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Abstract This paper presents an asymptotic preserving (AP) all Mach number finite vol-
ume shock capturing method for the numerical solution of compressible Euler equations
of gas dynamics. Both isentropic and full Euler equations are considered. The equations
are discretized on a staggered grid. This simplifies flux computation and guarantees a nat-
ural central discretization in the low Mach limit, thus dramatically reducing the excessive
numerical diffusion of upwind discretizations. Furthermore, second order accuracy in space
is automatically guaranteed. For the time discretization we adopt an Semi-IMplicit/EXplicit
(S-IMEX) discretization getting an elliptic equation for the pressure in the isentropic case
and for the energy in the full Euler case. Such equations can be solved linearly so that we
do not need any iterative solver thus reducing computational cost. Second order in time is
obtained by a suitable S-IMEX strategy taken from Boscarino et al. (J Sci Comput 68:975–
1001, 2016). Moreover, the CFL stability condition is independent of the Mach number and
depends essentially on the fluid velocity. Numerical tests are displayed in one and two dimen-
sions to demonstrate performance of our scheme in both compressible and incompressible
regimes.
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1 Introduction

Development of numerical methods for the solution of hyperbolic systems of conservation
laws has been a very active field of research in the last decades. Several very effective schemes
are nowadays treated in textbooks which became a classic on the topic [23,34,47]. Because
of the hyperbolic nature, all such systems developwaves that propagate at finite speeds. If one
wants to accurately compute all the waves in a hyperbolic system, then one has to resolve all
the space and time scales that characterize it. Most schemes devoted to the numerical solution
of such systems are obtained by explicit time discretization, and the time step has to satisfy a
stability condition, known as CFL condition, which states that the time step should be limited
by the space step divided by the fastest wave speed (times a constant of order 1). Usually
such a restriction is not a problem: because of the hyperbolic nature of the system, if the order
of accuracy is the same in space and time, accuracy restriction and stability restrictions are
almost the same, and the system is not stiff. There are, however, cases in which some of the
waves are not particularly relevant and one is not interested in resolving them. Let us consider,
as a prototype model, the classical Euler equations of compressible gas dynamics. In the low
Mach number regimes, it may happen that the acoustic waves carry a negligible amount of
energy, and one is mainly interested in accurately capturing the motion of the fluid. In such
a case the system becomes stiff: classical CFL condition on the time step is determined by
the acoustic waves which have a negligible influence on the solution, but which deeply affect
the efficiency of the method itself.

Another difficulty arising with standard Godunov-type schemes for low-Mach flows is
that the amount of numerical viscosity on the slow waves introduced by upwind-type dis-
cretization of the system would heavily degrade the accuracy. An account of the latter effect
is analyzed in [22], where the relevance of centering pressure gradients in the limit of small
Mach number is emphasized.

In order to overcome the drawback of the stiffness, one has to resort to implicit strategies
for time discretization, which avoid the acoustic CFL restriction and allow the use of a much
larger time step. Naive implementation of implicit schemes for the solution of the Euler
equations presents however two kinds of problems. First, classical upwind discretization
(say Godunovmethods based on exact or approximate Riemann solvers) are highly nonlinear
and very difficult to solve implicitly. Second, the implicit version of classical schemes may
introduce an excessive numerical dissipation on the slow wave, resulting in loss of accuracy.
Investigation of the effect on fully implicit schemes (and preconditioning techniques adopted
to cure the large numerical diffusion) are discussed for example in [49] and in [35], both
inspired by an early work by Turkel [48]. In both cases, a modification to the absolute value
of the Roe matrix is proposed as a suitable preconditioner that avoids excessive numerical
diffusion of upwind-type discretization at very low Mach.

Several techniques have been devised to treat problems in the lowMach number regimes,
that alleviate both drawbacks (see for example [32]). However, some of such techniques
have been explicitly designed to treat lowMach number regimes, and are based on lowMach
number asymptotics ([30,31]). There are cases in which the Mach number can change of
several orders of magnitude. The biggest challenges come from gas dynamics problems in
astrophysics, where the range of scales of virtually all parameters vary over several orders
of magnitude. An adaptive low Mach number scheme, based on a non conservative formu-
lation, has been developed with the purpose of tackling complex gas dynamics problems
in astrophysics (see [39] and references therein). When the Mach number is very low the
flow does not develop shock discontinuities, and the conservation form of the schemes is not
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mandatory. When the Mach number is not small, then shock discontinuities may form. In
such cases it is necessary to resort to conservative schemes (see for example [35] for other
astrophysical applications).

Several other physical systems are affected by drastic changes of the sound speed. Such
large variation may be due to geometrical effects, as for example in the case of the nozzle
flow [3], or to heterogeneity of the media. Air–water systems, for example, are characterized
by density ratio of three orders of magnitude, while the ratio of sound speeds is about five.
Waves in heterogeneous solid materials may travel at very different speeds, depending on
the local stiffness of the medium. The motivation for the construction of effective all Mach
number solver is twofold: on one hand it is relevant to be able to accurate simulate waves in
heterogeneous materials without small time step restriction suffered by explicit schemes, on
the other hand such simulations can be adopted as a tool to validate homogenized models,
which at amoremacroscopic scale can be described as a homogeneousmediumwith different
mechanical properties. For example, in air–water flows, for a range of values of the void
fraction, the measured sound speed is lower than both water and air sound speed [19].

Motivated by the above arguments, several researchers have devoted a lot of effort to the
development of all Mach number solvers for gas dynamics. An attempt in this direction is
presented in [33], where the authors adopt a pressure stabilization technique to be able to go
beyond the classical CFL restriction. The technique works well for moderate Mach number,
but is not specifically designed to deal with very small Mach numbers.

In an impressive sequence of papers and conference proceedings, [13–17], F. Coquel and
collaborators proposed a semi-implicit strategy, coupled with amulti resolution approach, for
the numerical solution of hyperbolic systems of conservation laws with well separated wave
propagation speeds. In particular, they considered application to fluid mixtures, in which the
propagation speed of acoustic waves, often carrying a negligible amount of energy, is much
larger than the speed of the material wave traveling at the fluid velocity. The basic framework
is set in [17]. The method is first explained in the context of linear hyperbolic systems. The
eigenvalues are sorted and it is assumed that there is a clear separation between slow and fast
waves. The Jacobian matrix is split into a slow and fast component, using the characteristic
decomposition. The flux at cell boundaries is consequently split into a slow and fast term. The
fast term is treated implicitly, while the slow one is treated explicitly. The approach is then
generalized to the quasilinear case, making use of Roe-type approximation of flux difference.
This allows to construct a simple semi-implicit formulation by leaving the Roe matrix of the
fast waves at the previous time step, while only the field is computed at the new time step,
leading to a linearly implicit scheme. The effectiveness of the approach is further improved
by adopting spatial multi resolution: given a multi scale expansion of the numerical solution,
the finest scale is maintained locally only where needed, while coarser scales are adaptively
adopted in smoother regions, with a great savings in computational time. Different schemes,
still adopting implicit–explicit time differentiation to filter out fast waves, are considered in
[13], where a sort of arbitrary Lagrangian–Eulerian scheme is constructed: a fractional time
step strategy is composed by an implicit Lagrangian step, which filters out acoustic waves,
and an explicit Eulerian step, which takes into account the contribution of slow waves.
The main application is still on a model for the evolution of gas–oil mixture. In order to
simplify the treatment of a general equation of state, a relaxation method is adopted (which
of course satisfies the Chen–Levermore–Liu sub-charactertistic condition [12]). The problem
of developing an adaptive (local) time step strategy is considered in the proceedings [15],
and fully exploited in [16]. In [14], the authors further refine the technique, thus producing a
positivity preserving, entropic semi-implicit scheme for Euler-like equations. The approach
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developed byCoquel and collaborators is certainly valuable, although itmay be quite involved
to be efficiently implemented for more complex, multidimensional situations.

A different approach has been adopted by Munz and collaborators, starting from the low
Mach number asymptotic of Kleinerman and Majda [30,31]. In [36], the authors develop a
very effective semi-implicitmethodwhich canbeviewed as a generalization of a compressible
solver to weakly compressible flows. The method is based on the asymptotic behavior of the
Euler equation for low Mach number. Two pressures are defined, a thermodynamic one,
which is essentially constant in space, and a dynamic one, which accounts for fluid motion.
The method is based on a discretization of the system written in primitive variables. The
approach, designed for low Mach flow, cannot be directly used when compressive effects
are more pronounced. In a subsequent paper [42], Park and Munz extend the method, still
using the pressure as basic unknown in place of the energy, but now they adopt a conservative
formulation, thus being able to capture shocks when theMach number is not so small. Several
space discretizations as well as time discretization strategies are discussed, which guarantee
second order accuracy in space and time. In addition, the paper contains a nice overview of
other works on low Mach number flow.

In [25] and in [21] the authors explore the construction of an allMach-numberfinite volume
scheme for the isentropic Euler and Navier–Stokes equations. In both cases, the approach
consists in a sort of hyperbolic splitting, obtained by adding and subtracting a gradient-type
term to the momentum equation. Such a term is an approximation of the pressure gradient,
and is treated implicitly, while the (relatively small) difference with the physical pressure
gradient is treated explicitly. The authors show the asymptotic preserving (AP) property of the
schemes:when theMach number approaches zero the schemes become a consistent and stable
discretization of the incompressible Euler and Navier–Stokes equations. In a more recent
paper,Cordier et al. [18] extend the technique to the full Euler andNavier–Stokes equations. In
paper [20] a different approach has been adopted for the construction of asymptotic preserving
schemes for gas dynamics. The authors perform a gauge decomposition of the momentum
density into a solenoidal and an irrotational field. They show that this corresponds to a sort of
micro–macro decomposition, in which the macroscopic variable describes the slow material
wave, while the fast variable accounts for the fast acoustic waves. They apply their technique
to isentropic and full Euler and Navier–Stokes, as well as to the isentropic Navier–Stokes–
Poisson system.

