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Abstract A novel discontinuous Galerkin (DG) method is developed to solve time-
dependent bi-harmonic type equations involving fourth derivatives in one and multiple space
dimensions. We present the spatial DG discretization based on a mixed formulation and cen-
tral interface numerical fluxes so that the resulting semi-discrete schemes are L2 stable even
without interior penalty. For time discretization, we use Crank–Nicolson so that the resulting
scheme is unconditionally stable and second order in time. We present the optimal L2 error
estimate of O(hk+1) for polynomials of degree k for semi-discrete DG schemes, and the L2

error of O(hk+1 + (�t)2) for fully discrete DG schemes. Extensions to more general fourth
order partial differential equations and cases with non-homogeneous boundary conditions are
provided. Numerical results are presented to verify the stability and accuracy of the schemes.
Finally, an application to the one-dimensional Swift–Hohenberg equation endowed with a
decay free energy is presented.
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1 Introduction

In this paper, we are interested in discontinuous Galerkin approximations to the fourth order
partial differential equations (PDEs) of the form

ut = Lu x ∈ � ⊂ R
d , t > 0, (1.1a)

u(x, 0) = u0(x), x ∈ �, (1.1b)

where L = ∑2
m=0 am�m is a linear differential operator of fourth order and am(m = 0, 1, 2)

are constants with a2 < 0, � is a bounded rectangular domain in R
d , u0(x) is a given

function. Our analysis is presented mostly for periodic boundary conditions, extensions to
other non-homogeneous boundary conditions will then follow. The model could include a
lower order term such as f (u, x, t), without additional difficulty.

The fourth order PDEs appear often in physical and engineering applications, such as the
modeling of the thin beams andplates, strain gradient elasticity, thermal convection, and phase
separation in binary mixtures. The special cases of (1.1) include the linear time-dependent
biharmonic equation with

L = −�2,

and the linearized Cahn–Hilliard equation

L = −�2 − �.

In the literature, various numerical methods have been developed to discretize fourth order
partial differential equations, such as mixed finite element methods (see e.g. [1,4,10,14,16,
26]), and finite difference methods (see e.g. [18]). In this paper we will discuss discontinuous
Galerkin methods, using a discontinuous Galerkin finite element approximation in the spa-
tial variables coupled with a proper time discretization. It is well known that for equations
containing higher order spatial derivatives, discontinuous Galerkin discretization cannot be
directly applied. This is because the solution space, which consists of piecewise polynomials
discontinuous at the element interfaces, is not regular enough to handle higher derivatives.
This is a typical non-conforming case in finite elements.

One approach to resolve such difficulty is the local discontinuous Galerkin (LDG)method
(see e.g., [12,25,33,35] for fourth order problems). The idea is to suitably rewrite the higher
order equation into a first order system and then discretize it by the DG method [11]. The
local numerical fluxes without interior penalty can be designed to guarantee stability. The
LDG method has been successful in handling equations with high-order derivatives, since
it was first developed by Cockburn and Shu [11] for the second order convection diffusion
equation. However, these schemes increase the number of unknowns in numerical solutions.

Another approach is to weakly impose the inter-element continuity conditions using inte-
rior penalties. In the context of finite element framework, C1 conforming finite element
methods for the biharmonic equation is known computationally intensive due to the impo-
sition of C1-continuity across the element interfaces, several non-conforming approaches
such as C0-interior penalty methods [3,13] and interior penalty methods [2,15,27,28,31]
have been proposed. These approaches use either continuous or discontinuous finite element
solution spaces inwhich continuity conditions areweakly enforced through interior penalties.
A related strategy is the direct DG discretization based on numerical fluxes which penalize
jumps of derivatives when crossing element interfaces [7]. For DG schemes with interior
penalties, the practical choice of penalty parameters is often a subtle matter.

In this work we reformulate the fourth order PDEs into a second order coupled system
and discretize the system by a DG method without interior penalty. In the case L = −�2,
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such reformulation

ut = �q,

q = −�u, (1.2)

is the usualmixed formulation [9], which has been used to design themixedDGmethodswith
interior penalties in [17,34] for solving the biharmonic equation. Our DG method derives
from a direct DG discretization of the mixed formulation (1.2). Instead of the standard DG
ansatz analogous to the discretization of diffusion, the simplest form for numerical fluxes is
used: the arithmeticmean of the solution gradient and the arithmeticmean of the solution. The
resulting scheme is themost simple variant to date for the discretization of second order terms,
i.e., without any interior penalty. This is in sharp contrast to the DDG methods introduced
in [22,23] for diffusion, where interface corrections are included to penalize jumps of both
the numerical solution and its second order derivatives. With formulation (1.2), stability of
the resulting DG scheme is naturally ensured due to the symmetric nature of the underlying
bilinear operator. It is also parameter free, i.e. no particular choice of any penalty constant
is necessary. This makes the scheme simple to implement for generic linear and non-linear
problems.

It is known that for DG methods stability itself does not necessarily imply the optimal
convergence. Obtaining optimal error estimates for DG methods has been a major subject
of research. The a priori error estimate results for DG methods with interior penalties have
been reported in [7,17,27,28,31,34] for biharmonic type equations, in these works penalty
parameters play a special role in both the stability analysis and the error estimates.

The main quest in this article is whether optimal convergence can still be achieved with-
out interior penalty. We carry out the optimal L2 error estimates for both semi-discrete and
fully-discrete schemes with periodic boundary conditions, in both one andmulti-dimensions.
The crucial ingredient in the one-dimensional error analysis is a global projection P defined
by A(v − Pv, φ) = 0 for any test function φ in the finite element space, and the corre-
sponding projection error. Here A(·, ·) is the bilinear operator obtained by the penalty-free
DG discretization of the operator −∂2x . In multi-dimensional case, we use the tensor product
polynomials of degree at most k, and make use of the projection error obtained in [19] and
the bilinear form estimate |A(v − Pv, φ)| ≤ Chk+2|v|k+2‖φ‖ obtained in [20]. A related
work is [5], in which the authors use the inf-sup strategy to prove the optimal L2 convergence
rates for the symmetric DG method without interior penalty using Pk(k ≥ 2) polynomials
for one dimensional second order elliptic problems.

Extension to more general equations of form (1.1) is carried out by rewriting L as L =
−L2 + M , where M = a0 − a21

4a2
and L = √−a2

(
� + a1

2a2

)
is a second order operator,

and the optimal L2 error estimate can also be obtained. For three typical non-homogeneous
boundary conditions we present DG schemes with boundary corrections. Boundary penalty
is needed in some cases to weakly enforce the given boundary data, as usually done for
the weak formulation of elliptic problems [24]. In fact, imposing boundary conditions only
weakly is one of the main advantages of the DG methods to boundary-value problems for
higher order PDEs such as (1.1a).

The rest of the paper is organized as follows: in Sect. 2, we describe the mixed DG
methods in one dimension and present the optimal error estimates for both semi-discrete
and fully discrete schemes to time-dependent biharmonic problems. In Sect. 3, we formulate
the DG scheme in multi-dimensions along with its stability and optimal error estimates
using tensor product polynomials. In Sect. 4, we extend the DG schemes to more general
fourth order time-dependent PDEs, caseswith non-periodic boundary conditions, and the one-
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dimensional Swift–Hohenberg equation—a nonlinear problemwith a decay free energy [32].
Several numerical results are presented in Sect. 5 to verify the stability and accuracy of the
schemes. Finally, we give concluding remarks in Sect. 6 to summarize results in this paper
and indicating future work.

