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Abstract This paper develops a high-accuracy algorithm for time fractional wave prob-
lems, which employs a spectral method in the temporal discretization and a finite element
method in the spatial discretization. Moreover, stability and convergence of this algorithm
are derived, and numerical experiments are performed, demonstrating the exponential decay
in the temporal discretization error provided the solution is sufficiently smooth.
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1 Introduction

Let] <y < 2andlet 2 ¢ R? (d = 2,3) be a polygon/polyhedron. This paper considers

the fractional wave problem

Dy (uw—ug—tu)) —Au=f inQx0,7),
u=0 ond2x(0,T7),
u(-,0) =ug 1in L2,
ui(-,0) =u; in Q,
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where ug € Hy(Q), u1 € L*(Q), and f € L*(Qr) with Q7 := Q x (0, T). Here u; is the
derivative of u with respect to the time variable ¢, and Dg " is a Riemann-Liouville fractional
differential operator.

The above problem is a particular case of time fractional diffusion-wave problems, which
have attracted a considerable amount of research in the field of numerical analysis in the past
twenty years. By now, most of the existing numerical algorithms employ the L1 scheme ([5,
11,17,27,28]), Griinwald-Letnikov discretization ([2,12,19,20,23,24]) or fractional linear
multi-step method ([8,21,26]) to discrete the fractional derivatives. Generally, for those
algorithms, the best temporal accuracy are O (t?) for the fractional diffusion problems and
O(z377) for the fractional wave problems, where  is the time step size.

Due to the nonlocal property of fractional differential operator, the memory and computing
cost of an accuracy approximation to a fractional diffusion-wave problem is significantly
more expensive than that to a corresponding normal diffusion-wave problem. To reduce
the cost, high-accuracy algorithms are often preferred, especially those of high accuracy
in the time direction. This motivates us to develop high-accuracy numerical algorithms for
problem (1). The efforts in this aspect are summarized as follows. Li and Xu [10] proposed
a space-time spectral algorithm for the fractional diffusion equation, and then Zheng et al.
[29] constructed a high order space-time spectral method for the fractional Fokker—Planck
equation. Gao et al. [7] proposed a new scheme to approximate Caputo fractional derivatives
of order y (0 < y < 1). Zayernouri and Karniadakis [25] developed an exponentially
accurate fractional spectral collocation method. Yang et al. [22] developed a spectral Jacobi
collocation method for the time fractional diffusion-wave equation. Recently, Ren et al. [14]
investigated the superconvergence of finite element approximation to time fractional wave
problems; however, the temporal accuracy order is only O(z377).

In this paper, using a spectral method in the temporal discretization and a finite element
method in the spatial discretization, we design a high-accuracy algorithm for problem (1)
and establish its stability and convergence. Our numerical experiments show the exponential
decay in the temporal discretization errors, provided the underlying solution is sufficiently
smooth.

The rest of this paper is organized as follows. Section 2 introduces some Sobolev spaces
and the Riemann—Liouville fractional calculus operators. Section 3 describes a time-spectral
algorithm and constructs the basis functions for the temporal discretization. Sections 4 and
5 establish the stability and convergence of the proposed algorithm, and Sect. 6 performs
some numerical experiments to demonstrate its high accuracy. Finally, Sect. 7 provides some
concluding remarks.

2 Notation

Let us first introduce some Sobolev spaces. For 0 < o < oo, as usual, H§ (0, T), H*(0, T),
H{ (2) and H*(2) are used to denote four standard Sobolev spaces; see [18]. Let X be a
separable Hilbert space with an inner product (-, -) x and an orthonormal basis {ex : k € N}.
For 0 < @ < o0, define

o0

H*0,T; X) := {v € L*(0,T; X) : Z (v, ek)x”%{a(o,r) <o
k=0
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and endow this space with the norm

) 1/2
1l 0,7 30) = (Z ||<~,ek>x||%,a<o,n) :

k=0

where L2(0, T; X) is an X-valued Bochner L? space. For v € H/ 0, T; X) with j € N>,
the symbol v/) denotes its jth weak derivative:

o0
v(j)(t) = Zc,ﬁj)(t)ek, 0<t<T,
k=0

where ¢ (-) := (v(-), ex)x and c,((j) is its jth weak derivative. Conventionally, v and v®

are also abbreviated to v” and v, respectively.
Moreover, for j € N we define

oo
B/(0,T: X) := {v € L*0,T;X): Y I enxly ) < oo}

k=0

and equip this space with the norm
00 1/2
. 2
13 0.7:x) == (Z ||(-,ek>x||B,(O,T)> :
k=0
where the space B/ (0, T') and its norm are respectively given by
. T 2
B0, T) := {u € L*0.T): / (T — 1) ’v(’)(t)’ df <00, 0<i < j}
0

and
1/2

OO ar

JoopT
I-lgi0.7) = Z/ t'(T —1)
i=0 70
Then we introduce the Riemann-Liouville fractional operators. Let X be a Banach space

and let L! (0, T'; X) be an X-valued Bochner L! space.

