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Abstract In this paper, a linearized local conservative mixed finite element method is pro-
posed and analyzed for Poisson–Nernst–Planck (PNP) equations, where the mass fluxes and
the potential flux are introduced as new vector-valued variables to equations of ionic con-
centrations (Nernst–Planck equations) and equation of the electrostatic potential (Poisson
equation), respectively. These flux variables are crucial to PNP equations on determining the
Debye layer and computing the electric current in an accurate fashion. The Raviart–Thomas
mixed finite element is employed for the spatial discretization, while the backward Euler
scheme with linearization is adopted for the temporal discretization and decoupling nonlin-
ear terms, thus three linear equations are separately solved at each time step. The proposed
method is more efficient in practice, and locally preserves the mass conservation. By deriving
the boundedness of numerical solutions in certain strong norms, an unconditionally optimal
error analysis is obtained for all six unknowns: the concentrations p and n, the mass fluxes
J p = ∇ p + pσ and Jn = ∇n − nσ , the potential ψ and the potential flux σ = ∇ψ in
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L∞(L2) norm. Numerical experiments are carried out to demonstrate the efficiency and to
validate the convergence theorem of the proposed method.

Keywords Poisson–Nernst–Planck equations · Mixed finite element method · Raviart–
Thomas element · Unconditional convergence · Optimal error estimate · Conservative
schemes

Mathematics Subject Classification 65N12 · 65N30 · 35K61

1 Introduction

In this paper, we consider the following time-dependent Poisson–Nernst–Planck (PNP) equa-
tions in regard to the ionic concentrations of the positively and negatively charged particles,
p(x, t), n(x, t), and the electrostatic potential, ψ(x, t), that is generated by the heteroge-
neous distribution of the positively and negatively charged particles

∂p

∂t
− ∇ · (∇ p + p∇ψ

) = 0 , (1.1)

∂n

∂t
− ∇ · (∇n − n∇ψ

) = 0 , (1.2)

− �ψ = p − n , (1.3)

where, t ∈ [0, T ] and x ∈ � which is a bounded, convex polyhedron in R
3 (or polygon in

R
2). The boundary and initial conditions are defined as

∂p

∂n
+ p

∂ψ

∂n
= 0,

∂n

∂n
− n

∂ψ

∂n
= 0,

∂ψ

∂n
= 0, for x ∈ ∂�, t ∈ [0, T ], (1.4)

p(x, 0) = p0(x), n(x, 0) = n0(x), for x ∈ �, (1.5)

where n is the unit outward normal vector of the domain boundary ∂�. Subject to the
homogeneous boundary condition (1.4), the well-posedness of PNP equations requires the
following initial electroneutrality condition

∫

�

(p(x, 0) − n(x, 0)) dx = 0. (1.6)

With (1.4), the initial condition (1.6) induces that for all t ≥ 0
∫

�

p(x, t) dx ≡
∫

�

p0(x) dx =
∫

�

n0(x) dx ≡
∫

�

n(x, t) dx. (1.7)

In addition, since ψ is unique up to a constant, here we only consider the zero mean value
solution ψ which satisfies (ψ, 1) = 0, where (·, ·) denotes the standard L2 inner product.

The PNP system is served as a popularmodel in awide variety of application areas, such as
transport of charged particles in biological membrane channels [29,42,43], semiconductors
[6,16,30] and electrokinetic flows [38]. We refer to [2,3,16,33,38] for theoretical analyses
of the PNP equations. Numerical methods and analyses for the PNP system have been exten-
sively studied, see [5,7,13–15,19,25–27,29,31,32,35,37,40,43]. For the regular domain,
several finite difference schemes have been investigated, see [13,19,26,32]. For more general
geometries and boundary conditions, finite element method (FEM) is much more attractive
[4,41]. We shall review previous studies with finite element method which are closely related
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to the present work. Prohl and Schmuck [35] propose two nonlinear schemes with a linear
finite element method which preserve electric energy decay and entropy decay properties,
respectively. The fixed point inner iterations are used at each time step for these schemes
and the convergence theorem is also proved in [35]. Later, numerical methods for the PNP
system (1.1)–(1.5) coupled with Navier–Stokes equations are investigated in [36]. Sun et al.
[40] analyze a fully nonlinear Crank–Nicolson FEM for the PNP equations, where a Picard’s
linearization is used in the inner iteration and an optimal error estimate in H1 norm but a sub-
optimal error estimate in L2 norm are obtained. To overcome the convergence order reduction
and to accurately resolve the electric current that is the gradient of the electrostatic potential,
∇ψ , as well, He and Sun [20] propose a nonlinear mixed finite element method for Poisson
equation (1.3) and still use the standard FEM for Nernst–Planck equations (1.1) and (1.2),
which provides optimal error estimates for the electrostatic potential and ionic concentrations
in both H1 and L2 norms, moreover, for ∇ψ in H(div) norm as well. Recently, He and Sun
[21] further apply the same type of stable Stokes-pair mixed FEM to the PNP/Navier–Stokes
coupling system, and obtain optimal convergence rates for all variables of PNP equations
and of Navier–Stokes equations in their own proper norms, respectively.