2 The DG Scheme in One Dimension

In this section we consider the one dimensional time-dependent fourth order Eq. (1.1), i.e.,

ut = −uxxxx x ∈ [a, b], t > 0, (2.1)

subject to initial data u(x, 0) = u0(x), and periodic boundary conditions.
Wepartition the interval [a, b] into computational cells I j = [x j−1/2, x j+1/2], with x1/2 =

a and xN+1/2 = b, and mesh size h j = x j+1/2 − x j−1/2, with h = max1≤ j≤N h j . And we
define the finite element space

V k
h = {v ∈ L2([a, b]) : v|I j ∈ Pk(I j ), j = 1, 2, · · · , N },

where Pk(I j ) denotes the set of all polynomials of degree at most k on I j . At cell interfaces
x = x j+1/2 we use the notation

v± = lim
ε→0

v(x ± ε), {v} = v− + v+

2
, [v] = v+ − v−.

Based on its mixed formulation,

ut = qxx , q = −uxx , (2.2)

the DG scheme for (2.1) is to find (uh, qh) ∈ V k
h × V k

h such that for all φ, ψ ∈ V k
h and

j = 1, 2 · · · , N ,
∫

I j
uhtφdx = −

∫

I j
qhxφxdx + (̂qhx )φ|∂ I j + (qh − q̂h)φx |∂ I j , (2.3a)

∫

I j
qhψdx =

∫

I j
uhxψxdx − (̂uhx )ψ |∂ I j − (uh − ûh)ψx |∂ I j , (2.3b)

where the notation v|∂ I j = v−
j+1/2 − v+

j−1/2 is used, and on each cell interface x j+1/2, j =
0, 1, 2, . . . N , the numerical fluxes are given by

q̂hx = {qhx }, q̂h = {qh},
ûhx = {uhx }, ûh = {uh}, (2.4)

where {v}1/2 = {v}N+1/2 is understood as 1
2 (v

+
1/2 + v−

N+1/2) for v = uh, qh, uhx and qhx .

The initial data for uh is taken as the piecewise L2 projection of u0(x), that is, uh(x, 0) ∈ V k
h

such that
∫

I j
(u0(x) − uh(x, 0))φ(x)dx = 0, ∀φ ∈ Pk(I j ), j = 1, . . . , N . (2.5)

Note that qh(x, 0) ∈ V k
h can be obtained from uh(x, 0) by solving (2.3b).

123



J Sci Comput (2018) 77:467–501 471

2.1 Stability and L2 Error Estimate

We proceed to verify the L2 stability of the above semi-discrete DG scheme and further
obtain the optimal L2 error estimate. To this end, we sum (2.3) over j = 1, . . . , N to obtain

(uht , φ) = −A(qh, φ), (2.6a)

(qh, ψ) = A(uh, ψ), (2.6b)

where (·, ·) denotes the inner product of two functions over [a, b], and the bilinear functional

A(w, v) =
N∑

j=1

∫

I j
wxvxdx +

N∑

j=1

({wx }[v] + [w]{vx }) j+1/2 , (2.7)

where by (·) j+1/2 we mean evaluation of involved quantities at x j+1/2. Note that A(·, ·) is
symmetric, that is,

A(w, v) = A(v,w). (2.8)

For scheme (2.6) with (2.7) the following stability result holds.

Theorem 2.1 (L2-Stability) The numerical solution uh satisfies

1

2

d

dt

∫ b

a
u2hdx = −

∫ b

a
q2hdx ≤ 0. (2.9)

Proof Taking φ = uh in (2.6a), and ψ = qh in (2.6b) respectively, we obtain

1

2

d

dt

∫ b

a
u2hdx = −A(qh, uh), ‖qh‖2 = A(uh, qh),

which when using (2.8) implies (2.9). 
�
In order to estimate the L2 error, we introduce a global projection: for a given piecewise

smooth function w ∈ L2([a, b]), w|I j ∈ Hs+1(I j ), s ≥ k ≥ 1, we define Pw ∈ V k
h by

∫

I j
(Pw(x) − w(x)) v(x)dx = 0, ∀v ∈ Pk−2(I j ), (2.10a)

{(Pw)x } j+1/2 = {wx } j+1/2, (2.10b)

{Pw} j+1/2 := {w} j+1/2, (2.10c)

for j = 1, . . . , N , where {v}N+1/2 is understood as 1
2 (v

+
1/2 + v−

N+1/2). Note that for k = 1,
(2.10a) is redundant.

Lemma 2.1 For k = 1 with N odd, or any k ≥ 2, there exists a unique projection P defined
by (2.10). Moreover,

A(Pw − w, v) = 0 ∀v ∈ V k
h . (2.11)

Proof (i) From the more general result in [20, Lemma 2.1] it follows that such P is uniquely
defined.

(ii) Relation (2.11) can be derived from (2.7) using (2.10) and integration by parts once.

�

Before going further we recall the following approximation result for projection P .
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Lemma 2.2 [19] (Projection error) Assume that w ∈ Hm with m ≥ k + 1. Then we have the
following projection error

‖w − Pw‖ ≤ C |w|k+1h
k+1, (2.12)

where C is independent of h. Moreover,

Pv = v, ∀v ∈ V k
h .

Theorem 2.2 Let uh be the numerical solution to (2.3) with (2.4), and u be the smooth
solution to problem (2.1), then

‖uh(·, t) − u(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T, (2.13)

where C depends on supt∈[0,T ] |ut (·, t)|k+1, supt∈[0,T ] |u(·, t)|k+3 and linearly on T , but
independent of h.

Proof The consistency of the DG method (2.6) ensures that the exact solution u and q of
(2.2) also satisfy

(ut , φ) = −A(q, φ),

(q, ψ) = A(u, ψ)
(2.14)

for all φ ∈ V k
h , ψ ∈ V k

h . Subtracting (2.6) from (2.14), we obtain the error system

((u − uh)t , φ) = −A(q − qh, φ),

(q − qh, ψ) = A(u − uh, ψ).
(2.15)

Denote
e1 = Pu − uh, ε1 = Pu − u,

e2 = Pq − qh, ε2 = Pq − q,

and take φ = e1, ψ = e2 in (2.15) respectively, we obtain

(e1t , e1) = (ε1t , e1) + A(ε2, e1) − A(e2, e1), (2.16a)

(e2, e2) = (ε2, e2) − A(ε1, e2) + A(e1, e2). (2.16b)

Summation of (2.16a) and (2.16b) gives

1

2

d

dt
‖e1‖2 + ‖e2‖2 = (ε1t , e1) + (ε2, e2) + A(ε2, e1) − A(ε1, e2)

= (ε1t , e1) + (ε2, e2),

where property (2.11) of projection P has been used. This yields

1

2

d

dt
‖e1‖2 ≤ ‖ε1t‖‖e1‖ + 1

4
‖ε2‖2.

Byproperty (2.12), the right hand side is dominatedbyC |ut |k+1hk+1‖e1‖+ 1
4 (C |u|k+3hk+1)2.

Hence
1

2

d

dt
‖e1‖2 ≤ C1h

k+1(‖e1‖ + hk+1),

where C1 = max{C supt∈[0,T ] |ut |k+1,
C2

4 supt∈[0,T ] |u|2k+3}. Set B = ‖e1‖
hk+1 , then

B
dB

dt
≤ C1(B + 1),
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which upon integration over [0, t] gives
G(B(t)) ≤ G(B(0)) + C1t, (2.17)

where G(s) = s − ln(s + 1) is an increasing and convex function on [0,∞). Note that
B(0) ≤ C2 for

‖e1(·, 0)‖ ≤ ‖Pu0 − u0‖ + ‖u0 − uh(·, 0)‖ ≤ C2h
k+1. (2.18)

It can be verified that G−1(s)/s is decreasing for s > 0, note also that G−1(s) is increasing,
hence

G−1(s) ≤ G−1(δ)

δ
max{s, δ}.

