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Abstract Ideal magnetohydrodynamic (MHD) equations are widely used in many areas
in physics and engineering, and these equations have a divergence-free constraint on the
magnetic field. In this paper, we propose high order globally divergence-free numerical
methods to solve the ideal MHD equations. The algorithms are based on discontinuous
Galerkin methods in space. The induction equation is discretized separately to approximate
the normal components of the magnetic field on elements interfaces, and to extract additional
information about the magnetic field when higher order accuracy is desired. This is then
followed by an element by element reconstruction to obtain the globally divergence-free
magnetic field. In time, strong-stability-preserving Runge–Kutta methods are applied. In
consideration of accuracy and stability of the methods, a careful investigation is carried out,
both numerically and analytically, to study the choices of the numerical fluxes associated
with the electric field at element interfaces and vertices. The resulting methods are local
and the approximated magnetic fields are globally divergence-free. Numerical examples are
presented to demonstrate the accuracy and robustness of the methods.
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1 Introduction

In this paper, wewill develop globally divergence-free discontinuous Galerkin (DG)methods
to numerically simulate ideal magnetohydrodynamic (MHD) equations. MHD equations
model ionized plasmas under some simplified assumptions and arewidely used for describing
many problems in physics and engineering. The ideal MHD equations considered in this
work can be written as a system of nonlinear hyperbolic conservation laws, in addition to
a divergence-free constraint on the magnetic field. Even though the magnetic field in the
exact solution satisfies the divergence-free condition as long as it does initially, insufficient
preservation of this property numerically may lead to numerical instability or nonphysical
features of approximated solutions [8,9,19,37].

To handle the divergence-free constraint, various strategies have been developed in numer-
ical modeling and mathematical analysis within divergence-cleaning or divergence-free
algorithms. In [9], Brackbill and Barnes proposed a simple divergence correction tech-
nique based on Hodge decomposition. They projected the computed magnetic field into
a divergence-free vector space by solving a Poisson equation and used the divergence-free
magnetic field in the next time step. One widely used framework to achieve the preservation
of the divergence, in some discrete or continuous sense, is “constrained transport”, introduced
by Yee [40] in the context of the electromagnetism, and adapted by Evans and Hawley [19]
to MHD simulations. This idea was further developed by many researchers within frame-
works of finite difference, finite volume, and finite element methods, either upwind (also
called Godunov) or central types, and with various accuracy [8,17,20,26,29]. Among the
developments, there are exactly divergence-free numericalmethods [1,3,26,28,29,35].Other
approacheswhich attract different practitioners includePowell’s source term formulation [30]
by adding source terms depending on ∇ · B, and generalized multiplier methods [18] with
divergence cleaning technique.

In recent years, Li et al. [25–27,38] developed divergence-free numerical methods for
ideal MHD equations based on DG and central DG spatial discretizations. In [25], locally
divergence-free DGmethods were formulated, and they utilize divergence-free vector spaces
inside each mesh element to approximate the magnetic field. In [26,27], exactly divergence-
free central DG methods were proposed for ideal MHD equations, and the methods can be
of arbitrary accuracy. The discrete space to represent and to compute the magnetic field is a
divergence-free subspace of the Brezzi–Douglas–Marini (BDM) finite element space [10], a
well-established H (div)-conforming finite element space. DG method was first introduced
in 1973 by Reed and Hill for linear neutron transport problems [33]. A major breakthrough
was made by Cockburn et al. [13–16] to develop DG spatial discretizations for nonlinear
hyperbolic conservation laws, coupled with high order Runge–Kutta methods in time. Exact
or approximate Riemann solvers are used as numerical fluxes at element interfaces, and total
variation bounded (TVB) nonlinear limiters [36] are applied in the presence of strong shocks
to achieve non-oscillatory property. With their great flexibility in local approximations and
geometry, local conservation, and high parallel efficiency, DG methods since then have been
formulated and analyzed to various mathematical models, with broad applications in areas
such as electromagnetism, gas dynamics, granular flow, plasma physics etc. One can refer
to [22,24,34] for amore systematic description of themethods aswell as their implementation
and applications.

Our present work follows the development of exactly divergence-free central DG meth-
ods for ideal MHD equations in [26,27], and it is related to the exactly divergence-free DG
methods for the induction equation using multi-dimensional Riemann solvers [7]. On the one
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hand, the methods in [26,27] achieve exactly divergence-free approximations for the mag-
netic field within a relatively simple formulation due to that the methods involve two copies
of numerical solutions from two overlapping meshes, and no numerical fluxes are needed
either on element interfaces or at mesh vertices. On the other hand, two copies of numer-
ical solutions double the total number of unknowns and hence increase the computational
complexity of the algorithms. In this work, we want to design exactly divergence-free DG
methods that are defined on one mesh, which is structured, for ideal MHD equations in two
dimensions. Similar as in central DG framework, our new methods will discretize the hydro-
dynamic variables, such as density, momentum, total energy using standard DG methods,
while the equations evolving the magnetic fields, referred to as the induction equation, will
be discretized differently by DG-type methods. More specifically, the normal components of
themagnetic field along element edges will be updated first by DGmethods defined on edges,
and this is followed by an element-wise reconstruction to produce an exactly divergence-free
magnetic field. For higher order accuracy, additional information will be computed for the
magnetic field, and it will be used together with the normal components of the magnetic field
to uniquely determine the reconstruction. It turns out that the entire algorithm to discretize the
induction equation to obtain the magnetic field approximation can be equivalently reformu-
lated to a form without any reconstruction. The magnetic fields will still be approximated by
the exactly divergence-free H (div)-conforming BDM finite element functions as in [26,27]
(see Sect. 2.2 for comments on the use of general H (div)-conforming finite element spaces),
and the new challenge comes from the need for numerical fluxes to approximate the electric
field on element interfaces and at vertices.

It is known that the choices of numerical fluxes play an important role for the accuracy and
stability of DG methods. To finalize our methods, we first identify two necessary conditions
(seeTheorem3.1) on the numerical fluxes used in the different parts of the numericalmethods,
to ensure the reconstructed magnetic field is exactly divergence-free. We then adapt the
proposed methods to a constant coefficient linear model, the induction equation with a given
constant velocity field, and carry out both a numerical study and a Fourier analysis, to learn
about the choices of numerical fluxes for the electric field especially at the mesh vertices, and
their roles to the accuracy and numerical stability of the methods. Even though such study
is only for a linear model for the magnetic field, the experience we have with it informs us
how to choose numerical fluxes (see Sect. 4.3) for the proposed schemes to solve the full
ideal MHD equations accurately and robustly. Our final choice of the electric field flux at
mesh vertices is one type of multi-dimensional Riemann solver used in [7]. Our numerical
tests in Sect. 4.1 imply that multi-dimensional Riemann solvers, when they introduce enough
numerical dissipation, can make a good approximation to the electric field flux at vertices.
Multi-dimensional Riemann solvers have been used within the WENO finite volume method
frameworks in [4–6] to solve ideal MHD equations.

The rest of this paper is organized as follows. In Sect. 2, we describe the ideal MHD
equations and introduce notations for meshes and discrete spaces. In Sect. 3, we present the
proposed DG methods, and identify the conditions on the numerical fluxes to ensure the
overall algorithms to be exactly divergence-free. In order to know what choices of numerical
fluxes, especially for the electric field on element interfaces and at vertices, will render
accurate and stable algorithms, in Sect. 4 we adapt the proposed methods to the induction
equation and carry out numerical and analytical studies. In Sect. 5, nonlinear limiters are
discussed, and the entire algorithm is also presented. Numerical examples are presented
in Sect. 6 to illustrate the performance of the proposed methods, and this is followed by
concluding remarks in Sect. 7.
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2 MHD Equations, Notations and Discrete Spaces

2.1 MHD Equations

We consider the ideal MHD equations consisting of a set of nonlinear hyperbolic conserva-
tions laws

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ ·

[
ρuuT +

(
p + 1

2
|B|2

)
I − BBT

]
= 0, (2)

∂B
∂t

− ∇ × (u × B) = 0, (3)

∂E

∂t
+ ∇ ·

[(
E + p + 1

2
|B|2

)
u − B(u · B)

]
= 0, (4)

with a divergence-free constraint

∇ · B = 0. (5)

Here ρ is the density, p is the hydrodynamic pressure, u = (ux , uy, uz)T is the velocity, and
B = (Bx , By, Bz)

T is the magnetic field. The total energy is given by E = 1
2ρ|u|2 + 1

2 |B|2 +
p

γ−1 with γ as the ratio of the specific heats. The superscript T denotes the vector transpose.
I is the identity matrix, ∇· is the divergence operator, and ∇× is the curl operator. In two
dimensions, all functions depend on the spatial variables x and y. Hence only Bx and By

contribute to ∇ · B. The Eqs. (1)–(4) can be written as

∂U
∂t

+ ∇ · F(U,B) = 0, (6)

∂B

∂t
+ ∇̂ × Ez(U,B) = 0, (7)

where U = (ρ, ρux , ρuy, ρuz, Bz,E)T,B = (Bx , By)
T, and F = (F1, F2) with

F1(U,B) =
(

ρux , ρu
2
x + p + 1

2
|B|2 − B2

x , ρuxuy − Bx By, ρuxuz − Bx Bz,

ux Bz − uz Bx , ux

(
E + p + 1

2
|B|2

)
− Bx (u · B)

)T

,

(8)

F2(U,B) =
(

ρuy, ρuxuy − Bx By, ρu
2
y + p + 1

2
|B|2 − B2

y , ρuyuz − By Bz,

uy Bz − uz By, uy

(
E + p + 1

2
|B|2

)
− By (u · B)

)T

.

(9)

In addition, Ez(u,B) = uy Bx − ux By which is the z-component of the electric field E =
−u×B, and ∇̂×Ez = (

∂Ez
∂y ,− ∂Ez

∂x )T is the first two components of∇×(0, 0, Ez)
T.Without

confusion, we will refer to B as the magnetic field.

