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Abstract This paper develops a high-accuracy algorithm for time fractional wave prob-
lems, which employs a spectral method in the temporal discretization and a finite element
method in the spatial discretization. Moreover, stability and convergence of this algorithm
are derived, and numerical experiments are performed, demonstrating the exponential decay
in the temporal discretization error provided the solution is sufficiently smooth.
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1 Introduction

Let 1 < γ < 2 and let � ⊂ R
d (d = 2, 3) be a polygon/polyhedron. This paper considers

the fractional wave problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dγ
0+(u − u0 − tu1) − �u = f in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(·, 0) = u0 in �,

ut (·, 0) = u1 in �,

(1)
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where u0 ∈ H1
0 (�), u1 ∈ L2(�), and f ∈ L2(�T ) with �T := � × (0, T ). Here ut is the

derivative of u with respect to the time variable t , and Dγ
0+ is a Riemann–Liouville fractional

differential operator.
The above problem is a particular case of time fractional diffusion-wave problems, which

have attracted a considerable amount of research in the field of numerical analysis in the past
twenty years. By now, most of the existing numerical algorithms employ the L1 scheme ([5,
11,17,27,28]), Grünwald-Letnikov discretization ([2,12,19,20,23,24]) or fractional linear
multi-step method ([8,21,26]) to discrete the fractional derivatives. Generally, for those
algorithms, the best temporal accuracy are O(τ 2) for the fractional diffusion problems and
O(τ 3−γ ) for the fractional wave problems, where τ is the time step size.

Due to the nonlocal property of fractional differential operator, thememory and computing
cost of an accuracy approximation to a fractional diffusion-wave problem is significantly
more expensive than that to a corresponding normal diffusion-wave problem. To reduce
the cost, high-accuracy algorithms are often preferred, especially those of high accuracy
in the time direction. This motivates us to develop high-accuracy numerical algorithms for
problem (1). The efforts in this aspect are summarized as follows. Li and Xu [10] proposed
a space-time spectral algorithm for the fractional diffusion equation, and then Zheng et al.
[29] constructed a high order space-time spectral method for the fractional Fokker–Planck
equation. Gao et al. [7] proposed a new scheme to approximate Caputo fractional derivatives
of order γ (0 < γ < 1). Zayernouri and Karniadakis [25] developed an exponentially
accurate fractional spectral collocation method. Yang et al. [22] developed a spectral Jacobi
collocation method for the time fractional diffusion-wave equation. Recently, Ren et al. [14]
investigated the superconvergence of finite element approximation to time fractional wave
problems; however, the temporal accuracy order is only O(τ 3−γ ).

In this paper, using a spectral method in the temporal discretization and a finite element
method in the spatial discretization, we design a high-accuracy algorithm for problem (1)
and establish its stability and convergence. Our numerical experiments show the exponential
decay in the temporal discretization errors, provided the underlying solution is sufficiently
smooth.

The rest of this paper is organized as follows. Section 2 introduces some Sobolev spaces
and the Riemann–Liouville fractional calculus operators. Section 3 describes a time-spectral
algorithm and constructs the basis functions for the temporal discretization. Sections 4 and
5 establish the stability and convergence of the proposed algorithm, and Sect. 6 performs
some numerical experiments to demonstrate its high accuracy. Finally, Sect. 7 provides some
concluding remarks.

2 Notation

Let us first introduce some Sobolev spaces. For 0 < α < ∞, as usual, Hα
0 (0, T ), Hα(0, T ),

Hα
0 (�) and Hα(�) are used to denote four standard Sobolev spaces; see [18]. Let X be a

separable Hilbert space with an inner product (·, ·)X and an orthonormal basis {ek : k ∈ N}.
For 0 < α < ∞, define

Hα(0, T ; X) :=
{

v ∈ L2(0, T ; X) :
∞∑

k=0

‖(v, ek)X‖2Hα(0,T ) < ∞
}
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and endow this space with the norm

‖·‖Hα(0,T ;X) :=
( ∞∑

k=0

‖(·, ek)X‖2Hα(0,T )

)1/2

,

where L2(0, T ; X) is an X -valued Bochner L2 space. For v ∈ H j (0, T ; X) with j ∈ N�1,
the symbol v( j) denotes its j th weak derivative:

v( j)(t) :=
∞∑

k=0

c( j)
k (t)ek, 0 < t < T,

where ck(·) := (v(·), ek)X and c( j)
k is its j th weak derivative. Conventionally, v(1) and v(2)

are also abbreviated to v′ and v′′, respectively.
Moreover, for j ∈ N we define

B j (0, T ; X) :=
{

v ∈ L2(0, T ; X) :
∞∑

k=0

‖(v, ek)X‖2B j (0,T )
< ∞

}

and equip this space with the norm

‖·‖B j (0,T ;X) :=
( ∞∑

k=0

‖(·, ek)X‖2B j (0,T )

)1/2

,

where the space B j (0, T ) and its norm are respectively given by

B j (0, T ) :=
{

v ∈ L2(0, T ) :
∫ T

0
t i (T − t)i

∣
∣
∣v

(i)(t)
∣
∣
∣
2
dt < ∞, 0 � i � j

}

and

‖·‖B j (0,T ) :=
⎛

⎝
j∑

i=0

∫ T

0
t i (T − t)i

∣
∣
∣(·)(i)(t)

∣
∣
∣
2
dt

⎞

⎠

1/2

.

Then we introduce the Riemann–Liouville fractional operators. Let X be a Banach space
and let L1(0, T ; X) be an X -valued Bochner L1 space.

Definition 2.1 For 0 < α < ∞, define I α,X
0+ , Iα,X

T− : L1(0, T ; X) → L1(0, T ; X), respec-
tively, by

(
Iα,X
0+ v

)
(t) := 1

�(α)

∫ t

0
(t − s)α−1v(s) ds, 0 < t < T,

(
Iα,X
T− v

)
(t) := 1

�(α)

∫ T

t
(s − t)α−1v(s) ds, 0 < t < T,

for all v ∈ L1(0, T ; X).

Definition 2.2 For j − 1 < α < j with j ∈ N>0, define

Dα,X
0+ := D j I j−α,X

0+ ,

Dα,X
T− := (−1) j D j I j−α,X

T− ,

where D is the first-order differential operator in the distribution sense.
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Above �(·) is the Gamma function, and, for convenience, we shall simply use I α
0+, Iα

T−,
Dα
0+ and Dα

T−, without indicating the underlying Banach space X . Each v ∈ L1(�T ) also
regarded as an element of L1(0, T ; X) with X = L1(�), and thus Dα

0+v and Dα
T−v mean

Dα,X
0+ v and Dα,X

T− v, respectively, for all 0 < α < ∞.