This with δ = G(C2) when inserted into (2.17) gives

B(t) ≤ G−1 (C1T + G(C2)) ≤ C2 + CT,

with C = C1C2
G(C2)

. Thus,

‖e1(·, t)‖ = B(t)hk+1 ≤ (C2 + CT ) hk+1,

which combined with the approximation result in Lemma 2.2 leads to (2.13) as desired. 
�
2.2 Fully-Discrete DG Schemes

Let (unh, q
n
h ) denote the approximation to (uh, qh)(·, tn), where tn = n�t with �t being the

time step. We consider a class of time stepping methods indexed by a parameter θ ∈ [0, 1]:
find (unh, q

n
h ) ∈ V k

h × V k
h such that for all φ, ψ ∈ V k

h

(
un+1
h − unh

�t
, φ

)

= −A(qn+θ
h , φ), (2.19a)

(qnh , ψ) = A(unh, ψ), (2.19b)

where vn+θ = (1 − θ)vn + θvn+1. Note that when θ = 0, it is the forward Euler, θ = 1, it
is backward Euler; and θ = 1/2, Crank–Nicolson.

To study the stability of the DG scheme (2.19), we first recall the following estimate.

Lemma 2.3 ([21, Lemma 3.2]) The following inverse inequalities hold for all v ∈ V k
h ,

N∑

j=1

∫

I j
(vx )

2dx ≤ (k + 1)2k(k + 2)

h2
‖v‖2,

N∑

j=1

[v]2j+1/2 ≤ 4(k + 1)2

h
‖v‖2,

N∑

j=1

{vx }2j+1/2 ≤ k3(k + 1)2(k + 2)

h3
‖v‖2.

Then, we have the following stability results.
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Theorem 2.3 (L2-Stability) For 1
2 ≤ θ ≤ 1, the fully discrete DG scheme (2.19) is uncon-

ditionally L2 stable. Moreover,

‖un+1
h ‖2 ≤ ‖unh‖2 − 2�t‖(1 − θ)qnh + θqn+1

h ‖2 (2.20)

holds for any �t > 0. For 0 ≤ θ < 1
2 , (2.19) is L

2 stable, i.e., ‖un+1
h ‖ ≤ ‖unh‖, provided

�t <
2h4

(1 − 2θ)γ 2(k)
, (2.21)

where
γ (k) = (k + 1)2k(k + 2) + 4(k + 1)2k

√
k(k + 2). (2.22)

Proof From (2.19b) it follows
∫ b

a
qn+θ
h ψdx = A(un+θ

h , ψ).

This relation when added upon (2.19a) with φ = un+θ
h , ψ = qn+θ

h gives

∫ b

a

un+1
h − unh

�t
un+θ
h dx + ‖qn+θ

h ‖2 = 0. (2.23)

Using the identity

un+θ
h = 1

2

(
un+1
h + unh

)
+

(

θ − 1

2

) (
un+1
h − unh

)
,

we rewrite (2.23) as

‖un+1
h ‖2 − ‖unh‖2 + 2�t‖qn+θ

h ‖2 = (1 − 2θ)‖un+1
h − unh‖2. (2.24)

This implies (2.20) if 1
2 ≤ θ ≤ 1. If 0 ≤ θ < 1

2 , we need to estimate the right hand side of
(2.24). By taking φ = un+1

h − unh in (2.19a) and using Lemma 2.3, we have

1

�t
‖un+1

h − unh‖2 = −A(qn+θ
h , un+1

h − unh)

≤
⎛

⎝
N∑

j=1

∫

I j
(qn+θ

hx )2dx

⎞

⎠

1
2
⎛

⎝
N∑

j=1

∫

I j
(un+1

hx − unhx )
2dx

⎞

⎠

1
2

+
⎛

⎝
N∑

j=1

{qn+θ
hx }2j+1/2

⎞

⎠

1
2
⎛

⎝
N∑

j=1

[un+1
h − unh]2j+1/2

⎞

⎠

1
2

+
⎛

⎝
N∑

j=1

[qn+θ
h ]2j+1/2

⎞

⎠

1
2
⎛

⎝
N∑

j=1

{(un+1
hx − unhx ) j+1/2}2

⎞

⎠

1
2

≤ (k + 1)2k(k + 2) + 4(k + 1)2k
√
k(k + 2)

h2
‖qn+θ

h ‖‖un+1
h − unh‖

= γ (k)

h2
‖qn+θ

h ‖‖un+1
h − unh‖,
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with γ (k) defined in (2.22). Hence

‖un+1
h − unh‖ ≤ �tγ (k)

h2
‖qn+θ

h ‖.
This upon insertion into (2.24) yields

‖un+1
h ‖2 + �t

(

2 − (1 − 2θ)
�tγ 2(k)

h4

)

‖qn+θ
h ‖2 ≤ ‖unh‖2.

By (2.21) we therefore obtain the desired stability, i.e., ‖un+1
h ‖ ≤ ‖unh‖. 
�

The above results suggest that the semi-implicit time discretization with θ ∈ [1/2, 1]
should be considered. To assist the error estimate for the fully-discrete DG scheme (2.19)
with θ ∈ [1/2, 1], we prepare the following lemma.

Lemma 2.4 Let {an} with a0 > 0 be a non-negative sequence satisfying

a2n+1 − a2n
τ

≤ α(an+1 + an + 1), (2.25)

where τ > 0 and α > 0, then there exists C = C(a0, α) such that

an ≤ a0 + Cnτ, ∀n ≥ 1.

Proof Define An = max0≤i≤n ai , then (2.25) remains valid for An , i.e.,

A2
n+1 − A2

n

τ
≤ α(An+1 + An + 1). (2.26)

In fact, we have an ≤ An,∀n ≥ 0, and

An+1 = max{an+1, An}.
If An+1 = An , (2.26) is obvious; otherwise if An+1 = an+1, it follows that

A2
n+1 − A2

n

τ
≤ a2n+1 − a2n

τ
≤ α(an+1 + an + 1) ≤ α(An+1 + An + 1).

Rewriting (2.26) as

An+1 − An − An+1 − An

An+1 + An + 1
≤ ατ,

and using
∫ An+1

An

1

2s + 1
ds ≥ An+1 − An

An+1 + An + 1
,

we have

H(An+1) − H(An) ≤ ατ,

where H(s) = s − ln
√
2s + 1, and therefore

H(An) ≤ H(A0) + αnτ.

Note that H is increasing and convex over [0,∞), hence we have

An ≤ H−1 (H(A0) + αnτ) = H−1 (H(a0) + αnτ) .
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It can be verified that H−1(s)/s is decreasing for s > 0. Thus,

An ≤ a0
H(a0)

(H(a0) + αnτ) = a0 + Cnτ, C = αa0
H(a0)

.

Going back to an ≤ An we prove the claimed estimate. 
�
Theorem 2.4 Let unh be the numerical solution to the fully-discrete DG scheme (2.19) with
1
2 ≤ θ ≤ 1, and u be the smooth solution to problem (2.1), then

‖u(·, tn) − unh(·)‖ ≤ C
(
hk+1 + (θ − 1/2)�t + (�t)2

)
, (2.27)

where C depends on supt∈[0,T ] |ut (·, t)|k+1, supt∈[0,T ] |u(·, t)|k+3, supt∈[0,T ] ‖utt (·, t)‖,
supt∈[0,T ] ‖uttt (·, t)‖ and linearly on T , but independent of h,�t .

Proof Denote un = u(x, tn) and qn = q(x, tn), then the consistency of the DG scheme, as
given in (2.14), when evaluated at t = tn+θ is

(un+θ
t , φ) = −A(qn+θ , φ),

(qn, ψ) = A(un, ψ),
(2.28)

for all φ ∈ V k
h , ψ ∈ V k

h , where vn+θ = θvn+1 + (1 − θ)vn for v = u, q . To proceed, we
first evaluate the term un+θ

t . By Taylor’s expression, we have

unt = un+1 − un

�t
− 1

2
untt�t − 1

2�t

∫ tn+1

tn
(tn+1 − s)2uttt (x, s)ds,

un+1
t = un+1 − un

�t
+ 1

2
un+1
t t �t − 1

2�t

∫ tn+1

tn
(tn − s)2uttt (x, s)ds,

so that

un+θ
t = θun+1

t + (1 − θ)unt = un+1 − un

�t
+ F(n, x, t, θ),

where

F(n, x, t, θ) = untt�t

(

θ − 1

2

)

− (1 − θ)

(
1

2�t

∫ tn+1

tn
(tn+1 − s)2uttt (x, s)ds

)

+ θ

(
1

2
�t

∫ tn+1

tn
uttt (x, s)ds − 1

2�t

∫ tn+1

tn
(tn − s)2uttt (x, s)ds

)

.

