difference quotients, where K−

i denotes the neighboring simplex in
the negative i-th Cartesian direction and K+

i denotes the neighboring simplex in the positive
i-th Cartesian direction. Extending (27) to the boundary yields

q−
i (x E ) = q+

i (x I ), if n(i)
e < 0, (28a)

q+
i (x E ) = q−

i (x I ), if n(i)
e > 0 (28b)

for x ∈ e, where both q+
i (x I ) and q−

i (x I ) are treated as unknowns. We will assume such a
relationship holds along the boundary for all triangulations.We also note that the relationship
is arbitrary if n(i)

i = 0.

Observe that the above extension does not define exterior limits for q+
i if n(i)

e < 0 or q−
i

if n(i)
e > 0. In order to define the remaining exterior limit values, we impose the following

auxiliary constraint equations:

d∑

i=1

〈
q−
i (x I ) − q−

i (x E ), n(i)
e

〉

e
= 0 ∀e ∈ E B

h , (29a)

d∑

i=1

〈
q+
i (x I ) − q+

i (x E ), n(i)
e

〉

e
= 0 ∀e ∈ E B

h . (29b)

The above constraint equations are consistent with discretizing the higher order auxiliary
constraint for all ghost-values of q±

h :

d∑

k=1

(
q±
k

)
xk

(x) = 0 ∀x ∈ Ωc.

The philosophy for such an auxiliary assumption can be found in [13]. We note that the
constraint equations (29) are also trivially satisfied when defining the exterior values for
r ≥ 1 due to our “continuity” assumption. Assuming that Th is either a uniform Cartesian
partition or a d-triangular partition where each simplex has at most one face/edge in E B

h , we
can see that all exterior limits on the boundary of the domain have now been expressed in
terms of unknown interior limits that correspond to degrees of freedom for the discretization.

We end this section by explicitly specifying the resulting exterior limit definitions for
q+
h and q−

h when approximating a two-dimensional problem with piecewise constant basis
functions. The explicit definitions for one-dimensional problems can be found in [10]. Let
q±
i := (q±

h )i . Then, using the strategy given above, we have

q+
1 (x E ) = q−

1 (x I ), q+
2 (x E ) = q−

2 (x I ),

q−
1 (x E ) = q−

1 (x I ), q−
2 (x E ) = q−

2 (x I ),
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if n1(x) < 0 and n2(x) < 0,

q+
1 (x E ) = q−

1 (x I ), q+
2 (x E ) = q+

2 (x I ) + q+
1 (x I ) − q+

1 (x E ),

q−
1 (x E ) = q−

1 (x I ) + q−
2 (x I ) − q−

2 (x E ), q−
2 (x E ) = q+

2 (x I )

if n1(x) < 0 and n2(x) ≥ 0,

q−
1 (x E ) = q+

1 (x I ), q−
2 (x E ) = q−

2 (x I ) + q−
1 (x I ) − q−

1 (x E ),

q+
1 (x E ) = q+

1 (x I ) + q+
2 (x I ) − q+

2 (x E ), q+
2 (x E ) = q−

2 (x I )

if n1(x) ≥ 0 and n2(x) < 0, and

q−
1 (x E ) = q+

1 (x I ), q−
2 (x E ) = q+

2 (x I ),

q+
1 (x E ) = q+

1 (x I ), q+
2 (x E ) = q+

2 (x I )

if n1(x) ≥ 0 and n2(x) ≥ 0 for all x ∈ ∂Ω ∩ e for some e ∈ E B
h .

Remark 4 (a) When r = 0, our approximation space consists of totally discontinuous piece-
wise constant functions. We have prescribed a way to assign all exterior boundary flux
values for our approximation functions, and, by convention, we treat all interior boundary
flux values as unknowns.

(b) The above constraint equations occur naturally in the boundary edge terms for the bilinear
form (22) for each auxiliary variable. We use this observation to enforce our boundary
conditions for uh and q±

h in the numerical tests found in Sect. 6.

4.4 The Numerical Viscosity and Numerical Moment

In this section,we take a closer look at the numerical viscosity and the numericalmoment used
in the definition of the Lax–Friedrichs-like numerical operator (12). We divide the analysis
into two cases, r = 0 and r ≥ 1. When r = 0, we will recover vanishing FD approximations
of the Laplacian operator and the biharmonic operator. When r ≥ 1, we will recover interior
jump/stabilization terms.

First we consider the case r = 0 in the definition of V h . Suppose that Th is a uniform
Cartesian partition labelled using the natural ordering. Let K be an interior simplex, xK
denote its midpoint, and χK denote the characteristic function on K . Then, by [12], we have

−β · (
q+
h − q−

h , χK
)
Th

= −
d∑

i=1

βi
(
δ+
xi ,hi

uh(xK ) − δ−
xi ,hi

uh(xK )
)

=
d∑

i=1

βi hiδ
2
xi ,hi uh(xK ),

where δ+
xi ,hi

denotes the forward difference quotient operator, δ−
xi ,hi

denotes the backward

difference quotient operator, and δ2xi ,hi
denotes the standard second order central difference

quotient operator for approximating pure second derivatives. Also, by [12], we have
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α : (
P++
i j − P+−

i j − P−+
i j + P−−

i j , χK
)
Th

=
d∑

i, j=1

αi j
(
δ+
xi ,hi

δ+
x j ,h j

uh(xK ) − δ+
xi ,hi

δ−
x j ,h j

uh(xK )

− δ−
xi ,hi

δ+
x j ,h j

uh(xK ) + δ−
xi ,hi

δ−
x j ,h j

uh(xK )
)

=
d∑

i, j=1

αi, j hi h jδ
2
xi ,hi δ

2
x j ,h j

uh(xK ).