2.2 Notations and Discrete Spaces

In this subsection, notations and discrete spaces for numerical schemes are introduced. We
assume the computational domain is� = [xmin, xmax ]×[ymin, ymax ] ⊂ R

d with d = 2. Let
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{xi }i and {y j } j be the partitions of [xmin, xmax ] and [ymin, ymax ], respectively. We define
xi+ 1

2
= 1

2 (xi + xi+1), y j+ 1
2

= 1
2 (y j + y j+1) and Ii j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] as an

rectangle element with (xi , y j ) as the center. Let �x = xi+ 1
2

− xi− 1
2
, �y = y j+ 1

2
− y j− 1

2
,

and let Th =⋃i j Ii j be a partition of the domain �.
The discrete spaces are defined over the mesh. For variable U, we use the piecewise

polynomial vector space

Vk
h =

{
v: v|K ∈ [Pk(K )]8−d ,∀K ∈ Th

}
, (10)

where Pk(K ) is the space of polynomials with the total degree at most k in K , and [Pk(K )]n
is its vector version. For the magnetic fieldB, we approximate it using globally (also called
exactly) divergence-free polynomial functions, which are piecewise divergence-free with
continuous normal components across element interfaces. This space is defined as

Mk
h =

{
v ∈ H(div0;�): v|K ∈ Wk(K ),∀K ∈ Th

}

=
{
v: v|K ∈ Wk(K ),∇ · v|K = 0,∀K ∈ Th,

and the normal component of v is continuous across each element interface
}

,

(11)

with Wk(K ) defined as

Wk(K ) = [Pk(K )]d ⊕ span
{
∇̂ × (xk+1y), ∇̂ × (xyk+1)

}
. (12)

Mk
h is the divergence-free subspace of the H (div)-conforming Brezzi–Douglas–Marini

(BDM) finite element space

BDMk =
{
v ∈ H(div): v |K∈ Wk(K ),∀K ∈ Th

}
, (13)

and it has optimal accuracy to approximate functions in H(div0) = {v ∈ [L2(�)]d : ∇ · v =
0} [10]. As pointed out in [26], divergence-free subspaces of other H (div)-conforming finite
element spaces, such as Brezzi–Douglas–Fortin–Marini (BDFM) [11] or Raviart–Thomas
(RT) [32] finite element spaces can also be used to provide divergence-free approximations
for the magnetic field by following the same framework proposed in the present paper. The
BDM finite element space is chosen here as it is the smallest among these candidates to
achieve the same order of accuracy in the L2 norm.

3 Proposed Numerical Methods for Ideal MHD Equations

In this section, we will formulate the DG methods with a globally divergence-free magnetic
field to solve the MHD equations (6)–(7). For simplicity, we use the forward Euler method as
time discretization to present the schemes. For high order accuracy in time, strong-stability-
preserving Runge–Kutta methods will be used [21]. Such time integrators can be expressed
as convex combinations of the forward Euler method, and hence they preserve the globally
divergence-free property of the magnetic field. To describe the proposedmethods, we assume
the numerical solutions at time t = tn are available, that is (Un

h,B
n
h) ∈ Vk

h × Mk
h with

Bn
h = (Bn

x,h, B
n
y,h)

T. We want to compute the numerical solutions at tn+1 = tn + �t ,

denoted as (Un+1
h ,Bn+1

h ) ∈ Vk
h × Mk

h with Bn+1
h = (Bn+1

x,h , Bn+1
y,h )T.
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3.1 DG Methods to Update Un+1
h

We update the variable Un+1
h by applying to (6) the standard DG method [16] as the spatial

discretization and forward Euler method as the time discretization. That is, we look forUn+1
h

∈ Vk
h , such that for any w ∈ Vk

h and any element Ii j ∈ Th ,

∫
Ii j

Un+1
h · wdxdy =

∫
Ii j

Un
h · wdxdy − �t

(∫
∂ Ii j

He,Iij

(
vint (Ii j ), vext (Ii j );n

)
· wds

−
∫
Ii j

F(Un
h,B

n
h) · ∇wdxdy

)
.

(14)

Here, He,Iij(v
int (Ii j ), vext (Ii j );n) is the numerical flux to approximate F(U,B) · n, and n =

(n1, n2)T is the outward normal vector of an edge e of the element Ii j . v is a symbol which
denotes the variables (Un

h,B
n
h), and v

int (Ii j ), vext (Ii j ) are the limits of v from the interior and
exterior of an element Ii j along its edge e. In our simulation, we take the Lax–Friedrichs
numerical flux

He,Iij(a,b;n) = 1

2
(F(a) · n + F(b) · n − α(b − a)) , (15)

where α is an estimate of the maximal absolute eigenvalue of the Jacobian ∂F(U,B)·n
∂(U,B)

in the
neighborhood of the edge e.

3.2 DG Methods for Globally Divergence-Free Magnetic Field B

In this subsection, we present DG methods for the induction equation (7) to generate a
globally divergence-free approximation Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T ∈ Mk
h for the magnetic

fieldB. It is known that a piecewise divergence-free vector field is globally divergence-free
if its normal component is continuous on element interfaces. Therefore, we first approximate
the normal component of the magnetic field B · n on element interfaces based on the DG
methods (see Sect. 3.2.1). Then, an element by element reconstruction is used to reconstruct
the globally divergence-free magnetic field (see Sect. 3.2.3). When k ≥ 2, more information
about the magnetic field is obtained by approximating the two-dimensional system (7) using
a standard DG method that is less accurate (see Sect. 3.2.2). In Sect. 3.2.4, we will present a
reformulation of the schemes, equivalent to that in Sects. 3.2.1–3.2.3 to update the magnetic
field yet free of reconstruction. Throughout this subsection, Ez in numerical schemes and its
related numerical fluxes are from time tn .

3.2.1 Approximation of B · n on the Element Interfaces

To get the continuous normal componentB ·n of the magnetic field, we formulate a DG-type
scheme formagnetic field equations on the element interfaces. For the rectangular mesh,B·n
is Bn+1

x,h along y-direction edges with n = (1, 0)T, and it is Bn+1
y,h along the x-direction edges

with n = (0, 1)T.
To propose the DG method for Eq. (7) on the element interface, we consider the equation

∂B · n
∂t

+ ∇̂ × Ez(U,B) · n = 0. (16)
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To this end, on a rectangular mesh, we need to consider two one-dimensional equations of
the system (16)

∂Bx

∂t
+ ∂Ez

∂y
= 0, (17)

∂By

∂t
− ∂Ez

∂x
= 0. (18)

We use the DG method as the spatial discretization and forward Euler method as the time
discretization for Eqs. (17) and (18) on element interfaces. The method is as follows: look
for bxi j (y) ∈ Pk([y j− 1

2
, y j+ 1

2
]), such that for any ϕ(y) ∈ Pk([y j− 1

2
, y j+ 1

2
])

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)ϕ(y)dy =
∫ y

j+ 1
2

y
j− 1

2

Bn
x (xi+ 1

2
, y)ϕ(y)dy

− �t

⎛
⎝Êz(xi+ 1

2
, y)ϕ(y)

∣∣∣y j+ 1
2

y
j− 1

2

−
∫ y

j+ 1
2

y
j− 1

2

Ez(xi+ 1
2
, y)

∂ϕ(y)

∂y
dy

⎞
⎠ ,

(19)

and look for byi j (x) ∈ Pk([xi− 1
2
, xi+ 1

2
]), such that for any ϕ(x) ∈ Pk([xi− 1

2
, xi+ 1

2
])

∫ x
i+ 1

2

x
i− 1

2

byi j (x)ϕ(x)dx =
∫ x

i+ 1
2

x
i− 1

2

Bn
y (x, y j+ 1

2
)ϕ(x)dx

− �t

(
̂−̂Ez(x, y j+ 1

2
)ϕ(x)

∣∣∣xi+ 1
2

x
i− 1

2

−
∫ x

i+ 1
2

x
i− 1

2

−Ez(x, y j+ 1
2
)
∂ϕ(x)

∂x
dx

)
. (20)

Here bxi j and byi j denote the approximations of Bx (xi+ 1
2
, y) for y ∈ [y j− 1

2
, y j+ 1

2
] and

By(x, y j+ 1
2
) for x ∈ [xi− 1

2
, xi+ 1

2
] at time t = tn+1, respectively. Êz and

̂−̂Ez are exact
or approximate Riemann solvers to approximate the electric field flux Ez at the vertices of a

mesh element, while Ez , −Ez are exact or approximate Riemann solvers to approximate Ez

on the element interfaces, and their choices will be discussed in Theorem 3.1 and specified in
Sect. 4.3. {bxi j }i j and {byi j }i j will be used to reconstruct the globally divergence-free magnetic
field.

3.2.2 Additional Information for the Magnetic FieldB: B̃h in Mesh Elements

When k � 2, {bxi j }i j and {byi j }i j do not provide enough information to reconstruct a

two-dimensional function in Mk
h . For more information, a standard DG method with

lower accuracy is applied to the two-dimensional system (7). For k � 2, we look for
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B̃h ∈ [Pk−2(Ii j )]2 such that for any 	 ∈ [Pk−2(Ii j )]2 with 	 = (	1,	2)
T,

∫
Ii j

˜Bh · 	dxdy =
∫
Ii j

Bn
h · 	dxdy

− �t

(∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(˜−̃Ez	2
)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(˜−̃Ez	2
)
(xi− 1

2
, y)dy

−
∫
Ii j

(
Ez

∂	1

∂y
− Ez

∂	2

∂x

)
dxdy

)
.

(21)

Here Ẽz is the numerical flux for Ez = (0, Ez)
T · n with n = (0, 1)T along an x-direction

edge, and
˜−̃ Ez is the numerical flux for −Ez = (−Ez, 0)T · n with n = (1, 0)T along a

y-direction edge. Both Ẽz and
˜−̃Ez will be taken as the one-dimensional Lax–Friedrichs flux

(15). It will be seen fromTheorem 3.1 that the numerical fluxes Ez and−Ez in (19)–(20) need

to be related to Ẽz and
˜−̃Ez in order to ensure the globally divergence-free reconstruction,

also see Sect. 4.3.