3 Algorithm Definition

LetKh be a triangulation of� consisting of d-simplexes, and let h be the maximum diameter
of these simplexes in Kh . Define

Vh := {
vh ∈ H1(�) : vh |K ∈ Pm(K ) for all K ∈ Kh

}
,

V̊h := {
vh ∈ H1

0 (�) : vh |K ∈ Pm(K ) for all K ∈ Kh
}
,

where m is a positive integer and Pm(K ) is the set of all polynomials defined on K of degree
� m. For j ∈ N, define

Pj [0, T ] ⊗ V̊h := span
{
qvh : vh ∈ V̊h, q ∈ Pj [0, T ]},

where Pj [0, T ] is the set of all polynomials defined on [0, T ] of degree � j . Moreover, we
introduce a projection operator Rh : H1

0 (�) → V̊h by
(∇(I − Rh)v,∇vh

)

L2(�)
= 0, ∀v ∈ H1

0 (�), ∀vh ∈ V̊h .

Here and in the rest of this paper, I denotes the identity operator.
Now, let us describe a time-spectral algorithm for problem (1) as follows: seek U ∈

PM [0, T ] ⊗ V̊h with U (0) = Rhu0 such that
(
Dγ0
0+(U ′ − uh,1), D

γ0
T−V

)

L2(�T )
+ (∇U,∇V )L2(�T ) = ( f, V )L2(�T ) (2)

for all V ∈ PM−1[0, T ] ⊗ V̊h , where M � 2 is an integer, γ0 := (γ − 1)/2, and uh,1 is the
L2(�)-projection of u1 onto Vh .

Remark 3.1 In “Appendix A” we define the weak solution of problem (1). The numerical
solution obtained by (2) is actually an approximation of the weak solution to problem (1).

Remark 3.2 It is well known that the solution to problem (1) generally has singularity in
time, caused by the fractional derivative. However, in view of the basic properties of the
operator Dγ

0+, it is anticipated that we can improve the performance of the above algorithm
by enlarging PM [0, T ] and PM−1[0, T ] by some singular functions, such as tγ for PM [0, T ]
and correspondingly tγ−1 for PM−1[0, T ].

The remainder of this section is devoted to the construction of the bases of PM [0, T ]
and PM−1[0, T ], which is crucial in the implementation of the proposed algorithm. To this
purpose, let us first introduce the well-known Jacobi polynomials; see [1,16] for more details.
Given −1 < α, β < ∞, the Jacobi polynomials {J (α,β)

n : n ∈ N} are defined by

J (α,β)
n (t) = w−α,−β(t)

(−1)n

2nn!
dn

dtn
wn+α,n+β(t), −1 < t < 1, n ∈ N,

where

wr,s(t) := (1 − t)r (1 + t)s,
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for all −1 < r, s < +∞. They form a complete orthogonal basis of L2
wα,β (−1, 1), the

weighted L2 space with weight function wα,β .
Then we construct a basis {pi }Mi=0 of PM [0, T ] and a basis {q j }M−1

j=0 of PM−1[0, T ],
respectively, by

⎧
⎨

⎩

p0(t) := 1,

pi (t) := 2t

T
J (−γ0,0)
i−1 (2t/T − 1) , 1 � i � M,

and

q j (t) = J (0,−γ0)

j (2t/T − 1) , 0 � j � M − 1.

By [3, Lemma 2.5] a straightforward computing yields

Dγ0
0+ p′

i (t)D
γ0
T−q j (t) = t−γ0(T − t)−γ0ζi j (t) + t1−γ0(T − t)−γ0ςi j (t),

for all 0 � i � M and 0 � j < M . Above ζi j (t) and ςi j (t) are given respectively by

ζi j (t) = Ci j

(
J (0,−γ0)

i−1 J (−γ0,0)
j

)
(2t/T − 1),

ςi j (t) = Di j

(
J (1,1−γ0)

i−2 J (−γ0,0)
j

)
(2t/T − 1),

where

Ci j :=
{
0, i = 0,
2
T

�(i)�( j+1)
�( j+1−γ0)�(i−γ0)

, i � 1,
Di j :=

{
0, 0 � i � 1,
�(i+1−γ0)
�(i−γ0)T

Ci j , i � 2.

Then
∫ T
0 Dγ0

0+ p′
i D

γ0
T−q j dt is evaluated numerically by a suitable Jacobi-Gauss quadrature

rule.

4 Main Results

Let us first introduce the following conventions: u and U are the solutions to problem (1)
and (2), respectively; unless otherwise specified, C is a generic positive constant that is
independent of any function and is bounded as M → ∞; a � b means that there exists a
positive constant c, depending only on γ , T ,�,m or the shape regular parameter ofKh , such
that a � cb; the symbol a ∼ b means a � b � a. The above shape regular parameter of Kh

means

max {hK /ρK : K ∈ Kh} ,

where hK is the diameter of K , and ρK is the diameter of the circle (d = 2) or ball (d = 3)
inscribed in K .

Then we introduce an interpolation operator. Let X be a separable Hilbert space and let
PM [0, T ; X ] be the set of all X -valued polynomials defined on [0, T ] of degree� M . Define
the interpolation operator

QX
M : H1+γ0(0, T ; X) → PM [0, T ; X ]
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as follows: for each v ∈ H1+γ0(0, T ; X), the interpolant QX
Mv fulfills

⎧
⎪⎪⎨

⎪⎪⎩

(
QX

Mv
)

(0) = v(0),
∫ T

0
Dγ0
0+

(
v − QX

Mv
)′

Dγ0
T−q dt = 0, ∀q ∈ PM−1[0, T ].

For convenience, we shall use QM instead of QX
M when no confusion will arise.

Remark 4.1 Let {ek : k ∈ N} be an orthonormal basis of X . For any v ∈ Hγ0(0, T ; X), the
definition of Hγ0(0, T ; X) implies that

(v, ek)X ∈ Hγ0(0, T ) for each k ∈ N,

and hence, as Lemma 5.4 (in the next section) indicates
∥
∥
∥D

γ0,R
0+ (v, ek)X

∥
∥
∥
L2(0,T )

∼ ‖(v, ek)X‖Hγ0 (0,T ) ,

it is evident that

∥
∥
∥D

γ0,X
0+ v

∥
∥
∥
L2(0,T ;X)

=
( ∞∑

k=0

∥
∥
∥D

γ0,R
0+ (v, ek)X

∥
∥
∥
2

L2(0,T )

) 1
2

∼ ‖v‖Hγ0 (0,T ;X) .