A slightly different approach is adopted in [38], where the authors propose methods based
on the flux splitting: the flux is split into two terms, one of which is treated explicitly and the
other implicitly.

In a recent paper in preparation, [3] semi-implicit schemes are constructed. 1D compress-
ible Euler equations, in which acoustic waves are treated implicitly by central discretization,
while the material waves are treated by upwind scheme.

In the present paper we adopt a different strategy. We still treat acoustic waves implicitly
and material waves explicitly, however space discretization is obtained by central scheme on
staggered grids, thus avoiding the difficulty related to the choice of the exact or approximate
Riemann solver to be used when computing the numerical flux corresponding to the explicit
terms. This results in a very simple scheme that can be adopted for Euler equations in one
and two space dimensions. Staggered discretization in space naturally provides second order
accuracy, and allows a compact stencil in the discretization of the equation for pressure (or
energy, according to which variable is chosen as primary unknown). Second order extension
in time can be achieved by using globally stiffly accurate IMEX Runge–Kutta [7,8,11].

The plan of the paper is the following. After the introduction, we define the low Mach
number scaling adopted in the paper, and its implications in the isotropic gas dynamics. The
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next sections are devoted to the construction of the schemes for isentropic gas dynamics in
one and two space dimensions: Sect. 3 deals with first order scheme, while Sect. 4 deals
with the extension to second order in time, obtained using globally stiffly accurate IMEX
schemes. In Sect. 5 several numerical tests are presented, and compared with the results in
the literature. In Sect. 6 we describe how to extend the schemes to full Euler equations, and
in the next section we present numerical tests on a wide range of problems. In the last section
we draw conclusions.

2 Low Mach Number Scaling

We consider the compressible Euler equation for an ideal gas:
⎧
⎨

⎩

ρt + ∇ · (ρu) = 0
(ρu)t + ∇ · (ρu ⊗ u) + ∇ p = 0
Et + ∇ · [(E + p)u] = 0,

(2.1)

where ρ is the mass density, u the velocity of the fluid, E the total energy density per unit
volume and p the pressure. System (2.1) is closed by the equation of state (EOS), e = e(ρ, p)
with e the internal energy density per unit mass, related to total energy density by

E = 1

2
ρu2 + ρe.

For polytropic gas we have:

e = 1

γ − 1

p

ρ
,

with γ = cp/cv > 1 being the ratio of specific heats of the gas.
In order to describe the lowMachnumber limit,we rewrite the equation in non-dimensional

form. Let us denote by: ρ0, u0, p0, x0, t0, typical reference dimensional quantities, with
u0 = x0/t0. Non dimensional variables are denoted by a hat:

ρ̂ = ρ/ρ0, û = u/u0, p̂ = p/p0, Ê = E/p0, x̂ = x/x0, t̂ = t/t0.

Inserting these expressions into the equations (2.1) (and omitting the hat) one obtains the
rescaled (non-dimensionalised) compressible Euler equations:

⎧
⎨

⎩

ρt + ∇ · (ρu) = 0
(ρu)t + ∇ · (ρu ⊗ u) + 1

ε2
∇ p = 0

Et + ∇ · [(E + p)u] = 0,
(2.2)

with the equation of state (for a polytropic gas)

E = p

γ − 1
+ ε2

2
ρ|u|2

where the square of referenceMach number is ε2 = ρ0u20/p0. Strictly speaking, the reference

Mach number is M = u0
cs0

= u0

√
ρ0

γ p0
= ε√

γ
. This parameter ε represents a global Mach

number characterizing the non dimensionalization (not the local Mach number). System
(2.2) is hyperbolic and the eigenvalues in direction n are: λ1 = u · n − cs/ε, λ2 = u · n,
λ3 = u · n + cs/ε with cs =

√
γ p

ρ
.
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Throughout the paper, we denote by acoustic waves the perturbations travelingwith speeds
λ1 and λ3, and material waves the perturbations carried by the fluid, thus moving at speed
λ2.

The aim of this work is to construct and analyze new numerical schemes for unsteady
compressible flows when the Mach number ε spans several orders of magnitude.

Compressible flow equations converge to incompressible equations when the Mach num-
ber vanishes. This convergence has been rigorously studied mathematically by Klainerman
andMajda [30,31].When theMach number is of order one, modern shock capturingmethods
are able to compute the formation and evolution of shocks and other complex structures with
high resolution at a reasonable cost.

On the other hand, when we are near the incompressible regime, and Mach number is
very small, flows are slow compared with the speed of sound and in such a situation, acoustic
waves become very fast compared tomaterial waves. In several cases, acoustic waves possess
very small energy and they are unimportant near the incompressible regime, then one is not
interested in resolving them.

From a numerical point of view, when the Mach number is very small, standard explicit
shock-capturing methods require a CFL time restriction dictated by the sound speed cs/ε
to integrate the system. This leads to the stiffness in time, [18,21,25], where the time dis-
cretization is constrained by a stability condition given by

�t < �x/λmax ≈ O(ε�x)

for small ε where �t is the time-step, �x the space step and

λmax = max
�

(|u| + cs/ε).

This restriction results in an increasingly large computational time for smaller and smaller
ε. The second drawback is due to the excessive numerical viscosity of standard upwind
schemes, that scales as ε−1, leading to highly inaccurate solutions. Thus, it is also crucial
how the space derivatives are discretized in order to get stability and consistency for the
scheme in the incompressible limit (asymptotic preserving property, denoted as AP).

Our goal in this paper is to develop a numerical scheme that works in all regimes of Mach
number for the solution of system (2.2), including the incompressible limit.

The idea is to design a second order numerical scheme for compressible Euler, whose
stability and accuracy are independent of ε, and which is able to capture shocks and disconti-
nuities in the compressible regime, for large ε and, at the same time, it is a good incompressible
solver in the limit regime of vanishing ε. This means that the scheme has to be asymptotic
preserving [28,29], i.e., it is a consistent discretization of the compressible Euler equations
and in the limit as ε → 0, with �x and �t fixed, provides a consistent discretization of the
incompressible Euler equations.

A key feature of the scheme is the implicit treatment of acoustic waves, while material
waves are treated explicitly. Implicit–explicit Euler provides a first order scheme for the Euler
equations which filters out the acoustic waves.

For the space discretization, we adopt central schemes on staggered grid similar to the
one used by Nessyahu and Tadmor [37] in one space dimension and by Jiang and Tadmor
in two space dimensions [27], which provided explicit, second order accurate in space and
time, shock capturing schemes.

The generalization of NT and JT schemes to higher order in time was given by the Central
Runge–Kutta methods [40] for explicit time discretization. Here we adopt this approach,

123



856 J Sci Comput (2018) 77:850–884

coupled with semi-implicit IMEX R–K [6], in order to obtain high order accuracy in time,
while keeping an implicit treatment of acoustic waves.

The choice of central schemes appears natural because it simplifies flux computation,
avoids the introduction of excessive numerical diffusion of upwind discretization, and pro-
vides the natural central discretization for the implicit terms.

2.1 Isentropic Euler Equations

For sake of clarity, we start considering the isentropic gas dynamics case and successively
we extend the results to the case of the full Euler system.

The isentropic Euler equations in d-dimensions, x ∈ � ⊂ R
d , t ≥ 0, are given by:

{
ρt + ∇ · (ρu) = 0
(ρu)t + ∇ · (ρu ⊗ u) + ∇ p(ρ)/ε2 = 0,

(2.3)

where ρ is the fluid density, u is its velocity, and p the pressure. Here we consider a polytropic
gas, for which the equation of state take the form: p(ρ) = Cργ where C(s) depends on the
entropy (which is assumed to be constant) and γ is the polytropic constant. Here ε is the
dimensionless reference Mach number. As boundary conditions we set u · n = 0 on ∂�, or
assume � is Td , i.e. periodic boundary conditions.

Now we recall the classical formal derivation of the incompressible Euler equations from
the isentropic compressible Euler system (2.3). We consider an asymptotic expansion ansatz
for the following variables:

ρ(x, t) = ρ0(x, t) + ε2ρ2(x, t) + · · · ,

p(x, t) = p0(x, t) + ε2 p2(x, t) + · · · ,

u(x, t) = u0(x, t) + ε2u2(x, t) + · · · ,

(2.4)

we skip the O(ε) term because it does not appear in the system equations (2.3). Inserting
(2.4) in (2.3), to O(ε−2) one gets, in the momentum conservation equation (2.3):

∇ p0 = 0.

Therefore, p0(x, t) = p0(t), and by p = p(ρ), we have ρ0 = ρ0(t), i.e., to lower order in
ε, density and pressure are constant in space.

Next, by taking the O(ε0) terms, we have

∂tρ0 + ∇ · (ρ0u0) = 0

∂t (ρ0u0) + ∇ · (ρ0u0 ⊗ u0) + ∇ p2 = 0. (2.5)

where p2 = limε→0 ε−2(p(ρ) − p0). Now, the incompressibility is forced by using the
boundary conditions to solve system (2.3) on the domain � with u · n = 0 on S = ∂� or
periodic boundary conditions. Because ρ0 = ρ0(t) for (2.5) one has:

∇ · u0 = − 1

ρ0

dρ0
dt

.