3.2.3 Reconstruct the Globally Divergence-Free Magnetic Field Bn+1
h

Once we have {bxi j }i j , {byi j }i j on element interfaces from (19) and (20) as well as B̃h from
(21), we will follow the idea of the BDM projection [10] (also see [26,27]) to carry out an
element-by-element reconstruction of a globally divergence-free magnetic fieldBn+1

h . Given
an element Ii j , the reconstruction is to obtainB

n+1
h |Ii j ∈ Wk(Ii j ) on Ii j , such thatB

n+1
h =

(Bn+1
x,h , Bn+1

y,h )T satisfies

R1
∫ y

j+ 1
2

y
j− 1

2

(
Bn+1
x,h (xl+ 1

2
, y) − bxl j (y)

)
ϕ(y)dy = 0 on the y-direction edge with l = i − 1, i

and any ϕ(y) ∈ Pk([y j− 1
2
, y j+ 1

2
]),

R2
∫ x

i+ 1
2

x
i− 1

2

(
Bn+1
y,h (x, yl+ 1

2
) − byil(x)

)
ϕ(x)dx = 0 on the x-direction edge with l = j −1, j

and any ϕ(x) ∈ Pk([xi− 1
2
, xi+ 1

2
]),

R3
∫
Ii j

(
Bn+1

h (x, y) − B̃h(x, y)
)

	(x, y)dxdy = 0 for any 	(x, y) ∈ [Pk−2(Ii j )]2 when
k ≥ 2.

From the reconstruction, one can see that the normal component of the magnetic fieldBn+1
h ,

given by {bxi j }i j or {byi j }i j , is single-valued, and hence it is continuous on element interfaces.

When k ≥ 2, additional information is provided by B̃h via L2 projection. In the next theorem,
we will show that the reconstruction produces a globally divergence-free approximation for
the magnetic field under some conditions for the numerical fluxes in schemes (19)–(21).

Theorem 3.1 Under the conditions that
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1. the electric field flux approximations in (19)–(21) along the same edge satisfy

Ez = −(
˜−̃Ez), −Ez = −(Ẽz), (22)

2. and the electric field flux approximations in (19)–(20) at the same vertex is single-valued,
satisfying

̂−̂Ez = −Êz, (23)

then for any k ≥ 0, the reconstructed Bn+1
h (Ii j ) exists uniquely in Wk(Ii j ). In addition,

∇ · Bn+1
h |Ii j = 0.

Proof One can follow the same proof as in [26] to show the unique existence of the recon-
structed Bn+1

h (Ii j ) ∈ Wk(Ii j ). We here will only show the divergence-free property of
Bn+1

h .
For any ω ∈ Pk−1(Ii j ), from the reconstruction step R3 and equation (21), we have∫

Ii j
Bn+1

h ∇ωdxdy =
∫
Ii j

B̃h∇ωdxdy

=
∫
Ii j

Bn
h∇ωdxdy−�t

(
�inside −

∫
Ii j

(
Ez

∂2ω

∂x∂y
− Ez

∂2ω

∂y∂x

)
dxdy

)

=
∫
Ii j

Bn
h∇ωdxdy − �t�inside, (24)

where

�inside =
∫ x

i+ 1
2

x
i− 1

2

(
Ẽz

∂ω

∂x

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz

∂ω

∂x

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(
˜−̃Ez

∂ω

∂y

)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(
˜−̃Ez

∂ω

∂y

)
(xi− 1

2
, y)dy,

and Bn
h ∈ Mk

h is the globally divergence-free approximation ofB at time tn .
From the reconstruction steps R1 and R2, we have∫

∂ Ii j
Bn+1

h · nωds =
∫ x

i+ 1
2

x
i− 1

2

byi j (x)ω(x, y j+ 1
2
)dx −

∫ x
i+ 1

2

x
i− 1

2

byi j−1(x)ω(x, y j− 1
2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

bxi j (y)ω(xi+ 1
2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

bxi−1 j (y)ω(xi− 1
2
, y)dy.

(25)

With the schemes (19) and (20), we further get∫
∂ Ii j

Bn+1
h · nωds =

∫
∂ Ii j

Bn
h · nωds + �t (�edge − �vertex ), (26)

with

�edge =
∫ y

j+ 1
2

y
j− 1

2

(
Ez

∂ω

∂y

)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(
Ez

∂ω

∂y

)
(xi− 1

2
, y)dy

+
∫ x

i+ 1
2

x
i− 1

2

(
−Ez

∂ω

∂x

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
−Ez

∂ω

∂x

)
(x, y j− 1

2
)dx,

123



1630 J Sci Comput (2018) 77:1621–1659

and

�vertex =
(
Êzω

)
(xi+ 1

2
, y j+ 1

2
) −

(
Êzω

) (
xi+ 1

2
, y j− 1

2

)

−
(
Êzω

)
(xi− 1

2
, y j+ 1

2
) +

(
Êzω

) (
xi− 1

2
, y j− 1

2

)

+
(
̂−̂Ezω

)
(xi+ 1

2
, y j+ 1

2
) −

(
̂−̂Ezω

) (
xi− 1

2
, y j+ 1

2

)

−
(
̂−̂Ezω

)
(xi+ 1

2
, y j− 1

2
) +

(
̂−̂Ezω

) (
xi− 1

2
, y j− 1

2

)
.

Under the condition in (23) that the electric field flux approximations at vertices are single-
valued, we have�vertex = 0. Moreover, under the condition (22), we get�edge+�inside = 0.
Now we can apply Gauss theorem, utilize the relations in (24) and (26), and get

∫
Ii j

∇ · Bn+1
h ωdxdy =

∫
∂ Ii j

Bn+1
h · nωds −

∫
Ii j

Bn+1
h ∇ωdxdy

=
∫

∂ Ii j
Bn

h · nωds −
∫
Ii j

Bn
h∇ωdxdy + �t (�edge + �inside − �vertex)

=
∫
Ii j

∇ · Bn
hωdxdy + �t (�edge + �inside − �vertex) = 0. (27)

Here we have used the fact that∇·Bn
h = 0 at time tn . Finally, note that∇·Bn+1

h ∈ Pk−1(Ii j ),
by taking ω = ∇ · Bn+1

h in (27), we conclude ∇ · Bn+1
h = 0. �	

Remark 3.2 Two conditions (22)–(23) are needed to ensure the exactly divergence-free
reconstructions. The one in (23) that requires a single-valued electric field flux approxi-
mation at vertices has long been used for many constrained transport methods in various
frameworks such as finite difference and finite volume methods, while the condition in (22)
is needed only in finite element type of methods including DGmethods. Both conditions can
be avoided if central DG methods are used, see [26,27].

3.2.4 Equivalent form of Numerical Schemes for Bn+1
h : Without Reconstruction

From the reconstruction R1–R3 in Sect. 3.2.3, one can see that the normal components of
Bn+1

h along the edges of an element are identical to bxi j and b
y
i j (at most up to a sign difference,

or a shift in index i or j), and its L2 projection onto [Pk−2(Ii j )]2 is identical to˜Bh . Therefore
the schemes to compute the globally divergence-free Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T ∈ Mk
h in

Sects. 3.2.1–3.2.3 can be rewritten into an equivalent formulation as follows, without any
reconstruction: look forBn+1

h = (Bn+1
x,h , Bn+1

y,h )T such thatBn+1
h |Ii j ∈ Wk(Ii j ) for any i, j ,

satisfying

∫ y
j+ 1

2

y
j− 1

2

Bn+1
x,h (xl+ 1

2
, y)ϕ(y)dy =

∫ y
j+ 1

2

y
j− 1

2

Bn
x (xl+ 1

2
, y)ϕ(y)dy

− �t

⎛
⎝Êz(xl+ 1

2
, y)ϕ(y)

∣∣∣y j+ 1
2

y
j− 1

2

−
∫ y

j+ 1
2

y
j− 1

2

Ez(xl+ 1
2
, y)

∂ϕ(y)

∂y
dy

⎞
⎠ (28)
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for any ϕ(y) ∈ Pk([y j− 1
2
, y j+ 1

2
]) and with l = i − 1, i ;

∫ x
i+ 1

2

x
i− 1

2

Bn+1
y,h (x, yl+ 1

2
)ϕ(x)dx =

∫ x
i+ 1

2

x
i− 1

2

Bn
y (x, yl+ 1

2
)ϕ(x)dx

− �t

(
̂−̂Ez(x, yl+ 1

2
)ϕ(x)

∣∣∣xi+ 1
2

x
i− 1

2

−
∫ x

i+ 1
2

x
i− 1

2

−Ez(x, yl+ 1
2
)
∂ϕ(x)

∂x
dx

)
(29)

for any ϕ(x) ∈ Pk([xi− 1
2
, xi+ 1

2
]) and with l = j − 1, j ; in addition,

∫
Ii j

Bn+1
h · 	dxdy =

∫
Ii j

Bn
h	dxdy

− �t

(∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(˜−̃Ez	2
)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(˜−̃Ez	2
)
(xi− 1

2
, y)dy

−
∫
Ii j

(
Ez

∂	1

∂y
− Ez

∂	2

∂x

)
dxdy

)
(30)

for any 	 ∈ [Pk−2(Ii j )]2 with 	 = (	1,	2)
T. Again the numerical fluxes will satisfy the

two conditions (22)–(23). Theorem 3.1 ensures that the resulting magnetic field Bn+1
h is in

Mk
h and hence globally divergence-free. (One should refer to equations (5.4) and (5.6) in [10]

for a more direct analysis.)
Even though the reformulation of the schemes in this subsection ismore straightforward, in

the presence of strong discontinuities in the solutions, nonlinear limiters need to be applied
to all unknowns, including the magnetic field (see Sect. 5 and the numerical example of
cloud–shock interaction in Sect. 6.2.5). When nonlinear limiters are needed for the magnetic
field, it is more flexible to work with the schemes in the formulation as in Sect. 3.2.1–3.2.3,
so the limiters are applied before the reconstruction or a revised reconstruction, in order to
still have a globally divergence-free approximation for the magnetic field.