Remark 4.2 Since QR

M is well-defined by Lemma 5.4, QX
M is evidently also well-defined

and

QX
Mv =

∞∑

k=0

QR

M (v, ek)Xek, ∀v ∈ H1+γ0(0, T ; X).

Furthermore, we can redefine QX
M equivalently as follows: for each v ∈ H1+γ0(0, T ; X), the

interpolant QX
Mv fulfills

⎧
⎪⎪⎨

⎪⎪⎩

(
QX

Mv
)

(0) = v(0),
∫ T

0

(

Dγ0
0+

(
v − QX

Mv
)′

, Dγ0
T−q

)

X
dt = 0, ∀q ∈ PM−1[0, T ; X ].

Finally, we are ready to state the main results of this paper as follows.

Theorem 4.1 Problem (2) has a unique solution U. Moreover,

‖U‖H1+γ0 (0,T ;L2(�)) + ‖U (T )‖H1
0 (�)

� ‖u0‖H1
0 (�) + ‖u1‖L2(�) + ‖ f ‖L2(�T ) .

(3)

Theorem 4.2 If u ∈ H2
(
0, T ; H1

0 (�) ∩ H2(�)
)
, then

‖u −U‖H1+γ0 (0,T ;L2(�)) � η1 + η2 + η3 + η4, (4)

‖(u −U )(T )‖H1
0 (�) � η1 + η2 + η3 + η5, (5)

where

η1 := ∥
∥u1 − uh,1

∥
∥
L2(�)

,

η2 := CM−1−2γ0 ‖(I − QM )�u‖H1+γ0 (0,T ;L2(�)) ,
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η3 := ‖(I − Rh)u‖H1+γ0 (0,T ;L2(�)) ,

η4 := ‖(I − QM Rh)u‖H1+γ0 (0,T ;L2(�)) ,

η5 := ‖(u − QM Rhu)(T )‖H1
0 (�) .

Corollary 4.1 If

u ∈ H2(0, T ; H1
0 (�) ∩ H2(�)) ∩ H1+γ0(0, T ; Hm+1(�)),

u′′ ∈ Br (0, T ; H1
0 (�) ∩ H2(�)),

then

‖u −U‖H1+γ0 (0,T ;L2(�)) � ξ1 + ξ2 + ξ3 + ξ4, (6)

‖(u −U )(T )‖H1
0 (�) � ξ1 + ξ2 + ξ3 + ξ5, (7)

where r ∈ N and

ξ1 := hm+1 ‖u1‖Hm+1(�) ,

ξ2 := CM−γ0−2−r
∥
∥u′′∥∥

Br (0,T ;H2(�))
,

ξ3 := hm+1 ‖u‖H1+γ0 (0,T ;Hm+1(�)) ,

ξ4 := CMγ0−1−r
∥
∥u′′∥∥

Br (0,T ;L2(�))
+ hm+1 ‖u‖H1+γ0 (0,T ;Hm+1(�)) ,

ξ5 := CM−1.5−r
∥
∥u′′∥∥

Br (0,T ;H1
0 (�))

+ hm ‖u(T )‖Hm+1(�) .

5 Proofs

5.1 Preliminaries

Lemma 5.1 If v ∈ H1
0 (�) ∩ Hm+1(�), then

‖(I − Rh)v‖L2(�) + h ‖(I − Rh)v‖H1
0 (�) � hm+1 ‖v‖Hm+1(�) .

Lemma 5.2 If v ∈ Hα(0, T ) with α > γ0, then

inf
q∈PM−1[0,T ] ‖v − q‖Hγ0 (0,T ) � CMγ0−α ‖v‖Hα(0,T ) .

If v ∈ H2(0, T ) such that v′′ ∈ B j (0, T ) with j ∈ N, then

inf
q∈PM−1[0,T ] ‖v − q‖H1+γ0 (0,T ) � CMγ0−1− j

∥
∥v′′∥∥

B j (0,T )
.

Lemma 5.3 The following properties hold:

• If 0 < α, β < ∞, then

Iα
0+ I β

0+ = Iα+β
0+ , Iα

T− I β
T− = Iα+β

T− .

• If 0 < α < β < ∞, then

Dβ
0+ Iα

0+ = Dβ−α
0+ , Dβ

T− Iα
T− = Dβ−α

T− .
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• If 0 < α < ∞, then
∥
∥Iα

0+v
∥
∥
L2(0,T )

� C ‖v‖L2(0,T ) ,
∥
∥Iα

T−v
∥
∥
L2(0,T )

� C ‖v‖L2(0,T ) ,

where C is a positive constant that only depends on α and T .
• If 0 < α < ∞ and u, v ∈ L2(0, T ), then

(Iα
0+u, v)L2(0,T ) = (u, Iα

T−v)L2(0,T ).

Lemma 5.4 We have the following properties.

• If v ∈ Hα(0, T ) with 0 < α < 1/2, then

‖v‖Hα(0,T ) ∼ ∥
∥Dα

0+v
∥
∥
L2(0,T )

∼ ∥
∥Dα

T−v
∥
∥
L2(0,T )

∼
√(

Dα
0+v, Dα

T−v
)

L2(0,T )
.

• If v,w ∈ Hα(0, T ) with 0 < α < 1/2, then
(
Dα
0+v, Dα

T−w
)

L2(0,T )
� ‖v‖Hα(0,T ) ‖w‖Hα(0,T ) .

Above, the implicit constants are only depend on α and T .

Lemma 5.5 If v ∈ H2(0, T ) and w ∈ H1(0, T ), then
(
Dγ
0+(v − v(0) − tv′(0), w

)

L2(0,T )
= (

Dγ0
0+(v′ − v′(0)), Dγ0

T−w
)

L2(0,T )
.

Lemma 5.6 Let X and Y be two separable Hilbert spaces, and let A : X → Y be a bounded
linear operator. If v ∈ H1+γ0(0, T ; X), then

AQX
Mv = QY

M Av.

Lemma 5.1 is standard (see [4]), and Lemma 5.3 follows from [16, Theorems 3.35–3.37]
and the basic properties of the interpolation spaces. The proof of Lemma 5.3 is included in
[13,15], and for convenience this lemma will be used implicitly in the forthcoming analysis.
Lemma 5.4 is a direct consequence of [6, Lemma 2.4, Theorem 2.13 and Corollary 2.15],
and Lemma 5.5 follows from [10, Lemma 2.6]. Finally, by Lemma 5.4 and the standard
properties of the interpolation spaces and the Bochner integrals, a rigorous proof of Lemma
5.6 is tedious but straightforward, and so it is omitted here.