Definition 2.1 For 0 < o« < oo, define Ig_;_x, I;‘_X : LY0,T; X) - LY(0, T; X), respec-
tively, by

t
(Ig_;_xv) () == ﬁ/o (t — s)“_lv(s) ds, 0<t<T,

(I;ff(v) (1) = ﬁ /tT(s — % lu@s)ds, 0<r<T,
forallv e L'(0, T; X).
Definition 2.2 For j — 1 < o < j with j € N. ¢, define
pgX =Dl ¥,
DyX = (=1 DI T,

where D is the first-order differential operator in the distribution sense.
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Above I'(+) is the Gamma function, and, for convenience, we shall simply use 1(‘)"+, 15,
Dg, and D7_, without indicating the underlying Banach space X. Each v € L'(Qr) also
regarded as an element of LY(0, T; X) with X = LY(Q), and thus D8‘+v and D7_v mean

a, X
DO

v and D%_X v, respectively, for all 0 < o < oo.

3 Algorithm Definition

Let Iy, be a triangulation of €2 consisting of d-simplexes, and let / be the maximum diameter
of these simplexes in Kj,. Define

Vi i={vn € H'(Q) : vplx € Pu(K) forall K € Ky},
Vi = {vn € Hy(Q) : vhlk € Pu(K) forall K € Ky},

where m is a positive integer and P, (K) is the set of all polynomials defined on K of degree
< m. For j € N, define

Pi[0,T]1® \O/h = span{qv;, vy € \o/h, q € P;[0, T]},

where P;[0, T'] is the set of all polynomials defined on [0, T'] of degree < j. Moreover, we
introduce a projection operator Ry, : HO1 Q) — V, by

(VU = Rp)v, Vup) 5y =0, Yv € H) (), Yoy, € V.

LX(Q)
Here and in the rest of this paper, I denotes the identity operator.

Now, let us describe a time-spectral algorithm for problem (1) as follows: seek U €
Py[0, T] ® Vj, with U (0) = Ryug such that

(D(J)/E),_(U/ —un1), D¥O_V)L2(QT) + VU, VV)2qn = (s Ve )

forall Ve Py_1[0,T] ® ‘7;,, where M > 2 is an integer, yo := (y — 1)/2, and uj, 1 is the
L?(2)-projection of u1 onto V.

Remark 3.1 In “Appendix A” we define the weak solution of problem (1). The numerical
solution obtained by (2) is actually an approximation of the weak solution to problem (1).

Remark 3.2 Tt is well known that the solution to problem (1) generally has singularity in
time, caused by the fractional derivative. However, in view of the basic properties of the
operator D(})/ > itis anticipated that we can improve the performance of the above algorithm
by enlarging P[0, T] and Py;—1[0, T] by some singular functions, such as t? for Py [0, T]
and correspondingly Y~ for Py_1[0, T].

The remainder of this section is devoted to the construction of the bases of Py [0, T']
and Py;—1[0, T'], which is crucial in the implementation of the proposed algorithm. To this
purpose, let us first introduce the well-known Jacobi polynomials; see [1,16] for more details.

Given —1 < «, B < 00, the Jacobi polynomials {Jn(a’ﬂ) : n € N} are defined by

—1r @
) —w'tentByy 1 <t <1, neN,

(a,pB) — =B
IO = w O S

where

wr,S(t) = (1 _ [)r(l + [)S’
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for all —1 < r,s < +o00. They form a complete orthogonal basis of sza,ﬁ (—=1,1), the

weighted L2 space with weight function w®#.
Then we construct a basis {pi}f‘io of P[0, T] and a basis {qj}’;":_o1 of Py 1[0, T],
respectively, by '

po() =1,
pit) = ,< POQyT -1, 1<i <M,
and
g =1 @/T—1), 0<j<M—1.
By [3, Lemma 2.5] a straightforward computing yields
DY piYDY_q; (1) = 17T — ) 0¢;(0) + 1 (T = ) 70 g5(0),
forall0 <i < Mand 0 < j < M. Above ¢;;(t) and g;;(¢) are given respectively by
5ij (1) = Cij (J,-(g’fm J;_VO’O)) @t/T =),
Gy = Dij (41717 @y T - 1),
where
Cij = {2 L@+ -0 Djj = [(1)"(1+1 70) (.)< s b
TG 2 b Tawr Ciis 122

Then fo D0 D D;O g dt is evaluated numerically by a suitable Jacobi-Gauss quadrature
rule.

4 Main Results

Let us first introduce the following conventions: # and U are the solutions to problem (1)
and (2), respectively; unless otherwise specified, C is a generic positive constant that is
independent of any function and is bounded as M — o0; a < b means that there exists a
positive constant ¢, depending only on y, T', €2, m or the shape regular parameter of K, such
that a < cb; the symbol a ~ b means a < b < a. The above shape regular parameter of Ky,
means

max {hx/px : K € Kp},

where h g is the diameter of K, and pg is the diameter of the circle (d = 2) or ball (d = 3)
inscribed in K.

Then we introduce an interpolation operator. Let X be a separable Hilbert space and let
Puy[0, T; X] be the set of all X-valued polynomials defined on [0, 7] of degree < M. Define
the interpolation operator

OX tH™(0,T; X) — Pyl0, T; X]
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as follows: for each v € H!T%(0, T; X), the interpolant Qﬁv fulfills
(2¥v) © =),
T /
/ DY (v—03v) DI gdr =0, Vg € Py_1[0,7].
0

For convenience, we shall use Q; instead of Qﬁ when no confusion will arise.