Then (2.28) becomes
(
un+1 − un

�t
, φ

)

= −A(qn+θ , φ) − (F(n, x, t, θ), φ),

(qn, ψ) = A(un, ψ),

which together with (2.19) gives
(

(un+1 − un+1
h ) − (un − unh)

�t
, φ

)

= −A(qn+θ − qn+θ
h , φ) − (F(n, x, t, θ), φ),

(qn+θ − qn+θ
h , ψ) = A(un+θ − un+θ

h , ψ).

(2.29)
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Denote
en1 = Pun − unh, εn1 = Pun − un,

en2 = Pqn − qnh , εn2 = Pqn − qn,

and take φ = en+θ
1 , ψ = en+θ

2 in (2.29), upon summation and using (2.11), we obtain
(
en+1
1 − en1

�t
, en+θ

1

)

+
(
en+θ
2 , en+θ

2

)
=

(
εn+1
1 − εn1

�t
, en+θ

1

)

+
(
εn+θ
2 , en+θ

2

)

− (F(n, x, t, θ), en+θ
1 ). (2.30)

Applying

en+θ
1 = 1

2

(
en+1
1 + en1

)
+

(

θ − 1

2

) (
en+1
1 − en1

)
,

and the Cauchy–Schwarz inequality to (2.30), it follows that

‖en+1
1 ‖2 − ‖en1‖2

2�t
≤

(∥
∥
∥
∥
∥

εn+1
1 − εn1

�t

∥
∥
∥
∥
∥

+ ‖F(n, ·, t, θ)‖
)

(‖en+1
1 ‖ + ‖en1‖)

+ 1

2

(
‖εn+1

2 ‖2 + ‖εn2‖2
)

.

(2.31)

Recall the projection error estimate (2.12), we have

‖εn+i
2 ‖ ≤ Chk+1|q(·, tn+i )|k+1 = C1h

k+1|u(·, tn+i )|k+3, (2.32)

for i = 0, 1, and along with the mean value theorem, we also have
∥
∥
∥
∥
∥

εn+1
1 − εn1

�t

∥
∥
∥
∥
∥

=
∥
∥
∥
∥P

(
un+1 − un

�t

)

− un+1 − un

�t

∥
∥
∥
∥ ≤ C2h

k+1|ut (·, t∗)|k+1, (2.33)

where t∗ ∈ (tn, tn+1). As for the term involving F , we have

|F(n, x, t, θ)| ≤ ∣
∣untt

∣
∣ �t

(

θ − 1

2

)

+ (1 − θ)

2�t

∫ tn+1

tn
(tn+1 − s)2|uttt (x, s)|ds

+ θ�t

2

∫ tn+1

tn
|uttt (x, s)| ds + θ

2�t

∫ tn+1

tn
(tn − s)2 |uttt (x, s)| ds

≤
(

θ − 1

2

)

�t sup
t∈[0,T ]

|utt (x, t)| +
(
1

6
+ θ

2

)

(�t)2 sup
t∈[0,T ]

|uttt (x, t)|,

hence

‖F(n, ·, t, θ)‖ ≤
(

θ − 1

2

)

�t sup
t∈[0,T ]

‖utt (·, t)‖ + (�t)2 sup
t∈[0,T ]

‖uttt (·, t)‖. (2.34)

Plugging (2.34), (2.33) and (2.32) into (2.31) leads to

‖en+1
1 ‖2 − ‖en1‖2

2�t
≤ C

(
hk+1 + (θ − 1/2)�t + (�t)2

)
(‖en+1

1 ‖ + ‖en1‖) + Ch2(k+1),

where C depends on supt∈[0,T ] |ut (·, t)|k+1, supt∈[0,T ] |u(·, t)|k+3, supt∈[0,T ] ‖utt (·, t)‖ and
supt∈[0,T ] ‖uttt (·, t)‖.
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Set an = ‖en1‖
hk+1 , τ = 2�t , then an satisfies (2.25) with

α = Ch−(k+1)
(
hk+1 + (θ − 1/2) �t + (�t)2

)
.

Note that e01 = Pu0 − u0h and ‖e01‖ ≤ ‖Pu0 − u0‖ + ‖u0 − u0h‖ ≤ C0hk+1, we thus take
a0 = C0. By Lemma 2.4 we have

‖en1‖ ≤ hk+1
(

C0 + C0α

H(C0)
nτ

)

≤ C(1 + T )
(
hk+1 + (θ − 1/2) �t + (�t)2

)
,

which combined with the projection error (2.12) leads to (2.27) as desired. 
�
2.3 Algorithm

The details related to the implementation of scheme (2.19) with θ ∈ [1/2, 1] is summarized
in the following algorithm.

• Step 1 (Initialization) from the given initial data u0(x),

(1) generate u0h := uh(x, 0) ∈ V k
h from the piecewise L2 projection (2.5), and

(2) further obtain q0h from solving (2.19b).

• Step 2 (Evolution) obtain un+1
h , qn+1

h by solving (2.19) through the following form:

1

�t
(un+1

h , φ) + θ A(qn+1
h , φ) = 1

�t
(unh, φ) − (1 − θ)A(qnh , φ), (2.35a)

θ A(un+1
h , ψ) − θ(qn+1

h , ψ) = 0. (2.35b)

Remark 2.1 The advantage of using (2.35) is that its coefficient matrix is symmetric, hence
more efficient linear system solvers, such as the ILU preconditioner + FGMRES (see
e.g., [30]), ILU preconditioner + Bicgstab (see e.g., [6]). can be used.

3 The DG Scheme in Multi-dimensions

In this section we present DG schemes in multi-dimensional setting. Without loss of gener-
ality, we describe our DG scheme and prove the optimal error estimates in two dimension
(d = 2); The analysis depending on the tensor product of polynomials can be easily extended
to higher dimensions. Hence, from now on we shall restrict ourselves mainly to the following
two-dimensional problem

ut = −(∂2x + ∂2y )
2u, (x, y) ∈ �, t > 0, (3.1a)

u(x, y, 0) = u0(x, y), (x, y) ∈ � (3.1b)

again with periodic boundary conditions.
We partition � by rectangular meshes

� =
N ,M∑

i, j

Ii, j , Ii, j =
[
xi− 1

2
, x j+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
.

For simplicity we assume we have a uniform rectangular mesh with �x = xi+1/2 −
xi−1/2,�y = y j+1/2 − y j−1/2. Let

Qh = {v ∈ L2(�) : v|Ii, j ∈ Qk(Ii, j )},
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where Qk(K ) denotes the space of tensor-product polynomials of degree at most k in each
variable defined on K . No continuity is assumed across cell boundaries.