Thus, forβ = 1 andα = 1, we recover scaled approximations for the Laplace and biharmonic
operator. Consequently, the Lax–Friedrichs-like numerical operator is a direct realization of
the vanishing moment method (cf. [13,14]) combined with the vanishing viscosity method
from Hamilton–Jacobi equations (cf. [3]).

A similar consequence of the relationship with FD when r = 0 and Th corresponds to a
uniform Cartesian grid labelled using the natural ordering is that

(
P±∓
h

)
i i = 1

hi

(
q−
h − q+

h

)
i for i = 1, 2, · · · , d.

Thus, if F̂ is defined by (12), then F̂ may implicitly be monotone increasing with respect
to q+

h and monotone decreasing with respect to q−
h for β = 0 as long as hi is sufficiently

small and αi i > 0 for all i = 1, 2, . . . , d . In other words, the numerical moment can
implicitly enforce the g-monotonicity requirements for q±

h . We exploit this observation in
Sect. 6 by choosing β = 0 in our numerical tests. Heuristically, we expect the corresponding
FD schemes to be limited to 1st order accuracy when the numerical viscosity is present (as
with Lax–Friedrichs schemes for Hamilton–Jacobi equations), whereas the corresponding
FD schemes may be capable of 2nd order accuracy when only the numerical moment is
present. Such an observation is supported by the numerical tests found later in Sect. 6 as well
as the numerical tests of the FD methods found in [19].

We now consider the case r ≥ 1 in the definition of V h . Let i ∈ {1, 2, . . . , d}. Observe
that by the boundary conditions from Sect. 4.3, we have

(
q+
i − q−

i , φ
)
Th

= a+
i (uh, φ) − a−

i (uh, φ) =
〈[
uh

]
,
[
φ
] ∣∣n(i)

e

∣∣
〉

E I
h

.

Thus,

− β · (
q−
h − q+

h , φ
)
Th

=
d∑

i=1

βi

〈[
uh

]
,
[
φ
] ∣∣n(i)

e

∣∣
〉

E I
h

. (30)

Similarly, for i, j ∈ {1, 2, . . . , d},
(
P++
i, j − P+−

i, j − P−+
i, j + P−−

i, j , φ
)
Th

= a+
j

(
q+
i , φ

) − a−
j

(
q+
i , φ

) − a+
j

(
q−
i , φ

) + a−
j

(
q−
i , φ

)

=
〈[
q+
i

]
,
[
φ
] ∣∣n( j)

e
∣∣
〉

E I
h

−
〈[
q−
i

]
,
[
φ
] ∣∣n( j)

e
∣∣
〉

E I
h

.

Thus,

α : (
P++
i, j − P+−

i, j − P−+
i, j + P−−

i, j , φ
)
Th

=
d∑

i, j=1

αi, j

〈[
q+
i − q−

i

]
,
[
φ
] ∣∣n( j)

e
∣∣
〉

E I
h

. (31)
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From above, we can see that

a0
(
uh, q

−
h , q+

h , P−−
h , P−+

h , P+−
h , P++

h ;φh
)

= (
F (Ph, qh, uh, ·) , φh

)
Th

+
d∑

i=1

βi

〈[
uh

]
,
[
φh

] ∣∣n(i)
e

∣∣
〉

E I
h

+
d∑

i, j=1

αi, j

〈[
q+
i − q−

i

]
,
[
φh

] ∣
∣n( j)

e
∣
∣
〉

E I
h

, (32)

where

Ph = P+−
h + P−+

h

2
, qh = q+

h + q−
h

2
,

and q+
h , q

−
h are both approximations for∇u. Thus, adding a numerical moment and a numer-

ical viscosity amounts to the addition of interior jump/stabilization terms to an L2-projection
of the fully nonlinear PDE operator into V h . We do note that the jump/stabilization terms
that arise due to the numerical moment penalize the differences in q+

h and q−
h . Thus, the

numerical moment is not analogous to a high order penalization term that penalizes jumps in
a single approximation for ∇u, as sometimes used in interior penalty methods. Instead, the
numerical moment penalizes the difference in two optimal DG approximations for ∇u (cf.
[12]). We remark that this new jump term is the distinguishing characteristic of the proposed
LDGmethods since it was not possible to obtain an analogous result for the IPDG framework
proposed in [11].

4.5 Solvers

We now discuss different strategies for solving the nonlinear system of equations that results
from the proposed LDG discretization for the elliptic problem. The underlying goal for the
methodology presented in this paper is to discretize the fully nonlinear PDE problem in a
way that removes much of the burden of approximating viscosity solutions from the design
of the solver. Thus, our primary focus is at the discretization level. However, some of the
properties of the methodology are more apparent from the solver perspective.

Most tests show that it is sufficient to simply use a Newton solver on the full system of
Eqs. (16) and (21). Observe that only (16) is nonlinear, the equation is purely algebraic, and
F̂ is monotone in seven of its arguments. The auxiliary equations (21) are all linear. The
numerical operator presented in this paper is symmetric in both the mixed approximations
P−+
h and P+−

h and the non-mixed approximations P−−
h and P++

h . Thus, we can reduce the
size of the system of equations by averaging the two pairs of auxiliary variables in the above
formulation without changing the methodology.