Remark 4.1 Let {e} : k € N} be an orthonormal basis of X. For any v € H" (0, T'; X), the
definition of H¥ (0, T; X) implies that

(v,ex)x € H"(0,T) foreachk € N,

and hence, as Lemma 5.4 (in the next section) indicates

R
H D" (v, ek)x‘

~ V,eér)x b )
0.1 (v, ex)x | avo 0, 1)

it is evident that
1

5 2
~ ||U||HV0(0,T;X)~

o
70.X _ 2 : 70.R
HD0+ v’ L20,T:X) ( HDO* (v’ek)X’
v k=0

Remark 4.2 Since Q]I%I is well-defined by Lemma 5.4, Ql)f,[ is evidently also well-defined
and

L2(0,T)

oo
Oyv=>_ 0% e)xer. Yve HT0,T;:X).
k=0

Furthermore, we can redefine Qﬁ equivalently as follows: foreachv € H v 0, T; X), the
interpolant Q% v fulfills

(e¥v) © = v ),
T /
/ <Dg1 (v-0v) ,D;O_q> dt =0, Vge Py_i[0,T; X].
0 X

Finally, we are ready to state the main results of this paper as follows.
Theorem 4.1 Problem (2) has a unique solution U. Moreover,

WU g1+r00,7:2(2)) T ”U(T)”H(}(Q)

(3)
S ”u()”Hd(Q) + lluillpe) + 1 2 -
Theorem 4.2 Ifu € H* (0, T; H} () N H*(Q)), then
[l — U||H1+Vo(o,T;L2(Q)) S+ 403+ na, “4)
||(M—U)(T)||H01(g)§U1+772+773+775, Q)]

where
n = Hul - uh,l ||L2(Q) )

n = CM_I_ZVO (I — QM)A””HHVO((),T;LZ(Q)) ,
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n3 = (I = Rull gi+w 0,7:12(02)) »
na = (I = QuRp)ull gi+v 0,7:202)) »
ns = [l — QuRu)(T) |l i o -
Corollary 4.1 If
u e HX0, T HL() 0 HX(Q) N HI 0, T; H"™(Q),
u” € B"(0, T; Hi () N H*(Q)),
then
lu — Ullgron .72 S & +& +8 + &, (6)
I =DMl S &+ +8+6, @)
where r € N and

1
5] = ]’lm+ ||M1 ||Hm+l(Q) s
£ = CM 2" ||u|

B"(0,T; H2(Q)) *
53 = hm+l ||u||H1+VO(O,T;H'"+l(Q)) )

‘,:_.4 — CMyo—l—r ”u”‘
55 — CM—LS—r ||u//|

+1
B7(0,T;L2(RQ)) + " ||M ” H1+VO(0,T;H’"+1(Q)) ’

B’(O,T;H& (Q)) + h" ||M(T)||Hm+l(g) .

S Proofs
5.1 Preliminaries
Lemma 5.1 Ifv € H}(Q) N H"(Q), then
(I = Rp)vllp2q) + A I — Rh)v”HOl(Q) S s Il gm+1 gy -
Lemma 5.2 [fv € H*(0, T) witha > yy, then

inf v — < CMP™Yv]| ge .
gePui0.T] Il 6]||1-1V0(0,T) S ol & 0,T)

Ifv e HX0, T) such that v"' € B (0, T) with j € N, then

inf lv— ¢I||H1+V0((),T) < cmr=1=i ”U”

qePy—1[0.T] |’B~/(0.T) )

Lemma 5.3 The following properties hold:
e IfO0 <, B < 00, then

B +B B +B
I§ dy, =197, 1§ 17 =137,

e I[f0 <o < B < oo, then

DF

bl =D Dh_1g =Dhe.

0+
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e If0 <o < oo, then

1564 v] 20,y < C W2y F-v] 20,0y < € IVll20 1) »

where C is a positive constant that only depends on a and T .
o If0 <o <ooandu,v € L*(0, T), then

(I&ru, U)LZ(O,T) = (M, I%iv)LZ(OyT).

Lemma 5.4 We have the following properties.
o Ifve H¥(O,T) with0 < a < 1/2, then

vl e o,y ~ ||Dg+v||L2(O,T) ~ | D%JJ“LZ(O,T) ~ \/(D8‘+v, D%—U)Lz(oj)-

e Ifv,we H*(,T) with0 < @ < 1/2, then
(DG v, DF_w) 20 1) S Wl a0, 1) 1wl e, 1) -
Above, the implicit constants are only depend on o and T .
Lemma 5.5 Ifv e H?(0,T) and w € H'(0, T), then
(DG4 (v = v(©0) = 10'(0), w) 5 ) = (P (V' = V' (0), DF_w) 5 1 -

Lemma 5.6 Let X and Y be two separable Hilbert spaces, andlet A : X — Y be a bounded

linear operator. Ifv € H'T70(0, T; X), then
AQ¥ v =0} Av.