Lemma 5.7 If v ∈ L2(0, T ), then
∥
∥
∥I

2γ0
T− v

∥
∥
∥
H2γ0 (0,T )

� ‖v‖L2(0,T ) . (8)

Moreover, if v ∈ Hγ0(0, T ), then
∥
∥
∥I

2γ0
T− v

∥
∥
∥
H3γ0 (0,T )

� ‖v‖Hγ0 (0,T ) . (9)

Lemma 5.8 If v ∈ H2(0, T ) and w ∈ Hγ0(0, T ), then
(
(I − QM )v,w

)

L2(0,T )
� CM−1−2γ0 ‖(I − QM )v‖H1+γ0 (0,T ) ‖w‖Hγ0 (0,T ) . (10)

Lemma 5.9 If v ∈ H2(0, T ) and v′′ ∈ B j (0, T ) with j ∈ N, then

‖(I − QM )v‖H1+γ0 (0,T ) � CMγ0−1− j
∥
∥v′′∥∥

B j (0,T )
, (11)

‖(I − QM )v‖L2(0,T ) � CM−2− j
∥
∥v′′∥∥

B j (0,T )
, (12)

‖(I − QM )v‖C[0,T ] � CM−1.5− j
∥
∥v′′∥∥

B j (0,T )
. (13)
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Proof of Lemma 5.7 Define

w(t) := 1

�(γ0)

∫ ∞

t
(s − t)γ0−1v(s) ds, −∞ < t < ∞,

where v is extended to R\(0, T ) by zero. Since 0 < γ0 < 0.5, a routine calculation yields
w ∈ L2(R), and then [15, Theorem 7.1] implies

Fw(ξ) = (−iξ)−γ0Fv(ξ), −∞ < ξ < ∞,

where F : L2(R) → L2(R) is the Fourier transform operator, and i is the imaginary unit.
Therefore, the well-known Plancherel Theorem yields

‖w‖Hγ0 (R) � ‖v‖L2(0,T ) ,

and hence
∥
∥I γ0

T−v
∥
∥
Hγ0 (0,T )

� ‖v‖L2(0,T ) .

Furthermore, if v ∈ H1
0 (0, T ) then

∥
∥I γ0

T−v
∥
∥
H1+γ0 (0,T )

� ‖v‖H1
0 (0,T ) ,

by the evident equality (I γ0
T−v)′ = I γ0

T−v′. Consequently, since Hγ0
0 (0, T ) coincides with

Hγ0(0, T ) with equivalent norms, applying [18, Lemma 22.3] gives
∥
∥
∥I

2γ0
T− v

∥
∥
∥
H2γ0 (0,T )

= ∥
∥I γ0

T− I γ0
T−v

∥
∥
H2γ0 (0,T )

�
∥
∥I γ0

T−v
∥
∥
H

γ0
0 (0,T )

� ‖v‖L2(0,T ) ,

namely estimate (8). Analogously, we can obtain (9) and hence conclude the proof of the
lemma. �
Proof of Lemma 5.8 Let g := (I − QM )v. Since a straightforward calculation yields

(
I 1−γ0
0+ g′) (t) = g′(0)

�(2 − γ0)
t1−γ0 +

(
I 2−γ0
0+ g′′) (t), 0 < t < T,

the fact γ0 < 0.5 indicates that I 1−γ0
0+ g′ ∈ H1(0, T ) and (I 1−γ0

0+ g′)(0) = 0. Then using
integration by parts gives

(
Dγ0
0+g

′, I 1+γ0
T− w

)

L2(0,T )
=

((
I 1−γ0
0+ g′)′

, I 1+γ0
T− w

)

L2(0,T )

= −
(

I 1−γ0
0+ g′,

(
I 1+γ0
T− w

)′)

L2(0,T )

=
(
I 1−γ0
0+ g′, I γ0

T−w
)

L2(0,T )

= (
g′, IT−w

)

L2(0,T )
.

Hence, as the definition of QM implies g(0) = 0, we obtain
(
Dγ0
0+g

′, I 1+γ0
T− w

)

L2(0,T )
= (

g′, IT−w
)

L2(0,T )
= (g, w)L2(0,T ),

which, combined with the evident equality

I 1+γ0
T− w = Dγ0

T− I 1+2γ0
T− w,

yields
(
g, w

)

L2(0,T )
=

(
Dγ0
0+g

′, Dγ0
T− I 1+2γ0

T− w
)

L2(0,T )
.
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Therefore, Lemma 5.4, the definition of QM and the Cauchy–Schwarz inequality imply

(
g, w

)

L2(0,T )
� ‖g‖H1+γ0 (0,T ) inf

q∈PM−1[0,T ]

∥
∥
∥I

1+2γ0
T− w − q

∥
∥
∥
Hγ0 (0,T )

.

Clearly, to prove (10), by Lemma 5.2 it suffices to show
∥
∥
∥I

1+2γ0
T− w

∥
∥
∥
H1+3γ0 (0,T )

� ‖w‖Hγ0 (0,T ) .

Therefore, since
∥
∥
∥I

1+2γ0
T− w

∥
∥
∥
H1+3γ0 (0,T )

�
∥
∥
∥I

2γ0
T−w

∥
∥
∥
H3γ0 (0,T )

,

using Lemma 5.7 completes the proof of Lemma 5.8. �
Proof of Lemma 5.9 Let us first consider (11). For each p ∈ PM−1[0, T ], by Lemma 5.4,
the definition of QM and the Cauchy–Schwarz inequality, we obtain

∥
∥(QMv)′ − p

∥
∥2
Hγ0 (0,T )

∼
(
Dγ0
0+

(
(QMv)′ − p

)
, Dγ0

T−
(
(QMv)′ − p

))

L2(0,T )

=
(
Dγ0
0+(v′ − p), Dγ0

T−
(
(QMv)′ − p

))

L2(0,T )

�
∥
∥v′ − p

∥
∥
Hγ0 (0,T )

∥
∥(QMv)′ − p

∥
∥
Hγ0 (0,T )

.

It follows that
∥
∥(QMv)′ − p

∥
∥
Hγ0 (0,T )

�
∥
∥v′ − p

∥
∥
Hγ0 (0,T )

,

and so
∥
∥(v − QMv)′

∥
∥
Hγ0 (0,T )

�
∥
∥v′ − p

∥
∥
Hγ0 (0,T )

.