The semi-discrete DG approximations (uh, qh) ∈ Qh × Qh of (3.1) are defined through
the reformulation of form (1.2) such that for all admissible test functions φ, ψ ∈ Qh and all
Ii, j
∫∫

Ii, j
uhtφdxdy = −

∫∫

Ii, j
∇qh · ∇φdxdy +

∫ y j+1/2

y j−1/2

({qhx }φ + (qh − {qh})φx )

∣
∣
∣
xi+1/2

xi−1/2
dy

+
∫ xi+1/2

xi−1/2

({qhy}φ + (qh − {qh})φy
) ∣
∣
∣
y j+1/2

y j−1/2
dx,

∫∫

Ii, j
qhψdxdy =

∫∫

Ii, j
∇uh · ∇ψdxdy −

∫ y j+1/2

y j−1/2

({uhx }ψ + (uh − {uh})ψx )

∣
∣
∣
xi+1/2

xi−1/2
dy

−
∫ xi+1/2

xi−1/2

({uhy}ψ + (uh − {uh})ψy
) ∣
∣
∣
y j+1/2

y j−1/2
dx,

(3.2)
where

v

∣
∣
∣
xi+1/2

xi−1/2
= v(x−

i+1/2, y) − v(x+
i−1/2, y),

v

∣
∣
∣
y j+1/2

y j−1/2
= v(x, y−

j+1/2) − v(x, y+
j−1/2),

{v}
∣
∣
∣
xi+1/2

= 1

2

(
v(x−

i+1/2, y) + v(x+
i+1/2, y)

)
,

{v}
∣
∣
∣
y j+1/2

= 1

2

(
v(x, y−

j+1/2) + v(x, y+
j+1/2)

)
.

The initial data for uh is also taken as the piecewise L2 projection of u0, that is uh(x, y, 0) ∈
Qh such that

∫∫

�

(u0(x, y) − uh(x, y, 0))φ(x, y)dxdy = 0, ∀φ ∈ Qh .

3.1 Stability and A Priori Error Estimates

In order to check the stability of the above scheme, we sum (3.2) over all computaitonal cells
to obtain

(uht , φ) = −A(qh, φ), (3.3a)

(qh, ψ) = A(uh, ψ), (3.3b)

where (·, ·) denotes the inner product of two functions over �, and the bilinear functional

A(w, v) =
N ,M∑

i, j=1

∫∫

Ii, j
∇w · ∇vdxdy +

N ,M∑

i, j=1

∫ y j+1/2

y j−1/2

({wx }[v] + {vx }[w])xi+1/2
dy

+
N ,M∑

i, j=1

∫ xi+1/2

xi−1/2

({wy}[v] + {vy}[w])y j+1/2
dx .

(3.4)

For scheme (3.2) the following stability result holds.
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Theorem 3.1 (L2-Stability) The numerical solution uh to (3.3) satisfies

1

2

d

dt

∫∫

�

|uh |2dxdy = −
∫∫

�

q2hdxdy ≤ 0.

In order to obtain the error estimate for DG scheme (3.3) on rectangular meshes, we
follow [19] extending the one-dimensional projection to multi-dimension by taking a tensor
product of 2 one-dimensional projections as

w = P(x) ⊗ P(y)w,

where the superscripts indicate the application of one-dimensional projection operator.
We recall the following result established in [20].

Lemma 3.1 For k ≥ 1 and η ∈ Qh, the linear functionalw → A(w−w, η) is continuous
on Hk+2(�) and

|A(w − w, η)| ≤ Chk+2|w|k+2‖η‖,
‖w − w‖ ≤ Chk+1|w|k+1,

where C is a constant independent of h.

We are now ready to state the a priori error estimate result for the two-dimensional case.

Theorem 3.2 Let uh be the numerical solution to the DG scheme (3.2) and u be the smooth
solution to problem (3.1), then

‖u(·, t) − uh(·, t)‖ ≤ Chk+1, (3.5)

for 0 ≤ t ≤ T , where C depends on supt∈[0,T ] ‖ut (·, t)‖k+1, and linearly on T , but indepen-
dent of h.

Proof By consistency of the DG scheme (3.3), we have

(ut , φ) = −A(q, φ), ∀φ ∈ Qh,

(q, ψ) = A(u, ψ), ∀ψ ∈ Qh,

where u is the exact solution to (3.1) with q = −�u. Upon subtraction of this from (3.3),
we have

((u − uh)t , φ) = −A(q − qh, φ),

(q − qh, ψ) = A(u − uh, ψ).
(3.6)

Denote
e1 = u − uh, ε1 = u − u,

e2 = q − qh, ε2 = q − q,

take φ = e1 and ψ = e2 in (3.6), to obtain

1

2

d

dt
‖e1‖2 + ‖e2‖2 = (ε1t , e1) + (ε2, e2) + A(ε2, e1) − A(ε1, e2).

By Schwartz’s inequality and Lemma 3.1 we have

1

2

d

dt
‖e1‖2 + ‖e2‖2 ≤ ‖ε1t‖‖e1‖ + ‖ε2‖‖e2‖ + Chk+2 (|q|k+2‖e1‖ + |u|k+2‖e2‖)

≤ C (|ut |k+1 + |q|k+2h) hk+1‖e1‖ + C (|q|k+1 + |u|k+2h) hk+1‖e2‖
≤ C1h

k+1(‖e1‖ + hk+1) + ‖e2‖2,
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where C1 = max{C supt∈[0,T ] (|ut |k+1 + |q|k+2h) , C2

4 supt∈[0,T ] (|q|k+1 + |u|k+2h)2}.
Following the same analysis as that in Theorem 2.2, we obtain the estimate for ‖e1‖, further
(3.5) as desired. 
�
3.2 Time Discretization

Let (unh, q
n
h ) denote the approximation to (uh, qh)(·, tn), where tn = n�t with �t being the

time step. We consider a class of time stepping methods in terms of a parameter θ ∈ [1/2, 1]:
find (unh, q

n
h ) ∈ Qh × Qh such that for all φ, ψ ∈ Qh ,

(
un+1
h − unh

�t
, φ

)

= −A(qn+θ
h , φ), (3.7a)

(qnh , ψ) = A(unh, ψ), (3.7b)

where the notation vn+θ := (1− θ)vn + θvn+1 is used. Similar to the one-dimensional case,
we have the following stability result.

Theorem 3.3 (L2-Stability) For 1
2 ≤ θ ≤ 1, the fully discrete DG scheme (3.7) is uncondi-

tionally L2 stable. Moreover,

‖un+1
h ‖2 ≤ ‖unh‖2 − 2�t‖(1 − θ)qnh + θqn+1

h ‖2
holds for any �t > 0.

In virtue of Lemma 3.1 and the techniques in Theorem 2.4, we can obtain the error
estimates for the full DG scheme (3.7) on rectangular meshes without additional difficulty.

Theorem 3.4 Let unh be the numerical solution to the fully-discrete DG scheme (3.7) with
1
2 ≤ θ ≤ 1, and u be the smooth solution to problem (3.1), then

‖u(x, tn) − unh‖ ≤ C
(
hk+1 + (θ − 1/2) �t + (�t)2

)
,

where C depends on supt∈[0,T ] ‖ut‖k+1, supt∈[0,T ] ‖utt (·, t)‖, supt∈[0,T ] ‖uttt (·, t)‖ and lin-
early on T , but independent of h,�t .

4 Extensions

In this section, we discuss several extensions regarding the more general equation, non-
homogeneous boundary conditions, and an application to a nonlinear problem.

4.1 General 4th Order Linear Operator

We consider the general 4th order time-dependent PDEs of form (1.1), with

Lu =
2∑

m=0

am∂2mx u. (4.1)

It is known that the initial boundary value problem with periodic boundary conditions is
well-posed [18] if and only if there exists a constant K such that

a0 − a1ξ
2 + a2ξ

4 ≤ M
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holds for any real number ξ . Hence, the problem is well-posed if a2 < 0, accordingly we

have M = a0 − a21
4a2

for a1 ≤ 0 and M = a0 for a1 > 0. The case of more interest is a1 ≤ 0,
and will be kept in mind in the following discussion, though the scheme can also be used for
a1 > 0.

We construct our DG scheme based on the following reformulation

ut = √−a2

(

∂2x + a1
2a2

)

q + f,

q = −√−a2

(

∂2x + a1
2a2

)

u,

(4.2)

where

f = Mu, M :=
(

a0 − a21
4a2

)

.