4 How to Choose Electric Field Flux Approximations?

Theorem 3.1 suggests that electric field flux approximations used in the different parts of the
proposed schemes (19)–(21) need to be single-valued at vertices and share the same formulas
on the element interfaces. Just as in standard DG methods, choices of numerical fluxes are
crucial for accuracy and robustness of the schemes. In this section, we want to investigate
numerically and analytically on the choices of the electric field flux approximations. To this
end, we will focus on the following equation for the magnetic field

∂B

∂t
+ ∇̂ × Ez(U,B) = 0. (31)

Here Ez = uy Bx−ux By , with a constant velocity field (ux , uy) that is given. This systemwill
be referred to as the induction equation. We will adapt the proposed schemes in Sect. 3.2 to
the induction equation, and investigate numerically and analytically in next two subsections
how different choices of electric field flux approximations affect accuracy and numerical
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stability. Based on such study, in Sect. 4.3 we will specify our choices of the numerical fluxes
in the proposed schemes (19)–(21) to compute the magnetic field.

4.1 Numerical Study

Adapting from the proposed schemes (19)–(21) and following the two required conditions
(22)–(23) in Theorem 3.1, we consider the following schemes for the induction equation
on the element interfaces, that is: look for bxi j (y) ∈ Pk([y j− 1

2
, y j+ 1

2
]), such that for any

ϕ(y) ∈ Pk([y j− 1
2
, y j+ 1

2
])

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)ϕ(y)dy =
∫ y

j+ 1
2

y
j− 1

2

Bn
x (xi+ 1

2
, y)ϕ(y)dy − �t

(
Êz(xi+ 1

2
, y)ϕ(y)

∣∣∣y j+ 1
2

y
j− 1

2

+
∫ y

j+ 1
2

y
j− 1

2

˜−̃Ez(xi+ 1
2
, y)

∂ϕ(y)

∂y
dy

⎞
⎠ , (32)

and look for byi j (x) ∈ Pk([xi− 1
2
, xi+ 1

2
]), such that for any ϕ(x) ∈ Pk([xi− 1

2
, xi+ 1

2
])

∫ x
i+ 1

2

x
i− 1

2

byi j (x)ϕ(x)dx =
∫ x

i+ 1
2

x
i− 1

2

Bn
y (x, y j+ 1

2
)ϕ(x)dx − �t

(
− Êz(x, y j+ 1

2
)ϕ(x)

∣∣∣xi+ 1
2

x
i− 1

2

+
∫ x

i+ 1
2

x
i− 1

2

Ẽz

(
x, y j+ 1

2

) ∂ϕ(x)

∂x
dx

)
. (33)

Corresponding to (21), the induction equation is further discretized as a two-dimensional
system when k ≥ 2: look for B̃h ∈ [Pk−2(Ii j )]2 such that for any 	 = (	1,	2)

2 ∈
[Pk−2(Ii j )]2,∫

Ii j

˜Bh · 	dxdy =
∫
Ii j

Bn
h · 	dxdy

− �t

(∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(˜−̃Ez	2
)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(˜−̃Ez	2
)
(xi− 1

2
, y)dy

−
∫
Ii j

(
Ez

∂	1

∂y
− Ez

∂	2

∂x

)
dxdy

)
. (34)

To help with the presentation, we illustrate the notations of states around a vertex P, its
neighboring elements, and the connected edges in Fig. 1. In (34), also in (32)–(33), Ẽz and
˜−̃Ez are taken as a one-dimensional Lax–Friedrichs flux. Namely, along an x-direction edge,

Ẽz = ELD
z + ELU

z

2
− αy

2

(
BLU
x − BLD

x

)
, (35)

and along a y-direction edge,

˜−̃Ez =
(−ERD

z − ELD
z

)
2

− αx

2

(
BRD
y − BLD

y

)
. (36)
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Fig. 1 The notations of states
around a vertex P, its neighboring
elements, and the connected
edges LU RU

LD RD
vertex P

y-direction edge

x-direction edge

Here

αx = |ux |, αy = |uy |, (37)

and they are the largest absolute-value of eigenvalues of the Jacobian ∂(0,−Ez)
T

∂(Bx ,By)T
and ∂(Ez ,0)T

∂(Bx ,By)T
,

respectively.
Just as in [3,7,8,20], we use flux interpolations or approximate Riemann solvers to obtain

the single-valued electric field flux Êz at vertex P used in (32)–(33). Particularly, we take

Êz = 1

4

(
ELD
z + ELU

z

2
− β

2
(BLU

x − BLD
x )

)

+ 1

4

(
ERD
z + ERU

z

2
− β

2
(BRU

x − BRD
x )

)

+ 1

4

(
ELD
z + ERD

z

2
+ α

2
(BRD

y − BLD
y )

)

+ 1

4

(
ELU
z + ERU

z

2
+ α

2
(BRU

y − BLU
y )

)

= 1

4

(
ELU
z + ERU

z + ELD
z + ERD

z

)

− β

4

(
BLU
x + BRU

x

2
− BLD

x + BRD
x

2

)

+ α

4

(
BRD
y + BRU

y

2
− BLD

y + BLU
y

2

)
.

(38)

Here α = σαx and β = σαy , with the constant σ measures the amount of dissipation
introduced by the numerical flux Êz , and αx , αy from (37). When α = αx , β = αy , Êz

is the arithmetic average of the one-dimensional Lax–Friedrichs flux, namely, an average
with equal weight, 1/4, of the numerical fluxes in (35)–(36) from four edges connected to
the vertex P. When α = 1.2αx and β = 1.2αy , Êz turns out to be the multi-dimensional
HLL Riemann solver restricted at the vertex P, while Êz with α = 2αx and β = 2αy is the
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multi-dimensional Lax–Friedrichs Riemann solver restricted at P. Both multi-dimensional
Riemann solvers were used in [7].

Next we want to investigate numerically how the different choices of Êz will affect the
performance of the numerical schemes (32)–(34) for the induction equation. We consider
the same example as in [39], with the initial condition

(Bx , By) = (− sin(2πy), sin(2πx)),

and the constant velocity field is (ux , uy) = (1, 1). Periodic boundary conditions are used.
This example is computed on the domain [0, 1]×[0, 1] based on Pk approximations with k =
0, 1, 2. The third order TVD Runge–Kutta time discretization in (66) [21] is applied in time.

The time step is determined as �t ≤ CFL/
( |ux |

�x + |uy |
�y

)
where the Courant–Friedrichs–

Lewy (CFL) number CFL is taken to be 0.5, 0.2, 0.1 for k = 0, 1, 2, respectively. Table 1
shows the L2 errors and orders of accuracy for the magnetic field component Bx at t = 1.0
and t = 10, computed by the methods (32)–(34) with different choices of the numerical
fluxes. More specifically, Êz in (32)–(33) is evaluated as (38) with α = σαx and β = σαy ,

where αx = αy = 1, and σ = 1, 1.2, and 2. And Ẽz and
˜−̃Ez in (32)–(34) are from

the one-dimensional Lax–Friedrichs flux (35)–(37). It is observed from Table 1 that when
α = αx , β = αy , the scheme is stable and first order accurate with P0 approximation; With
P1 approximation, the scheme is only first order accurate which is suboptimal; while the
scheme with P2 approximation starts to be optimally accurate with third order accuracy and
then shows instability over long time simulation. When α = 1.2αx and β = 1.2αy , the
schemes have optimal accuracy with P0 and P1 approximations, yet with P2 approximation
the scheme becomes unstable at t = 10. When α = 2αx and β = 2αy , the schemes have
optimal accuracy and are stable over the time period we examine. Even though the results are
not reported here, we have also tested the schemes with the central flux or upwind flux on the

element interfaces for Ẽz and
˜−̃Ez and their arithmetic average for Êz from the four edges

connecting to a vertex.We have learned from the numerical experiments that if Êz of the form
(38) is used at vertices, it is important to have sufficient numerical dissipation. For instance,
Êz based on the multi-dimensional Lax–Friedrichs flux with α = 2αx and β = 2αy leads
to a stable scheme with optimal accuracy, yet Êz based on either the one-dimensional Lax–
Friedrichs flux with α = αx and β = αy , or the multi-dimensional HLL flux with α = 1.2αx

and β = 1.2αy leads to unstable schemes due to the insufficiency in numerical dissipation.

4.2 Fourier Analysis of the Scheme with P0 Approximation

In this subsection, we will carry out the Fourier analysis for the scheme (32)–(33) with P0

approximation. The goal is to further understand the role of the amount of the numerical
dissipation in Êz in the form of (38).