It should be mentioned that all schemes in [13,20,35,40] are nonlinear. However, it is well
known that for nonlinear parabolic problems, linearized schemes are much more efficient,
which only need to solve a linear system at each time step, e.g., see [23,39]. Thereby in this
direction, He and Pan [19] propose a linearized finite difference scheme which preserves the
mass conservation and electric energy decay, and the optimal convergence rate and electric
energy decay properties of the scheme are numerically illustrated. Gao and He [17] extend
the scheme to finite element discretization and establish unconditionally optimal error esti-
mates for all variables in both H1 and L2 norms, additionally, they also demonstrate the
global energy decay and mass preserving properties for the proposed scheme. We point out
that the original PNP system (1.1)–(1.5) satisfies a local mass conservation property. Local
conservation in the discrete scheme can be helpful to guarantee the accuracy of numerical
methods for the coupled flow and transport system. We refer to [10] for more discussion on
the local conservation.

Note that the electric current is crucial for PNP system and its applications. It should
be remarked that the obtained numerical solutions need to be validated by comparing with
experimental data, where, the electric current seems the easiest physical quantity to be mea-
sured in the experiment. For example, the electric current across the biological membrane
channel is calculated by the following expression [45]

I =
2∑

m=1

qm

∫

MEM
Dm

(
∇Cm + qm

κB T
Cm∇ψ

)
· n dx, (1.8)

where, Cm (m = 1, 2) represent the ionic concentrations, i.e., C1 = p and C2 = n in this
paper and n denotes the unit outer normal vector through each cross section inside the mem-
brane channel. Equation (1.8) clearly shows that the gradients of ionic concentrations and of
electrostatic potential are important to produce an accurate electric current everywhere inside
the membrane channel. Moreover, another important electrokinetic phenomena existing in
ion channels of electrophysiology, the electrical double layer (Debye layer) [11], is formed
near the surface of a charged object (membrane) due to the exponential decreases of the
electrostatic potential, further, of the ionic concentrations, away from the surface, featuring
a distance called Debye length [2,3]. Such exponential decrease induces a large gradient, so
an accurate computation of gradient for the electrostatic potential and ionic concentrations
are crucial to determine the location of Debye layer, which has a significant influence on the
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behavior of surfaces of the charged objects in contact with solutions or solid-state fast ion
conductors.

Therefore in the PNP system, it is necessary to numerically resolve the gradients ∇ p, ∇n
and ∇ψ in an accurate and efficient fashion. Conventional Lagrange FEMs need a proper
postprocessing technique to locally conduct a certain numerical differentiation for the pri-
mary variable, then project back to the continuous finite element space for the seek of a
continuous gradient variable, which may leads to a loss of accuracy if no advanced recovery
technique is adopted [34,46]. There have been several works on Raviart–Thomas (RT) mixed
FEMs for solving the PNP system and related models which couple the PNP equations with
Darcy or Stokes flows, see [5,14,15]. For a two-dimensional stationary model arose from the
discretization of the dynamical PNP equation, Brera et al. in [5] study a conservative mixed
method, where the Delaunay type mesh is used which must satisfy certain angle conditions
to ensure a discrete maximum principle. For the two-dimensional Stokes–Nernst–Planck–
Poisson system, Frank, Ray and Knabner [15] suggest a fully nonlinear backward mixed
FEM, where a fixed point inner iteration is used at each time step to solve the nonlinear
FEM equation. Numerical experiments are reported to show the effectiveness of the scheme.
However, no analysis is available in [15]. Recently, Frank and Knabner [14] proposed a non-
linear BDF2/mixed FEM for the Darcy-Nernst–Planck–Poisson system. A cut-off operator
M is used in their scheme, which needs a cut-off parameter depending on the domain �,
terminal time T and initial data, see [14, the right-hand side of (2.5)]. Selecting this parameter
might be difficult in practice. L2 error estimates of the velocity, pressure, electric potential,
electric field, concentrations are derived, which relies on the uniform boundedness of the
cut-off parameter. It should be noted that uniqueness and existence of numerical solutions
[14, Problem 3.3] are not shown. Moreover, L∞(L2) error estimates of the mass fluxes
are still missing, which are of great importance in computing electric current and Desbye
layer.

Motivated by the above, in this paper we propose and analyze a linearized local conser-
vative mixed finite element method for the PNP system (1.1)–(1.5). We apply the RT mixed
FEM for the spatial approximation combined with a linearized (semi-implicit) backward
Euler scheme in temporal direction. Our method is linear so that at each time step, one only
needs to solve three linear systems. Moreover, RTmixed FEMs have many attractive features
over the conventional Lagrange FEMs. For instance, the mass conservation is preserved in
each element; the lowest order mixed RT element possesses the smallest number of degree
of freedoms as a stable mixed finite element pair; besides the primary variables (ionic con-
centrations and electrostatic potential), their fluxes can be computed simultaneously in an
accurate order, which are desirable in studying the Debye layer and current–voltage curves.
The major difficulty in the finite element error analysis lies in the fact that the ionic concen-
trations p and n are strongly coupled with the electrostatic potentialψ through its gradient. In
this paper, we obtain unconditionally optimal error estimates from the proposed mixed finite
element approximation for all primary variables and their gradients in appropriate norms,
respectively. A key step in our error estimates is to derive the boundedness of numerical solu-
tions in certain strong norms, which is achieved by applying a discrete Sobolev embedding
inequality for the RT mixed FEM (see Lemma 2.3).