Due to the size of themixed formulation, we first present a splitting algorithm that provides
an alternative to a straightforward Newton solver for the entire system of equations. By
using a splitting algorithm, the resulting algorithm will iteratively solve an entirely local,
nonlinear equation that has strong monotonicity properties in the d unknown arguments,
and the solution of the equation can be mapped to an updated approximation for uh . Tests
show that the solver is particularly useful for nonlinear problems that have a unique viscosity
solution only defined in a restrictive function class. For instance, viscosity solutions of the
Monge–Ampére equation are unique in the class of convex functions. However, the proposed
solver is not as efficient as the second solver we present that takes advantage of the above
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nonstandard discretization technique. In order to improve the speed of the solver, fast Poisson
solvers for the DWDG method (cf. [20]) need to be developed.

Our second solver strategy is a natural generalization of the FD methodology for numer-
ical PDEs. Constructing and applying the DG derivative operators requires sparse matrix
multiplication and addition as well as inverting the local mass matrices. Thus, all auxiliary
equations in the mixed formulation can be solved for a given function uh . Substituting these
operators directly into the numerical operator results in a single nonlinear variational problem
for uh that can be solved iteratively.

4.5.1 An Inverse-Poisson Fixed-Point Solver

We now describe the above mentioned splitting algorithm that takes into account the special
structure of the nonlinear algebraic system that results from our nonstandard LDG discretiza-
tion methods for elliptic PDEs and parabolic PDEs when using implicit time-stepping. The
algorithm is strongly based upon using a particular numerical moment.

Algorithm 1

1. Pick an initial guess for uh.
2. Form initial guesses for q+

h , q
−
h , P

++
h , P+−

h , P−+
h , and P−−

h using equations (21).
3. Set

Gi := F
( P−+

h + P+−
h

2
,
q−
h + q+

h

2
, uh, x

)
+ γ

(
P++
h − P+−

h − P−+
h + P−−

h

)
i i

− βi
(
q−
h − q+

h

)
i

for a fixed constant γ > 0, and solve
(
Gi , ϕi

)
Th

= 0 ∀ϕi ∈ V h

for 1
2

(
P−+
h + P+−

h

)
i i for all i = 1, 2, . . . , d. For sufficiently large γ and a differentiable

operator F, the above set of equations has a negative definite Jacobian.
4. Find uh, q

+
h , and q−

h by solving the linear system of equations formed by (21a) and the
trace of averaging (21b) for μ = −, ν = + and μ = +, ν = −. Observe that this is
equivalent to solving Poisson’s equation with source data given by the trace of 1

2

(
P−+
h +

P+−
h

)
. Alternatively, apply the DWDG method using the trace of 1

2

(
P−+
h + P+−

h

)
as the

source data to find uh.
5. Solve (21b) for P++

h , P+−
h , P−+

h , and P−−
h . If the alternative approach in step 4 was

used, also solve (21a) for q+
h and q−

h .
6. Repeat Steps 3–5 until the change in 1

2

(
P−+
h + P+−

h

)
is sufficiently small.

We now make a couple of comments about the proposed solver.

Remark 5 (a) The proposed algorithm is well-posed since it is based on the DWDGmethod
which results in a symmetric positive definite discretization of Poisson’s equation (cf.
[20]).

(b) The nonlinear equation in Step 3 is entirely local with respect to the unknown variable.
(c) Clearly a fixed point for the solver corresponds to a discrete solution of the original PDE

problem. In Sect. 6 and in [10] the numerical tests indicate that the proposed solver is less
dependent upon the initial guess. The algorithm can also be used to form a preconditioned
initial guess for other nonlinear solvers that may be faster but require a “better” initial
guess.
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4.5.2 A Direct Approach for a Reduced System

In this section, we propose a solver technique that is analogous to the approach used in FD
methods. Observe that if

(
uh, q

+
h , q−

h , P++
h , P+−

h , P−+
h , P−−

h

)
is a solution to (16) and (21),

then there exists linear operators ∇±
h and Dμν

h such that q±
h = ∇±

h uh and Pμν
h = Dμν

h uh for
all μ, ν ∈ {+,−}, where the linear operators are locally defined by (18) and (19).

Using these numerical derivative operators, the second solver is given by:

Algorithm 2

1. Given Th and V h, compute the operators ∇±
h and Dμν

h .
2. Solve for uh ∈ V h the single nonlinear equation

(
F̂

(
D++
h uh, D

+−
h uh, D

−+
h uh, D

−−
h uh,∇+

h uh,∇−
h uh, uh, ·

)
, ϕh

)

Th
= 0 ∀ϕh ∈ V h .

We note that a reduced formulation can also be used where we simply create the following
new differential operators:

D
2
h := D−−

h + D++
h

2
, D̃2

h := D−+
h + D+−

h

2
, ∇h := ∇+

h + ∇−
h

2
.

The Lax–Friedrichs-like numerical operator can be witten as

F̂
(
D

2
huh, D̃

2
huh,∇+

h uh,∇−
h uh, uh, x

)

= F
(
D̃2
huh,∇huh, uh, x

) + 2α : (
D

2
huh − D̃2

huh
) − 2β · (∇+

h uh − ∇−
h uh

)
. (33)

For all of the tests below where a Newton solver is used for the full system of equations in
the mixed formulation, analogous results were obtained using Algorithm 2 with the reduced
numerical operators. As expected, for two-dimensional problems we observed significant
speed-up in the performance of the solver.