Lemma 5.1 is standard (see [4]), and Lemma 5.3 follows from [16, Theorems 3.35-3.37]
and the basic properties of the interpolation spaces. The proof of Lemma 5.3 is included in
[13,15], and for convenience this lemma will be used implicitly in the forthcoming analysis.
Lemma 5.4 is a direct consequence of [6, Lemma 2.4, Theorem 2.13 and Corollary 2.15],
and Lemma 5.5 follows from [10, Lemma 2.6]. Finally, by Lemma 5.4 and the standard
properties of the interpolation spaces and the Bochner integrals, a rigorous proof of Lemma

5.6 is tedious but straightforward, and so it is omitted here.
Lemma 5.7 Ifv € L*>(0, T), then

H I%}f)v

< |vll;2 .
0T < Ivllz20,1)

Moreover, if v e H"(0, T), then

2
Hl Yo

S .
W o S Plamo.n

Lemma 5.8 Ifv e H2(0,T) and w € HY(0, T), then
(I = Qv w) 207y S CMT' 2N = Quvll oo, 1wl oo, -
Lemma 5.9 Ifv e H>(0, T) and v" € B/ (0, T) with j € N, then
(I — QM)U||H1+V0(() ) N (8.7 L Hv””B/(O,T) )
I = Quvll2o.ry S CM > 0" g0 p -

I = Qm)vllcpory S CM™17 ”UH“BJ'(O,T)'

®

(€))

(10)

(an
(12)
13)
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Proof of Lemma 5.7 Define
1
I'(y0)

where v is extended to R\ (0, T') by zero. Since 0 < yg < 0.5, a routine calculation yields
w e LZ(R), and then [15, Theorem 7.1] implies

w(t) ;=

o0
/ (s — )" lus)ds, —oo <t < o0,
t

Fw(§) = (—i§) " Fv(), —o0 <& < oo,

where F : L2(R) — L%(R) is the Fourier transform operator, and i is the imaginary unit.
Therefore, the well-known Plancherel Theorem yields

lwllgnomy S vllz2o,7)
and hence
70
” IT—v”HVo(o,T) 5 ||v”LZ(O,T)-

Furthermore, if v € HO1 (0, T) then

||I}/O*UHH1+VO(O,T) 5 ”v”HO](O'T) )

by the evident equality (/)" v)’ = I° v'. Consequently, since H]"(0, T) coincides with
HY (0, T) with equivalent norms, applying [18, Lemma 22.3] gives

20
HIT_ v

‘HZVO(O,T) = “ 1}/0—I¥0—v“1-12v0(0j) S ”IYO—U” H0,T) S lvllr20,7) 5

namely estimate (8). Analogously, we can obtain (9) and hence conclude the proof of the
lemma. O

Proof of Lemma 5.8 Let g := (I — Qpr)v. Since a straightforward calculation yields

A
_ 0 _
(I[;+Vog/) (r) = F(%—)yo)tlim + (102+V0g//) ), 0<t<T,

the fact yo < 0.5 indicates that Iy, g’ € H'(0,T) and (I, "g')(0) = 0. Then using
integration by parts gives

/
D o, 11+V0w) _ <(11*V0 /) ’ 11+)fow>
( 0+8 > Ir— L20.T) 0+ & T— 2o

_ =y s (7140, Y

—_(0+ g’(IT— w))
/

= (g ) IT*w)LZ(O,T) :

Hence, as the definition of Qs implies g(0) = 0, we obtain

I=vo s 70
= g, 1 _w)
L20.7) ( 0+ ="Jr20.1)

w s yl+wn (o _
(Do+8 Ap_ w)LQ(O’T) = (8 Ir-w) 129 1) = (8 W)120,7)
which, combined with the evident equality
17w = D 10w,

yields

_(pv o pv j1+2n
(s- w)LZ(o,T) = (Do+g Dy Iy_ w)LZ(o,T)'
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Therefore, Lemma 5.4, the definition of Qs and the Cauchy—Schwarz inequality imply

. 2
Jw < inf H11+ Yo — H )
(¢ )LZ(O,T) S ”g”HHVO(O’T)quM,|[0,T] T U v 0.1
Clearly, to prove (10), by Lemma 5.2 it suffices to show
e < Tl
Hl+31/0(0 T) HY(0.T) -
Therefore, since
1772 ] G -
H't3%0,T) H3(0,T)
using Lemma 5.7 completes the proof of Lemma 5.8. O

Proof of Lemma 5.9 Let us first consider (11). For each p € Py 1[0, T], by Lemma 5.4,
the definition of Qs and the Cauchy—Schwarz inequality, we obtain

”(QMU)/ - p”iIVO(O T)
~ (DI ((Quv) = p). DY (@) = 1))
= (D' = p). DY ((Quv) - p))

S H v - P” H0(0,T) H(QMU)/ - pHHVO(O,T) :

L2(0,T)

L2(0,T)

It follows that

”(QMU)/ - P”Hm(o,T) S ||v’ - p”HVO(O,T) ’

and so

” (v — QMU),HHVO(O,T) i~ H”/ - pHHVO(O,T) :
Therefore, as the fact (v — Qpv)(0) = 0 implies
I = @anvll gren oy ~ [0 = Qw0 || oo 0.7

using Lemma 5.2 proves (11).
Next let us consider (12, 13). Proceeding as in the proof of Lemma 5.8 gives

I = Qa)vliZa 0.1

142
I = @l it [ = 0w —al

SeM A - QM>v||H1+y0(O,T) I = Qm)vll20.7) -
which proves (12) by (11). Then, combining (11,12) and applying [18, Lemma 22.3] yield
I = Qmwlmor SCM™ V" | iz
so that (13) follows from (12) and the Gagliardo—Nirenberg interpolation inequality, namely,