Therefore, as the fact (v − QMv)(0) = 0 implies

‖(I − QM )v‖H1+γ0 (0,T ) ∼ ∥
∥(v − QMv)′

∥
∥
Hγ0 (0,T )

,

using Lemma 5.2 proves (11).
Next let us consider (12, 13). Proceeding as in the proof of Lemma 5.8 gives

‖(I − QM )v‖2L2(0,T )

� ‖(I − QM )v‖H1+γ0 (0,T ) inf
q∈PM−1[0,T ]

∥
∥
∥I

1+2γ0
T− (I − QM )v − q

∥
∥
∥
Hγ0 (0,T )

� CM−1−γ0 ‖(I − QM )v‖H1+γ0 (0,T ) ‖(I − QM )v‖L2(0,T ) ,

which proves (12) by (11). Then, combining (11,12) and applying [18, Lemma 22.3] yield

‖(I − QM )v‖H1(0,T ) � CM−1− j
∥
∥v′′∥∥

B j (0,T )
,

so that (13) follows from (12) and the Gagliardo–Nirenberg interpolation inequality, namely,

‖w‖C[0,T ] � ‖w‖
1
2
L2(0,T )

‖w‖
1
2
H1(0,T )

, ∀w ∈ H1(0, T ).

This concludes the proof of Lemma 5.9. �
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Remark 5.1 Assume that PM [0, T ] and PM−1[0, T ] are respectively replaced by

PM [0, T ] + {
cw1+2γ0 : c ∈ R

}
and PM−1[0, T ] + {

cw2γ0 : c ∈ R
}
,

where w(t) := T − t, 0 < t < T . For each v ∈ H1+γ0(0, T ), the definition of QM implies
∫ T

0
Dγ0
0+(v − QMv)′Dγ0

T−w2γ0 dt = 0,

and then, as in the previous remark, a straightforward computing yields

(v − QMv)(T ) = 0.

Correspondingly, we can improve Corollary 4.1 by

ξ5 := hm ‖u(T )‖Hm+1(�) .

5.2 Proofs of Theorems 4.1 and 4.2 and Corollary 4.1

Proof of Theorem 4.1 Since (3) contains the unique existence of U , it suffices to prove the
former. Observe first that integration by parts yields

2(∇U,∇U ′)L2(�T ) = ‖U (T )‖2
H1
0 (�)

− ‖U (0)‖2
H1
0 (�)

and that Lemma 5.4 implies
∥
∥Dγ0

0+uh,1
∥
∥
L2(�T )

∼ ∥
∥uh,1

∥
∥
Hγ0 (0,T ;L2(�)

∼ ∥
∥uh,1

∥
∥
L2(�)

,

(
Dγ0
0+U

′, Dγ0
T−U

′)
L2(�T )

∼ ∥
∥U ′∥∥2

Hγ0 (0,T ;L2(�))
∼ ∥

∥Dγ0
T−U

′∥∥2
L2(�T )

.

Moreover, the fact that uh,1 is the L2(�)-projection of u1 onto Vh gives
∥
∥uh,1

∥
∥
L2(�)

� ‖u1‖L2(�) .

Consequently, by theCauchy–Schwarz inequality and theYoung’s inequalitywith ε, inserting
V := U ′ into (2) yields

∥
∥U ′∥∥

Hγ0 (0,T ;L2(�))
+ ‖U (T )‖H1

0 (�)

� ‖U (0)‖H1
0 (�) + ‖u1‖L2(�) + ‖ f ‖L2(�T ) ,

which, combined with the estimate

‖U‖H1+γ0 (0,T ;L2(�)) ∼ ‖U (0)‖L2(�) + ∥
∥U ′∥∥

Hγ0 (0,T ;L2(�))
,

indicates

‖U‖H1+γ0 (0,T ;L2(�)) + ‖U (T )‖H1
0 (�)

� ‖U (0)‖H1
0 (�) + ‖u1‖L2(�) + ‖ f ‖L2(�T ) .

As the definition of Rh and the fact U (0) = Rhu0 imply

‖U (0)‖H1
0 (�) � ‖u0‖H1

0 (�) ,

this proves (3) and thus concludes the proof of Theorem 4.1. �
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Proof of Theorem 4.2 Set ρ := (I − QM Rh)u and θ := U − QM Rhu. By Lemma 5.5 and
integration by parts, using (1) gives

(
Dγ0
0+(u′ − u1), D

γ0
T−θ ′)

L2(�T )
+ (∇u, θ ′)L2(�T ) = ( f, θ ′)L2(�T ),

which, together with (2), yields
(
Dγ0
0+θ ′, Dγ0

T−θ ′)
L2(�T )

+ (∇θ,∇θ ′)L2(�T ) = I1 + I2 + I3,

where

I1 := (∇ρ,∇θ ′)L2(�T ),

I2 := (
Dγ0
0+ρ′, Dγ0

T−θ ′)
L2(�T )

,

I3 := − (
Dγ0
0+(u1 − uh,1), D

γ0
T−θ ′)

L2(�T )
.

Moreover, the fact θ(0) = 0 gives

(∇θ,∇θ ′)L2(�T ) = 1

2
‖θ(T )‖2

H1
0 (�)

by integration by parts, and Lemma 5.4 implies
(
Dγ0
0+θ ′, Dγ0

T−θ ′)
L2(�T )

∼ ∥
∥θ ′∥∥2

Hγ0 (0,T ;L2(�))
.

Therefore, it follows
∥
∥θ ′∥∥2

Hγ0 (0,T ;L2(�))
+ ‖θ(T )‖2

H1
0 (�)

� I1 + I2 + I3. (14)

Let us first estimate I1. Since Rh : H1
0 (�) → V̊h and −� : H2(�) → L2(�) are two

bounded linear operators, Lemma 5.6 implies

QM Rhu = RhQMu and QM (−�u) = −�QMu,

so that, by integration by parts and the definition of Rh , a straightforward calculation gives

I1 =
∫ T

0

(∇(I − RhQM )u,∇θ ′)
L2(�)

dt

=
∫ T

0

(∇(I − QM )u,∇θ ′)
L2(�)

dt

=
∫ T

0

( − �(I − QM )u, θ ′)
L2(�)

=
∫ T

0

(
(I − QM )(−�u), θ ′)

L2(�)
dt,

Therefore, Lemma 5.8 leads to

I1 � CM−1−2γ0 ‖(I − QM )�u‖H1+γ0 (0,T ;L2(�))

∥
∥θ ′∥∥

Hγ0 (0,T ;L2(�))
. (15)

Next let us estimate I2 and I3. The definition of QM gives

I2 = (
Dγ0
0+(u − QM Rhu)′, Dγ0

T−θ ′)
L2(�T )

= (
Dγ0
0+(u − Rhu)′, Dγ0

T−θ ′)
L2(�T )

,

so that the Cauchy–Schwarz inequality and Lemma 5.4 indicate

I2 � ‖(I − Rh)u‖H1+γ0 (0,T ;L2(�))

∥
∥θ ′∥∥

Hγ0 (0,T ;L2(�))
. (16)
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By the evident estimate
∥
∥u1 − uh,1

∥
∥
Hγ0 (0,T ;�T )

∼ ∥
∥u1 − uh,1

∥
∥
L2(�)

,

the Cauchy–Schwarz inequality and Lemma 5.4 also yield

I3 �
∥
∥u1 − uh,1

∥
∥
L2(�)

∥
∥θ ′∥∥

Hγ0 (0,T ;L2(�))
. (17)

Finally, by the Young’s inequality with ε, combining (14), (15), (16), (17) gives
∥
∥θ ′∥∥

Hγ0 (0,T ;L2(�))
+ ‖θ(T )‖H1

0 (�) � η1 + η2 + η3.