Remark 6 Themethodology ofAlgorithm 2 follows directly from the FDmethodologywhere
derivatives in a PDE are simply replaced by numerical derivatives of the approximation for
the solution u to form the discretization of the PDE problem. For nonlinear problems, we
replace the nonlinear PDE operator by a numerical operator. In our LDG setting, we use the
LDG methodology to define the various numerical derivatives.

5 An Extension for Parabolic Problems

We now develop fully discrete methods for approximating the parabolic equation (2) com-
plemented by the following boundary condition and initial condition:

u(x, t) = g(x), (x, t) ∈ ΩT := Ω × (0, T ], (34a)

u(x, 0) = u0(x), x ∈ Ω (34b)

using an LDG spatial-discretization paired with the method of lines approach for the time
discretization. Taking advantage of the elliptic formulation in Sect. 4, we will propose the
following implicit and explicit time-discretizations: forward Euler, backward Euler, trape-
zoidal, and Runge-Kutta (RK). The time-discretization used in application should be selected
according to the potential optimal order r+1 of the LDG spatial-discretization for sufficiently
regular viscosity solutions.
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We first present the semi-discrete discretization of the (fully) nonlinear equation (2) by
discretizing the spatial dimension. Replacing the PDEoperator F with a numerical operator F̂
in (2), applying a spatial discretization using the above LDG framework for elliptic equations,
and using the L2-projection operator Ph : L2(Th) → V h defined by

(
Phv, φh

)
Th

= (
v, φh

)
Th

∀φh ∈ V h (35)

for all v ∈ L2(Th), we have the following semi-discrete equation

(uh)t = −Ph

(
F̂

(
P++
h , P+−

h , P−+
h , P−−

h , q+
h , q−

h , uh, x, t
))

, (36)

where, given uh at time t , corresponding values for q±
h and Pμν

h ,μ, ν ∈ {+,−}, can be found
by solving the local equations (18) and (19).

Our full-discretization of the initial-boundary value problem (2), (34a), and (34b) is
defined by applying an ODE solver to the semi-discrete (variational) form given in (36).
To partition the time domain, we fix an integer M > 0 and let Δt = T

M . Then, we define

tk := k Δt for a real number k with 0 ≤ k ≤ M . Notationally, ukh ∈ V h and q±,k
h ∈ (V h)d

will be an approximation for u(·, tk) and ∇u(·, tk), respectively, for all 0 ≤ k ≤ M . For both
implicit and explicit schemes, we define the initial value, u0h , by

u0h = Phu0. (37)

To simplify the appearance of the methods and to make them more transparent for use
with a given ODE solver, we use a subscript k to denote the fact that the boundary values
are being naturally enforced in (18) and (19) using the boundary condition (34a) evaluated
at time tk , 0 ≤ k ≤ M . Thus,

(
(q±

h,k)i , φ
±
i

)

Th
=

〈
T±
i (uh,k), [φ±

i ] n(i)
e

〉

E I
h

+
〈
T±
i (uh,k), φ

±
i (x I ) ni

〉

EB
h

− (
uh,k, (φ

±
i )xi

)
Th

∀φ±
i ∈ V h (38)

for i = 1, 2, . . . , d , where we evaluate the boundary flux values using the convention

d∑

i=1

〈
uh,k, ϕh ni

〉
EB
h

=
d∑

i=1

〈
g(·, tk), ϕh ni

〉
EB
h

∀ϕh ∈ V h

when r ≥ 1 and

d∑

i=1

〈
uh,k(x

E ), n(i)
e

〉
e =

d∑

i=1

〈
g(·, tk), n(i)

e

〉
e

when r = 0. Similarly,
((

Pμν
h,k

)
i j , ψ

μν
i j

)

Th
=

〈
T ν
j

(
(qμ

h,k)i
)
,
[
ψ

μν
i j

]
n( j)
e

〉

E I
h

+
〈
T ν
j

(
qμ
h,k)i

)
, ψ

μν
i j (x I ) n j

〉

EB
h

− ((
qμ
h,k

)
i , (ψ

μν
i j )x j

)
Th

∀ψ
μν
i j ∈ V h (39)

for i, j ∈ {1, 2, . . . , d}, μ, ν ∈ {+,−}, where we assume
(
q±
h,k(x

E )
)
i = (

q±
h,k(x)

)
i when

r ≥ 1 or

d∑

i=1

〈(
q±
h,k(x

I )
)
i − (

q±
h,k(x

E )
)
i , n

(i)
e

〉

e
= 0
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and
(
q−
h,k(x

E )
)
i = (

q+
h,k(x

I )
)
i , if n(i)

e < 0,
(
q+
h,k(x

E )
)
i = (

q−
h,k(x

I )
)
i , if n(i)

e > 0

for all e ∈ E B
h , using (28) and (29), when r = 0. Note, for k = 0, we replace g(·, tk) with

u0(·) in the above constraint equations if u0 has an L2 trace. Otherwise, we replace g(·, tk)
with the trace of Phu0.