With the P0 polynomial space, the scheme (32)–(33) becomes

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)dy =
∫ y

j+ 1
2

y
j− 1

2

Bn
x (xi+ 1

2
, y)dy − �t

(
Êz(xi+ 1

2
, y j+ 1

2
) − Êz(xi+ 1

2
, y j− 1

2
)
)

, (39)

∫ x
i+ 1

2

x
i− 1

2

byi j (x)dx =
∫ x

i+ 1
2

x
i− 1

2

Bn
y (x, y j+ 1

2
)dx + �t

(
Êz(xi+ 1

2
, y j+ 1

2
) − Êz(xi− 1

2
, y j+ 1

2
)
)

, (40)
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and the electric field flux Êz at the vertex (xi+ 1
2
, y j+ 1

2
) is given by

Êz

(
xi+ 1

2
, y j+ 1

2

)
= 1

4

(
Ez |Ii j +Ez |Ii+1 j +Ez |Ii j+1 +Ez |Ii+1 j+1

)

− β

4

(
Bx |Ii j+1 +Bx |Ii+1 j+1

2
− Bx |Ii j +Bx |Ii+1 j

2

)

+ α

4

(
By |Ii+1 j +By |Ii+1 j+1

2
− By |Ii j +By |Ii j+1

2

)
. (41)

We replace Ez by uy Bx − ux By , and rewrite (41) into

Êz

(
xi+ 1

2
, y j+ 1

2

)
= 2uy − β

8

(
Bx |Ii j+1 +Bx |Ii+1 j+1

)

+ 2uy + β

8

(
Bx |Ii j +Bx |Ii+1 j

)− 2ux − α

8

(
By |Ii+1 j +By |Ii+1 j+1

)

− 2ux + α

8

(
By |Ii j +By |Ii j+1

)
. (42)

Based on the divergence-free reconstruction procedure, we know Bx |Ii j = Bx |Ii+1 j = bxi j
and By |Ii j = By |Ii j+1= byi j . Therefore (41) is indeed

Êz

(
xi+ 1

2
, y j+ 1

2

)
= 2uy − β

4
bxi j+1 + 2uy + β

4
bxi j − 2ux − α

4
byi+1 j − 2ux + α

4
byi j , (43)

and our scheme (39)–(40) can be formulated more explicitly: look for bx,n+1
i j and by,n+1

i j in
R, satisfying

bx,n+1
i j = bx,ni j − �t

�y

(
2uy − β

4
(bx,ni j+1 − bx,ni j ) + 2uy + β

4
(bx,ni j − bx,ni j−1)

)

+ �t

�y

(
2ux − α

4
(by,ni+1 j − by,ni+1 j−1) + 2ux + α

4
(by,ni j − by,ni j−1)

)
,

(44)

by,n+1
i j = by,ni j + �t

�x

(
2uy − β

4
(bx,ni j+1 − bx,ni−1 j+1) + 2uy + β

4
(bx,ni j − bx,ni−1 j )

)

− �t

�x

(
2ux − α

4
(by,ni+1 j − by,ni j ) + 2ux + α

4
(by,ni j − by,ni−1 j )

)
.

(45)

Additionally, the divergence-free property of the numerical solution can be translated into
the following relation, for any i, j, n,

�y(bx,ni j − bx,ni−1 j ) + �x(by,ni j − by,ni j−1) = 0. (46)

The parameters α and β in (41) are taken as

α = σ |ux |, β = σ |uy |, (47)

and σ is a constant that measures the amount of numerical dissipation introduced through
the numerical flux Êz . In the next Theorem, we will study the role of this constant σ to the
numerical stability of the scheme. The stability condition for σ = 2 was previously given in
[7].

Theorem 4.1 The scheme (44)–(45) with (46)–(47) is stable under the following condition
on the time step size �t:
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1. When σ ≤ 2,

�t

( |ux |
�x

+ |uy |
�y

)
≤ σ

2
; (48)

2. when σ > 2

�t

( |ux |
�x

+ |uy |
�y

)
≤ 2

σ
. (49)

And the maximum of the upper bound of both formulas is 1, that is,maxσ≥0(
σ
2 , 2

σ
) = 1, and

it is attained at σ = 2.

Proof To carry out the Fourier analysis, let

(bx,n, by,n) = (̂bnx , b̂
n
y)e

i(k1x+k2 y), (50)

with k1, k2 being arbitrary integer. With (50), the Eq. (44) becomes

b̂n+1
x = b̂nx − �t

�y

(
2uy − β

4
(eik2�y − 1) + 2uy + β

4
(1 − e−ik2�y)

)
b̂nx

+ �t

�y

(
2ux − α

4

(
e
ik1�x

2 + ik2�y
2 − e

ik1�x
2 − ik2�y

2

)

+ 2ux + α

4

(
e− ik1�x

2 + ik2�y
2 − e

−ik1�x
2 − ik2�y

2

))
b̂ny ,

(51)

and the divergence-free condition (46) becomes

�y
(
e
ik1�x

2 − e
−ik1�x

2

)
b̂nx + �x

(
e
ik2�y

2 − e
−ik2�y

2

)
b̂ny = 0,

i.e.

�y sin

(
k1�x

2

)
b̂nx + �x sin

(
k2�y

2

)
b̂ny = 0. (52)

Combining (51) and (52), we get

b̂n+1
x = Qb̂nx , (53)

where the amplification factor Q is

Q = 1 − �t

�y

(
2uy − β

4

(
eik2�y − 1

)
+ 2uy + β

4

(
1 − e−ik2�y

))

− �t

�x

(
2ux − α

4
e
ik1�x

2 + 2ux + α

4
e− ik1�x

2

)
2i sin

(
k1�x

2

)
.

(54)

One can easily check that (45) and the divergence-free relation (46) will lead to the same
amplification factor Q. Without loss of generality, we assume ux ≥ 0, uy ≥ 0. Let c1 = �tux

�x
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and c2 = �tuy
�y , and with σ defined in (47), we have

Q = 1 − c2

(
2 − σ

4
(eik2�y − 1) + 2 + σ

4
(1 − e−ik2�y)

)

− c1

(
2 − σ

4
e
ik1�x

2 + 2 + σ

4
e− ik1�x

2

)
2i sin

(
k1�x

2

)

= 1 − σc1
2

(1 − cos(k1�x)) − σc2
2

(1 − cos(k2�y))

− i (c1 sin(k1�x) + c2 sin(k2�y)) . (55)

Next, we want to obtain the condition on the time step size to ensure |Q| ≤ 1. To this end,

|Q|2 =
(
1 − σc1

2
(1 − cos(k1�x)) − σc2

2
(1 − cos(k2�y))

)2
+ (c1 sin(k1�x) + c2 sin(k2�y))2

=1 + σ 2

4
(c1 + c2)

2 + c21 + c22 − σ(c1 + c2)

+ σ 2

4
(c1 cos(k1�x) + c2 cos(k2�y))2 − c21 cos

2(k1�x) − c22 cos
2(k2�y)

+
(

σc1 − σ 2c21
2

− σ 2

2
c1c2

)
cos(k1�x) +

(
σc2 − σ 2c22

2
− σ 2

2
c1c2

)
cos(k2�y)

+ 2c1c2 sin(k1�x) sin(k2�y). (56)

To handle the last term in (56), we will use

sin(k1�x) sin(k2�y) = cos(k1�x − k2�y) − cos(k1�x) cos(k2�y)

≤ 1 − cos(k1�x) cos(k2�y).

Note that this inequality becomes an equality when k1�x = k2�y + 2πn for some n ∈ Z.
Now with s = cos(k1�x) ∈ [− 1, 1] and t = cos(k2�y) ∈ [− 1, 1], (56) turns to

|Q|2 ≤ 1 + σ 2

4
(c1 + c2)

2 + c21 + c22 − σ(c1 + c2) + σ 2

4
(c1s + c2t)

2 − c21s
2 − c22t

2

+ σc1
2

(2 − σc1 − σc2)s + σc2
2

(2 − σc2 − σc1)t + 2c1c2 − 2c1c2st

= 1 +
(

σ 2

4
+ 1

)
(c1 + c2)

2 +
(

σ 2

4
− 1

)
(c1s + c2t)

2

− σ(c1 + c2) + σ(c1s + c2t) − σ 2

2
(c1 + c2)(c1s + c2t). (57)

We further set A = c1 + c2 and B = c1s + c2t , and

|Q|2 ≤ 1 +
(

σ 2

4
+ 1

)
A2 +

(
σ 2

4
− 1

)
B2 − σ 2

2
AB − σ(A − B)

= 1 + (A − B)

((
σ 2

4
+ 1

)
A +

(
1 − σ 2

4

)
B − σ

)
.
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From the definitions of A and B, we know A − B = c1(1 − s) + c2(1 − t) ≥ 0. Hence
|Q|2 ≤ 1 if (

σ 2

4
+ 1

)
A +

(
1 − σ 2

4

)
B − σ ≤ 0. (58)

There are two cases:
Case 1 When σ ≤ 2, we have 1 − σ 2

4 ≥ 0. Therefore with A ≥ B, it is sufficient to
require (

σ 2

4
+ 1

)
A +

(
1 − σ 2

4

)
A − σ ≤ 0,

that is, A ≤ σ
2 . This can not be further improved, since A = B when s = t = cos(k1�x) =

cos(k2�y) = 1.
Case 2When σ > 2,we have 1− σ 2

4 < 0. Thereforewith A+B = c1(1+s)+c2(1+t) ≥
0, it is sufficient to require(

σ 2

4
+ 1

)
A −

(
1 − σ 2

4

)
A − σ ≤ 0,

that is, A ≤ 2
σ
. Again, this can not be further improved, since B = −A when s = t =

cos(k1�x) = cos(k2�y) = −1.
In summary,

�t

(
ux
�x

+ uy

�y

)
= A ≤

{
σ
2 , if σ ≤ 2,
2
σ
, if σ > 2.

(59)

Finally one can see the maximum of {σ/2, 2/σ } is 1 when σ = 2. �	
The theorem above implies that the scheme (44)–(45) with the multi-dimensional Lax–

Friedrichs numerical flux for Êz , with α = 2αx and β = 2αy , has the largest stability
region for our scheme with the P0 approximation. This is also illustrated by Fig. 2, where
comparison is given between the stability regions of the schemes with the multi-dimensional
Lax–Friedrichs numerical flux (α = 2αx and β = 2αy) on the right, and one-dimensional
Lax–Friedrichs numerical flux (α = αx and β = αy) on the left.

4.3 Our Choices of the Numerical Fluxes in (19)–(21)

Based on the numerical and theoretical studies in previous two subsections for the induction
equation, the electric field flux approximations in our proposed schemes (19)–(21) to update
the magnetic field in the full ideal MHD simulations will be chosen as follows.

(1) They satisfy the two conditions in (22)–(23);
(2) The singled-valued electric field flux Êz at a vertex is determined by the average of

the multi-dimensional Lax–Friedrichs numerical fluxes on four edges connecting to this
vertex, given by (38) with α = 2αx and β = 2αy ;

(3) On an element interface, the standard one-dimensional Lax–Friedrichs numerical flux

(35)–(36) will be applied for both Ẽz and
˜−̃Ez with parameters αx and αy .