Since θ(0) = 0 implies

‖θ‖H1+γ0 (0,T ;L2(�)) ∼ ∥
∥θ ′∥∥

Hγ0 0,T ;L2(�))
,

it follows

‖θ‖H1+γ0 (0,T ;L2(�)) + ‖θ(T )‖H1
0 (�) � η1 + η2 + η3.

As (4), (5) are evident from the above estimate, this concludes the proof of Theorem 4.2. �
Proof of Corollary 4.1 It suffices to prove ηi � ξi for all 1 � i � 5, where {ηi }5i=1 are
defined in Theorem 4.2. Observing that η1 � ξ1 is a standard result [4], that η2 � ξ2 follows
from Lemma 5.9, and that η3 � ξ3 follows from Lemma 5.1, we only need to prove η4 � ξ4
and η5 � ξ5.

Let us first consider η4 � ξ4. By Lemma 5.4, the definition of QM implies

‖QM (I − Rh)u‖H1+γ0 (0,T ;L2(�)) � ‖(I − Rh)u‖H1+γ0 (0,T ;L2(�)) ,

so that Lemma 5.1 and [18, Lemma 22.3] yield

‖QM (I − Rh)u‖H1+γ0 (0,T ;L2(�)) � hm+1 ‖u‖H1+γ0 (0,T ;Hm+1(�)) .

Moreover, Lemma 5.9 gives

‖(I − QM )u‖H1+γ0 (0,T ;L2(�)) � CMγ0−1−r
∥
∥u′′∥∥

Br (0,T ;L2(�))
.

Consequently, η4 � ξ4 is a direct consequence of the inequality

‖(I − QM Rh)u‖H1+γ0 (0,T ;L2(�))

� ‖(I − QM )u‖H1+γ0 (0,T ;L2(�)) + ‖QM (I − Rh)u‖H1+γ0 (0,T ;L2(�)) .

Then let us consider η5 � ξ5. Since Lemma 5.6 gives RhQMu = QM Rhu, the definition
of Rh yields

‖(Rhu − QM Rhu)(T )‖H1
0 (�) � ‖(u − QMu)(T )‖H1

0 (�) ,

and hence Lemma 5.9 indicates

‖(Rhu − QM Rhu)(T )‖H1
0 (�) � CM−1.5−r

∥
∥u′′∥∥

Br (0,T ;H1
0 (�))

.

Therefore, as Lemma 5.1 implies

‖(I − Rh)u(T )‖H1
0 (�) � hm ‖u(T )‖Hm+1(�) ,

the estimate η5 � ξ5 follows from the inequality

‖(u − QM Rhu)(T )‖H1
0 (�)
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Table 1 The errors for Example
1 with M = 20

m 1/h ‖(u −U )(T )‖H1
0 (�)

‖u −U‖H1+γ0 (0,T ;L2(�))

Error Order Error Order

1 2 1.19e−01 – 8.68e−02 –

4 6.12e−02 0.95 1.94e−02 2.17

8 3.06e−02 1.01 4.52e−03 2.10

16 1.52e−02 1.01 1.10e−03 2.03

32 7.61e−03 1.00 2.74e−04 2.01

2 2 3.12e−02 – 1.18e−02 –

4 8.28e−03 1.91 1.63e−03 2.86

8 2.11e−03 1.97 2.12e−04 2.95

16 5.31e−04 1.99 2.67e−05 2.98

32 1.33e−04 2.00 3.35e−06 3.00

3 2 4.92e−03 – 1.50e−03 –

4 5.94e−04 3.05 9.13e−05 4.04

8 7.28e−05 3.03 5.51e−06 4.05

16 9.01e−06 3.02 3.36e−07 4.04

32 1.12e−06 3.01 2.07e−08 4.02

� ‖(I − Rh)u(T )‖H1
0 (�) + ‖(Rhu − QM Rhu)(T )‖H1

0 (�) .

This concludes the proof of Corollary 4.1. �

6 Numerical Experiments

This section performs some numerical experiments to demonstrate the high order accuracy
of the proposed algorithm in two dimensional case. Throughout this section we set γ := 1.5,
T := 1 and � := (0, 1)2.

Example 1 In this example the solution to problem (1) is

u(x, t) := t20x1x2(1 − x1)(1 − x2), (x, t) ∈ �T ,

where x = (x1, x2). Let us first consider the spatial discretization errors of the proposed
algorithm, and, to this end, we set M := 20 to ensure that the temporal discretization errors
are negligible compared with the former. The corresponding numerical results, presented in
Table 1, illustrate that the convergence orders of

‖(u −U )(T )‖H1
0 (�) and ‖u −U‖H1+γ0 (0,T ;L2(�))

are m and m + 1 respectively, which agrees well with Corollary 4.1. Then let us consider
the temporal discretization errors and hence set m := 4 and h := 1/32 to ensure that the
temporal discretization error is dominant. We plot the log-linear relationship between the
errors and the polynomial degree M in Fig. 1. As indicated by Corollary 4.1, these numerical
results demonstrate that the errors reduce exponentially as M increases.
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Fig. 1 The log-linear
relationship between the errors
and the polynomial degree M for
Example 1 with m = 4 and
h = 1/32
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Table 2 The errors for Example
2 with β = 2.5

M ‖(u −U )(T )‖H1
0 (�)

‖u −U‖H1+γ0 (0,T ;L2(�))

Error Order Error Order

7 3.80e−5 – 3.00e−03 –

9 1.60e−5 3.44 1.94e−03 1.73

11 6.32e−6 4.63 1.35e−03 1.81

13 2.77e−6 4.93 9.94e−04 1.84

15 1.38e−6 4.86 7.64e−04 1.85

17 7.40e−7 4.99 6.06e−04 1.84

Example 2 This example adopts

u(x, t) := t2 |1 − 2t |β x1(1 − x1) sin(πx2), (x, t) ∈ �T

as the solution to problem (1), where β is a positive constant. Here we only consider the
temporal discretization errors and hence setm := 6 and h := 2−4 to ensure that the temporal
discretization errors are dominant. The corresponding numerical results are presented in
Tables 2 and 3. Observing that

|1 − 2t |β ∈ Hβ+0.5−ε(0, T ) for all ε > 0,

by Corollary 4.1 and [18, Lemma 22.3] we have

‖(u −U )(T )‖H1
0 (�) � C(ε)M−β+ε,

‖u −U‖H1+γ0 (0,T ;L2(�)) � C(ε)M0.75−β+ε,

where C(ε) is a constant that depends on ε. Evidently, for the convergence order of
‖u −U‖H1+γ0 (0,T ;L2(�)), the numerical results are in agreement with Corollary 4.1. How-
ever, in this case, ‖(u −U )(T )‖H1

0 (�) reduces significantly faster than that predicted by
Corollary 4.1.