We also simplify the presentation of the fully-discretemethods by introducing the operator
notation

F̂k[v] := F̂
(
D++
h,k v, D+−

h,k v, D−+
h,k v, D−−

h,k v,∇+
h,kv,∇−

h,kv, v, x, k Δt
)

(40)

for all v ∈ V h , where we are introducing linear operators ∇±
h,k and Dμν

h,k such that q±
h,k =

∇±
h,kuh and Pμν

h,k = Dμν
h,kuh for all μ, ν ∈ {+,−}, where the linear operators are locally

defined by replacing uh,k with an arbitrary function vh ∈ V h in (38) and (39). Then, the
semi-discrete equation can be rewritten compactly as

(
uh

)
t (x, tk) = −Ph F̂

k[uh(x, tk)
] ∀ 0 ≤ k ≤ M, x ∈ Ω. (41)

Lastly, we define a modified projection operator Ph,k : L2(Th) → V h that will be used
to enforce the boundary conditions for explicit methods using a penalty technique due to
Nitsche in [23]. Thus, we define Ph,k by

(
Ph,kv, ϕh

)
Th

+ δ

d∑

i=1

〈
Ph,kv, ϕh ni

〉

EB
h

= (
v, ϕh

)
Th

+ δ

d∑

i=1

〈
g(·, tk), ϕh ni

〉

EB
h

∀ϕh ∈ V h (42)

for all v ∈ L2(Th), where δ is a nonnegative penalty constant and 0 ≤ k ≤ M . We note that,
for δ = 0, Ph,k = Ph , yielding the broken L2-projection operator.

Using the above conventions, we can define fully discrete methods for approximating
problem (2), (34a), and (34b) based on approximating (41) using the forward Euler method,
backward Euler method, or the trapezoidal method. Thus, we have respectively

un+1
h = Ph,n+1

(
unh − Δt F̂n [

unh
])

, (43)

un+1
h + Δt Ph F̂

n+1
[
un+1
h

]
= unh, (44)

and

un+1
h + Δt

2
Ph F̂

n+1
[
un+1
h

]
= unh − Δt

2
Ph F̂

n [
unh

]
(45)

for n = 0, 1, . . . , M − 1, where u0h := Phu0 and, for (44) and (45), we also have, by (40),
the implied auxiliary linear equations

qμ,n
h = ∇μ

h,nu
n
h ∀μ ∈ {+,−},

Pμν,n
h = Dμν

h,nu
n
h ∀μ, ν ∈ {+,−}.

Remark 7 Using an implicit method, such as the backward Euler and the trapezoidal method,
results in approximating a fully nonlinear elliptic PDE at each time step using the LDG
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methods for elliptic PDEs formulated in Sect. 4. Due to the time integration, the nonlinear
solver has a natural initial guess for each time-step given by the approximation at the previous
time step.

Finally, we formulate the Runge-Kutta (RK) methods for approximating (41). Let s be a
positive integer, A ∈ Rs×s , and b, c ∈ Rs such that

s∑

�=1

ak,� = ck

for each k = 1, 2, . . . , s. Then, a generic s-stage RK method for approximating (41) is
defined by

un+1
h = Ph,n+1

(
unh − Δt

s∑

�=1

b� F̂
n+c� [ξn,�

h ]
)
, n = 0, 1, . . . , N − 1, (46)

where

ξ
n,�
h = Ph,n+ck

(
unh − Δt

s∑

k=1

ak,� F̂
n+ck [ξn,k

h ]
)
, n = 0, 1, . . . , N − 1,

and u0h = Phu0. We note that (46) corresponds to an explicit method when A is strictly lower
diagonal and an implicit method otherwise.

Remark 8 ξ
n,�
h in (46) can be viewed as an approximation for un+c�

h . Since the boundary
condition at tn+1 is enforced by F̂n+1, we can set δ = 0 in (42) if cs = 1.

6 Numerical Experiments

In this section, we present a series of numerical tests to demonstrate the utility of the proposed
LDG methods for fully nonlinear PDE problems of type (1) and (2) with two spatial dimen-
sions. For elliptic problems, both Monge–Ampère and Hamilton–Jacobi–Bellman types of
equations will be tested. We also perform a test using the (semi-linear) infinite-Laplacian
equation with a known low-regularity solution. The tests use spatial meshes composed of
uniform rectangles. To solve the resulting nonlinear algebraic systems, we use either the
Matlab built-in nonlinear solver fsolve or Algorithm 1, where fsolve is used to perform Step
3 of Algorithm 1. For the elliptic problems, we choose the initial guess as the zero function.
For the parabolic test problem, we choose the initial guess as the approximation formed at the
previous time step and use the backward Euler method. We also choose the approximation
at time t = 0 to be given by the L2-projection of the initial condition into V h .

For our numerical tests, errors will be measured in the L∞ norm and the L2 norm. All
recorded data corresponds to tests without a numerical viscosity, i.e., β = 0. Similar results
hold when the numerical viscosity is present. For elliptic problems and parabolic problems
where the error is not dominated by the time discretization, the test problems in [10] indicate
the spatial errors are of order O(hs) for most problems, where s = min{r + 1, k} for the
viscosity solution u ∈ Hk(Ω). In this paper, the computed convergence rates are a little more
sporadic. On average, the schemes appear to exhibit an optimal rate of convergence in both
norms. We note that the actual convergence rates have not yet been analyzed, and they may
also depend on the regularity of the differential operator F and the severity of its nonlinearity
in addition to the regularity of the viscosity solution u.
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Table 1 Rates of convergence for
Example 1 using r = 0, α = 24I ,
and fsolve with initial guess

u(0)
h = 0

h L∞ norm Order L2 norm Order

1.41e–01 3.73e–01 8.31e–02

8.84e–02 2.42e–01 0.92 5.10e–02 1.04

5.89e–02 1.64e–01 0.95 3.31e–02 1.06

4.42e–02 1.24e–01 0.97 2.44e–02 1.07

Table 2 Rates of convergence for
Example 1 using r = 1, α = 24I ,
and fsolve with initial guess