The rest of this paper is organized as follows. In Sect. 2, we define some notations and
introduce several useful lemmas. In Sect. 3, we present a linearized backward Euler RT
mixed FEM and the main results on error estimates. In Sect. 4, we prove an optimal L2 error
estimate without any restriction on mesh ratio between the time step τ and the mesh size
h. In Sect. 5, we provide several numerical examples to confirm our theoretical analyses
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and show the efficiency of the proposed methods. Conclusions and discussions are given in
Sect. 6.

2 Preliminaries

We first clarify some conventional notations. For integer k ≥ 0 and 1 ≤ p ≤ ∞, let W k,p(�)

be the Sobolev space with the norm

‖u‖W k,p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( ∑

|β|≤k

∫

�

|Dβu|p dx
) 1

p

, for 1 ≤ p < ∞,

∑

|β|≤k

ess sup�|Dβu|, for p = ∞,

where

Dβ = ∂ |β|

∂xβ1
1 · · · ∂xβd

d

,

for the multi-index β = (β1, . . . , βd), β1 ≥ 0, . . ., βd ≥ 0, and |β| = β1 + · · · + βd . When
p = 2 we also note Hk(�) := W k,2(�). For vector function space, we denote

H(div;�) = {
u

∣∣ u ∈ L2(�), div u ∈ L2(�)
}
with ‖u‖H(div) = (‖u‖2L2 + ‖div u‖2L2

) 1
2

and its subspace
◦
H(div;�) = {u∣∣ u ∈ H(div;�), u · n = 0} with the corresponding dual

space
◦
H(div)′ with norm

‖v‖ ◦
H(div)′ := sup

w∈ ◦
H(div)

(v , w)

‖w‖H(div)
.

To introduce the linearizedmixed finite elementmethod, let
{
t j

}J
j=0 be a uniform partition

in the time direction with step size τ = T
J . For a sequence of functions {u j }J

j=0 defined in
�, we denote the backward Euler discretization operator

Dτ u j = u j − u j−1

τ
, for j = 1, . . . , J.

Let Th = {K } be a regular mesh partition of� and denote the mesh size h = maxK {diamK }.
We define the RT mixed finite element space by

Hr
h(�) := {q ∈ H(div;�) : q|K ∈ [Pr (K )]d + xPr (K ), ∀K ∈ Th} ,

V r
h (�) := {u ∈ L2(�) : u|K ∈ Pr (K ), ∀K ∈ Th} ,

where Pr (K ) is the space of polynomials of degree r or less defined in the element K . It is
well-known that Hr

h(�) × V r
h (�) is a stable finite element pair for solving the second order

elliptic problems [44]. Moreover, the following diagram commutes

H(div)
div−−→ L2(�)

	h

⏐⏐⏐�

⏐⏐⏐�	h

Hr
h(�)

div−−→ V r
h (�)

(2.1)
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where 	h denotes a general projector. More precisely, 	h : H(div) → Hr
h(�) is the RT

projector [44], and 	h : L2(�) → V r
h (�) is the L2 projector, respectively.

In the rest part of this paper, for simplicity of notation we denote by C a generic positive
constant and ε a generic small positive constant, which are independent of j , h and τ . We
present the Gagliardo–Nirenberg inequality, the discrete Gronwall’s inequality and a discrete
inequality for the RT mixed FEM in the following lemmas which will be frequently used in
our proofs.

Lemma 2.1 (Gagliardo–Nirenberg inequality [8, Theorem 1.5.2]): Let � ⊂ R
d be a

bounded domain. Let m ∈ N, p, r ∈ [1,∞), and u ∈ L p(�) ∩ Lr (�). Assume that

∂m
x u ∈ L p(�). Then for integer 0 ≤ j ≤ m and θ ∈

[
j

m , 1
]

(with the exception θ �= 1

when m − j − d
2 ∈ N), define q by

1

q
= j

d
+ θ

(
1

p
− m

d

)
+ (1 − θ)

1

r
.

Then, for any γ ∈ N
d with |γ | = j , ∂

γ
x u ∈ Lq(�) and we have the Gagliardo–Nirenberg

inequality

‖∂γ
x u‖Lq ≤ C‖∂m

x u‖θ
L p ‖u‖1−θ

Lr + Ĉ‖u‖Ls

with finite 1 ≤ s ≤ max{p, r}, C and Ĉ independent of u, C independent of �.