Both αx and αy in (2) and (3) represent the local speeds of the entire MHD system, and are
taken as the largest absolute-value of eigenvalues of the Jacobian ∂F(U,B)·n

∂(U,B)
, withn = (0, 1)T,

(1, 0)T respectively, in the neighborhood of the relevant edge. Note that these local speeds
are different from that in (37) for the induction equation.
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Fig. 2 The stability region of the scheme (32)–(33) for the P0 approximation with Êz in (38), and α = σαx

and β = σαy . Here c1 is �t |ux |
�x , c2 is

�t |uy |
�y . a σ = 1, b σ = 2

5 Nonlinear Limiter, a Revisit to the Reconstruction

In this section, we will discuss the use of nonlinear limiters to enhance numerical stability
of the proposed schemes. Similar to high order DG methods for nonlinear hyperbolic con-
servation laws, nonlinear limiters are also needed for numerical stability of our methods. In
this paper, the minmod total variation bounded (TVB) slope limiter in [16] is applied. This
limiter involves a non-negative parameter M , and its value is often chosen for each example
in actual implementation [14,31]. This limiter can be applied to component-wise variables
or in local characteristic fields with respect to the 7 × 7-eigen system in [23].

Following the work in [26,27] with globally divergence-free central DG methods, for
non-smooth solutions, we first apply the limiter only to the hydrodynamic variables Uh , not
toBh , B̃h or (bxi j , b

y
i j ). This works well for the schemes with P1 approximations, and when

the discontinuities in the solutions are not strong.
It is known that central type schemes are in generalmore dissipative hencemore stable than

upwind type schemes. Therefore it is not unexpected that when our proposed DG methods
are used to examples with strong shocks, it seems necessary to apply the nonlinear limiter
to both Uh and the magnetic field Bh in order to effectively control numerical oscillations.
One needs to be careful, though, about how to implement this without losing the globally
divergence-free property of the computed magnetic field. A straightforward implementation
will break the intrinsic relation between the data B̃h and (bxi j , b

y
i j ) used in the reconstruction

(see the proof of Theorem 3.1). On the other hand, for the methods we will focus on in this
paper with P1 and P2 approximations, an alternative but equivalent way was presented in
[27] to reconstruct Ii j , look forB

n+1
h ∈ Wk(Ii j ) such that

1. Bn+1
x (xl+ 1

2
, y) = bxl j (y) for l = i − 1, i and y ∈ [y j− 1

2
, y j+ 1

2
],

2. Bn+1
y (x, yl+ 1

2
) = byil(x) for l = j − 1, j and x ∈ [xi− 1

2
, xi+ 1

2
],

3. ∇ · Bn+1
h |Ii j = 0.

One can refer to [26] for the proof of the equivalency. An important feature of this equivalent
reconstruction is that only the interface data (bxi j , b

y
i j ) is needed. Now when the nonlinear

limiter needs to be applied to the magnetic field, the normal components of the magnetic field
{bxi j }i j , {byi j }i j will be limited first (this will be discussed in details next), then the equivalent

123



J Sci Comput (2018) 77:1621–1659 1641

reconstruction given above will be used to obtain the globally divergence-free magnetic field
based on the limited normal components of the magnetic field.

We here will use k = 2 as an example to illustrate how to apply the minmod TVB limiter
to {bxi j }i j and {byi j }i j . The quadratic polynomial bxi j can be written as

bxi j (y) = bxi j + cyY + cyy

(
Y 2 − 1

3

)
, (60)

with Y = y−y j
�y/2 , and bxi j is the edge average of b

x
i j , namely,

bxi j = 1

�y

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)dy. (61)

We compute c̃y according to

c̃y = m̃
(
cy,�+bxi j ,�−bxi j

)
. (62)

Here �+bxi j = bxi j+1 − bxi j , �−bxi j = bxi j − bxi j−1, and the corrected minmod TVB function
m̃ is

m̃(a1, a2, a3) =
{
a1, if |a1| ≤ M(�y)2;
m(a1, a2, a3), otherwise,

(63)

with the minmod function m defined as

m(a1, a2, a3) =
{
smin (|a1|, |a2|, |a3|) , if s = sign(a1) = sign(a2) = sign(a3);
0, otherwise.

(64)

If | c̃y − cy |> 10−6, we apply the limiter by setting cy = c̃y and cyy = 0 in (60). Otherwise,
no modification is made to (60). The treatment for byi j is very similar. It is important to know

that the limiter does not change the edge averages {bxi j }i j and {byi j }i j , hence a necessary
compatible condition for the exactly divergence-free reconstruction, namely,

∫
Ii j

∇ · Bn
hdxdy = �y

(
bx,ni j − bx,ni−1 j

)
+ �x

(
by,ni j − by,ni j−1

)
= 0 (65)

still holds.
Finally in Algorithm 1, we provide the flow chart of the proposed globally divergence-free

methods when they are applied to ideal MHD equations. The time discretization is taken to
be the forward Euler method.

6 Numerical Results

In this section, numerical examples are presented to illustrate the accuracy and stability
of the proposed globally divergence-free methods with P1 and P2 approximations for the
ideal MHD equations. They include two smooth examples and five non-smooth examples.
In our simulations, uniform rectangular meshes with N × N elements are used. The initial
numerical solution Uh ∈ Vk

h is obtained through the L2 projection, and Bh ∈ Mk
h is by

the BDM projection [10]. In time, a third order TVD Runge–Kutta method is applied [21].
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Algorithm 1 The algorithm of the globally divergence-free DG methods for ideal MHD
equations, with the forward Euler method as the time discretization.
Initialization:

Initialize U0
h via the L2 projection and B0

h via the BDM projection. If the example is non-smooth, apply

the TVB limiter to U0
h .

Time evolution:
With the numerical solutions available at time tn for n ≥ 0, namely (Un

h ,Bn
h) ∈ Vk

h × Mk
h with Bn

h =
(Bn

x,h , Bn
y,h)T, update (Un+1

h ,Bn+1
h ) ∈ Vk

h × Mk
h with Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T at tn+1 = tn + �t ;
1: Compute the time step �t based on the maximum value αx , αy ;
2: Impose boundary conditions;
3: Pre-compute the numerical solutions at tn+1:

• for each element Ii j , update U
n+1
h by scheme (14);

• for each y-direction element interface, compute {bxi j }i j by scheme (19);

• for each x-direction element interface, compute {byi j }i j by scheme (20);

• if k ≥ 2, compute B̃h on each element Ii j by scheme (21);

4: If the example is non-smooth, apply the TVB limiter toUn+1
h ; for challenging non-smooth examples (such

as the cloud–shock example), also apply the limiter as in Sect. 5 to {bxi j }i j and {byi j }i j ;
5: Reconstruction on each element: if the limiter is not applied to {bxi j }i j and {byi j }i j , reconstruct Bn+1

h

following R1-R3 in Sect. 3.2.3; otherwise, reconstruct Bn+1
h following the procedure given in Sect. 5;

6: Return (Un+1
h ,Bn+1

h ) ∈ Vk
h × Mk

h .

That is, to solve ut = L(u, t), given the numerical solution un at tn , we compute un+1 at
tn+1 = tn + �t as follows,

u(1) = un + �t L(un, tn),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�t L

(
u(1), tn + �t

)
,

un+1 = 1

3
un + 2

3
u(2) + 2

3
�t L

(
u(2), tn + 1

2
�t

)
. (66)

The time step is determined by

�t = CFL

αx/�x + αy/�y
, (67)

where αx and αy are the largest absolute eigenvalues of Jacobian ∂F1(U,B)
∂(U,B)

and ∂F2(U,B)
∂(U,B)

,
respectively. We take CFL = 0.2 for k = 1 and CFL = 0.1 for k = 2 similar as for the
standard DG methods. The numerical fluxes in the schemes to update the magnetic field
follow the strategies summarized in Sect. 4.3. The minmod TVB slope limiter is applied for
non-smooth examples with M = 1.

6.1 Smooth Examples

6.1.1 The Smooth Vortex Problem

The first example we consider is the smooth vortex example which was introduced in [2],
and it models a smooth vortex propagating with speed (1, 1) in a two-dimensional domain.
The initial condition is given by

(ρ, ux , uy, uz, Bx , By, Bz, p) = (1, 1 + δux , 1 + δuy, 0, δBx , δBy, 0, 1 + δp
)
,
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Table 2 L2 errors and orders of accuracy of ρ, ux , Bx and p for smooth vortex problem at t = 20. The
computational domain is [− 10, 10] × [− 10, 10]
N ρ ux p Bx

L2 error Order L2 error Order L2 error Order L2 error Order

P1

32 3.98E−05 – 9.18E−03 – 1.22E−03 – 7.51E−03 –

64 2.44E−05 0.71 3.45E−03 1.41 5.44E−04 1.17 2.75E−03 1.45

128 8.23E−06 1.58 6.80E−04 2.34 1.20E−04 2.19 5.35E−04 2.36

256 1.84E−06 2.16 9.45E−05 2.85 1.98E−05 2.60 7.39E−05 2.87

P2

32 1.50E−04 – 1.96E−03 – 1.02E−03 – 7.10E−03 –

64 6.62E−05 1.18 8.76E−04 1.16 4.90E−04 1.06 2.56E−03 1.47

128 1.30E−05 2.35 1.70E−04 2.37 9.76E−05 2.33 4.63E−04 2.47

256 1.76E−06 2.88 2.31E−05 2.88 1.33E−05 2.87 6.21E−05 2.90

where

(δux , δuy) = ξ

2π
∇̂ × exp{0.5(1 − r2)}, (δBx , δBy) = η

2π
∇̂ × exp{0.5(1 − r2)},

δp = η2(1 − r2 − ξ2)

8π2 exp(1 − r2).

Here r = √
x2 + y2, ξ = η = 1 and γ = 5/3. The computational domain is taken as

[− 10, 10] × [− 10, 10]. Even though the problem is not-periodic, periodic boundary con-
ditions are used in our simulation. This will introduce an error of size O(10−22) which is
negligible with respect to the resolution of the numerical solutions. In Table 2, L2 errors and
orders of accuracy are presented for the variables ρ, ux , Bx and pressure p at t = 20, right
after one time period, by which the vortex returns to its initial location. The results show that
our numerical schemes have (k +1)th order accuracy for k = 1, 2. For this smooth example,
no nonlinear limiter is needed.