The corresponding DG scheme may be given by

(uht , φ) = − Ã(qh, φ) + M(uh, φ), (4.3a)

(qh, ψ) = Ã(uh, ψ), (4.3b)

where

Ã(w, v) = √−a2A(w, v) + a1
2
√−a2

(w, v)

with A(·, ·) defined in (2.7). Such semi-discrete DG scheme can be shown L2 stable, and
optimally convergent. The result is summarized in the following.

Theorem 4.1 Let uh be the numerical solution to (4.3), then

‖uh(·, t)‖ ≤ ‖uh(·, 0)‖eMt , M = a0 − a21
4a2

.

Assume that the exact solution u to problem (1.1) with operator L defined in (4.1) is smooth,
then

‖uh(·, t) − u(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T, (4.4)

whereC depends on supt∈[0,T ] |ut (·, t)|k+1, supt∈[0,T ] |u(·, t)|k+3, supt∈[0,T ] |u(·, t)|k+1 and
T , but independent of h.

Proof Firstly, the stability result follows from

1

2

d

dt
‖uh‖2 + ‖qh‖2 = M‖uh‖2,

which is obtained by adding two equations in (4.3) with φ = uh and ψ = qh . Here the terms
involving A(·, ·) cancel out due to the symmetry property.

We proceed to carry out the error estimate. The consistency of theDGmethod (4.3) ensures
that the exact solution u and q of (4.2) also satisfy

(ut , φ) = − Ã(q, φ) + M(u, φ),

(q, ψ) = Ã(u, ψ),
(4.5)
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for all φ ∈ V k
h , ψ ∈ V k

h . Subtracting (4.3) from (4.5), we obtain the error system

((u − uh)t , φ) = − Ã(q − qh, φ) + M(u − uh, φ),

(q − qh, ψ) = Ã(u − uh, ψ).
(4.6)

Denote
e1 = Pu − uh, ε1 = Pu − u,

e2 = Pq − qh, ε2 = Pq − q,

and take φ = e1, ψ = e2 in (4.6), upon summation, we obtain

1

2

d

dt
‖e1‖2 + ‖e2‖2 = M‖e1‖2 − M(ε1, e1) + (ε1t , e1) + (ε2, e2) + Ã(ε2, e1) − Ã(ε1, e2).

(4.7)
By property (2.11) of the projection, we have

Ã(ε2, e1) = √−a2A(ε2, e1) + a1
2
√−a2

(ε2, e1) = a1
2
√−a2

(ε2, e1),

Ã(ε1, e2) = √−a2A(ε1, e2) + a1
2
√−a2

(ε1, e2) = a1
2
√−a2

(ε1, e2).

These when inserted into (4.7) upon further bounding terms on the right hand side gives

1

2

d

dt
‖e1‖2 ≤ M‖e1‖2 +

(

M‖ε1‖ + ‖ε1t‖ + |a1|
2
√−a2

‖ε2‖
)

‖e1‖

+ 1

4

(

‖ε2‖ + |a1|
2
√−a2

‖ε1‖
)2

≤ C(‖e1‖2 + h2(k+1)),

whereproperty (2.12) has beenused, andC dependsonM , supt∈[0,T ] |ut |k+1, sup0≤t≤T |u|k+3,
supt∈[0,T ] |u|k+1, independent of h. By Grownwall’s inequality we have

‖e1(·, t)‖2 ≤ e2CT (‖e1(·, 0)‖2 + h2k+2), 0 ≤ t ≤ T,

which together with the initial error ‖e1(·, 0)‖ ≤ Chk+1 yields

‖e1(·, t)‖ ≤
√
C2 + 1eCT hk+1, 0 ≤ t ≤ T .

This when combined with the approximation result in Lemma 2.2 leads to (4.4) as
desired. 
�

In a similar fashion, we consider the 2D operator

Lu =
2∑

m=0

am�mu, (4.8)

with a2 < 0, for which we have the following reformulation

ut = √−a2

(

� + a1
2a2

)

q + Mu,

q = −√−a2

(

� + a1
2a2

)

u.

123



484 J Sci Comput (2018) 77:467–501

The corresponding DG scheme becomes

(uht , φ) = − Ã(qh, φ) + ( f (uh), φ), (4.9a)

(qh, ψ) = Ã(uh, ψ), (4.9b)

where f (u) = Mu, and the bilinear functional for 2D rectangular meshes becomes

Ã(w, v) = √−a2A(w, v) + a1
2
√−a2

(w, v),

with A(·, ·) defined in (3.4). For DG scheme (4.9), we have the following result.

Theorem 4.2 Let uh be the numerical solution to (4.9), then

‖uh(·, t)‖ ≤ ‖uh(·, 0)‖eMt .

Assume that the exact solution u to problem (1.1) with operator L defined in (4.8) is smooth,
then

‖uh(·, t) − u(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T,

where C depends on supt∈[0,T ] ‖ut (·, t)‖k+1, supt∈[0,T ] |u(·, t)|k+3, supt∈[0,T ] |u(·, t)|k+1

and T , but independent of h.

4.2 Non-periodic Boundary Conditions

As is known if one of the following homogeneous boundary conditions is imposed,

u = ∂νu = 0; u = �u = 0; ∂νu = ∂ν�u = 0, x ∈ ∂�,

where ν stands for the outward normal direction to the boundary ∂�, then the problem

ut = −�2u, u(x, 0) = u0(x), x ∈ �, t > 0

is also well-posed, and ‖u(·, t)‖ ≤ ‖u0(·)‖ holds for t > 0. In practice, the boundary
conditions are often non-homogeneous, for example, the above three types of boundary
conditions can have the form

(i) u = g1, ∂νu = g2; (i i) u = g1,�u = g3; (i i i) ∂νu = g2, ∂ν�u = g4, x ∈ ∂�,

where gi are given, and can be different in these three cases. The first two may be called
“generalized Dirichlet conditions” of the first and second kind, respectively, and the third one
may be called “generalized Neumann condition”. There is no restriction to the use of mixed
types of boundary conditions.

Let K be a computation cell such that ∂� ∩ K is not empty, with ν still denoting the
outward normal direction of ∂�∩K . We also denote the set of all boundary edges of ∂�∩K
by �, which is a union of all boundary edges in 2D case, and {x1/2 = a, b = xN+1/2} in
one-dimensional case. We can then define the boundary fluxes for all edges e ∈ � for case
(i), (ii) and (iii), respectively:

ûh = g1, ∂̂νuh = g2, (4.10a)

q̂h = qh, ∂̂νq = β1

h
(g1 − uh) + ∂νqh; (4.10b)
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ûh = g1, ∂̂νuh = β0

h
(g1 − uh) + ∂νuh, (4.11a)

q̂h = −g3, ∂̂νq = β0

h
(−g3 − qh) + ∂νqh; (4.11b)

ûh = uh, ∂̂νuh = g2, (4.12a)

q̂h = qh, ∂̂νq = −g4, (4.12b)

where the mesh size h = diam{K }. The flux parameters β0, β1 are used to ensure the
numerical convergence. For these three types of boundary fluxes, the following stability
results hold true.

Theorem 4.3 The DG scheme (2.6) or (3.3) subject to one of three types of boundary fluxes
(4.10)–(4.12) is stable in the sense that

‖uh − ũh‖ ≤ ‖u0 − ũ0‖, (4.13)

provided (i) β1 ≥ 0, (ii) ∀β0, and (iii) no flux parameter is needed. Here uh and ũh in (4.13)
denote the corresponding numerical solutions that satisfy the same boundary conditions
associated with the initial conditions u0 and ũ0, respectively.