Lemma 2.2 Discrete Gronwall’s inequality [22] : Let τ , B and ak, bk , ck , γk , for integers
k ≥ 0, be non-negative numbers such that

aJ + τ

J∑

k=0

bk ≤ τ

J∑

k=0

γkak + τ

J∑

k=0

ck + B , for J ≥ 0 ,

suppose that τγk < 1, for all k, and set σk = (1 − τγk)
−1. Then

aJ + τ

J∑

k=0

bk ≤ exp

(

τ

J∑

k=0

γkσk

) (

τ

J∑

k=0

ck + B

)

, for J ≥ 0 .

Lemma 2.3 Discrete Sobolev inequalities for the RT mixed FEM [18] : For any given uh ∈
V r

h (�) (� can be a Lipschitz domain), if there exists a function f ∈ L2(�) such that

( f ,χh) + (uh, divχh) = 0 , ∀χh ∈ Hr
h(�) ,

then the following discrete Sobolev embedding inequalities hold

‖uh‖L p ≤ C‖ f ‖L2 , for1 ≤ p < ∞, in two dimensional space,

‖uh‖L p ≤ C‖ f ‖L2 , for1 ≤ p ≤ 6, in three dimensional space,

where C is a constant only depending upon the domain �, r and p.

3 A Linearized Backward Euler RT Mixed FEM and Main Results

In this section, we provide a linearized mixed FEM for solving PNP equations (1.1)–(1.5).
We introduce three extra variables below

σ = ∇ψ , J p = ∇ p + pσ , Jn = ∇n − nσ . (3.1)
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Here one can see that J p and Jn are the mass flux of positively and negatively charged
particles, respectively, while σ denotes the potential flux. With the above notations, we can
reformulate the original PNP system (1.1)–(1.5) to the following new system

{
J p = ∇ p + pσ ,
∂p
∂t − ∇ · J p = 0 ,

{
Jn = ∇n − nσ ,
∂n
∂t − ∇ · Jn = 0 ,

{
σ = ∇ψ ,

−∇ · σ = p − n ,

with boundary conditions

J p · n = Jn · n = σ · n = 0

and initial conditions

p(x, 0) = p0(x), n(x, 0) = n0(x).

Based on the above mixed PNP system, for t ∈ (0, T ], its weak formulation is to find
(J p, p), (Jn, n) ∈ ◦

H(div) × L∞(�) with ∂p
∂t , ∂n

∂t ∈ L2(�), and (σ , ψ) ∈ ◦
H(div) × L2(�)

with (ψ , 1) = 0, such that
⎧
⎪⎨

⎪⎩

(
J p , χ

) + (p,∇ · χ) = (pσ , χ) , ∀χ ∈ ◦
H(div) , (3.2)

(
∂p

∂t
, v

)
− (∇ · J p , v

) = 0 , ∀v ∈ L2(�), (3.3)

⎧
⎪⎨

⎪⎩

(Jn , χ) + (n,∇ · χ) = − (nσ , χ) , ∀χ ∈ ◦
H(div), (3.4)

(
∂n

∂t
, v

)
− (∇ · Jn , v) = 0 , ∀v ∈ L2(�) , (3.5)

{
(σ , χ) + (ψ,∇ · χ) = 0 , ∀χ ∈ ◦

H(div) , (3.6)

− (∇ · σ , v) = (p − n , v) , ∀v ∈ L2(�) . (3.7)

Now we are ready to present the linearized backward Euler mixed FEM for the PNP
system. For j = 0, 1, . . ., J − 1, a linearized mixed FEM is to find ((J p)

j+1
h , P j+1

h ),

((Jn)
j+1
h , N j+1

h ) and (σ
j+1
h , �

j+1
h ) ∈ ◦

Hr
h(�) × V r

h (�), with (�
j+1

h , 1) = 0, such that
⎧
⎪⎨

⎪⎩

(
(J p)

j+1
h , χh

)
+

(
P j+1

h ,∇ · χh

)
=

(
P j

h σ
j
h , χh

)
, ∀χh ∈ ◦

Hr
h(�) , (3.8)

(
Dτ P j+1

h , vh

)
−

(
∇ · (J p)

j+1
h , vh

)
= 0 , ∀vh ∈ V r

h (�) , (3.9)

⎧
⎪⎨

⎪⎩

(
(Jn)

j+1
h , χh

)
+

(
N j+1

h ,∇ · χh

)
= −

(
N j

h σ
j
h , χh

)
, ∀χh ∈ ◦

Hr
h(�) , (3.10)

(
Dτ N j+1

h , vh

)
−

(
∇ · (Jn)

j+1
h , vh

)
= 0 , ∀vh ∈ V r

h (�) , (3.11)

⎧
⎪⎨

⎪⎩

(
σ

j+1
h , χh

)
+

(
�

j+1
h ,∇ · χh

)
= 0 , ∀χh ∈ ◦

Hr
h(�) , (3.12)

−
(
∇ · σ

j+1
h , vh

)
=

(
P j+1

h − N j+1
h , vh

)
, ∀vh ∈ V r

h (�) . (3.13)
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At the initial step, P0
h = 	h p0, N 0

h = 	hn0 and σ 0
h is determined by (3.12), (3.13) with

j = −1. We shall note that the FEM equations (3.12), (3.13) of (σ
j+1
h , �

j+1
h ) is a pure

Neumann problem, which needs special treatments in the programming, we refer to [1] for
more discussion.