This concludes the proof of Lemma 5.9. O
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Remark 5.1 Assume that Py[0, T] and Pys—1[0, T'] are respectively replaced by
Pyl0, T]+ {cwH'ZV0 i c€ ]R} and Py 1[0, 7]+ {sz)/o i ce€ ]R} ,

where w(t) ;=T —t, 0 <t < T.Foreach v € H'*7(0, T), the definition of Q implies

T
/0 DY (v — Quv) DP_w* dr =0,

and then, as in the previous remark, a straightforward computing yields
(v —Onv)(T) =0.
Correspondingly, we can improve Corollary 4.1 by
&s == h" |u(T)|l gm+1 () -

5.2 Proofs of Theorems 4.1 and 4.2 and Corollary 4.1

Proof of Theorem 4.1 Since (3) contains the unique existence of U, it suffices to prove the
former. Observe first that integration by parts yields

2(VU, VU 1aap) = IV D ) = WO o)

and that Lemma 5.4 implies

”D()J/O+”h,1 HLZ(QT) ~ ””hJ HHVO(O,T;LZ(Q) ~ ””hJHU(Q)’

2 2
(D(})/OJrU/’ Dio—Ul)ﬂ(szT) ~| U/”HVO(O,T;LQ(Q)) ~ ”D;/'O—U/”LZ(QT)'

Moreover, the fact that iy, | is the LZ(Q)-projection of u1 onto Vj, gives

ln 1]l 2 < llrll 2y -

Consequently, by the Cauchy—Schwarz inequality and the Young’s inequality with €, inserting
V := U’ into (2) yields

” U/HHVO(O,T;LZ(Q)) + ”U(T)”Ho] ()
SNUO g + luillzz@) + 1 2y -

which, combined with the estimate

U 1w 0.7:22) ~ IV Oz + U | o 0,722 -

indicates
100 7:220 + 10t o)
S ||U(0)||HOI(Q) +lluillp2) + 1 2 -
As the definition of Rj, and the fact U (0) = Rpuq imply
1T O 109 < o]l 3 ey

this proves (3) and thus concludes the proof of Theorem 4.1. O
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Proof of Theorem 4.2 Set p :== (I — QuRp)u and 6 := U — Qpy Rjpu. By Lemma 5.5 and
integration by parts, using (1) gives

(Dgs ' = 1), D 0') 12 gy + (Vi 81 120y = (f. ) 120
which, together with (2), yields
(D}0'. DY 0))

v2iap (V0. V) gy =T + 1+,

where
I == (Vp, Vg/)LZ(QT),
— (DY %
I := (Dg.p'. DTO*GI)L%QT) ’
I3 := — (D} (w1 — up,1), D0

+ LX(Qr)*

Moreover, the fact 8(0) = 0 gives

1
/ _ 2
(Vo, Vo )LZ(QT) = E HQ(T)”HO‘(Q)
by integration by parts, and Lemma 5.4 implies
Y0 Y0 712
(D0+9,7 DTfGI)LQ(QT) ~ ”9 ||HVO(0,T;L2(S2))‘
Therefore, it follows
12 2
o HHVO(O,T;U(Q)) + HO(T)”H(}(SZ) Shith+L (14)

Let us first estimate I;. Since Ry, : H} () — Vj; and —A : H>(Q) — L*(RQ) are two
bounded linear operators, Lemma 5.6 implies

OuRyu =R, Opu and Quy(—Au) = —-AQpu,

so that, by integration by parts and the definition of Ry, a straightforward calculation gives
T
I =/ (VU = Ry Qu)u, VO') 5, dt
0

T

= /O (VU = Qm)u, VO') 5 dt
T

= ‘/0 (_ A(I - QM)uve/)L2(Q)

T
- /0 (1 = Q) (—Au), ) 12 g i,
Therefore, Lemma 5.8 leads to

I < (of7 el I - QM)AMHHHVO(O,T;LZ(Q)) ”9,HHV0(O,T;L2(Q)) . (15)

Next let us estimate I, and I3. The definition of Qs gives
_ (pYo Y0 _ (W 70
]12 - (D0+(I/l - QMRhu)/v DT—H/)L2(QT) - (D0+(Lt - Rhl/l)/, DT—Q/)LZ(QT) )
so that the Cauchy—Schwarz inequality and Lemma 5.4 indicate

L S I = Ruull g 0, 7:12(0)) Hg/”HVO(O,T;LZ(Q)) : (16)
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By the evident estimate

o

H”l - uhsl”HVO(O,T;QT) ~ | - ”hJ”LZ(Q) ’

the Cauchy—Schwarz inequality and Lemma 5.4 also yield

I3 < [Jur — un | (17)

/7
L2(Q) H9 ”HVO(O,T;Lz(Q))'
Finally, by the Young’s inequality with €, combining (14), (15), (16), (17) gives

||9/||HVO(O,T;L2(Q)) + ”6(T)”H(% (Q) S m + n2 + n3.