Integrating in � one has:

− |�| 1
ρ0

dρ0
dt

=
∫

�

∇ · u0 d� =
∫

∂�

u0 · n dS = 0, (2.6)

because of the boundary conditions, therefore ρ0 = Const. (see [18,25] for more details).
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This means that the density satisfies the expansion:

ρ(x, t) = ρ0 + ε2ρ2(x, t) + · · · ,

where ρ0 is a constant of order 1, and then one obtaines ∇ · u0 = 0.
We assume that the initial condition for the problem is well-prepared which means that

the initial condition for (2.4) is compatible with the equations at the various order in ε. Well-
prepared initial conditions are clearly explained in [9] or in the classical book by Hairer
and Wanner ( [26], Chap.VI) In our case well prepared initial conditions are obtained by
imposing

ρ(x, 0) = ρ0 + ε2ρ2(x)
u(x, 0) = u0(x)

(2.7)

with ρ0 constant and ∇ · u0 = 0. Compatibility with the equations at order zero in ε is given
by:

ρ0 = Const.,

∇ · u0 = 0,

∂tu0 + (u0 · ∇)u0 + ∇ p2
ρ0

= 0. (2.8)

We note that, in the low-Mach numbermodel, p2 is the Lagrangemultiplier needed to impose
the divergence-free constraint: ∇ · u = 0.

Then, taking the divergence of the last equation in (2.8) and using the incompressibility,
one obtains1

− ∇2 p2 = ∇ · (ρ0u0 · ∇u0) = ∇2 : (ρ0u0 ⊗ u0). (2.9)

Well-prepared initial conditions are required ifwewant that the solution to the ε-dependent
problem smoothly converges to the solution of the limit incompressible problem. For arbitrary
initial condition, an initial layer will appear, and there will be no strong convergence to the
solution. In practice this corresponds to introducing faster and faster acoustic waves in the
initial data as ε approaches zero.

Next we propose a numerical scheme that is applicable for all ranges of the Mach number.

3 Numerical Schemes

In this section we design a numerical scheme for compressible Euler that is able to capture the
incompressible Euler limit as ε → 0, i.e. an asymptotic preserving (AP) scheme. Furthermore
such a scheme is conservative and shock capturing for all ε and has to satisfy a CFL condition
which is independent of ε.

The features of our schemeare the following: for the spatial discretization,weuse a second-
order, non-oscillatory central scheme on a staggered grid in order to simplify the computation

1 It is possible to derive the acoustic wave equation from (2.3). Indeed, if we differentiate with respect time
the density equation and subtract it from the divergence of the momentum equation, we obtain

∂t tρ − ∇2 p(ρ)

ε2
= ∇2 : (ρu ⊗ u),

and to O(ε0), we get (2.9).
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Fig. 1 Staggered grid form tn to tn+1

of the numerical flux, similar to the ones adopted in [27,37,40]. For time integration we start
by describing a first order implicit–explicit Euler scheme, while a semi-implicit approach
based on IMEX Runge-Kutta methods ( [4–7]) will be presented in Sect. 4 for higher order
generalization.

3.1 Isentropic Gas Dynamics: First Order Method

1D Model. For simplicity, we consider the domain � = [0, 1], with periodic boundary
conditions. Here ρ, u and m denote the density, velocity and momentum in one dimension.
Then (2.3) becomes

ρt + mx = 0,

mt +
(
m2

ρ
+ p

ε2

)

x
= 0.

(3.1)

The system is closed by p = ργ . We discretize space in a way similar to the NT central
scheme [37], i.e., we make use of a staggered grid with a uniform spatial mesh �x = 1/N ,
where N is an positive integer and at even time we have N cells of size �x , with cell j
centered at x j = ( j − 1/2)�x , j = 1, . . . , N . We discretize time by the first order implicit–
explicit Euler given by Eq. (5.1): stiff terms will be evaluated at time tn+1, while non-stiff
terms will be evaluated at time tn .

Integrating the equation on a staggered grid, from time tn = n�t to tn+1, n = 0, 1. . . .,
(see Fig. 1) we obtain the first order semi-implicit scheme:

ρ̄n+1
j+1/2 = ρ̄n

j+1/2 − �t

�x

(
mn+1

j+1 − mn+1
j

)

m̄n+1
j+1/2 = m̄n

j+1/2 − �t

�x

(
f nj+1 − f nj

)
− �t

ε2�x

(
pn+1
j+1 − pn+1

j

) (3.2)

where f nj = (m̄n
j )
2/ρ̄n

j . We note that second order in space is obtained by the standard
reconstruction adopted in Nessyahu–Tadmor scheme (see [37] for details), e.g.

ρ̄ j+1/2 = ρ̄ j+1 + ρ̄ j

2
+ 1

8
(D̂xρ j − D̂xρ j+1),

with D̂xρ j/�x a first order approximation of the first derivative on cell j , for example,

D̂xρ j = MM
(
ρ j − ρ j−1, ρ j+1 − ρ j

)

or

D̂xρ j = MM

(

θ(ρ j − ρ j−1),
ρ j+1 − ρ j−1

2
, θ(ρ j+1 − ρ j )

)

(3.3)
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where MM denotes the classical minimod function and θ ∈ [1, 2].
The flux term appearing in the first equation of (3.2), computed at cell center, is defined

as:

mn+1
j = m∗

j − �t

ε2�x
Dx p

n+1
j (3.4)

where m∗
j = mn

j − �t

�x
D̂x f

n
j , and Dx denotes central difference on the cell: Dx p

n+1
j =

(pn+1
j+ 1

2
− pn+1

j− 1
2
). Using such equation, and substituting it into the density equation for ρ̄n+1

j+1/2

one gets an equation of the form:

ρ̄n+1
j+1/2 − �t2

ε2�x2
D2
x p

n+1
j+1/2 = ρ∗

j+1/2 (3.5)

where D2
xh j = h j+1 − 2h j + h j−1, ∀h j , is the usual three point discrete Laplacian and

ρ∗
j+1/2 = ρ̄n

j+1/2 − �t

�x

(
m∗

j+1 − m∗
j

)

denotes quantities that can be computed explicitly (in a conservative way). When we use the
(second order) approximation pn+1

j+1/2 = p(ρ̄n+1
j+1/2), (3.5) becomes a non linear equation for

the new density on the staggered mesh.
One possible way to simplify the solution of the system is to use p as unknown and

considering ρ = ρ(p), then we get

(
pn+1
j+1/2

)1/γ = ρ∗
j+1/2 − �t2

ε2�x2
D2
x p

n+1
j+1/2. (3.6)

In this case the nonlinearity is in the diagonal of the system, and the linear equation for each
time step for the unknown pn+1

j+1/2 can be solved by few iterations of Newton’s method.

On the other hand, if we approximate the Laplace operator (pn+1)xx in (3.5) by

(p(ρn+1))xx ≈ (
p′(ρn)ρn+1

x

)

x ,

this results in a semi-implicit approach which requires the solution of a linear system in (3.5).

Remark We observe that the use of a staggered grid allows a compact discrete Laplacian
in the implicit equation (3.5) for the new density ((3.6) for the pressure). This property is
important, and it is one of the main reasons why many solvers for incompressible Euler and
Navier–Stokes equations in primitive variables are discretized on a staggered grid (see for
example [43], Sect. 6.3).

2D Model. Now, we consider the domain � = [0, 1] × [0, 1] with periodic boundary
conditions. The Euler equations for isentropic gas dynamics are given by

ρt + ∇ · m = 0,

∂
1
m

∂t
+ ∇ ·

⎛

⎝

1
mm
ρ

⎞

⎠ + ∂x p

ε2
= 0,

∂
2
m

∂t
+ ∇ ·

⎛

⎝

2
mm
ρ

⎞

⎠ + ∂y p

ε2
= 0,

(3.7)

where m = (
1
m,

2
m)T . The system is closed by p = Cργ . We choose C = 1.

123



860 J Sci Comput (2018) 77:850–884

First of all we discretize (3.7) in time by an explicit–implicit Euler scheme:

ρn+1 = ρn − �t∇ · mn+1,

1
m

n+1
= 1

m
n

− �t∇ ·
⎛

⎝

1
m

n
mn

ρn

⎞

⎠ − �t
∂x pn+1

ε2
,

2
m

n+1
= 2

m
n

− �t∇ ·
⎛

⎝

2
m

n
mn

ρn

⎞

⎠ − �t
∂y pn+1

ε2
.

(3.8)

Let

k
m

∗
= k

m
n

− �t∇ ·
⎛

⎝

k
m

n
mn

ρn

⎞

⎠ , k = 1, 2, (3.9)

be the explicit part of the second and third equation in (3.8). Then (3.8) becomes

ρn+1 = ρn − �t∇ · mn+1,

1
m

n+1
= 1

m
∗

− �t
∂x pn+1

ε2
,

2
m

n+1
= 2

m
∗

− �t
∂y pn+1

ε2
.

(3.10)

Inserting the expressionmn+1 into the first equation for ρ in (3.8), we obtain

ρn+1 = ρ∗ + �t2

ε2
∇2 pn+1, (3.11)

where

ρ∗ = ρn − �t∇ · m∗. (3.12)

Now we discretize space in a way similar to the JT central scheme [27], i.e. we make
use of a staggered grid with a uniform spatial mesh with �x = 1/N , �y = 1/N , with N
a positive integer, the grid points defined as xi = i�x , i = 0, 1, . . . , N , and y j = j�y,
j = 0, 1, . . . , N . In the JT central scheme based on a staggered grid, system (3.7) is integrated
on the staggered control volume: Ci+ 1

2 , j+ 1
2

× [tn, tn+1) with Ci+ 1
2 , j+ 1

2
:= Ii+ 1

2
× J j+ 1

2
centered around (xi+ 1

2
, y j+ 1

2
), with Ii+ 1

2
= [xi , xi+1] and J j+ 1

2
= [y j , y j+1] (see Fig. 2).