In the rest part of this paper, if the r -th order finite element is used, we assume that the
exact solutions of PNP equations (1.1)–(1.5) exist and satisfy the following regularity results

⎧
⎨

⎩

‖p‖L∞(0,T ;Hr+2) + ‖pt‖L∞(0,T ;Hr+2) + ‖ptt‖L2(0,T ;H1) ≤ C,

‖n‖L∞(0,T ;Hr+2) + ‖nt‖L∞(0,T ;Hr+2) + ‖ntt‖L2(0,T ;H1) ≤ C,

‖ψ‖L∞(0,T ;Hr+2) + ‖ψt‖L∞(0,T ;Hr+2) + ‖ψt t‖L2(0,T ;H1) ≤ C.

(3.14)

It should be noted that the above regularity assumptionsmight be not optimal but necessary for
our remaining proofs. In this paper, we only focus on optimal error analyses of the proposed
numerical method for the PNP system.

We present our main results on error estimates in the following theorem.

Theorem 3.1 Suppose that the PNP system (1.1)–(1.5) has a unique solution (p, n, ψ)

satisfying (3.14). Then the linearized backward Euler RT mixed FEM (3.8)–(3.13) admits a
unique solution ((J p)

j
h, P j

h ), ((Jn)
j
h, N j

h ) and (σ
j
h, �

j
h ) for j = 1, . . ., J , and there exist

two positive constants τ0 and h0 such that when τ < τ0 and h ≤ h0

max
0≤ j≤J

(
‖P j

h − p j‖L2 + ‖N j
h − n j‖L2 + ‖� j

h − ψ j‖L2

)
≤ C1(τ + hr+1), (3.15)

max
0≤ j≤J

(
‖(J p)

j
h − J j

p‖L2 + ‖(Jn)
j
h − J j

n‖L2 + ‖σ j
h − σ j‖L2

)
≤ C2(τ + hr+1), (3.16)

where, C1 and C2 are two positive constants which depend on the domain � and initial and
boundary conditions, and are independent of j , h and τ .

It should be noted that the proposed mixed FEM (3.8)–(3.13) uses a linearized backward
Euler discretization, which is suitable for PNP equations with moderate smooth coefficients.
If the problem is very stiff (i.e., with high surface potentials or very thin double layer in
some realistic applications of PNP equations), higher order backward differentiation formula
(BDF) type schemes or exponential integrators may help to conquer the stiffness to some
extent. In our future work, we will attempt to apply the proposed scheme to a realistic
PNP system with practical parameters, in which more comparison studies will be conducted
against conventional Lagrange-type FEMs in terms of accuracy and run-time.

4 Proof of the Main Results

We denote the projection errors by

θp = 	h p − p, θn = 	hn − n, θψ = 	hψ − ψ,

θ Jp = 	h J p − J p, θ Jn = 	h Jn − Jn, θσ = 	hσ − σ .

Then, by the regularity assumption on the exact solutions (3.14) and classical analyses of the
projection 	h [44], we have for 2 ≤ p < ∞

⎧
⎨

⎩

‖θp‖L p ≤ Chr+1‖p‖Wr+1,p ,

‖θn‖L p ≤ Chr+1‖n‖Wr+1,p ,

‖θψ‖L p ≤ Chr+1‖ψ‖Wr+1,p ,

(4.1)
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⎧
⎨

⎩

‖θ Jp ‖L p + ‖div θ Jp ‖L p ≤ Chr+1‖J p‖Wr+1,p + Chr+1‖div J p‖Wr+1,p ,

‖θ Jn ‖L p + ‖div θ Jn ‖L p ≤ Chr+1‖Jn‖Wr+1,p + Chr+1‖div Jn‖Wr+1,p ,

‖θσ ‖L p + ‖div θσ ‖L p ≤ Chr+1‖σ‖Wr+1,p + Chr+1‖div σ‖Wr+1,p ,

(4.2)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∥
∥
∥

∂θp
∂t

∥
∥
∥

L2
≤ Chr+1

∥
∥
∥ ∂p

∂t

∥
∥
∥

Hr+1
,

∥
∥
∥ ∂θn

∂t

∥
∥
∥

L2
≤ Chr+1

∥
∥ ∂n

∂t

∥
∥

Hr+1 ,
∥
∥
∥

∂θψ

∂t

∥
∥
∥

L2
≤ Chr+1

∥
∥
∥ ∂ψ

∂t

∥
∥
∥

Hr+1
,

(4.3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∥
∥
∥

∂θ Jp
∂t

∥
∥
∥

H(div)
≤ Chr+1

(∥
∥
∥

∂J p
∂t

∥
∥
∥

Hr+1
+

∥
∥
∥div

∂J p
∂t

∥
∥
∥

Hr+1

)
,

∥
∥
∥ ∂θ Jn

∂t

∥
∥
∥

H(div)
≤ Chr+1

(∥
∥
∥ ∂Jn

∂t

∥
∥
∥

Hr+1
+

∥
∥
∥div ∂Jn

∂t

∥
∥
∥

Hr+1

)
,

∥
∥
∥ ∂θσ

∂t

∥
∥
∥

H(div)
≤ Chr+1

(∥∥ ∂σ
∂t

∥
∥

Hr+1 + ∥
∥div ∂σ

∂t

∥
∥

Hr+1

)
.