Since 6(0) = 0 implies

”9 ||H1+V0 0,T;L%(Q)) ~ ”9/ H HY00,T;L2(Q)) ’

it follows
||9||H1+V0(0,T;L2(Q)) + ||9(T)||H01 Q) S+ 2+ ns.

As (4), (5) are evident from the above estimate, this concludes the proof of Theorem 4.2. O

Proof of Corollary 4.1 1t suffices to prove n; < & forall 1 < i < 5, where {ni}le are
defined in Theorem 4.2. Observing that n; < &) is a standard result [4], that 1, < &, follows
from Lemma 5.9, and that n3 < &3 follows from Lemma 5.1, we only need to prove n4 < &4

and ns < &s.
Let us first consider n4 < &;. By Lemma 5.4, the definition of Qj; implies

O — Rh)M”HHVO(o,T;LZ(Q)) S - Rh)”||H1+V0(O,T;L2(Q))’
so that Lemma 5.1 and [18, Lemma 22.3] yield

hm-H |

1OmI — Rh)’/l||H1+V0(o,T;L2(Q)) S |M||H1+V0(Q,T;Hm+l(gz)) :

Moreover, Lemma 5.9 gives

7 — QM)M”HHVO(Q,T;LZ(Q)) < cMmro—1=r ||u”|

B"(0,T;L%(Q)) *
Consequently, n4 < &4 is a direct consequence of the inequality
I — QMRh)u||H1+Vo (0,T;L2(R))
<A - QM)”||H1+V0(0,T;L2(Q)) +1Om — Rh)“||H1+yo(0,r;L2(Q))-

Then let us consider n5 < &s. Since Lemma 5.6 gives Rj, Oy = Q p Rpu, the definition
of Ry, yields

I (Rute = Ot Rt (T 1 ) < 1t = Qi) (Dl 1

and hence Lemma 5.9 indicates

—1.5—r ||, 1
IRy = @ Ri) (Dl g @y S CM™" | g 0.7 2 -
Therefore, as Lemma 5.1 implies
I = RiU(T) g1 gy S 1" (T | g

the estimate n5 < &s follows from the inequality

I = Qum Rpu) (D) ) )
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e oo BRIy =D @llgrgy = Ul 2
Error Order Error Order
1 2 1.19e—-01 - 8.68e—02 -
6.12e—02  0.95 1.94e—-02 2.17
3.06e—02 1.01 4.52e—03  2.10
16 1.52e—02 1.01 1.10e—03  2.03
32 7.61e—03  1.00 2.74e—04  2.01
2 2 3.12e—02 - 1.18e—02 -
8.28e—03 191 1.63e—03 2.86
8 2.11e—-03 197 2.12e—04 295
16 5.31e—04 1.99 2.67e—05 2.98
32 1.33e—04  2.00 3.35e—06  3.00
3 2 4.92¢e—-03 - 1.50e—03 -
5.94e—04  3.05 9.13e—05 4.04
8 7.28e—05 3.03 5.51e—06 4.05
16 9.0le—06  3.02 3.36e—07 4.04
32 1.12e—06  3.01 2.07e—08 4.02
< = RT3 gy + IRt = Qg Ryt) (Tl 1 -
This concludes the proof of Corollary 4.1. O

6 Numerical Experiments

This section performs some numerical experiments to demonstrate the high order accuracy
of the proposed algorithm in two dimensional case. Throughout this section we set y := 1.5,
T :=1and Q:= (0, 1)2.

Example 1 In this example the solution to problem (1) is
u(x, 1) = xn0 —x)(1 —x), (.0 €Qr,

where x = (x1, x2). Let us first consider the spatial discretization errors of the proposed
algorithm, and, to this end, we set M := 20 to ensure that the temporal discretization errors
are negligible compared with the former. The corresponding numerical results, presented in
Table 1, illustrate that the convergence orders of

Il (u — U)(T)”HOI(Q) and |ju — U”]—[“H’O(()_T;LZ(Q))

are m and m + 1 respectively, which agrees well with Corollary 4.1. Then let us consider
the temporal discretization errors and hence set m := 4 and & := 1/32 to ensure that the
temporal discretization error is dominant. We plot the log-linear relationship between the
errors and the polynomial degree M in Fig. 1. As indicated by Corollary 4.1, these numerical
results demonstrate that the errors reduce exponentially as M increases.
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Fig. 1 The log-linear
relationship between the errors
and the polynomial degree M for
Example 1 with m = 4 and
h=1/32

errors in logscale

| —o— H{(9)

—x— H1+t70 (0, T; L2(Q))

1

1

| |

9

11 13

15 17

polynomial degree M

Table 2 The errors for Example M
2with g =2.5

||Il - U”HlerO(O,T;Lz(Q))

Error Order Error Order
7 3.80e—5 - 3.00e—03 -
9 1.60e—5 3.44 1.94e—03 1.73
11 6.32e—6 4.63 1.35e—03 1.81
13 2.77e—6 4.93 9.94e—04 1.84
15 1.38e—6 4.86 7.64e—04 1.85
17 7.40e—7 4.99 6.06e—04 1.84
Example 2 This example adopts
u(x,t) =211 =21 x1(1 = x)) sin(rxa), (x,1) € Qr

as the solution to problem (1), where § is a positive constant. Here we only consider the
temporal discretization errors and hence set m := 6 and & := 2~* to ensure that the temporal
discretization errors are dominant. The corresponding numerical results are presented in

Tables 2 and 3. Observing that

1 -2t € HPFOS=€(0, T) foralle > 0,

by Corollary 4.1 and [18, Lemma 22.3] we have

Il = (D)l @) S C@OMPFE,

lu — U||H1+70(0,T;L2(Q)) S Cle)

M0.75—ﬂ+€ ,

where C(e€) is a constant that depends on €. Evidently, for the convergence order of
l — Ull g1+ O.T:L2(2))’ the numerical results are in agreement with Corollary 4.1. How-
ever, in this case, |[(u — U)(T)|| HL (@) reduces significantly faster than that predicted by

Corollary 4.1.