We assume we know cell averages ρ̄n
i j , m̄

n
i j on the initial grid at even n, and we want to

compute the field variables ρ̄n+1
i+1/2, j+1/2, m̄

n+1
i+1/2, j+1/2 on the staggered grid.

Let us define the following operators:

• discrete divergence D:

Dmi+1/2, j+1/2

=
1
mi+1, j − 1

mi, j

2�x
+

1
mi+1, j+1 − 1

mi, j+1

2�x
+

2
mi, j+1 − 2

mi, j

2�y
+

2
mi+1, j+1 − 2

mi+1, j

2�y
,

• discrete Lapacian L:
Lpi j = (

pi+1, j − 2pi, j + pi−1, j
)
/�x2 + (

pi, j+1 − 2pi, j + pi, j−1
)
/�y2.

The scheme works as follows.
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Fig. 2 Control volume: Ci+1/2, j+1/2

1. Compute m∗ on the staggered grid discretizing Eq. (3.9):

k
m

∗
i+1/2, j+1/2 = k

m̄
n

i+1/2, j+1/2 − �tD

⎛

⎜
⎝

k
m̄

n

m̄n

ρ̄n

⎞

⎟
⎠

i+1/2, j+1/2

, k = 1, 2. (3.13)

2. Evaluate ρ̄n+1
i+1/2, j+1/2 on the staggered grid discretizing the first equation in (3.7)

ρ̄n+1
i+1/2, j+1/2 = ρ̄n

i+ 1
2 , j+ 1

2
− �tD

(
m̄n+1

i+1/2, j+1/2

)
, (3.14)

compute ρ∗ (3.12) by:

ρ∗
i+1/2, j+1/2 = ρ̄n

i+1/2, j+1/2 − �tD
(
m̄∗

i+1/2, j+1/2

)
. (3.15)

where the staggered cell average density is computed as [27],

ρ̄i+1/2, j+1/2 = 1
4

(
ρ̄i, j + ρ̄i+1, j + ρ̄i, j+1 + ρ̄i+1, j+1

)

+ 1
16

(
ρ′
i, j − ρ′

i+1, j + ρ′
i, j+1 − ρ′

i+1, j+1

)
�x

+ 1
16

(
ρ�
i, j − ρ�

i, j+1 + ρ�
i+1, j − ρ�

i+1, j+1

)
�y

whith ρ′
i, j and ρ�

i, j a first order approximation of the first derivatives on cell (i, j) (in this
paper we use minmod in most cases).

3. Solve the main linear elliptic equation (3.11):

ρ̄n+1
i+1/2, j+1/2 = ρ̄∗

i+1/2, j+1/2 + �t2

ε2
Lpn+1

i+1/2, j+1/2. (3.16)
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4. Compute m̄n+1:

k
m̄

n+1

i+1/2, j+1/2 = k
m̄

∗
i+1/2, j+1/2 − �t

ε2
Dk p

n+1
i+1/2, j+1/2, k = 1, 2.

where Dk is the classical central difference approximation of the space derivative2 in the
k-th direction

D1hi j = hi+1, j − hi−1, j

2�x
, D2hi j = hi, j+1 − hi, j−1

2�y
.

Note that when we use the relation pn+1
i+1/2, j+1/2 = p(ρ̄n+1

i+1/2, j+1/2), (3.16) becomes a
non linear equation for the new density in the staggered mesh, but if one takes p as unknown
and considers ρ = ρ(p) then one solves a non linear system by a Newton’s method where
the nonlinearity is in the diagonal of the system as in the 1D case. However, linearizing the
operator ∇2 pn+1 as ∇ · (p′(ρn)∇ρn+1) implies again to solve a linear system in (3.16) for
the new density on the staggered mesh.

Remark Notice that for even n the discrete operators of quantities at time tn act on discrete
field values with integer indices, while at time tn+1, they act on field values with half-odd
integers, thus maintaining the operator compact. A similar procedure is adopted when going
from n odd to n + 1, thus obtaining discrete field variables again on the original mesh.

3.2 Asymptotic Preserving (AP) Property

In order to show the AP property of our scheme we should demonstrate that such a scheme
in the low Mach number limit, i.e. as ε → 0, provides a consistent discretization of the
incompressible Euler equation (2.8) with spatial and temporal steps fixed.

For this analysis, by (2.7), we consider the following well-prepared initial conditions:

ρn
i j = ρn

0,i j + ε2ρn
2,i j + · · · ,

mn
i j = (ρu)ni j = (ρu)n0,i j + ε2(ρu)n2,i j + · · · ,

(3.17)

and assume periodic boundary condition. This assumption is natural, since we are interested
in capturing the incompressible limit. Note that if the initial condition is not well-prepared,
then an initial layer, containing acoustic waves, will appear. In practice, for very small values
of ε, the numerical method will filter out the acoustic waves, and will therefore project the
system into the incompressible manifold in a short time, resulting in a possible degradation
of the accuracy of the method. The analysis of such a accuracy degradation is beyond the
scope of the present paper.

By substituting this ansatz (3.17) into the scheme (3.13)–(3.15)–(3.16), to the lowest order
in ε we get

Lpn+1
0,i+1/2, j+1/2 = 0.

This implies that pn+1
0 is constant in space since its discrete Laplacianwith periodic boundary

condition is zero. Then by the fact that p(ρ) = ργ , one gets space independence for the
leading order density, i.e., ρn+1

0,i j = ρn+1
0 for all i, j , then it is constant in space. The O(1)

equation for the density, from (3.14), is given by:

ρ̄n+1
0,i+1/2, j+1/2 = ρ̄n

0,i+1/2, j+1/2 − �tD
(
m̄n+1

0,i+1/2, j+1/2

)
. (3.18)

2 Note that this definition is different from the one used in Eq. (3.4) in 1D.
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By summing over i and j , and using periodic boundary conditions, we get

ρ̄n+1
0 = ρ̄n

0 . (3.19)

Therefore ρ̄n
0 is constant also in time.

Now, using this result in Eq (3.18), the density terms cancel out and we get

D
(
m̄n+1

0,i+1/2, j+1/2

)
= 0,

with m̄ = ρu. Then, we obtain the discrete incompressibility condition for the velocity
vector, i.e.,

Dun+1
0,i+1/2, j+1/2 = 0. (3.20)

Now we derive an equation for the pressure term p2,i j . Then, considering the O(1) terms in
the linear elliptic equation (3.16):

ρ̄n+1
0,i+1/2, j+1/2 = ρ∗

0,i+1/2, j+1/2 + �t2Lpn+1
2,i+1/2, j+1/2 (3.21)

By inserting (3.13) in (3.15), after some algebraic manipulations, we get

− Lpn+1
2,i+1/2, j+1/2 = D (D(ρ0u0 ⊗ u0)i+1/2, j+1/2

)

i+1/2, j+1/2 . (3.22)

Note that (3.22) is the discretization of the Eq. (2.9).
Finally, by knowing that ρ̄n

0 is independent of the time, the O(1) term of the momentum
equation becomes:

ρ̄0

⎛

⎝
ūn+1
0,i+ 1

2 , j+ 1
2

− ūn
0,i+ 1

2 , j+ 1
2

�t

⎞

⎠

= −D (ρ̄0u0 ⊗ u0)i+1/2, j+1/2 − G pn+1
2,i+1/2, j+1/2. (3.23)

where G = (Dx , Dy) denotes the discrete central gradient. Thus, (3.19)–(3.20) and (3.23)
represent a discretization of the incompressible Euler equation (2.8). Therefore, the two-
dimensional scheme is AP.

4 Extension to Second Order

In this section we present a second order scheme for the isentropic Euler equations.
The approach will be a combination of central Runge–Kutta methods for conservation

laws (CRK, [40]) and semi-implicit IMEX schemes developed in [6]. In some recent papers
[4–7] a very effective semi-implicit technique has been introduced for the numerical solution
of systems of quasilinear hyperbolic equations. The method is based on implicit–explicit
Runge–Kutta methods (IMEX R–K) and the proposed schemes are stable, linearly implicit,
and can be designed up to any order of accuracy.

IMEX RK schemes can be represented by a double Butcher tableau given by:

c̃ Ã

b̃T
,

c A

bT
.

where the s × s low triangular matrices Ã = (ãi j ) (ãi j = 0 for all j ≥ i), and A = (ai j )
(ai j = 0 for all j > i) are the matrices of the explicit and implicit parts of the scheme,

123



864 J Sci Comput (2018) 77:850–884

respectively, while the vectors b̃ = (b̃1, . . . , b̃s), b = (b1, . . . , bs), c̃ = (c̃1, . . . , c̃s), and
c = (c1, . . . , cs), are s-dimensional vectors or real coefficients, which c̃ and c given by the
usual relations

c̃i =
i−1∑

i=1

ãi j , ci =
i∑

i=1

ai j , i = 1, . . . , s.

Before applying the technique developed in [6], we write system (3.7) in the form of an
autonomous system

dU
dt

= H(U,U). (4.1)

where H : Rm × R
m → R

m is a sufficiently regular mapping.
We assume that the dependence on the first argument of H is non-stiff, while the second

argument is stiff [6]. We further emphasize such dependence by using an asterisk to denote
explicit variables: H = H(U∗,U).

Furthermore, in order to reduce the computational cost and to guarantee the explicit
computation of the terms which are supposed to be explicit, for the implicit part we adopt
diagonally implicit Runge–Kutta schemes (DIRK) [26].