u(0)
h = 0

h L∞ norm Order L2 norm Order

1.41e-01 2.47e–02 1.73e–03

1.18e–01 1.36e–02 3.25 1.61e–03 0.39

1.01e-01 1.03e–02 1.81 1.12e–03 2.31

7.86e-02 8.04e–03 0.99 5.82e–04 2.62

Table 3 Rates of convergence for
Example 1 using r = 2, α = 24I ,
and fsolve with initial guess

u(0)
h = 0

h L∞ norm Order L2 norm Order

7.07e–01 6.39e–02 4.45e–03

4.71e–01 2.32e–02 2.50 1.30e–03 3.03

3.54e–01 1.09e–02 2.63 5.45e–04 3.02

Example 1 Consider the Monge–Ampère problem

−det D2u = −uxx uyy + uxy uyx = f in Ω,

u = g on ∂Ω,

where f = −(1+x2+ y2)ex
2+y2 ,Ω = (0, 1)×(0, 1), and g is chosen such that the viscosity

solution is given by u(x, y) = e
x2+y2

2 .

Notice that the problem has two possible solutions as seen in [13], where the viscosity
solution is convex and the "concave" solution is the viscosity solution of the problem F[u] =
det D2u. Also, this problem is degenerate for the class of functions that are both concave
and convex. Results for approximating with r = 0, 1, 2 can be found in Tables 1, 2 and 3,
respectively, where we observe optimal convergence rates. Plots for some of the various
approximations can be found in Figs. 1 and 2.

We now demonstrate that for this test problem the numerical moment appears to assist
with resolving the issue of uniqueness only in a restrictive function class. We approximate
Example 1 using the numerical moment with α = −121, Nx = Ny = 24, r = 0, and initial
guess given by the zero function. The result is recorded in Fig. 3. Thus, we can see that for a
negative semi-definite choice for α, we recover an approximation for the non-convex solution
of the Monge–Ampère problem as recorded in [13].

Example 2 Consider the Monge–Ampère problem

−det D2u = −uxx uyy + uxy uyx = 0 in Ω,

u = g on ∂Ω,

where Ω = (−1, 1) × (−1, 1) and g is chosen such that the viscosity solution is given by
u(x, y) = |x | ∈ H1(Ω).
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Fig. 1 Computed solution for Example 1 using r = 0, α = 24I , h = 4.419e–02, and fsolve with initial guess

u(0)
h = 0

Fig. 2 Computed solution for Example 1 using r = 2, α = 24I , h = 3.536e–01, and fsolve with initial guess

u(0)
h = 0

Observe that the PDE is actually degenerate when acting on the solution u. Furthermore,
due to the low regularity of u, we expect the rate of convergence to be bound by one. Using
both piecewise constant and piecewise linear basis functions, we can see that the rate of
convergence is bound by the theoretical bound in Tables 4 and 5. Plots for some of the
approximations can be found in Fig. 4 for r = 0 and Fig. 5 for r = 1. We remark that for
r = 0, all three solver approaches discussed in Sect. 4.5 gave analogous results. However,
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Fig. 3 Computed solution for Example 1 using r = 0, α = −121, h = 5.893e–02, and fsolvewith initial guess

u(0)
h = 0

Table 4 Rates of convergence for
Example 2 using r = 0, α = I ,
and fsolve with initial guess

u(0)
h = 0

hx L∞ norm Order L2 norm Order

1.33e–01 1.87e–01 1.70e–01

8.00e–02 1.30e–01 0.71 1.22e–01 0.65

5.71e–02 1.02e–01 0.72 9.77e–02 0.66

4.44e–02 8.51e–02 0.74 8.23e–02 0.68

3.64e–02 7.33e–02 0.74 7.16e–02 0.69

Table 5 Rates of convergence for
Example 2 using r = 1, α = I ,
hy = 1/3 fixed, and Algorithm 1

with initial guess u(0)
h = 0

hx L∞ norm Order L2 norm Order

2.50e–01 3.86e–02 3.42e–02

1.25e–01 2.08e–02 0.89 1.85e–02 0.88

8.33e–02 1.38e–02 1.02 1.24e–02 0.99

for r = 1, the direct formulation appears to have small residual wells that can trap the solver.
Thus, for this test, the non-Newton solver given by Algorithm 1 appears to be better suited.

Another benefit of the numerical moment is that it can help regularize a problem that may
not be well-conditioned for a Newton solver due to a singular or poorly scaled Jacobian.
Note that ∂F

∂D2u
= 0 almost everywhere in Ω for the viscosity solution u due to the fact

that D2u(x, y) = 0 for all x �= 0. This leads to a singular or badly scaled matrix when
using a Newton algorithm to solve the problem without the presence of a numerical moment.
By adding a numerical moment, the resulting system of equations may be better suited for
Newton algorithms since ∂ F̂

∂P±∓
h

= ∂F
∂P±∓

h
− α may be nonsingular even when P±∓

h ≈ 0.

For the next numerical test, we let α = γ 1 for various positive values of γ to see how
the numerical moment affects both the accuracy and the performance of the Newton solver
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Fig. 4 Computed solutions for Example 2 using r = 0, α = I , hy = 1.250e–01, and fsolve with initial guess

u(0)
h = 0. a hx = 6.667e–02. b hx = 1.818e–02

fsolve. The choice for the numerical moment is especially interesting upon noting that α

is in fact a singular matrix. However, with a numerical moment, the perturbation in ∂ F̂
∂P±∓

h

caused by P±∓
h may be enough to eliminate the singularity since the approximation may

now have some curvature. We let the initial guess be given by the zero function, fix the mesh
Nx = Ny = 20, and let r = 0. We can see from Table 6 that for γ small, fsolve converges
slowly, if at all. For γ = 0, fsolve does not convergewithin 100 iterations even for a very good
initial guess. However, increasing γ does appear to aid fsolve in its ability to find a root with
only a small penalty in the approximation error. For r ≥ 1, we again note that Algorithm 1
provides a much better suited solver due to the degeneracy of the problem. However, the crux
of Algorithm 1 reduces to a choice of γ > 0 with α = γ I instead of α = γ 1. Similar results,
as seen in Table 6, hold for α = γ I .