6.1.2 The Smooth Alfvén Wave

The second smooth example is the smoothAlfvénwave problem,which describes a circularly
polarized Alfvén wave moving in the domain� = [0, 1/ cosα]×[0, 1/ sin α] [28,37]. Here,
α represents the angle of the wave propagation with respect to x-axis, and it is set to be π/4.
The same initial data as in [28] is taken

ρ = 1, u‖ = 0, u⊥ = 0.1 sin(2πβ), uz = 0.1 cos(2πβ),

B‖ = 1, B⊥ = u⊥, Bz = uz, p = 0.1,

where β = x cosα + y sin α. The subscripts ‖ and ⊥ denote the directions parallel and
perpendicular to the wave propagation direction, respectively. Periodic boundary conditions
are used and γ = 5/3. The Alfvén wave travels at a constant Alfvén speed B‖/

√
ρ = 1. The

solution returns to its initial configuration when time t is an integer. In Table 3, we present
the L2 errors and orders of accuracy for ux , uz , Bx and p at time t = 2. From the results, we
can see that the Pk approximations with k = 1, 2 are (k + 1)th order accurate, and they are
optimal. No nonlinear limiter is applied.
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Table 3 L2 errors and orders of accuracy for ux , uz , p and Bx for smooth Alfvén wave problem at t = 2.
The computational domain is [0, √2] × [0, √2]
N ux uz p Bx

L2 error order L2 error order L2 error order L2 error order

P1

16 2.99E−03 – 3.91E−03 – 7.41E−04 – 2.44E−03 –

32 4.27E−04 2.81 5.69E−04 2.78 1.14E−04 2.71 3.35E−04 2.87

64 6.82E−05 2.65 9.47E−05 2.59 1.96E−05 2.54 4.87E−05 2.78

128 1.34E−05 2.34 1.94E−05 2.29 4.10E−06 2.25 8.59E−06 2.50

P2

16 3.88E−03 – 7.17E−04 – 3.64E−03 – 2.08E−03 –

32 3.50E−04 3.47 5.38E−05 3.73 3.27E−04 3.48 2.01E−04 3.37

64 2.56E−05 3.78 2.81E−06 4.26 1.71E−05 4.26 1.78E−05 3.50

128 2.81E−06 3.19 2.36E−07 3.57 1.39E−06 3.62 2.09E−06 3.09

6.2 Non-smooth Examples

6.2.1 The Field Loop Advection

In this subsection, we consider the magnetic field loop advection problem originally intro-
duced in [20]. The same initial data as in [27] is taken, with (ρ, ux , uy, uz, Bz, p) =
(1, 2, 1, 1, 0, 1), and (Bx , By) = ∇̂ × Az . Here Az is the z-component of the magnetic
potential

Az =
{
A0(R − r) if r ≤ R,

0 if r > R,

with A0 = 10−3, R = 0.3 and r = √
x2 + y2. This problem is computed on the domain

[− 1, 1] × [− 0.5, 0.5] with a 200 × 100 mesh. Periodic boundary conditions are used and
γ = 5/3.

In Fig. 3, we report the gray-scale images of the magnetic pressure B2
x + B2

y (left) and the
magnetic field lines (right) at time t = 0, t = 2 and t = 10. With the globally divergence-
free magnetic field, the magnetic field lines are plotted by contouring the z-component of
the numerical magnetic potential Az . The magnetic pressure is convected across the domain
periodically, and this is confirmed by our numerical results based on P2 approximation.
The component-wise minmod TVB limiter is applied to Uh with the parameter M = 1.
There is no visible difference in the numerical results when the limiter is applied to the local
characteristic fields. Overall our schemes capture the field loop well. From the images on
the left in Fig. 3, one can observe numerical dissipation around the center and the boundary
of the loop, similar to the observation in [20,26,27]. There is no obvious oscillations in our
solutions even at later time t = 10 unlike in some numerical results commented in [20,28].
From the images on the right of Fig. 3, symmetry can be seen in the magnetic field lines,
with some distortion at t = 10 due to the accumulated numerical dissipation over long time
simulation.

Note that the initial data is discontinuous, and one needs to pay special attention to the
initialization to ensure the magnetic field being divergence-free at t = 0. For example,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 The magnetic pressure B2
x + B2

y (left) and magnetic field lines (right) of the field loop advection.

P2 approximation on 200 × 100 mesh. The magnetic field lines are plotted with the same range. aMagnetic
pressure at t = 0, bmagnetic field lines at t = 0, cmagnetic pressure at t = 2, dmagnetic field lines at t = 2,
e magnetic pressure at t = 10, f magnetic field lines at t = 10

to apply the BDM projection to the initial magnetic field, one needs to compute the first

order coefficient B0
x := 1

�x�y

∫
Ii j

Bxdxdy with Bx = ∂Az/∂y. If a numerical quadrature

is applied without taking into account the discontinuity in Bx , then nonzero divergence
will be introduced to the magnetic field approximation. Instead, we will evaluate B0

x as
follows,

B0
x = 1

�x�y

∫
Ii j

∂Az

∂y
dxdy = 1

�x�y

∫ x
i+ 1

2

x
i− 1

2

[
Az(x, y j+ 1

2
) − Az(x, y j− 1

2
)
]
dx . (68)

Similarly, to evaluate a0R := 1
�y

∫ y
j+ 1

2

y
j− 1

2

Bx (xi+ 1
2
, y)dy, we will follow

a0R = 1

�y

∫ y
j+ 1

2

y
j− 1

2

∂Az

∂y
dy = 1

�y

(
Az(xi+ 1

2
, y j+ 1

2
) − Az(xi+ 1

2
, y j− 1

2
)
)

. (69)

123



1646 J Sci Comput (2018) 77:1621–1659

This will lead to an exactly divergence-free magnetic field approximation at t =
0.

6.2.2 Orszag–Tang Vortex Problem

In this subsection, we test the Orszag–Tang vortex problem, whose solution involves the
formation and interaction of multiple shocks as the nonlinear system evolves in time. The
same initial date as in [25] is taken, namely,

ρ = γ 2, ux = − sin y, uy = sin x, uz = 0,

Bx = − sin y, By = sin 2x, Bz = 0, p = γ.

This problem is computed on the domain [0, 2π ] × [0, 2π] with a 192× 192 mesh based on
P1 and P2 approximations. Periodic boundary conditions are used with γ = 5/3. Figures 4
and 5 demonstrate the time evolutions of the density ρ at times t = 3, 4 with P1 and P2

approximations, respectively. The component-wise minmod TVB limiter is applied to Uh

with the parameter M = 1. The results show that our schemes work well for this problem
and they are in good agreement with the results in literature [23,25,27].

As observed in [23,25,29], different numerical methods can demonstrate different levels
of stability for this example, (partially) depending on their ability to control the divergence
error in the computed magnetic field. Standard numerical methods that work well for non-
linear hyperbolic conservation laws can show instability when simulating this example, if
the divergence error is not sufficiently controlled. Our proposed exactly divergence-free DG
methods display very good stability over long time simulation, for example the schemes
with P1 and P2 approximations are stable up to t = 25 (the maximum time we run) on
the 192 × 192 mesh when the minmod TVB limiter is applied in local characteristic fields.
In addition to the divergence error, as indicated in [37] the choices of the limiters can also
affect the numerical stability. When the component-wiseminmod TVB limiter is applied, the
simulation will break down at t = 7.4 with the P2 approximation. Again, the limiters are
only applied to Uh .

For this example, we further perform a convergence study for themethodswith P2 approx-
imation. In Fig. 6, we plot the pressure p (left) at y = 1.99635 and t = 2, and the magnetic
variable Bx at x = π and t = 3, computed with the 192 × 192 (circle) and 384 × 384
(line) meshes. With shocks developed in the solution, convergence is observed. The pressure
lines and magnetic field lines are comparable to the results by the locally divergence-free DG
methods in [25] and exactly divergence-free central DG methods in [26,27]. As in [26,27],
there is no negative pressure produced throughout the simulation.

6.2.3 The Rotor Problem

In this subsection, a rotor problem is considered which was first documented in [8]. This
problem describes a dense disk of fluid rapidly spinning in a light ambient fluid. To reduce
the initial transition, a “taper” function is used to bridge these two areas. We take the same
initial data as in [26,37], that is,

(uz, Bx , By, Bz, p) =
(
0, 2.5/

√
4π, 0, 0, 0.5

)
,
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Fig. 4 Development of the density ρ in Orszag–Tang vortex problem with P1 approximation at t = 3, t = 4
on 192 × 192 mesh. 15 equally spaced contours with ranges [1.144, 6.134], [1.179, 5.813] respectively. a
t = 3, b t = 4
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Fig. 5 Development of the density ρ in the Orszag–Tang vortex problem with P2 approximation at t = 3,
t = 4 on 192×192 mesh. 15 equally spaced contours with ranges [1.122, 6.161], [1.127, 5.857], respectively.
a t = 3, b t = 4
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Fig. 6 The P2 approximation for the Orszag–Tang vortex problem on 192 × 192 (circle) and 384 × 384
(solid line) meshes. a p with y = 1.9635 at t = 2, b Bx with x = π at t = 3

and

(ρ, ux , uy) =
⎧⎨
⎩

(10,−(y − 0.5)/r0, (x − 0.5)/r0) r < r0
(1 + 9λ,−λ(y − 0.5)/r, λ(x − 0.5)/r) r0 < r < r1
(1, 0, 0) r > r1

where r = √(x − 0.5)2 + (y − 0.5)2, r0 = 0.1, r1 = 0.115 and λ = (r1 − r)/(r1 − r0). We
simulate the problem in the domain [0, 1] × [0, 1]. Periodic boundary conditions are used
and γ = 5/3.