In one space dimension, one has U = (ρ,m)T , and H(U∗,U) is:

H(U∗,U) =
⎛

⎝
−mx

−
(
m2

ρ

)∗

x
− p(ρ)x

ε2

⎞

⎠ . (4.2)

while in 2D one has U = (ρ,m)T , wtihm = (
1
m,

2
m) and in this case the functionH(U∗,U)

is:

H(U∗,U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∇ · m

−∇ ·
⎛

⎝

1
mm
ρ

⎞

⎠

∗
− ∂x p(ρ)

ε2

−∇ ·
⎛

⎝

2
mm
ρ

⎞

⎠

∗
− ∂y p(ρ)

ε2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.3)

We limit the description of the second order extension to the one dimensional case. The
same discretization in time can be applied to the 2D case in a similar way.

Explicit CRK schemes on a staggered grid for a system of conservation laws

ut + f (u)x = 0

can be described as follows [40].

• Predictor. Given cell averages at time tn : {ūnj }, one computes the stage values as

u(k)
j = unj − �t

�x

k−1∑


=1

ak
Dx f
(
u(
)
j

)
, k = 1, . . . , s,

whereDx/�x denotes a consistent discrete derivative in space, and ak
 are the RK coef-
ficients.
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• Corrector. The numerical solution ū j+1/2 is then recovered as

ūn+1
j+1/2 = ūnj+1/2 − �t

�x

s∑

k=1

bk
(
f
(
u(k)
j+1

)
− f

(
u(k)
j

))
.

where ūnj+1/2 is obtained integrating the reconstruction of u
n(x) in the staggered cell I j+1/2.

One might think that the approach to problems containing very stiff terms could be gener-
alized by computing the stage values using IMEX schemes, with an L-stable implicit part.
However, such naive generalization does not work in practice since it gives a CFL type stabil-
ity restriction comparable with the one of explicit CRK schemes. We show this by applying
the simplest first order scheme with implicit Euler predictor to the linear convection equation
ut + ux = 0.

In this case the scheme (which is first order in space and time) becomes:

• Predictor: un+1
j = ūnj − �t

2�x
(un+1

j+1 − un+1
j−1)

• Corrector: ūn+1
j+1/2 = ūnj + ūnj+1

2
− �t

�x
(un+1

j+1 − un+1
j )

Looking for solutions of the form: ūnj = ρnei jkh , where k denotes the Fourier node and
h = �x , one obtains the following expression for the amplification factor:

ρ = cos(ξ/2) − 2ic sin(ξ/2)

1 + ic sin ξ
,

where ξ = kh, c = �t/�x . Then we get

|ρ|2 = cos2(ξ/2) + 4c2 sin6(ξ/2)

1 + c2 sin2 ξ
= N

D .

Let F ≡ D − N = sin2(ξ/2)
(
1 − 4c2(sin4(ξ/2) − cos2(ξ/2))

)
. Then |ρ| ≤ 1 iff F ≥ 0.

This condition is guaranteed ∀ξ ∈ R iff c ≤ 1/2.
Stability analysis can be performed for other L-stable schemes, with similar outcomes.

In view of the above results we adopt this approach for the computation of the first s − 1
stages, at the unstaggered cell centers, however, the last stage s has to be implicit at the level
of the numerical solution. This can be achieved by imposing that the numerical solution is
automatically obtained as the last stage of the scheme directly computed at time tn+1 on the
staggered cell. In the simple example above, this means

ūn+1
j+1/2 = ūnj + ūnj+1

2
− �t

�x

(
ūn+1
j+1 − ūn+1

j

)
= ūnj + ūnj+1

2
− �t

2�x

(
un+1
j+3/2 − un+1

j−1/2

)
,

which is unconditionally stable, i.e., the amplification factor is given by

|ρ|2 = cos(ξ/2)(1 + c2 sin2 ξ)
−1 ≤ 1, ∀ξ.

Implicit schemes in which the numerical solution coincides with the last stage are called
stiffly accurate (SA) (see [26]). IMEX R–K schemes with the same property are called
globally stiffly accurate (GSA): an IMEX R–K scheme is GSA if it is SA, i.e. bT = eTs A,
and b̃T = eTs Ã, with es = (0, . . . , 0, 1)T , and cs = c̃s = 1. See [7,8,11] for more details on
GSA schemes.

In view of the above consideration, we shall obtain high order accuracy in time by adopting
GSA IMEX R–K schemes where the first s−1 stages are obtained at unstaggered cell center
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by a predictor (not necessarily conservative), while the numerical solution is obtained by a
conservative corrector on the staggered cell.

We now apply the Semi-IMplicit/EXplicit R–K schemes (S-IMEX-RK) developed in [6]
to system (4.1) with (4.2). The algorithm for the schemes on staggered cells, (S-IMEX-RK-
STAG) can be conveniently written as a two-step scheme, as follows:

1. Prediction step. Compute the internal stages:

for k = 1, . . . , s − 1

U∗(k)
j = Un

j − �t

�x

k−1∑


=1

ãk,
K
(
)
j , (4.4a)

U(k)
j = Un

j − �t
k∑


=1

ak+1,
K
(
)
j , (4.4b)

with the S-IMEX R–K fluxes:

K (
)
j =

⎛

⎜
⎜
⎝

D̂xm
(
)
j

D̂x

(
m2

j

ρ j

)∗(
)

+ 1

ε2
Dx p

(
ρ

(
)
j

)

⎞

⎟
⎟
⎠ (4.5)

2. Correction step. Update the cell averages on the staggered grid:

Ū
n+1
i+1/2 = Ū

n
i+1/2 − �t

�x

s∑


=1

as,
�F (
)
j+1/2, (4.6)

where

�F (
)

j+ 1
2

≡ F
(
U∗(
)

j+1,U
(
)
j+1

)
− F

(
U∗(
)

j ,U (
)
j

)
, 
 = 1, . . . , s

Here

F(U∗,U ) =
(

m,

(
m2

ρ

)∗
+ p(ρ)

ε2

)T

.

Remark

1. Throughout the paperwe limit to second order accuracy in space and time. In this case one
can use Un

i = Ū
n
i in (4.4). The techniques described above can be adopted to construct

high order schemes. This requires: i) high order GSA IMEX ([6,8,11]), ii) point-wise
reconstruction of Un

i from Ū
n
i , iii) high order reconstruction (such as WENO [41]) for

the terms which are treated explicitly, iv) a high order approximation of the operator
appearing in the implicit terms. This research is being currently carried out in [10].
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2. Explicit CRK schemes on non-staggered grid have been proposed [44], which exploit
the flexibility of using non-conservative variables in the predictor. Such approach could
be adopted for the construction of high order semi-implicit schemes, for which only the
last stage has to be computed using conservative variables.

5 Numerical Results for Isentropic Gas Dynamics

In this section we present the performances of the proposed first and second S-IMEX-RK-
STAG scheme.We illustrate several numerical tests in one and two space dimensions showing
how the schemes are accurate for a wide range of Mach numbers. The parameter ε ranges
from compressible to incompressible flows. For all the numerical tests we give well prepared
initial values and adopt periodic boundary conditions. Finally, several convergence tests
permit to observe the correct second order accuracy of our scheme both in compressible and
incompressible regimes.

In all our tests, we used a second order reconstruction (3.3) with θ = 1.5, and we consider
the following GSA IMEX R–K schemes [2].

• First order GSA Euler IMEX scheme:

0 0 0
1 1 0
1 0

0 0 0
1 0 1
0 1

(5.1)

• Second order GSA IMEX R–K scheme:

0 0 0 0
c c 0 0
1 1 − 1/(2c) 1/(2c) 0
1 − 1/(2c) 1/(2c) 0

0 0 0 0
c 0 c 0
1 0 1 − β β

0 1 − β β,

(5.2)

where β = (c− 1/2)/(c− 1). In this family of schemes, the choice of c > 1 guarantees
that β > 0 and the weights of the explicit part are non negative. Furthermore, the scheme
has an L-stable implicit part and an I -stable explicit part, [26]. Note that the choice
c = 2.25 guarantees a small constant of the error in the implicit scheme, so this is the
value that we adopt in our scheme. Finally, note that choosing c = 1− 1/

√
2 we get the

classical DIRK(2,2,2) IMEX scheme, [2].

5.1 Example 1: Riemann Problem

We consider the following initial data, [21]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(x, 0) = 1.0, m(x, 0) = 1 − ε2

2 , x ∈ [0, 0.2]⋃[0.8, 1],
ρ(x, 0) = 1 + ε2, m(x, 0) = 1, x ∈ (0.2, 0.3],
ρ(x, 0) = 1, m(x, 0) = 1 + ε2

2 , x ∈ (0.3, 0.7],
ρ(x, 0) = 1 − ε2, m(x, 0) = 1, x ∈ (0.7, 0.8].

(5.3)

This example consists of several Riemann problems. Pressure is given by p(ρ) = ρ2, final
time T = 0.05 and periodic boundary conditions. In Fig. 3 we report the solutions for
the density on the left and for the momentum on the right. In this example we choose
ε = 0.8, 0.3, 0.05. We note that for large ε, shocks ands contact discontinuities appear. We
performed also a calculation with ε = 10−4 and the numerical solution quickly relaxes to
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Fig. 3 Numerical results for the Riemann problem of Example 1, for density (left) and momentum (right) at
final time T = 0.05, �x = 1/200 and �t is computed by (5.4) with CFLImp = 0.5. The solid line is the
reference solution. The corresponding values of the classical CFL numbers are: 0.3838, 0.5839, 2.9317, for
ε = 0.8, 0.3 and 0.05, respectively

the trivial solution ρ = 1, m = 1, so we omitted to report the figure. In this test we choose
the time step �t as follows:

�t = CFLImp
�x

max |u j | + c̃ j
(5.4)

where c̃ j = √
γ p j/ρ j · min(1, 1/ε), ∀ε and it is reported in the Fig. 3. Note that for ε > 1

this is equivalent to the classical CFL condition, but for smaller values of ε the condition is
less restrictive.
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For each test we monitor the classical Courant number

CFL = λmax�t

�x

where λmax = max j (|u j | + c j/ε), c j = √
γ p j/ρ j .