Proof Let A0(·, ·) be the bilinear operator defined in (2.6) or (3.3), yet without boundary
terms. Then the sum of two global formulations yields the following

(uht , φ) + (qh, ψ) = −A0(qh, φ) + A0(uh, ψ) + B(uh, qh;φ,ψ), (4.14)

where

B =
∫

�

(
∂̂νqhφ − ∂̂νuhψ + (qh − q̂h)∂νφ − (uh − ûh)∂νψ

)
ds.

Upon careful calculation, B in each case is given as follows:

(i)

B =
∫

�

(

∂νqhφ − uh∂νψ − β1

h
uhφ

)

ds +
∫

�

(

g1∂νψ − g2ψ + β1

h
g1φ

)

ds;

(ii)

B =
∫

�

(∂νqhφ + qh∂νφ − uh∂νψ − ∂νuhψ) ds −
∫

�

(
β0

h
(qhφ − uhψ)

)

ds

+
∫

�

(
β0

h
(−g3φ − g1ψ) + g1∂νψ + g3∂νφ

)

ds; and

(iii)

B =
∫

�

(−g4φ − g2ψ)ds.

Taking φ = uh and ψ = qh in (4.14) we obtain

1

2

d

dt
‖uh‖2 + ‖qh‖2 = B(uh, qh; uh, qh),

where such B reduces to
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Table 1 The choice of β0, β1 in
boundary fluxes (4.10) and (4.11)

Fluxes k = 1 k ≥ 2

(4.10) β1 = 0 β1 ≥ δ

(4.11) |β0| ≥ C β0 = 0

(i) B = −β1
h

∫
�
u2hds + ∫

�
(g1∂νqh − g2qh + β1

h g1uh)ds,

(ii) B = ∫
�
(
β0
h (−g3uh − g1qh) + g1∂νqh + g3∂νuh)ds, and

(iii) B = ∫
�
(−g4uh − g2qh)ds.

Both the equation and the boundary conditions are linear, it suffices to show ‖uh(·, t)‖ ≤
‖uh(·, 0)‖ when boundary conditions are homogeneous, i.e., gi = 0, i = 1, . . . , 4. Indeed,
in such cases we have (i) B = −β1

h

∫
�
u2hds, (ii) B = 0 ∀β0, and (iii) B = 0. Thus, the

conclusion follows. 
�
Remark 4.1 If ũh is an approximation to the steady solution of the corresponding time-
independent problem, then (4.13) leads to

‖uh‖ ≤ ‖u0 − ũ0‖ + ‖ũh‖,
which can be regarded as the priori bound in terms of both initial data and the boundary data.

The necessity of using β1 in (4.10) and β0 in (4.11) is illustrated numerically in Exam-
ples 5.4 and 5.5, respectively, by checking whether the optimal order of accuracy can be
obtained. Extensive numerical tests including Examples 5.4 and 5.5 indicate that the choice
of β0, β1 as shown in Table 1 is sufficient for achieving optimal convergence. In Table 1,
δ > 0 can be a quite small number (see Fig. 1), and C > 0 is a constant, say C = 3 is a valid
choice in our numerical examples on uniform meshes. It would be interesting to justify these
sufficient conditions by establishing some optimal error estimates.

4.3 Application to a Nonlinear Problem

We consider the initial-boundary value problem for the one-dimensional Swift–Hohenberg
equation of the form,

ut = −Dκ4u − 2Dκ2uxx − Duxxxx + f (u) x ∈ [a, b], t > 0,

u = 0 and uxx = 0 at x = a, b,

u(x, 0) = u0(x),

(4.15)

where D > 0, κ are constants and f (u) = εu + gu2 − u3 with non-negative constants
ε, g. The Swift–Hohenberg equation introduced in [32] is noted for its pattern-forming
behavior, and endowed with a gradient flow structure, ut = − δE

δu , for zero-flux boundary
conditions. This equation relates the temporal evolution of the pattern to the spatial structure
of the pattern, with ε measuring how far the temperature is above the minimum temperature
difference required for convection, and g is the parameter controlling the strength of the
quadratic nonlinearity.

The Swift–Hohenberg equation (4.15) can be rewritten as an equivalent system

ut = √
D(∂2x + κ2)q + f (u),

q = −√
D(∂2x + κ2)u.
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With this formulation the energy dissipation law becomes

d

dt
E = −

∫ b

a
|ut |2dx ≤ 0,

where E = ∫ b
a �(u) + 1

2 |q|2dx is a free-energy functional, and

�(u) = − ε

2
u2 − g

3
u3 + 1

4
u4 = −

∫ u

0
f (ξ)dξ.

This is the fundamental stability property of the Swift–Hohenberg equation. The objective of
this section is to illustrate that our DG discretization with proper time discretization inherits
this property irrespectively of time step sizes.

The semi-discrete DG method for (4.15) may be given by

(uht , φ) = −A(qh, φ) + ( f (uh), φ),

(qh, ψ) = A(uh, ψ),

where

A(w, v) = √
D

(

A0(w, v) − κ2(w, v) + (
w+v+

x

)
1/2 − (

w−v−
x

)
N+1/2

+ (
w+
x v+)

1/2 − (
w−
x v−)

N+1/2 + β0

h

(
w+v+)

1/2 + β0

h

(
w−v−)

N+1/2

)

,

with parameter β0 chosen as listed in Table 1. The DG scheme can be shown to preserve the
energy dissipation law in the sense that

d

dt
Eh = −

∫ b

a
|uht |2dx ≤ 0,

where Eh = ∫ b
a �(uh) + 1

2 |qh |2dx .
Time discretization should be taken with care, here we want to preserve the energy dis-

sipation law at each time step. A simple choice is to obtain (un+1
h , qn+1

h ) ∈ V k
h × V k

h from
(unh, q

n
h ) by

(
un+1
h − unh

�t
, φ

)

= −A(qn+1/2
h , φ) −

(
�(un+1

h ) − �(un)

un+1
h − unh

, φ

)

(4.16a)

(qnh , ψ) = A(unh, ψ) (4.16b)

for all φ, ψ ∈ V k
h , where q

n+1/2
h = 1

2 (q
n+1
h +qnh ). This fully discrete DG scheme does have

the following property.

Theorem 4.4 The solution to (4.16) satisfies the energy dissipation law of the form

En+1
h − En

h = −‖un+1
h − unh‖2

�t
, (4.17)

where

En
h =

∫ b

a
�(unh) + 1

2
|qnh |2dx .
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Proof By taking the difference of (4.16b) at time level n + 1 and n, we obtain

(qn+1
h − qnh , ψ) = A(un+1

h − unh, ψ). (4.18)

Taking φ = un+1
h − unh in (4.16a), ψ = qn+1/2

h in (4.18), then plugging the resulting relation
into (4.16a), we have

‖un+1
h − unh‖2

�t
= −

(
qn+1
h − qnh , qn+1/2

h

)
−

∫ b

a
(�(un+1

h ) − �(unh))dx

= −1

2

(
‖qn+1

h ‖2 − ‖qnh ‖2
)

−
∫ b

a
�(un+1

h )dx +
∫ b

a
�(unh)dx,

which gives (4.17). 
�

We next propose an iteration scheme to solve the nonlinear equation (4.16). Rewriting the
nonlinear term in (4.16a) as

�(un+1
h ) − �(unh)

un+1
h − unh

= G1(u
n+1
h , unh)u

n+1
h + G2(u

n
h),

where

G1(w, v) = − ε

2
− g

3
(w + v) + 1

4
(w2 + wv + v2),

G2(v) = − ε

2
v − g

3
v2 + 1

4
v3,

with which we apply the idea in [8] to obtain the following iterative scheme,

(
un+1,l+1
h − unh

�t
, φ

)

+ 1

2
A(qn+1,l+1

h , φ) = −1

2
A(qnh , φ)

−
(
G1(u

n+1,l
h , unh)u

n+1,l+1
h + G2(u

n
h), φ

)
,

1

2
A(un+1,l+1

h , ψ) − 1

2
(qn+1,l+1

h , ψ) = 0,

(4.19)
where G1(u

n+1,0
h , unh) = G1(unh, u

n
h), the iteration stops as ‖un+1,l

h − un+1,l−1
h ‖ < δ for

certain l = L (L ≥ 1). Then the last iteration gives the sought solution on the new time stage
and we define

un+1
h = un+1,L

h .