Example 3 Consider the stationary Hamilton–Jacobi–Bellman problem

min {−Δu,−Δu/2} = f in Ω,

u = g on ∂Ω,

where Ω = (0, π) × (−π/2, π/2),

f (x, y) =
{
2 cos(x) sin(y), if (x, y) ∈ S,

cos(x) sin(y), otherwise,

S = (0, π/2] × (−π/2, 0] ∪ (π/2, π ] × (0, π/2), and g is chosen such that the viscosity
solution is given by u(x, y) = cos(x) sin(y).

We can see that the optimal coefficient for Δu varies over four patches in the domain.
Results for approximating with r = 0, 1, 2 can be seen in Tables 7, 8 and 9, respectively,
where we observe optimal convergence rates for r = 0, 1 and near optimal convergence rates
for r = 2. Plots for r = 0 and r = 1 can be found in Figs. 6 and 7.
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Fig. 5 Computed solution for Example 2 using r = 1, α = I , and Algorithm 1 with initial guess u(0)
h = 0.

Note that the top plots correspond to x = 0 an edge and the bottom plot does not. a hx = 4.167e–02 and hy =
1.667e–01. b hx = 4.167e–02 and hy = 1.667e–01. c hx = 2.000e–01 and hy = 2.000e–01

Example 4 Consider the infinite-Laplacian problem

−Δ∞u := −uxx ux uy − uxy ux uy − uyx uy uy − uyy uy uy = 0 in Ω,

u = g on ∂Ω,

where Ω = (−1, 1) × (−1, 1) and g is chosen such that the viscosity solution is given
by u(x, y) = |x |4/3 − |y|4/3. While this problem is semilinear and not fully nonlinear, the

solution has low regularity due to the fact u ∈ C1, 13 (Ω) ∩ H1(Ω).

By approximation theory, we expect the error to be bound by O(h1) independent of the
degree of the polynomial basis. The approximation results for r = 0, 1, 2 can be found in
Tables 10, 11 and 12, respectively. Plots for r = 0 and r = 2 can be found in Figs. 8 and 9.
Note that while we observe the theoretical first order bound for the approximation error, we
also observe that the higher order elements yield more accurate approximations.
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Table 6 Approximation errors when varying α = γ 1 for Example 2 using r = 0, h = 7.071e–02, and fsolve

with initial guess u(0)
h = 0

γ L∞ norm L2 norm fsolve iterations

600 2.43e–01 2.43e–01 9

60 2.29e–01 2.27e–01 9

12 2.02e–01 1.98e–01 10

4 1.81e–01 1.74e–01 10

1 3.40e–01 2.08e–01 100

0∗ 2.84e–01 1.96e–01 100

The entry 0∗ corresponds to an initial guess given by the L2-projection of u(x, y) = |x |, q±
h (x, y) = sgn x ,

and Pμν
h (x, y) = 0 for μ, ν ∈ {+,−}. The nonlinear solver fsolve is set to perform a maximum of 100

iterations

Table 7 Rates of convergence for
Example 3 using r = 0, α = 2I ,
and fsolve with initial guess

u(0)
h = 0

h L∞ norm Order L2 norm Order

5.55e–01 2.59e–01 2.73e–01

3.70e–01 1.63e–01 1.14 1.75e–01 1.10

2.78e–01 1.17e–01 1.17 1.29e–01 1.06

1.85e–01 7.29e–02 1.16 8.48e–02 1.03

1.39e–01 5.27e–02 1.13 6.33e–02 1.02

Table 8 Rates of convergence for
Example 3 using r = 1, α = 2I ,
and fsolve with initial guess

u(0)
h = 0

h L∞ norm Order L2 norm Order

5.55e–01 4.89e–02 2.84e–02

3.70e–01 2.23e–02 1.93 1.29e–02 1.94

2.78e–01 1.27e–02 1.97 7.38e–03 1.95

Table 9 Rates of convergence for
Example 3 using r = 2, α = 2I ,
and fsolve with initial guess

u(0)
h = 0

h L∞ norm Order L2 norm Order

2.22e+00 2.82e–01 1.25e–01

7.40e–01 9.04e–03 3.13 9.52e–03 2.35

4.44e–01 2.39e–03 2.60 2.88e–03 2.34

Example 5 Consider the dynamic Hamilton–Jacobi–Bellman problem

ut + min {−Δu,−Δu/2} = f in Ω × (0, 1],
u = g on ∂Ω × (0, 1],
u = u0 in Ω × {0},

where Ω = (−1, 1) × (−1, 1), f (x, y, t) = s(x, y, t) + 2 t (x |x | + y |y|),

s(x, y, t) =

⎧
⎪⎨

⎪⎩

2t2, if x < 0 and y < 0,

−4t2, if x > 0 and y > 0,

0, otherwise,
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Fig. 6 Computed solution for Example 3 using r = 0, α = 2I , h = 1.388e–01, and fsolve with initial guess

u(0)
h = 0

Fig. 7 Computed solution for Example 3 using r = 1, α = 2I , h = 2.777e–01, and fsolve with initial guess

u(0)
h = 0

and g and u0 are chosen such that the viscosity solution is given by u(x, y, t) = t2 x |x | +
t y |y|. Then, for all t , we have u(·, ·, t) ∈ H2(Ω).