Standard explicit schemes on staggered grid require a classical Courant number CFL ≤
1/2, while for our semi-implicit scheme CFL can be quite larger than 1 for small Mach num-
bers. Because only the material wave is treated explicitly, we expect the stability restriction
for our semi-implicit schemes is given by CFLu ≤ 1/2 where

CFLu = max |u j |�t

�x
.

This is in practice the condition that we adopt for small values of ε.We prefer to use condition
(5.4) in order to avoid excessively large values of the time step when the velocity of the gas
is too small. A formal stability analysis of the scheme is under way.

Finally, a reference solution is computed with �x = 1/500, and �t = 1/20,000.
We observe that for moderate values of ε the numerical solutions are close to the reference

one,while for small values of ε the acousticwaves are dumped out, still the numerical solution
maintains stability.

5.2 Example 2: Convergence Test

Here we verify the temporal and spatial order of accuracy of the scheme in compressible and
incompressible regimes in one dimension. In order to do that, we consider Equation (3.1),
take as computational domain � = [−2.5, 2.5] with initial conditions

u0(x) = sin

(
2πx

L

)

, ρ0(x) =
(

1 + ε
(γ − 1)u0(x)

2
√

γ

) 2
γ−1

, p0 = ρ
γ
0

where γ = 2, L = 5 and final time T = 0.3, �t is given by (5.4) with CFLImp = 0.45.
Density errors for different values of the Mach number are listed in Table 1. Since we used
a staggered grid, we compute the experimental order of convergence (EOC) by the formula

Table 1 Convergence table of Example 2

N ε = 0.8 ε = 0.3 ε = 0.05

L1 error L1 order L1 error L1 order L1 error L1 order

Density error with CFL Imp = 0.45 and T = 0.3

10 1.123e−02 1.209e−02 1.416e−04

20 1.985e−03 2.499 6.837e−03 0.822 2.110e−04 − 0.575

40 9.634e−04 1.043 2.690e−03 1.346 1.282e−03 − 2.603

80 2.241e−04 2.104 8.552e−04 1.653 6.219e−03 − 2.278

160 5.561e−05 2.010 2.373e−04 1.849 4.551e−03 0.450

320 1.353e−05 2.039 6.023e−05 1.978 1.597e−03 1.511

640 3.269e−06 2.048 1.509e−05 1.997 4.993e−04 1.677

1280 7.868e−07 2.054 3.774e−06 1.999 1.358e−04 1.878

2560 1.898e−07 2.051 9.420e−07 2.002 3.405e−05 1.995

123



870 J Sci Comput (2018) 77:850–884

EOC := log2

(
eN
e2N

)

(5.5)

where

eN =
∥
∥UN −UN

∥
∥
L1

∥
∥UN

∥
∥
L1

,

UN denotes the numerical solution with N cells, and solution at 2N cells with

UN (i) = U2N (2i − 1) +U2N (2i)

2
.

The results show second-order convergence for all tested values of ε = 0.8, 0.3, 0.05.We
observe that, because of the underresolved acoustic waves, for small values of ε convergence
is reached for large values of N in space. We get similar results for the other variables,
velocity and pressure, but we omit to show them.

5.3 Example 3: Two Colliding Acoustic Waves

Consider the evolution of two colliding acoustic waves, with the following well prepared
initial data (see Figs. 4, 5), i.e. when ε goes to 0, the density and momentum are consistent
with the incompressible limit:

p(ρε) = ργ
ε , for x ∈ [−1, 1], with γ = 1.4,

ρε(x, 0) = 0.955 + ε

2
(1 − cos(2πx)), uε(x, 0) = −sign(x)

√
γ (1 − cos(2πx)).

(5.6)

These acoustic pulses, one right-running and one left-runnig, collide, superpose and reflect
each other, with no shock formation. Now, as done in [18], we choose as spatial step
�x = 1/50 and time is computed by (5.4) with CFLImp = 0.5. We use ε = 0.1 and
periodic boundary conditions. In Figs. (4) and (5), we display numerical results of density
and momentum for different final times T . The solid line is the reference solution computed
with �x = 1/500 and �t = 1/10,000.

5.4 Example 4: 2D Isentropic Problem

In this section we focus on a two dimensional case with p(ρ) = ρ2. The computational
domain is� = [0, 1]×[0, 1], discretized by a uniform grid. We consider the same numerical
test used in [21] with initial conditions:

⎧
⎨

⎩

ρ(x, y, 0) = 1 + ε2 sin2(2π(x + y)),
ρ(x, y, 0)u(x, y, 0) = sin(2π(x − y)) + ε2 sin(2π(x + y)),
ρ(x, y, 0)v(x, y, 0) = sin(2π(x − y)) + ε2 cos(2π(x + y)).

In this test, the CFL condition in two dimensions is similar to (5.4). Note that at the leading
order, i.e. ε = 0, the velocity field is divergence free and the density field is constant. In
Figs. 6 and 7, we display the performance of the scheme in the incompressible regime with
under-resolved meshes for ε = 0.05 and 0.001.We use�x = �y = 1/40, and�t computed
by (5.4) with CFLImp = 0.5 at final time T = 1.

In Fig. 6 we plot the deviation from the mean of the initial density ρ0 (left panels) and
of the final density ρ (right panels), respectively for ε = 0.05 and ε = 10−3. In Fig. 7 we
report the value of ∇ · u ≈ Dxu + Dyv at final time T = 1.
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Fig. 4 Example 3. The density computed by the first order (dashed line), and second order scheme (dot-dashed
line) at different times: T = 0.0 (initial density), T = 0.01, T = 0.02, T = 0.04, T = 0.06, T = 0.08 with
�x = 1/50, ε = 0.1
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Fig. 5 Example 3. The momentum computed by the first order (dashed line), and second order scheme (dot-
dashed line) at different times: T = 0.0 (initial momentum), T = 0.01; T = 0.02; T = 0.04; T = 0.06;
T = 0.08 with �x = 1/50, ε = 0.1

6 Extension to the Full Euler System

In this section we consider the rescaled (non-dimensional) compressible Euler equations for
an ideal gas (2.2) with the (suitably scaled) equation of state (EOS):

p = (γ − 1)

(

E − ε2
ρ|u|2
2

)

. (6.1)
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Fig. 7 Numerical results at time T = 1 a): for ε = 0.05 (left), and ε = 10−3 (right) with �x = �y = 1/40

6.1 Reformulation of the Main Problem

In order to solve numerically system (2.2), we rewrite such system in an equivalent way. We
substitute the pressure (6.1) in the equation for the momentum and for the energy E and we
get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + ∇ · m = 0

mt + ∇ ·
(
m ⊗ m

ρ

)

− γ − 1

2
∇

( |m|2
ρ

)

+ γ − 1

ε2
∇E = 0

Et − ∇ ·
(

γ − 1

2
ε2

|m|2m
ρ2

)

+ ∇ · (γ Eu) = 0.

(6.2)
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Note that, the formal derivation of the incompressible Euler equations from system (6.2) is
similar to the one shown in the isentropic case. We briefly summarize it here. Let us consider
the following asymptotic ansatz:

p(x, t) = p0(x, t) + ε2 p2(x, t) + · · ·
u(x, t) = u0(x, t) + ε2u2(x, t) + · · · ,

E(x, t) = E0(x, t) + ε2E2(x, t) + · · · .

(6.3)

Inserting the expressions into system (6.2), we get to O(ε−2), ∇E0 = 0 and this implies
E0(x, t) = E0(t), i.e. to the leading order, the energy term (and hence by (6.1), the pressure
p0 = (γ − 1)E0) is constant in space. Furthermore, from the energy equation we get to
O(1):

∇ · u0 = 1

γ p0

dp0
dt

.

Integrating this equation on a bounded domain � and using, for example, periodic boundary
conditions we have: ∇ · u0 = 0, i.e. p0 is a constant of order 1.

Furthermore, from the momentum equation we obtain, to the O(1):

∂t (ρ0u0) + ∇ · (ρ0u0 ⊗ u0) − (γ − 1)

2
∇ · (

ρ0u20
) + (γ − 1)

2
∇E2 = 0, (6.4)

and by (6.1), at O(1) for the pressure one has:

E2 = p2
(γ − 1)

+ (γ − 1)

2
(ρ2u20). (6.5)

Thus, for low Mach number (i.e., ε � 1), under suitable well- prepared initial conditions:

ρ(x, t = 0) = ρ0(x) + ε2ρ2(x),

p(x, t = 0) = p0 + ε2 p2(x),

u(x, t = 0) = û0(x) + O(ε2), (6.6)

the solution (ρ,m, p) of (6.2), is close to the solution of the incompressible Euler system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + u · ∇ρ = 0,
ρ(t = 0, x) = ρ0(x),
∂t (ρu) + ∇ · (ρu ⊗ u) + ∇ p2 = 0,
∇ · u = 0,
u(t = 0, x) = û(x),
p = p0,

(6.7)

where û(x) is of order 1 with ∇ · û = 0, ρ∗(x) is a strictly positive function such that
ρ∗ = O(1), and p0 is the space independent thermodynamic pressure, related to internal
energy e0 and density ρ0 by: p0 = (γ − 1)ρ0e0.