In Figs. 7 and 8, we present the results of density ρ, pressure p, the hydrodynamic
Mach number |u|/c with the sound speed c = √

γ p/ρ, and the magnetic pressure |B|2/2 at
t = 0.295, based on P1 and P2 approximations on the 200 × 200 mesh. The minmod TVB
limiter is applied in the characteristic fields and only toUh . Compared with the results in [25,
37], our methods also resolve this problem well. When divergence error is not sufficiently
controlled in the magnetic field by some numerical methods, “distortion” can develop in
Mach number [25,37]. In Fig. 9, we zoom in the central part of the Mach number, and no
“distortion” is observed.

As in [26,27], we examine the convergence of the methods with P2 approximation. In
Fig. 10, we present the Mach number with x = 0.413 (left) and the magnetic field Bx (right)
with x = 0.25 at t = 0.295 on 400×400 (circle) and 600×600 (solid) meshes. Convergence
of the method is observed, with the shocks being captured in the numerical solution. The cut
lines in Fig. 10 are very close to the results in [26], and there is no significant oscillation in
the solutions. In our simulation, negative pressure is not observed.

6.2.4 The Blast Problem

In this subsection, we consider the blast problem as in [8]. There are strong magnetosonic
shocks in the solution. The initial condition is taken as

(
ρ, ux , uy, uz, Bx , By, Bz, p

) =
⎧⎨
⎩
(
1, 0, 0, 0, 100√

4π
, 0, 0, 1000

)
, r ≤ R,(

1, 0, 0, 0, 100√
4π

, 0, 0, 0.10
)

, r > R,
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Fig. 7 P1 approximation for the rotor problem on the 200 × 200 mesh at t = 0.295. 15 equally spaced
contours. a ρ ∈ [0.507, 8.837], b p ∈ [0.010, 0.774], c |B|2/2 ∈ [0.012, 0.676], d |u|/c ∈ [0, 2.673]

with r = √x2 + y2 and R = 0.1. With this setup, the fluid pulse has very small plasma beta,
namely, β = p

(B2
x+B2

y )/2
= 2.513E−04, in the region outside the initial pressure pulse. We

carry out the simulation in the domain [− 0.5, 0.5] × [− 0.5, 0.5] with a 200 × 200 mesh.
Outgoing boundary conditions are used and γ = 1.4.

In Figs. 11 and 12, we report the numerical results at time t = 0.01 based on P1 and P2

approximations for density ρ, pressure p, square of total velocity u2x + u2y , and the magnetic
pressure B2

x + B2
y , respectively. As pointed out in [8,26–28], this is a stringent problem to

solve. In our simulation, negative pressure is observed near the shock front, similar as in
many other methods when positivity preserving techniques are not applied to pressure [26–
28]. In Fig. 13, we plot the negative part of pressure, min(0, p), based on the P1 and P2

approximations. The minimum of pressure in the P2 approximation is − 16.295, and it is
more negative than − 4.369, the minimum of the pressure in the P1 approximation. These
results are obtained when the component-wise minmod TVB limiter is applied only to Uh .

To further improve the numerical stability, we run the simulation by applying theminmod
TVB limiter to both the hydrodynamic variables Uh and the normal component of the mag-
netic field {bxi j }i j and {byi j }i j (see Sect. 5 for details of the limiter and the reconstruction). In
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Fig. 8 P2 approximation for the rotor problem on the 200 × 200 mesh at t = 0.295. 15 equally spaced
contours. a ρ ∈ [0.551, 9.910], b p ∈ [0.008, 0.776], c |B|2/2 ∈ [0.012, 0.847], d |u|/c ∈ [0, 3.033]

Fig. 14, the results are shown for density ρ, pressure p, square of total velocity u2x + u2y , and
the magnetic pressure B2

x + B2
y , respectively, at t = 0.01 based on P2 approximation. With

the magnetic field being limited, the minimum of pressure is now − 7.347 which is greatly
improved, hence the schemes with all unknowns being limited are more robust.

Remark 6.1 Following Zhang and Shu’s important work in [41] to design positivity-
preserving limiters for high order numerical methods, similar limiters were developed in [12]
for DG and central DG methods to simulate ideal MHD equations. Locally divergence-free
approximations can be easily used for the methods in [12] without affecting the positivity-
preserving property of the overall algorithms. Unfortunately, such limiters can not be applied
to the proposed methods in this paper, as they will destroy the globally divergence-free
property of the numerical solutions.
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Fig. 9 Zoom-in central part of Mach number |u|/c with P2 approximation in the rotor problem at t = 0.295.
30 equally spaced contours with range [0.18, 3.12]. a 100× 100 mesh, b 200× 200 mesh, c 400× 400 mesh,
d 600 × 600 mesh
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Fig. 10 The Mach number |u|/c and magnetic filed Bx of the rotor problem with P2 approximation at
t = 0.295 on 400×400 (circle) and 600×600 (solid line) meshes. a |u|/c with x = 0.41, b Bx with x = 0.25
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Fig. 11 P1 approximation for the blast problem on the 200 × 200 mesh at t = 0.01. 40 equally spaced
contours are plotted. a ρ ∈ [0.184, 4.602], b p ∈ [− 4.369, 259.297], c u2x +u2y ∈ [0, 288.251], d B2

x + B2
y ∈

[431.002, 1186.060]

6.2.5 The Cloud–Shock Interaction

The last example we consider is a cloud–shock interaction problem which involves strong
MHD shocks interacting with a dense cloud. We take the same initial data as in [26,27].
The computational domain, � = [0, 2] × [0, 1], is divided into three regions initially: the
post-shock region �1 = {(x, y): 0 ≤ x ≤ 1.2, 0 ≤ y ≤ 1}, the pre-shock region �2 =
{(x, y): 1.2 ≤ x ≤ 2, 0 ≤ y ≤ 1,

√
(x − 1.4)2 + (y − 0.5)2 ≥ 0.18} and the cloud region

�3 = {(x, y):√(x − 1.4)2 + (y − 0.5)2 < 0.18}. The initial data in �1, �2 and �3 for
(ρ, ux , uy, uz, Bx , By, Bz, p) is given by U1, U2 and U3, respectively, with

U1 = (3.88968, 0, 0,− 0.05234, 1, 0, 3.9353, 14.2641) ,

U2 = (1,− 3.3156, 0, 0, 1, 0, 1, 0.04) ,

U3 = (5,− 3.3156, 0, 0, 1, 0, 1, 0.04) .
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Fig. 12 P2 approximation for the blast problem on the 200 × 200 mesh at t = 0.01. 40 equally spaced
contours are plotted. a ρ ∈ [0.191, 4.769], b p ∈ [− 16.397, 256.291], c u2x +u2y ∈ [0, 288.838], d B2

x +B2
y ∈

[426.407, 1236.830]
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Fig. 13 Negative part of the pressure, min(0, p), in the blast problem with P1 and P2 approximations at
t = 0.01 on the 200 × 200 mesh. a P1, b P2
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Fig. 14 P2 approximation for the blast problem on the 200 × 200 mesh at t = 0.01. Nonlinear limiter
is applied to both Uh and {bxi j }i j , {byi j }i j . 40 equally spaced contours are used. a ρ ∈ [0.182, 4.573], b
p ∈ [− 7.347, 254.906], c u2x + u2y ∈ [0, 287.389], d B2

x + B2
y ∈ [422.866, 1188.86]

The cloud in the region �3 is five times denser than its surrounding. Outgoing boundary
conditions are used and γ = 5/3. We run the simulation up to t = 0.6.

In Fig. 15, we show the gray-scale images of the P1 approximations for density ρ, pressure
p and magnetic field component Bx , By on the 600 × 300 mesh. The white area represents
relatively larger value. The numerical results are fairly close to those by exactly divergence-
free central DG methods in [26,27]. The minmod TVB limiter is implemented in the local
characteristic fields and is only applied to Uh .

In Fig. 16, gray-scale images of P2 approximations are shown for density ρ, pressure p
and magnetic field component Bx , By on the 600 × 300mesh. In Fig. 17, we further plot
the cut lines of density ρ based on P2 approximation with y = 0.6 and x = 1.0 on the
600 × 300 and 800 × 400 meshes. The convergence of the methods is confirmed. With P2

approximation, it is not sufficient to just apply the nonlinear limiter to Uh for numerical
stability. And the results presented here are obtained when the limiter is applied to both Uh

and {bxi j }i j , {byi j }i j . In order to see the necessity to limit the magnetic field is related to the
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Fig. 15 P1 approximation of the cloud–shock interaction problem at t = 0.6 on the 600 × 300 mesh. a
ρ ∈ [1.804, 11.638], b p ∈ [6.295, 15.567], c Bx ∈ [− 3.073, 4.355], d By ∈ [− 3.299, 3.265]

Fig. 16 P2 approximation of the cloud–shock interaction problem at t = 0.6 on the 600 × 300 mesh. a
ρ ∈ [1.777, 11.655], b p ∈ [1.028, 16.734], c Bx ∈ [− 2.922, 4.472], d By ∈ [− 3.027, 2.961]

strength of the discontinuity, we also simulate a similar clock–shock interaction example,
with the cloud in region �3 two times denser than its surrounding at t = 0. As expected,
our methods are stable for this modified example when the limiter is applied only toUh . The
numerical results are not included here.
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Fig. 17 The P2 approximation of ρ in the cloud–shock interaction problem at t = 0.6 on 600× 300 (circle)
and 800 × 400 (solid) meshes. a y = 0.6, b x = 1.0

7 Concluding Remarks

In this paper, we propose second and third order globally divergence-free discontinuous
Galerkin methods for ideal MHD equations on structured meshes in two dimensions. The
main technical aspect is on the choices of numerical fluxes used in the different parts of the
algorithms. Analysis is presented to identify conditions on numerical fluxes to ensure the
exactly divergence-free property of the approximated magnetic field. A careful numerical
and analytical study was carried out to find good choices of numerical fluxes for the accu-
racy and numerical stability of the methods. A set of smooth and non-smooth numerical
examples are presented to illustrate the performance of the proposed methods. Our future
efforts will include the extension of the methods to high order accuracy, three dimensions,
and unstructured meshes.
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