(4.4)

Clearly, with the projection error (4.1), (4.2), we only need to the analyze the error functions

e j
p = P j

h − 	h p j , e j
n = N j

h − 	hn j , e j
ψ = �

j
h − 	hψ j ,

e j
Jp

= (J p)
j
h − 	h J

j
p, e j

Jn
= (Jn)

j
h − 	h J

j
n, e j

σ = σ
j
h − 	hσ j ,

whose estimates will be given in the next two subsections.

4.1 The Proof of (3.15)

Proof The existence and uniqueness of numerical solutions to the linearized mixed FEM
(3.8)–(3.13) follow directly from that at each time step, the coefficientmatrices are invertable.
Here we prove the following inequality for j = 0, . . ., J

∥∥∥e j
p

∥∥∥
2

L2
+

∥∥∥e j
n

∥∥∥
2

L2
+

j∑

m=1

τ

(∥∥∥em
Jp

∥∥∥
2

L2
+ ∥∥em

Jn

∥∥2
L2

)
≤ C1

2

(
τ 2 + h2r+2) , (4.5)

by the mathematical induction. Since
∥∥∥e0p

∥∥∥
2

L2
+ ∥∥e0n

∥∥2
L2 = 0,

(4.5) holds for j = 0. We can assume that (4.5) holds for j ≤ k − 1 for some k ≥ 1. We
shall find a constant C1, which is independent of j , h, τ , such that (4.5) holds for j ≤ k.

By noting the projection 	h in the diagram (2.1), the weak formulation of the mixed PNP
system (3.2)–(3.3) at t j+1 satisfies that for any (χh, vh) ∈ (

◦
Hr

h(�), V r
h (�))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
J j+1

p , χh

)
+

(
	h p j+1,∇ · χh

)
=

(
p jσ j , χh

)
+

(
p j+1σ j+1 − p jσ j , χh

)
,

(4.6)
(

Dτ	h p j+1, vh

)
−

(
∇ · 	h J

j+1
p , vh

)
=

(
Dτ p j+1 − ∂(·, t j+1)

∂t
, vh

)
, (4.7)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
J j+1

n , χh

)
+

(
	hn j+1,∇ · χh

)
= −

(
n jσ j , χh

)
+

(
n jσ j − n j+1σ j+1 , χh

)
,

(4.8)
(

Dτ	hn j+1, vh

)
−

(
∇ · 	h J

j+1
n , vh

)
=

(
Dτ n j+1 − ∂n(·, t j+1)

∂t
, vh

)
, (4.9)
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⎧
⎪⎨

⎪⎩

(
σ j+1 , χh

)
+

(
	hψ j+1,∇ · χh

)
= 0 , (4.10)

−
(
∇ · 	hσ j+1 , vh

)
=

(
	h p j+1 − 	hn j+1 , vh

)
. (4.11)

Then, subtracting (4.6)–(4.9) from the FEM system (3.8)–(3.11), we can derive the fol-
lowing error equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(e j+1
Jp

+ θ
j+1
Jp

, χh) + (e j+1
p ,∇ · χh) = (P j

h σ
j
h − p jσ j , χh)

− (p j+1σ j+1 − p jσ j , χh) , ∀χh ∈ ◦
Hr

h(�)

(4.12)

(Dτ e j+1
p , vh) − (∇ · e j+1

Jp
, vh) = −

(
Dτ p j+1 − ∂p(·, t j+1)

∂t
, vh

)
, ∀vh ∈ V r

h (�)

(4.13)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(e j+1
Jn

+ θ
j+1
Jn

,χh) + (e j+1
n ,∇ · χh) = (n jσ j − N j

h σ
j
h , χh)

+ (n j+1σ j+1 − n jσ j , χh) , ∀χh ∈ ◦
Hr

h(�)

(4.14)

(Dτ e j+1
n , vh) − (∇ · e j+1

Jn
, vh) = −

(
Dτ n j+1 − ∂n(·, t j+1)

∂t
, vh

)
, ∀vh ∈ V r

h (�)

(4.15)

Taking (χh, vh) = (e j+1
Jp

, e j+1
p ) into (4.12), (4.13) and (χh, vh) = (e j+1

Jn
, e j+1

n ) into
(4.14), (4.15), respectively, and summing up the results yield

(
Dτ e j+1

p , e j+1
p

)
+

(
Dτ e j+1

n , e j+1
n

)
+

∥∥∥e j+1
Jp

∥∥∥
2

L2
+

∥∥∥e j+1
Jn

∥∥∥
2

L2

=
(

P j
h σ

j
h − p jσ j , e j+1

Jp

)
−

(
N j

h σ
j
h − n jσ j , e j+1

Jn

)