Example 3 This example investigates the temporal accuracy of the algorithm in the case that
the underlying solution has singularity at t = 0. The solution to problem (1) is

u(x, t) = tβx1x2(1 − x1)(1 − x2), (x, t) ∈ �T ,
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Table 3 The errors for Example
2 with β = 2.1

M ‖(u −U )(T )‖H1
0 (�)

‖u −U‖H1+γ0 (0,T ;L2(�))

Error Order Error Order

7 1.24e−5 – 1.05e−03 –

9 5.48e−6 3.24 7.49e−03 1.36

11 2.32e−6 4.28 5.64e−04 1.41

13 1.08e−6 4.56 4.45e−04 1.42

15 5.72e−7 4.46 3.63e−04 1.43

17 3.22e−7 4.59 3.03e−04 1.42

Table 4 The errors for Example
3 with β = 1.2

M ‖(u −U )(T )‖H1
0 (�)

‖u −U‖H1+γ0 (0,T ;L2(�))

Error Order Error Order

10 1.82e−06 – 1.20e−03 –

11 1.27e−06 3.78 1.10e−03 0.90

12 8.80e−07 4.20 1.02e−03 0.91

13 6.13e−07 4.53 9.47e−04 0.91

14 4.48e−07 4.23 8.85e−04 0.91

Table 5 The errors for Example
3 with β = 1.5

M ‖(u −U )(T )‖H1
0 (�)

‖u −U‖H1+γ0 (0,T ;L2(�))

Error Order Error Order

10 8.96e−07 – 4.18e−04 –

11 5.90e−07 4.37 3.62e−04 1.51

12 3.89e−07 4.80 3.18e−04 1.51

13 2.58e−07 5.11 2.81e−04 1.51

14 1.81e−07 4.82 2.51e−04 1.51

Table 6 The errors for Example
3 with β = 1.8

M ‖(u −U )(T )‖H1
0 (�)

‖u −U‖H1+γ0 (0,T ;L2(�))

Error Order Error Order

10 1.74e−07 – 6.48e−05 –

11 1.08e−07 4.97 5.29e−05 2.12

12 6.77e−08 5.39 4.40e−05 2.12

13 4.29e−08 5.70 3.71e−05 2.12

14 2.88e−08 5.40 3.17e−05 2.12

where β = 1.2, 1.5 or 1.8. We set m := 4 and h := 2−5, and display the correspond-
ing numerical results in Tables 4, 5 and 6. These numerical results illustrate that both
‖(u −U )(T )‖H1

0 (�) and ‖u −U‖H1+γ0 (0,T ;L2(�)) converge significantly faster than that
implied by Corollary 4.1.
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7 Conclusions

In this paper, a high accuracy algorithm for time fractionalwave problems is developed,which
adopts a spectral method to approximate the fractional derivative and uses a finite element
method in the spatial discretization. Stability and a priori error estimates of this algorithm
are derived, and numerical experiments are also performed to verify its high accuracy.

In future work, we shall consider the following issues. Firstly, the optimal error estimates
of ‖(u −U )(T )‖L∞(�) and ‖(u −U )(T )‖L2(�) are not established. Secondly, it is worth
applying the idea of approximating fractional differential operators of order γ (1 < γ < 2)
by spectral methods to other fractional differential equations, such as nonlinear fractional
ordinary differential equations and nonlinear time fractional wave equations.

Appendix A: Weak Solution

We call

u ∈ H (γ+1)/2(0, T ; L2(�)) ∩ L2(0, T ; H1
0 (�))

a weak solution to problem (1) if u(0) = u0 and
(
D(γ+1)/2
0+ (u − u0 − tu1), D

(γ−1)/2
T− v

)

L2(�T )
+ (∇u,∇v)L2(�T ) = ( f, v)L2(�T ) (18)

for all v ∈ H (γ−1)/2(0, T ; L2(�)) ∩ L2(0, T ; H1
0 (�)).

To prove that problem (1) admits a unique weak solution, we first consider the following
problem: given c0, c1 ∈ R and g ∈ L2(0, T ), seek y ∈ Hγ (0, T ) such that

Dγ
0+(y − c0 − c1t) + λy = g, (19)

where λ is a positive constant such that λ � 1.

Lemma A.1 Suppose that v ∈ H (γ+1)/2(0, T ) and Dγ
0+v ∈ L2(0, T ), then

‖v‖Hγ (0,T ) �
∥
∥Dγ

0+v
∥
∥
L2(0,T )

. (20)

Proof Since Dγ
0+v ∈ L2(0, T ), by [9, Lemmas A.4] we conclude that I γ

0+Dγ
0+v ∈ Hγ (0, T )

with ∥
∥I γ

0+Dγ
0+v

∥
∥
Hγ (0,T )

�
∥
∥Dγ

0+v
∥
∥
L2(0,T )

. (21)

A simple calculation yields

v = c0t
γ−2 + c1t

γ−1 + I γ
0+Dγ

0+v,

which indicates that c0 = c1 = 0 by the fact v ∈ H (γ+1)/2(0, T ). Then (20) follows from
(21). This completes the proof. �
Lemma A.2 Suppose that v ∈ H (γ+1)/2(0, T ) with v(0) = 0, then we have the following
properties.