We expect the spatial rate of convergence to be bound by 2. However, due to the low order
time discretization scheme, we can see that our error is dominated by the time discretization
for r ≥ 1. The spatial orders of convergence for r = 0 and r = 1 are recorded in Tables 13
and 14, respectively. For r = 0, the spatial discretization ordermatches the time discretization
order, and we do observe an optimal rate of convergence. Using r = 2, we have the solution
u ∈ V h . Due to the high level of accuracy when using r = 2, we observe that the time
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Table 10 Rates of convergence
for Example 4 using r = 0,
α = 60I , and fsolve with initial

guess u(0)
h = 0

h L∞ norm Order L2 norm Order

2.83e–01 4.50e–01 3.37e–01

1.41e–01 2.83e–01 0.67 2.02e–01 0.74

1.18e–01 2.46e–01 0.78 1.72e–01 0.88

9.43e–02 2.05e–01 0.82 1.40e–01 0.93

Table 11 Rates of convergence
for Example 4 using r = 1,
α = 60I , and fsolve with initial

guess u(0)
h = 0

h L∞ norm Order L2 norm Order

4.71e–01 4.36e–02 3.17e–02

2.83e–01 2.79e–02 0.88 1.81e–02 1.09

2.02e–01 2.20e–02 0.71 1.29e–02 1.02

Table 12 Rates of convergence
for Example 4 using r = 2,
α = 60I , and fsolve with initial

guess u(0)
h = 0

h L∞ norm Order L2 norm Order

5.66e–01 2.41e–02 8.71e–03

4.71e–01 1.48e–02 2.66 7.58e–03 0.76

3.54e–01 1.06e–02 1.16 4.64e–03 1.71

Fig. 8 Computed solution for Example 4 using r = 0, α = 60I , h = 9.428e–02, and fsolve with initial guess

u(0)
h = 0

discretization order is in fact 1 as shown in Table 15. Plots for some of the approximations
can be found in Figs. 10, 11 and 12.

7 Conclusion

In this paper, we have formulated a framework for designing LDG methods that approxi-
mate the viscosity solution of fully nonlinear second order elliptic and parabolic PDEs in
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Fig. 9 Computed solution for Example 4 using r = 2, α = 60I , h = 3.536e–01, and fsolve with initial guess

u(0)
h = 0

Table 13 Rates of convergence in
space for Example 5 at time
t = 1 using backward Euler
time-stepping with r = 0,
α = 2I , Δt = 0.1, and fsolve
with initial guess u0h = Phu0

h L∞ norm Order L2 norm Order

2.83e–01 5.62e–01 2.63e–01

1.77e–01 3.62e–01 0.93 1.71e–01 0.92

1.41e–01 2.92e–01 0.96 1.38e–01 0.96

Table 14 Rates of convergence in
space for Example 5 at time
t = 1 using backward Euler
time-stepping with r = 1,
α = 2I , Δt = 0.1, and fsolve
with initial guess u0h = Phu0

h L∞ norm order L2 norm order

4.71e–01 7.41e–02 5.00e–02

3.54e–01 4.21e–02 1.96 3.56e–02 1.18

2.83e–01 3.10e–02 1.38 2.76e–02 1.14

Table 15 Rates of convergence in
time for Example 5 at time t = 1
using backward Euler
time-stepping with r = 2,
α = 2I , h = 1.414, and fsolve
with initial guess u0h = Phu0

Δt L∞ norm Order L2 norm Order

5.00e–01 4.12e–02 4.12e–02

2.50e–01 2.11e–02 0.96 2.11e–02 0.97

1.00e–01 8.55e–03 0.99 8.49e–03 0.99

5.00e–02 4.29e–03 1.00 4.25e–03 1.00

high dimensions. We then focused on a particular LDG method within the framework that
corresponded to the Lax–Friedrichs-like numerical operator. The key tools in designing the
numerical operator are the introduction of a numerical viscosity and numerical moment.
Through numerical tests, we observed the potential for the given framework that was origi-
nally motivated by successful numerical techniques for Hamilton–Jacobi equations as well
a finite difference framework that abstracts the indirect techniques of the vanishing moment

123



Journal of Scientific Computing (2018) 77:1534–1565 1563

Fig. 10 Computed solution at time t = 1 for Example 5 using backward Euler time-stepping with r = 0,
α = 2I , h = 1.414e–01, Δt = 0.1, and fsolve with initial guess u0h = Phu0

Fig. 11 Computed solution at time t = 1 for Example 5 using backward Euler time-stepping with r = 1,
α = 2I , h = 2.828e–01, Δt = 0.1, and fsolve with initial guess u0h = Phu0

method. We also proposed a nonlinear solver that took advantage of the special structure of
the proposed numerical operator.

One interesting direction of research is to explore the possibility for using adaptive (or
locally defined) coefficients in numerical moment and numerical viscosity terms to improve
the convergence rate when the PDE solution is not smooth. Another promising direction of
research is using the numerical moment as a low-regularity indicator to design and implement
adaptive methods.
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Fig. 12 Computed solution at time t = 1 for Example 5 using backward Euler time-stepping with r = 2,
α = 2I , h = 1.414, Δt = 0.05, and fsolve with initial guess u0h = Phu0
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