Example 3 This example investigates the temporal accuracy of the algorithm in the case that
the underlying solution has singularity at t = 0. The solution to problem (1) is

u(x, 1) = tPx100(1 — x1)(1 — x2),

@ Springer
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Table 3 The errors for Example M

2 with § = 2.1 Il (u —U)(T)IIHol(Q) e = Ull 149 0.7: 12(02))
Error Order Error Order

7 1.24e—5 - 1.05e—03 -

9 5.48¢e—6 3.24 7.49e—03 1.36
11 2.32e—6 4.28 5.64e—04 1.41
13 1.08e—6 4.56 4.45e—04 1.42
15 5.72e—7 4.46 3.63e—04 1.43
17 3.22e—17 4.59 3.03e—04 1.42

Table 4 The errors for Example M

Swith f— 19 I = DDl g ) = Ull 10 0,722 (2
Error Order Error Order
10 1.82e—06 - 1.20e—03 -
11 1.27e—06 3.78 1.10e—03 0.90
12 8.80e—07 4.20 1.02e—03 0.91
13 6.13e—07 4.53 9.47e—04 0.91
14 4.48e—07 423 8.85e—04 091

Table 5 The errors for Example M

3 with B = 1.5 ll(u — U)(T)IIH(} @ lu = Ul y1+v0.7: 1202
Error Order Error Order
10 8.96e—07 - 4.18e—04 -
11 5.90e—07 4.37 3.62e—04 1.51
12 3.89e—07 4.80 3.18e—04 1.51
13 2.58e—07 5.11 2.8le—04 1.51
14 1.81e—07 4.82 2.51e—04 1.51

Table 6 The errors for Example M

3 with B = 1.8 ll(u — U)(T)IIH(} @ lu = Ull 149 0.7: 1202y
Error Order Error Order
10 1.74e—07 - 6.48¢—05 -
11 1.08e—07 4.97 5.29e—05 2.12
12 6.77e—08 5.39 4.40e—05 2.12
13 4.29e—08 5.70 3.71e—05 2.12
14 2.88e—08 5.40 3.17e—05 2.12

where 8 = 1.2, 1.5 or 1.8. We set m := 4 and h := 27>, and display the correspond-
ing numerical results in Tables 4, 5 and 6. These numerical results illustrate that both
| (u — U)(T)”HOI(Q) and |lu — U||H1+V0(0.T;L2(Q)) converge significantly faster than that
implied by Corollary 4.1.

@ Springer



1180 J Sci Comput (2018) 77:1164-1184

7 Conclusions

In this paper, a high accuracy algorithm for time fractional wave problems is developed, which
adopts a spectral method to approximate the fractional derivative and uses a finite element
method in the spatial discretization. Stability and a priori error estimates of this algorithm
are derived, and numerical experiments are also performed to verify its high accuracy.

In future work, we shall consider the following issues. Firstly, the optimal error estimates
of [[(u — U)(T)llpe(q) and [|(u — U)(T)|l2(q) are not established. Secondly, it is worth
applying the idea of approximating fractional differential operators of order y (1 < y < 2)
by spectral methods to other fractional differential equations, such as nonlinear fractional
ordinary differential equations and nonlinear time fractional wave equations.

Appendix A: Weak Solution

We call
ue HY™D20, T, L*(Q)) N L*(0, T; HY ()
a weak solution to problem (1) if u(0) = ug and

1)/2 —1)/2
(D(()T' 2w —ug — tuy), DY~V v) VY g = (V) 20, (18)

L2(Qr

forallv e HY=1/2(0, T; L2(Q)) N L*(0, T; H}(Q)).
To prove that problem (1) admits a unique weak solution, we first consider the following
problem: given cp, c; € Rand g € L2(0, T), seek y € HY (0, T) such that

Dl (y—co—cit) +ry=g, (19)
where A is a positive constant such that A > 1.

Lemma A.1 Suppose that v € HY+D/20, T and D(])/Jrv e L%(0, T), then
”U”HV(O,T) S ||Dg+v||L2(O,T) . (20)

Proof Since D, v € L*(0, T), by [9, Lemmas A.4] we conclude that I}, D, v € H (0, T)
with
Y Y Y

||IO+D0+U||HV(0,T) 5 ”D0+v”L2(0,T)' 2Dh
A simple calculation yields

v=cot’ F+ct? !+ IngDngv,
which indicates that cg = ¢; = 0 by the fact v € HY+D/2(0, T). Then (20) follows from
(21). This completes the proof. O
Lemma A.2 Suppose that v € HYTD/2(0, T) with v(0) = 0, then we have the following

properties.