5 Numerical Examples

In this section we numerically validate our theoretical results, as well as the stated extension
cases with one and two dimensional examples. The orders of convergence are calculated
using

log2
‖u − uh‖L2

‖u − uh/2‖L2
, log2

‖u − uh‖L∞

‖u − uh/2‖L∞
,
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respectively; where errors are given in the following way: for the one dimensional L2 error,
we use

‖u − uh‖L2 =
⎛

⎝
N∑

j=1

h j

2

k+1∑

α=1

ωα|uh(x̂ j
α, t) − u(x̂ j

α, t)|2
⎞

⎠

1
2

,

where ωα > 0 are the weights, x̂ j
α are the corresponding Gauss points in each cell I j , and

for the L∞ error,

‖u − uh‖L∞ = max
1≤ j≤N

max
1≤α≤k+1

|uh(x̂ j
α, t) − u(x̂ j

α, t)|.

Example 5.1 (1D accuracy test) We consider the biharmonic equation

ut = −uxxxx (x, t) ∈ [0, 2π] × (0, T ],
u(x, 0) = sin(x),

with periodic boundary conditions. And the exact solution is given by

u(x, t) = e−t sin(x).

We test this example using DG scheme (2.3) with the Crank–Nicolson time discretization,
based on polynomials of degree k with k = 1, . . . , 4. Both errors and orders of accuracy at
T = 1 are reported in Table 2. These results show that (k + 1)th order of accuracy in both
L2 and L∞ are obtained.

Example 5.2 (2D accuracy test) We consider the 2D linear biharmonic equation

ut + �2u = 0 (x, y, t) ∈ [0, 4π ] × [0, 4π] × (0, T ],
u(x, y, 0) = sin(0.5x) sin(0.5y),

with periodic boundary conditions. And the exact solution is given by

u(x, t) = e−0.25t sin(0.5x) sin(0.5y).

We test this example by DG scheme (3.7) with θ = 1/2, based on tensor product of polyno-
mials of degree k with k = 1, 2, 3 on rectangular meshes. Both errors and orders of accuracy
at T = 0.1 are reported in Table 3. These results show that (k + 1)th order of accuracy in
both L2 and L∞ are obtained.

Example 5.3 (2D linearized Cahn–Hillard equation) We consider the 2D linearized Cahn–
Hillard equation

ut + �2u + �u = 0 (x, y, t) ∈ [0, 2π/a] × [0, 2π/a] × (0, T ],
u(x, y, 0) = sin(ax) sin(ay),

with periodic boundary conditions, where a > 0 is a constant.
The exact solution is given by

u(x, t) = e−bt sin(ax) sin(ay),

where b = 4a4 − 2a2.
We test this example using DG scheme (4.9) on rectangular meshes with the Crank–

Nicolson time discretization, based on polynomials of degree k with k = 1, 2, 3, by varying
the interval length through a in three cases: (i) a = 1/2; (ii) a = √

2/2; and (iii) a = √
3/2.
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They correspond to b = −1/4, 0, 3/4, while the solution in each case shows different
growth/decay behavior in time.

Both errors andorders of accuracy at T = 0.1 are reported inTables 4, 5 and6, respectively.
These results show that (k + 1)th order of accuracy in both L2 and L∞ norms are obtained.

Example 5.4 (Dirichlet boundary condition of the first kind) We consider the following
initial-boundary value problem

ut = −uxxxx , (x, t) ∈ [0, 2π] × (0, T ],
u(x, 0) = sin x,

u(0, t) = u(2π, t) = 0,

ux (0, t) = ux (2π, t) = e−t ,

which admits the exact solution u(x, t) = e−t sin(x).
We test this example using DG scheme (2.3) with boundary fluxes (4.10). We pay special

attention on the effects of the boundary flux parameter β1. The comparison results in Fig. 1
show that the DG scheme with β1 > 0 is optimally convergent, yet the scheme with β1 = 0
only gives suboptimal orders of convergence for polynomials of degree k with k ≥ 2. This
test suggests that β1 is necessary for k ≥ 2 to weakly enforce the Dirichlet boundary data as
formulated in (4.10), and β1 = 0 is admissible for k = 1. Here, the convergence orders shown
in Fig. 1 are obtained based on total cell numbers N = 40, 80 for k ≤ 2 and N = 20, 40
for k ≥ 3.

Example 5.5 (Dirichlet boundary condition of the second kind) We consider the following
initial-boundary value problem

ut = −uxxxx , (x, t) ∈ [0, 3π] × (0, T ],
u(x, 0) = sin x,

u(0, t) = u(3π, t) = 0,

uxx (0, t) = uxx (3π, t) = 0.

We test this example using DG scheme (2.3) with boundary fluxes (4.11), with emphasis on
the effects of the boundary flux parameters β0. The numerical results are reported in Tables 7,
8 and Fig. 2. In Table 7 we test the DG scheme based on P1 polynomials, and we observe
that the DG scheme with β0 = 0 only gives suboptimal order of accuracy, while the DG
scheme with other values of β0 give optimal order of convergence in both L2 and L∞ norms.
The comparison results in Table 7 show that β0 is necessary for k = 1 to weakly enforce
the Dirichlet boundary data as formulated in (4.11). Convergence orders in Fig. 2, obtained
based on P1 polynomials and total cell numbers N = 40, 80, indicate that |β0| ≥ C for
some constants C (e.g. C = 3) is sufficient for the DG scheme to be optimally convergent.
However, extensive numerical tests indicate that β0 = 0 is sufficient for the DG scheme with
k ≥ 2 to be optimally convergent, see Table 8.

Example 5.6 (Pattern selection) For one-dimensional Swift–Hohenberg equation, we con-
sider the following problem

ut = −u − 2uxx − uxxxx + f (u) (x, t) ∈ [0, L] × (0, T ],
u = 0 and uxx = 0 at x = 0, L , t > 0,

u(x, 0) = 0.1 sin
(πx

L

)
,
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Fig. 1 The convergence orders with Pk polynomials at T = 0.1, Example 5.4

Fig. 2 The convergence order
with P1 polynomials at T = 0.1,
Example 5.5
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where f (u) = εu−u3. The asymptotic solution behavior of this problemwas studied in [29]
with particular focus on the role of the parameter ε and the length L of the domain on the
selection of the limiting profile. We test the case of ε = 0.5 with L = 4, 14, respectively, and
compare the results with those obtained in [29]. This problem is solved by DG scheme (4.19)
based on polynomial P2 with δ = 10−12. The numerical solutions shown in Fig. 3 display
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Fig. 3 Evolution of patterns with a L = 4.0, b L = 14.0. The dashed curve is the initial pattern and the thick
curve the final pattern. The other curves represent patterns at the intermediate times
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Fig. 4 Energy evolution with a L = 4.0, b L = 14.0

the pattern dynamics, which is consistent with the analysis and numerical tests in [29]. The
corresponding free energy dissipation is shown in Fig. 4.

6 Concluding Remarks

A novel discontinuous Galerkin (DG) method without interior penalty has been proposed to
solve the time-dependent fourth order partial differential equations. For the biharmonic equa-
tion, the DG scheme is based on the mixed formulation of the original model. Both stability
and optimal L2−error estimates of the DG method are proved in both one-dimensional and
multi-dimensional settings subject to periodic boundary conditions. Extensions to general
fourth order equations and cases with three typical non-homogeneous boundary conditions
are discussed, following by an application to solving the one-dimensional Swift–Hohenberg
equation, which admits a decay free energy. Several numerical results are presented to verify
the stability and accuracy of the schemes.
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