(a) It holds that (

D
γ+1
2

0+ v, D
γ−1
2

T− v′
)

L2(0,T )

∼ ‖v‖2H (γ+1)/2(0,T )
. (22)
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(b) For any w ∈ H (γ−1)/2(0, T ), it holds that
(

D
γ+1
2

0+ v, D
γ−1
2

T− w

)

L2(0,T )

� ‖v‖H (γ+1)/2(0,T ) ‖w‖H (γ−1)/2(0,T ) . (23)

(c) For any ϕ ∈ C∞
0 (0, T ), it holds that

〈
Dγ
0+v, ϕ

〉 =
(

D
γ+1
2

0+ v, D
γ−1
2

T− ϕ

)

L2(0,T )

. (24)

Proof Let us first prove (a). Since v ∈ H (γ+1)/2(0, T ) and v(0) = 0, we have
∥
∥v′∥∥

H (γ−1)/2(0,T )
∼ ‖v‖H (γ+1)/2(0,T ) . (25)

In addition, a straightforward calculation gives

D
γ+1
2

0+ v = D2 I
3−γ
2

0+ I0+v′ = D2 I
5−γ
2

0+ v′ = D
γ−1
2

0+ v′. (26)

So (22) follows from (25), (26) and Lemma 5.4.
Then let us prove (b). In view of (25), (26), using Lemma 5.4 yields (23).

Finally we prove (c). Observe that (26) implies I
3−γ
2

0+ v′ ∈ H1(0, T ), and a simple com-
putation implies

(

I
3−γ
2

0+ v′
)

(t) �
t
1−γ
2

∥
∥v′∥∥

L2(0,t)

�(
3−γ
2 )

√
2 − γ

, 0 < t � T .

Thus,
(

I
3−γ
2

0+ v′
)

(0) = 0.

Using integration by parts gives

〈
Dγ
0+v, ϕ

〉 =
〈
D2 I 2−γ

0+ v, ϕ
〉

= (I 2−γ
0+ v, ϕ′′)L2(0,T ) = (I 3−γ

0+ v′, ϕ′′)L2(0,T )

= (I
3−γ
2

0+ v′, I
3−γ
2

T− ϕ′′)L2(0,T ) = −(DI
3−γ
2

0+ v′, I
3−γ
2

T− ϕ′)L2(0,T )

= (D
γ−1
2

0+ v′, D
γ−1
2

T− ϕ)L2(0,T ) = (D
γ+1
2

0+ v, D
γ−1
2

T− ϕ)L2(0,T )

for all ϕ ∈ C∞
0 (0, T ). This shows (24) and completes the proof of this lemma. �

Lemma A.3 Problem (19) has a unique solution y ∈ Hγ (0, T ), and y satisfies that y(0) =
c0 and

(

D
γ+1
2

0+ (y − c0 − c1t), D
γ−1
2

T− z

)

L2(0,T )

+ λ(y, z)L2(0,T ) = (g, z)L2(0,T ) (27)

for all z ∈ H
γ−1
2 (0, T ). Moreover,

‖y‖
H

γ+1
2 (0,T )

+ λ
1
2 ‖y‖L2(0,T ) � ‖g‖L2(0,T ) + λ

1
2 |c0| + |c1| . (28)
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Proof Set

b(z) := (g, z)L2(0,T ) +
(

D
γ+1
2

0+ (c1t), D
γ−1
2

T− z

)

L2(0,T )

− λ (c0, z)L2(0,T )

for all z ∈ H
γ−1
2 (0, T ). Since Lemma 5.4 implies b ∈ H

1−γ
2 (0, T ), Lemma A.2 and the

well-known Lax-Milgram Theorem guarantee the unique existence ofw ∈ H
γ+1
2 (0, T )with

w(0) = 0 such that
(

D
γ+1
2

0+ w, D
γ−1
2

T− z

)

L2(0,T )

+ λ(w, z)L2(0,T ) = b(z) (29)

for all z ∈ H
γ−1
2 (0, T ). Using Lemma A.2 gives

〈
Dγ
0+w, ϕ

〉 =
(

D
γ+1
2

0+ w, D
γ−1
2

T− ϕ

)

L2(0,T )

,

〈
Dγ
0+(c1t), ϕ

〉 =
(

D
γ+1
2

0+ (c1t), D
γ−1
2

T− ϕ

)

L2(0,T )

for all ϕ ∈ C∞
0 (0, T ), so that from (29) it follows that

Dγ
0+(w − c1t) = g − λ(w + c0).

Putting y := w + c0 gives

Dγ
0+(y − c0 − c1t) + λy = g,

and then by Lemma A.1 and A.2 it is evident that y is the unique Hγ (0, T )-solution to
problem (19). Also, y(0) = c0 is obvious, and (27) follows directly from (29).

Now let us prove (28). Firstly, substituting z := y′ into (27) and using integration by parts
yield

(

D
γ+1
2

0+ (y − c0 − c1t), D
γ−1
2

T− y′
)

L2(0,T )

+ λ

2
y2(T ) = λ

2
c20 + (g, y′)L2(0,T ).

Therefore, Lemma A.2, the Cauchy–Schwarz inequality and the Young’s inequality with ε

imply

‖y − c0‖2
H

γ+1
2 (0,T )

+ λy2(T ) � ‖g‖2L2(0,T )
+ λc20 + c21,

and so
‖y‖

H
γ+1
2 (0,T )

� ‖g‖L2(0,T ) + λ
1
2 |c0| + |c1| . (30)

Secondly, substituting z := y into (27) yields

λ ‖y‖2L2(0,T )
= (g, y)L2(0,T ) −

(

D
γ+1
2

0+ (y − c0 − c1t), D
γ−1
2

T− y

)

L2(0,T )

,

so that usingLemmas 5.4 andA.2, theCauchy–Schwarz inequality and theYoung’s inequality
with ε gives

λ ‖y‖2L2(0,T )
� ‖y − c0 − c1t‖

H
γ+1
2 (0,T )

‖y‖
H

γ−1
2 (0,T )

+ λ−1 ‖g‖2L2(0,T )
,
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which, together with (30), yields

λ
1
2 ‖y‖L2(0,T ) � ‖g‖L2(0,T ) + λ

1
2 |c0| + |c1| . (31)

Finally, collecting (30), (31) proves (28), and thus proves this lemma. �
Finally, by the above lemma and the Galerkin method, we readily conclude that problem

(1) admits a unique weak solution indeed. We summarize the result as follows.

Theorem A.1 The weak solution u of problem (1) satisfies that u(0) = u0 and that
(

D
γ+1
2

0+ (u − u0 − tu1), D
γ−1
2

T− v

)

L2(�T )

+ (∇u,∇v)L2(�T ) = ( f, v)L2(�T ) (32)

for all v ∈ H
γ−1
2 (0, T ; H1

0 (�)). Furthermore, we have

‖u‖
H

γ+1
2 (0,T ;L2(�))

+ ‖u‖L2(0,T ;H1
0 (�))

�
(

‖ f ‖L2(�T ) + ‖u1‖L2(�) + ‖u0‖H1
0 (�)

)

.
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