−
(

p j+1σ j+1 − p jσ j , e j+1
Jp

)
+

(
n j+1σ j+1 − n jσ j , e j+1

Jn

)

−
(
θ

j+1
Jp

, e j+1
Jp

)
−

(
θ

j+1
Jn

, e j+1
Jn

)
−

(
Dτ p j+1 − ∂p(·, t j+1)

∂t
, e j+1

p

)

−
(

Dτ n j+1 − ∂n(·, t j+1)

∂t
, e j+1

n

)

:=
8∑

i=1

Ri . (4.16)

By noting the regularity assumption (3.14) and the projection errors (4.1) and (4.2), we have

8∑

i=3

Ri ≤ ε
(
‖e j+1

Jp
‖2L2 + ‖e j+1

Jn
‖2L2) + C(‖e j+1

p ‖2L2 + ‖e j+1
n ‖2L2

)

+ε−1C
(
τ 2 + h2r+2) . (4.17)

Next, we estimate the two nonlinear terms R1 and R2. It is easy to see that

R1 ≤ ε‖e j+1
Jp

‖2L2 + ε−1

4

∥∥∥P j
h σ

j
h − p jσ j

∥∥∥
2

L2
, (4.18)
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R2 ≤ ε‖e j+1
Jn

‖2L2 + ε−1

4

∥
∥
∥N j

h σ
j
h − n jσ j

∥
∥
∥
2

L2
. (4.19)

To analyze the nonlinear terms in the last two inequalities, we shall derive some estimates
for {e j

σ }k−1
j=0 and {σ j

h}k−1
j=0. Subtracting (4.10), (4.11) from (3.12), (3.13) gives

⎧
⎪⎨

⎪⎩

(
e j
σ + θ j

σ , χh

)
+

(
e j
ψ,∇ · χh

)
= 0 , ∀χh ∈ ◦

Hr
h(�) (4.20)

−
(
∇ · e j

σ , vh

)
=

(
e j

p − e j
n , vh

)
, ∀vh ∈ V r

h (�) . (4.21)

Taking (χh, vh) = (e j
σ , e j

ψ) into the above error equation (4.20), (4.21) leads to

∥
∥
∥e j

σ

∥
∥
∥
2

L2
= −

(
θ j

σ , e j
σ

)
+

(
e j

p − e j
n , e j

ψ

)

= 1

4
‖e j

σ ‖2L2 + ‖θ j
σ ‖2L2 + ‖e j

p − e j
n‖L2 ‖e j

ψ‖L2

(by Lemma 2.3) = 1

4
‖e j

σ ‖2L2 + Ch2r+2 + C‖e j
p − e j

n‖L2 ‖θ j
σ + e j

σ ‖L2

≤ 1

2
‖e j

σ ‖2L2 + C‖e j
p − e j

n‖2L2 + Ch2r+2 ,

hence,
∥∥∥e j

σ

∥∥∥
2

L2
≤ C‖e j

p‖2L2 + C‖e j
n‖2L2 + Ch2r+2 . (4.22)

We also need the boundedness of {σ j
h}k−1

j=0 in certain strong norms. By using themathematical
assumption that (4.5) holds for j ≤ k − 1, we have

‖P j
h − N j

h ‖L2 ≤
∥∥∥e j

p

∥∥∥
L2

+ ‖	h p j‖L2 +
∥∥∥e j

n

∥∥∥
L2

+ ‖	hn j‖L2

≤ ‖	h p j‖L2 + ‖	hn j‖L2 + C1
(
τ + hr+1)

≤ C + 1, for j ≤ k − 1, (4.23)

if we require that C1
(
τ + hr+1

) ≤ 1 for appropriately small τ and h. Furthermore, we can

view (σ
j
h, ψ

j
h ) to be the mixed FEM solution of the Poisson equation with homogeneous

Neumann boundary condition

−�ζ = P j
h − N j

h , for x ∈ � and
∂ζ

∂n
= 0, for x ∈ ∂�. (4.24)

From the L p estimate of mixed FEMs developed in [12], we can deduce that

‖σ j
h‖L6 ≤ ‖∇ζ‖L6 + ‖σ j

h − ∇ζ‖L6

(by Theorem 3.2 of 12) ≤ ‖∇ζ‖L6 + C‖	h∇ζ − ∇ζ‖L6

(by Lemma 2.1) ≤ C‖ζ‖H2

(by the assumption on �) ≤ C‖P j
h − N j

h ‖L2

(by (4.23)) ≤ C, for j ≤ k − 1. (4.25)

Then, the last term in the right hand side of (4.18) can be bounded by
∥∥∥P j

h σ
j
h − p jσ j

∥∥∥
L2

≤
∥∥∥(e j

p + θ
j
p)σ

j
h

∥∥∥
L2

+
∥∥∥p j (e j

σ + θ j
σ )

∥∥∥
L2

123



804 J Sci Comput (2018) 77:793–817

≤
∥
∥
∥(e j

p + θ
j
p)σ

j
h

∥
∥
∥

L2
+ C

∥
∥
∥e j

σ

∥
∥
∥

L2
+ Chr+1

(by (4.22)) ≤
∥
∥
∥(e j

p + θ
j
p)

∥
∥
∥

L3

∥
∥σ

j
h

∥
∥

L6 + C‖e j
p‖L2 + C‖e j

n‖L2 + Chr+1.