Note that p2 = limε→0
1
ε2

(p − p∗) is implicitly defined by the constraint ∇ · u = 0 and

explicitly given by the equation −�p2 = ρ0∇2 : (u ⊗ u).
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6.2 The Semi-implicit R–K (SI R–K) Time Integrator for the Euler Equation

The scheme proposed here for the full Euler system follows the isentropic case strategy. We
start applying to system (6.2) an explicit–implicit Euler scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1 − ρn

�t
+ ∇ · mn+1 = 0,

mn+1 − mn

�t
+ ∇ ·

(
mn ⊗ mn

ρn

)

− γ − 1

2
∇

(
(|m|2)n

ρn

)

+ γ − 1

ε2
∇En+1 = 0,

En+1 − En

�t
− ∇ ·

(
γ − 1

2
ε2

(|m|2m)n

ρn

)

+ γ∇ ·
(

Enm
n+1

ρn

)

= 0.

(6.8)

with

pn+1 = (γ − 1)

(

En+1 − ε2
(ρu2)n

2

)

. (6.9)

Then, the scheme works as follows. Let

ρn+1 = ρn − �t∇ · mn+1,

1
m

n+1
= 1

m
∗

− (γ − 1)

ε2
�t∂x E

n+1,

2
m

n+1
= 2

m
∗

− (γ − 1)

ε2
�t∂y E

n+1,

En+1 = E∗ − γ�t∂k

⎛

⎝En
k
m

n+1

ρn

⎞

⎠ ,

(6.10)

with

k
m

∗
= k

m
n

− �t∇ ·
⎛

⎝

k
m

n
mn

ρn

⎞

⎠ + γ − 1

2
�t∂k

(
(|m|2)n

ρn

)

, k = 1, 2, (6.11)

and

E∗ = En − γ − 1

2
ε2�t∂k

⎛

⎝
|m2|n k

m
n

ρn

⎞

⎠ , k = 1, 2, (6.12)

Now, inserting the expression
k
m

n+1
into the equation for E we obtain

En+1 = E∗∗ + �t2γ (γ − 1)

ε2
∇ ·

(
En

ρn
∇ · En+1

)

, (6.13)

where

E∗∗ = E∗ − �tγ ∂k

(
En

ρn

k
m

∗)
. (6.14)

Then discretizing in space by central scheme based on a staggered grid with uniform
spatial mesh, we obtain in this case a linear elliptic equation:

En+1
i+1/2, j+1/2 = E∗∗

i+1/2, j+1/2 + �t2

ε2
γ (γ − 1)LEn+1

i+1/2, j+1/2, (6.15)
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Here the operator L is defined as: LEi j = Lx Ei j + Ly Ei j where:

Lx E
n+1
i j = 1

�x

((
E

ρ

)n

i+1/2, j

(
En+1
i+1, j − En+1

i, j

�x

)

−
(
E

ρ

)n

i−1/2, j

(
En+1
i, j − En+1

i−1, j

�x

))

,

where for any function k defined on the grid:

ki+1/2, j = ki+1, j + ki, j
2

,

and similarly for Ly . Then, solving the linear system, we obtain the new energy E to step
n + 1. This is used to update the momentummn+1, and, finally, to compute the new density.

APproperty. Following the analysis in Sect. 3.2, it is possible to show that scheme (6.8) is
asymptotic preserving (AP) in the limit ε → 0. We start by making the following asymptotic
ansatz

pni j = pn0 + ε2 pn2,i j + · · · ,

ρn
i j = ρn

0,i j + ε2ρn
2,i j + · · · ,

En
i j = En

0 + ε2En
2,i j + · · · . (6.16)

with the leading order energy term: En
0 = pn0/(γ − 1) and from (6.5) and (6.9) we get to

O(1):

En
2,i j = pn2,i j

(γ − 1)
+ ρn−1

0,i j |un−1
0,i j |2

2
. (6.17)

Furthermore, in agreement with (6.6), we consider the following well-prepared initial con-
ditions

ρ0 = ρ0
0,i j + ε2ρ0

2,i j ,

p0 = p0 + ε2 p02,i j ,

u0 = u00,i j + O(ε2), (6.18)

with p0 a positive constant.
Assuming well-prepared initial conditions, and following the same procedure adopted

in Sect. 3.2, one can prove AP property of scheme (6.8). The reader can find a detailed
asymptotic preserving analysis in [46].

High order extension. A natural extension of the first order scheme (6.8) to a second
order one is obtained in a similar way to the one illustrated in Sect. 4. In particular we obtain
a second order globally stiffly accurate S-IMEX-RK-STAG. Here the function H(U∗,U) is
defined, by system (6.2), as follows:

H(U∗,U) =

⎛

⎜
⎜
⎜
⎜
⎝

−∇ · m
−∇ ·

(
m∗ ⊗ m∗

ρ∗

)

+ γ − 1

2
∇

( |m∗|2
ρ∗

)

− γ − 1

ε2
∇E

∇ ·
(

γ − 1

2
ε2

|m∗|2m∗

ρ∗

)

− γ∇ ·
(
E∗

ρ∗ m
)

⎞

⎟
⎟
⎟
⎟
⎠

, (6.19)

where, as before, the quantities with an asterisk are treated explicitly, while the quantities
without the asterisk are treated implicitly.
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Fig. 8 Sod shock tube, Density and velocity solution (red lines), CFLImp = 0.5, N = 200 grid points at
time T = 0.18 with ε = 1. Black line is the reference solution

7 Numerical Results for the Full Euler System

In this last part of the paper we present several numerical test cases applied to the full Euler
system in one and two dimensions. Here we consider the same S-IMEX-RK-STAG schemes,
the same CFL condition and time step given in Sect. 5.

7.1 Example 1: 1D Sod Shock Tube Problem

First, we test the method in a compressible regime, i.e., when the Mach number isO(1). We
consider the classical Sod shock tube problem with the initial conditions

(ρ, u, p)(x, 0) =
{

(1.0, 0.0, 1.0) if x < 0.5,
(0.125, 0.0, 0.1) otherwise.

(7.1)

The domain is [0, 1] and the discontinuity is initially at x = 0.5. We use N = 200 cells.
The numerical results are obtained by the second order scheme at T = 0.18 and are shown in
Fig. 8. The reference solution is computed with N = 1000 grid points.

The results are comparable to those obtained by Nessyahu–Tadmor central scheme, [37].
Note that, since in this numerical test we set ε = 1, CFLImp = 0.5 is the classical Courant

number CFL.

7.2 Example 2: Convergence Test

We compute the experimental order of convergence (EOC) of the scheme presented in the
previous section. The initial conditions for density and velocity, the final time and the bound-
ary conditions are given in Sect. 5.2. The initial entropy is assumed to be constant, so that
the pressure is the same as in the isentropic case of Sect. 5.2. Here we use the value γ = 1.4.

Belowwe report the convergence table for the density, momentum and energy for different
values of the Mach number 0.8, 0.3 and 10−4, (Table 2). Note that for ε = 10−4 we choose
as final time T = 0.01.

We observe second order convergence in all cases. However, because acoustic waves are
poorly revolved in time, we need to use a very fine mesh in order to observe expected order
of convergence.
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Table 2 Example 2. Convergence table for smooth initial data

N L1-error ρ EOC ρ L1-error m EOC m L1-error E EOC E

CFLImp = 0.45, T = 0.3 and ε = 0.8

20 5.472e−03 1.347e−02 6.990e−03

40 1.602e−03 1.772 4.047e−03 1.735 2.603e−03 1.425

80 4.792e−04 1.740 1.302e−03 1.636 7.481e−04 1.799

160 1.237e−04 1.953 3.639e−04 1.839 2.018e−04 1.890

320 3.120e−05 1.987 9.381e−05 1.955 5.146e−05 1.971

640 7.732e−06 2.012 2.353e−05 1.995 1.286e−05 2.000

CFLImp = 0.45, T = 0.3 and ε = 0.1

20 1.988e−03 3.894e−02 2.708e−03

40 3.959e−04 2.328 7.445e−03 2.387 5.501e−04 2.299

80 1.202e−04 1.719 2.241e−03 1.731 1.676e−04 1.714

160 3.036e−05 1.985 5.641e−04 1.990 4.266e−05 1.974

320 7.628e−06 1.992 1.400e−04 2.010 1.077e−05 1.986

640 1.895e−06 2.009 3.501e−05 2.000 2.682e−06 2.005

CFLImp = 0.45, T = 0.01 and ε = 10−4

20 1.844e−05 4.792e−01 2.582e−05

40 1.084e−05 0.766 2.105e−01 1.186 1.518e−05 0.766

80 2.929e−06 1.888 5.463e−02 1.946 4.100e−06 1.888

160 7.332e−07 1.998 1.360e−02 2.005 1.026e−06 1.998

320 1.831e−07 2.001 3.394e−03 2.003 2.563e−07 2.001

640 4.582e−08 1.998 8.492e−04 1.998 6.415e−08 1.998

7.3 Example 2: Two Colliding Acoustic Pulses

We consider again two colliding acoustic pulses in a weakly compressible regime. This test
has been taken from [32,38]. The initial conditions are given by

ρε(x, 0) = ρ0 + 1

2
ερ1

(

1 − cos

(
2πx

L

))

, ρ0 = 0.955, ρ1 = 2.0,

uε(x, 0) = 1

2
u0sign(x)

(

1 − cos

(
2πx

L

))

, u0 = 2
√

γ ,

ρε(x, 0) = p0 + 1

2
εp1

(

1 − cos

(
2πx

L

))

, p0 = 1.0, p1 = 2γ. (7.2)