(a) It holds that

i rt / 2
(Dof_ v, DTZ_ v ) ~ ||U||H<y+1>/2(0!T) . (22)
L2(0,T)
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(b) Forany w € HY=Y/2(0, T), it holds that
P y=t
(D(Hz_ v, DTZ_ w) 5 ||U||H(V+l)/2(0,T) ||w||H<yfl)/2(o,T) . (23)
L2(0,T)
(c) Forany ¢ € C°(0, T), it holds that
(Dgyv.9) = <D0+ v, D% v)) : 24)
L2(0,T)

Proof Let us first prove (a). Since v € HY+D/20, T) and v(0) = 0, we have

”U/”Hw—l)/z(oj) ~ vl go+nro.r) - (25)

In addition, a straightforward calculation gives

v+l ) 3—y P2 r-1
Dy; v= DI} lpsv' = DI, 2 v' =Dy v (26)

So (22) follows from (25), (26) and Lemma 5.4.
Then let us prove (b). In view of (25), (26), using Lernma 5.4 yields (23).

Finally we prove (c). Observe that (26) implies Io i v € H'(0, T), and a simple com-
putation implies

l—y
3y 12 ||V
(Ioj v/>(t)<3_!|/”L(0’t), 0<r<T.
M(=")V2 -y

(103? 1/) 0) =0.

(Dfyv.0) = (D215 v.0)

Thus,

Using integration by parts gives

2 3
= Iy, "v. 920 = U5V, </’”)L2(0 T)
3y 3y
A2 920 = (D10+ v, 1 ¢)L2(o T)
y+1 y—1

r-1 r-l vt r-l
= (DO_,’Z_ v’, DTZ_ (p)Lz(O,T) = (DO_,’z_ v, DTZ_ (p)LZ(O,T)

3y
= Up{ V'
forall ¢ € Cgo (0, T). This shows (24) and completes the proof of this lemma. ]

Lemma A.3 Problem (19) has a unique solution y € HY (0, T), and y satisfies that y(0) =
co and

y+l1 y—1
<D0+ (y —co —ci1), DT Z) + A0, D2 = (& Do,y (27)
L2(0,T)

forall 7 € HVTA (0, T). Moreover,

1 1
Iyl var + A2 Iyl20,m S g2,y +22 leol + el (28)

H™Z (0.7T)
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Proof Set

v+l

r4l y=1
b(2) == (g, D201 + (Doi (c1t), D2 Z) — A(co, D201
L2(0,7)

for all z € H%l (0, T). Since Lemma 5.4 implies b € HPTV (0, T), Lemma A.2 and the

1
well-known Lax-Milgram Theorem guarantee the unique existence of w € H L (0, T) with
w(0) = 0 such that

y+1 y—1
<D0+ w, DT Z) + k(w, Z)LZ(O,T) = b(Z) (29)
L2(0.T)
forall z € HS (0, T). Using Lemma A.2 gives
y = o
<D0+w,<p>= <D0+ w, Dy </’> ,
L2(0,T)

v+l
(DY, (c11), ¢) = (Doj (c11). Dy7 w)
L2(0,T)

for all ¢ € C3°(0, T), so that from (29) it follows that
D())/+(w —c1t) = g — AMw + cp).
Putting y := w + ¢q gives
D (y—co—cit) + Ay =g,

and then by Lemma A.1 and A.2 it is evident that y is the unique HY (0, T')-solution to
problem (19). Also, y(0) = cp is obvious, and (27) follows directly from (29).

Now let us prove (28). Firstly, substituting z := y’ into (27) and using integration by parts
yield

y+1 )\ k
(DOJr (y —co — cit), DT y ) + 5y T = fco + (&, YD 1200.1)-
L2(0,T)

Therefore, Lemma A.2, the Cauchy—Schwarz inequality and the Young’s inequality with €
imply

2 2 2 2
ly = col® et o gy T RTS8y A+ e,
and so 1
”y||HL+fl(0,T) S llgll20.7) + A2 leol + el (30)

Secondly, substituting z := y into (27) yields
2 ril vl
A ||Y||L2(0’T) = (ga y)Lz(O,T) - (DQ_;,Z_ (y —Co — Clt)v DTZ_ y) 5
L2(0.T)

sothatusing Lemmas 5.4 and A.2, the Cauchy—Schwarz inequality and the Young’s inequality
with € gives

< — o — -1 2
Myl Sy =co=eitll v s +37 gl
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which, together with (30), yields

1 1
A2 Iyli20,7) S g2, 1) + A2 leol + letl (1)

Finally, collecting (30), (31) proves (28), and thus proves this lemma. m]

Finally, by the above lemma and the Galerkin method, we readily conclude that problem
(1) admits a unique weak solution indeed. We summarize the result as follows.

Theorem A.1 The weak solution u of problem (1) satisfies that u(0) = ugy and that

r+l pd
<D042- (u —uog —tuy), D2 v) + (Vu, Vu) 20,y = (F; V) 12000 (32)
L2(Qr)
-1
forallv e H'7T 0, T; HOl (2)). Furthermore, we have

Nl yar +llullp 20 7. 41 §<\|f\| 2 +lluillp2q) + luoll 41 )
a5 0.2 L2(0.T: HY () L2@r) L2(%) HY (<)
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