The domain is −L ≤ x ≤ L = 2/ε and the boundary conditions are periodic. In Fig. 9 we
show the plots of the pressure obtained using first order (6.8) and second order globally stiffly
accurate S-IMEX-RK-STAG scheme at different times t = 0.815 and t = 1.63. We choose
ε = 1/11 and we plot the initial pressure distributions for comparison. In the figure, the
reference solution has been computed with N = 1500. The results have the same behavior
as in [38].
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Fig. 9 ε = 1/11 (top panel) and ε = 10−4 (bottom panel), N = 440, final time T = 0.815 (Left) and
T = 1.63 (Right). CFL = 10−3 has been used when ε = 10−4. We displayed the initial condition (dotted
line), the numerical solution to the first (dashed line) and second order scheme (dot-dashed line). Reference
solution (continuous line)

7.4 Example 3: Gresho Vortex

In this section we apply our scheme to the classical Gresho vortex test case. This test is
used to check the effect of the numerical diffusion introduced by the scheme. As it appears
in several papers (see for example [35,38]), classical schemes, both explicit and implicit,
have an excessively large numerical diffusion when applied to low Mach number problems.
In particular, the effect of the diffusion increases when the Mach number is decreased. The
Gresho vortex [24] is a stationary solution of compressible Euler equation which does not
contain acoustic waves. It consists of a 2D axis-symmetric vortex with compact support in
the velocity, in which centrifugal force is balanced by a suitable radial pressure gradient. The
vortex is centered at (x, y) = (0.5, 0.5) of the computational domain [0, 1] × [0, 1]. The
initial condition is specified in terms of the radial distance r = √

(x − 0.5)2 + (y − 0.5)2

which denotes the radial coordinate of the rotating flow:

ρ(x, y, 0) = 1.0,

u(x, y, 0) = −uφ(r) sin(φ),

v(x, y, 0) = uφ(r) cos(φ),

p(x, y, 0) =
⎧
⎨

⎩

p0 + 12, 5r2, if 0 ≤ r < 0.2
p0 + 4 − 4.0 log(0.2) + 12.5r2 − 20r + 4 log r, if 0.2 ≤ r < 0.4
p0 − 2 + 4 log 2, otherwise.
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Fig. 10 Gresho vortex problem: pseudo-colour plots of theMach number at times t = 0.0, 1.0. In this problem
ε = 10−3 and the CFLImp = 0.35

Fig. 11 Temporal evolution of
the total kinetic energy Ekin(t)
relative to its initial value Ekin(0)
in the Gresho vortex problem for
two different meshes: 40 × 40
(dotted) and 80 × 80 (solid) with
CFLImp = 0.35. For each mesh,
three different values of the Mach
number have been used, namely
ε = 10−1, 10−2, 10−3. The lines
corresponding to the various
Mach numbers are almost
indistinguishable for both
meshes, showing that the
dissipation is essentially
independent on the Mach number
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Here tan φ = (y − 0.5)/(x − 0.5) and the angular velocity uφ is defined by

uφ(r) =
⎧
⎨

⎩

5r, if 0 ≤ r < 0.2
2 − 5r, if 0.2 ≤ r < 0.4
0, otherwise.

We apply our scheme with final time t = 1, periodic boundary conditions and three different
values of the Mach number, ε = 10−1, ε = 10−2, ε = 10−3. The Mach number distribution
for 40×40 grid is reported in Fig. 10 for ε = 10−3. The decay of kinetic energy for different
values of ε are reported in Fig. 11, for two space resolution, namely 40 × 40 and 80 × 80.
It appears from the figure that the decay in the kinetic energy is essentially independent on
ε. Note that the use of staggering introduces an additional source of numerical dissipation
compared to the corresponding non-staggered approach [35], however the effect becomes
four times smaller as the grid is refined.

Remark Themain source of diffusion ofmany shock capturing schemeswhen computing low
Mach number flow is the large numerical viscosity which is needed to allow the dissipation
near shocks, which are associated to fast acoustic waves. If only the material waves are
treated explicitly, as we do in our scheme, then there is no need of such large numerical
viscosity, and therefore the corresponding dissipation is not so large any more. Only acoustic
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waves are treated implicitly, with a central discretization of pressure gradient. This causes
the dissipation of the acoustic waves, still having almost no effect on the material wave.

7.5 Example 4: Asymptotic Preserving Property (AP)

In Sect. 3.2 we have discussed the asymptotic preserving property of our scheme when
applied to the Euler isentropic case (2.3) and to the full Euler one (6.2). Now, the goal in this
section is to verify such AP property, numerically.

In particular, we compare the solutions of the scheme at low Mach number, when applied
to the isentropic Euler equations (2.3) and to the complete Euler ones (6.2), with the solution
of the incompressible Euler equations.

Consider incompressibleEuler equation in the vorticity stream-function formulation, [45]:

ωt + u · ∇ω = 0, (x, y) ∈ [0, 2π] × [0, 2π] (7.3)

where

ω = ∂v

∂x
− ∂u

∂y
.

Because ∇ · u = 0, there exists a function ψ such that

u = (∂yψ,−∂xψ). (7.4)

Inserting this relation in the expression for ω one obtains the Poisson equation

− �ψ = ω. (7.5)

For our numerical test we assume periodic boundary conditions and we consider as initial
condition, the shear flow:

ω(x, y, 0) =

⎧
⎪⎨

⎪⎩

δ cos(x) − 1

ρ
sech2((y − π/2)/ρ), y � π

δ cos(x) + 1

ρ
sech2((3π/2 − y)/ρ), y > π

(7.6)

where δ = 0.05 and ρ = π/15.
As a reference solution for incompressible Euler equations (7.3), we consider a very

accurate numerical solution obtained by Fourier spectral discretization in space and fourth
order Runge–Kutta method in time. Final time is T = 6. With N = 160 grid points per
directionwehave a fully resolved calculation.Wedenote it the reference solution (seeFig. 12).

Now we compute numerical solutions of isentropic Euler equations (2.3) and of the com-
plete Euler ones (6.2) by using our scheme.

As initial condition we give the velocity field associated to the initial vorticity distribution
(7.6). It is obtained by solving the Poisson equation (7.5) for the stream function ψ , with
periodic boundary conditions, and then computing the initial velocity from (7.4). The initial
value for density ρ and pressure p are set to 1. We set ε = 10−4, N = 160 and final time
T = 6.0, and solve the Euler equations with periodic boundary conditions. The results are
given in Fig. 13.

Note that the CFL condition in two dimensions is similar to (5.4), i.e.,

�t = CFLImp

max |ui j + c̃i j |
�x

+ max |vi j + c̃i j |
�y

.
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Fig. 12 Plot of the reference
solution at final time T = 6
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Fig. 13 Numerical solution for the isentropic case (left), and for the complete Euler case (right) with ε = 10−4

at final time T = 6

In our simulation we used �x = �y.
Comparing the reference solution for incompressible Euler equations, Fig. 12, with the

solutions obtainedwith the second order semi implicit scheme (S-IMEX-RK-STAG), Fig. 13,
we observe that there is a qualitative agreement.

Finally, in Fig. 14 we show the behavior of the L1 error, as the difference between the
numerical solution of the Euler scheme computed by our second order scheme S-IMEX-
RK-STAG scheme with different values of ε from 10−1 to 10−4 and the reference solution.
We refined N = 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512 to compute the numerical
solution for each value of ε. Similarly, we computed the reference solution for each value of
N . In this test we fixed ρ = π/10 and the final time T = 1.

Two main sources of error are present when comparing the numerical solution of weakly
compressible Euler equation and the reference solution for incompressible Euler: space and
time discretization error and modelling error. The latter is due to the different behaviour
between compressible and incompressible flow. For a given value of ε, discretization error
is dominant for coarse grid. Refining the grid, the typical second order convergence rate is
observed. When space and time are fully resolved, the model error becomes dominant and is
responsible of the plateau observed for large values of N . As ε is decreased, the discrepancy
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Fig. 14 L1-error
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10-4

10-3

10-2

10-1

between compressible and incompressible Euler decreases, and is observed at finer and finer
meshes (see Fig. 14).

8 Conclusions

In this paper we present a simple strategy to construct semi-implicit schemes for Euler
equations which are able to work on a wide range of Mach numbers. The schemes are based
on staggered grid discretization in space, which is second order accurate and avoids the
need of exact or approximate Riemann solvers. In the proposed schemes, acoustic waves are
treated linearly implicitly, while material waves are treated explicitly. The resulting scheme
is Asymptotic Preserving, i.e. it converges to a consistent scheme for the incompressible
Euler equations as the Mach number vanishes. Because of the linear treatment of implicit
terms, the schemes are quite efficient, especially for low Mach number flow. Second order
schemes in time are constructed using Implicit–Explicit Runge–Kutta methods. Because of
the staggered nature of the problem, second order discretization in time requires the use
of Globally Stiffly Accurate schemes. A simplification is obtained by computing most of
the stage values implicitly by a possibly non conservative predictor, while the conservative
corrector guarantees that the overall scheme is conservative. A stability analysis is performed
showing that the last stage of the scheme has to be implicit at the level of the numerical
solution in order to avoid classical stability restrictions. Numerical convergence study is
performed on various test problems, emphasizing the robustness and efficiency of the scheme.
In principle the procedure could be extended to two space dimensions on unstructured grids,
using central schemes on tetrahedral meshes developed by P.Arminjon and collaborators [1].
Such extension is however beyond the purposes of the present paper.

The procedure could be also extended to construct higher order schemes. Third order
semi-implicit schemes on a non staggered grid are considered in [10]. Implicit treatment of
boundary conditions, will be subject of future investigation.
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