(by (4.25)) ≤ C
∥
∥
∥(e j

p + θ
j
p)

∥
∥
∥

L3
+ C‖e j

p‖L2 + C‖e j
n‖L2 + Chr+1

≤ C
∥
∥
∥e j

p

∥
∥
∥

L3
+ C‖e j

p‖L2 + C‖e j
n‖L2 + Chr+1

≤ C
∥
∥
∥e j

p

∥
∥
∥
1/2

L2

∥
∥
∥e j

p

∥
∥
∥
1/2

L6
+ C‖e j

p‖L2 + C‖e j
n‖L2 + Chr+1. (4.26)

Applying Lemma 2.3 to (4.12) gives
∥
∥
∥e j

p

∥
∥
∥

L6
≤ C

∥
∥
∥e j

Jp
+ θ

j
Jp

∥
∥
∥

L2
+ C

∥
∥
∥P j−1

h σ
j−1
h − p j−1σ j−1

∥
∥
∥

L2
+ C

∥
∥
∥p j σ j − p j−1σ j−1

∥
∥
∥

L2

≤ C
∥
∥
∥e j

Jp

∥
∥
∥

L2
+ C

∥
∥
∥P j−1

h σ
j−1
h − p j−1σ j−1

∥
∥
∥

L2
+ C(τ + hr+1) . (4.27)

Taking (4.27) into (4.26) leads to
∥
∥
∥P j

h σ
j
h − p jσ j

∥
∥
∥

L2
≤ C

∥
∥
∥e j

p

∥
∥
∥
1/2

L2

∥
∥
∥e j

Jp

∥
∥
∥
1/2

L2
+ C

∥
∥
∥e j

p

∥
∥
∥
1/2

L2

∥
∥
∥P j−1

h σ
j−1
h − p j−1σ j−1

∥
∥
∥
1/2

L2

+C‖e j
p‖L2 + C‖e j

n‖L2 + C(τ + hr+1)

which gives further
∥∥∥P j

h σ
j
h − p jσ j

∥∥∥
L2

≤ ε

∥∥∥P j−1
h σ

j−1
h − p j−1σ j−1

∥∥∥
L2

+ ε

∥∥∥e j
Jp

∥∥∥
L2

+ε−1C
∥∥∥e j

p

∥∥∥
L2

+ ε−1C
∥∥∥e j

n

∥∥∥
L2

+ ε−1C
(
τ + hr+1) , (4.28)

where the Young’s inequality is used. Similarly, we can derive an estimate for the last term
in the right hand side of (4.19)

∥∥∥N j
h σ

j
h − n jσ j

∥∥∥
L2

≤ ε

∥∥∥N j−1
h σ

j−1
h − n j−1σ j−1

∥∥∥
L2

+ ε

∥∥∥e j
Jn

∥∥∥
L2

+ε−1C‖e j
p‖L2 + ε−1C‖e j

n‖L2 + ε−1C(τ + hr+1) . (4.29)

Summing up (4.28), (4.29) with index j = 1, . . ., k − 1, we have

k−1∑

j=1

(∥∥∥P j
h σ

j
h − p jσ j

∥∥∥
L2

+
∥∥∥N j

h σ
j
h − n jσ j

∥∥∥
L2

)

≤ ε

k−1∑

j=1

(∥∥∥P j−1
h σ

j−1
h − p j−1σ j−1

∥∥∥
L2

+
∥∥∥N j−1

h σ
j−1
h − n j−1σ j−1

∥∥∥
L2

)

+
k−1∑

j=1

(
ε

∥∥∥e j
Jp

∥∥∥
L2

+ ε

∥∥∥e j
Jn

∥∥∥
L2

+ ε−1C‖e j
p‖L2 + ε−1C‖e j

n‖L2 + ε−1C(τ + hr+1)
)

,

which can be rewritten as

(1 − ε)

k−1∑

j=1

(∥∥∥P j
h σ

j
h − p jσ j

∥∥∥
L2

+
∥∥∥N j

h σ
j
h − n jσ j

∥∥∥
L2

)

≤
k−1∑

j=1

(
ε

∥∥∥e j
Jp

∥∥∥
L2

+ ε

∥∥∥e j
Jn

∥∥∥
L2

+ ε−1C‖e j
p‖L2 + ε−1C‖e j

n‖L2 + ε−1C(τ + hr+1)
)

.
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where we have noted that at the initial time step
∥
∥P0

h σ 0
h − p0σ 0

∥
∥

L2 + ∥
∥N 0

h σ 0
h − n0σ 0

∥
∥

L2 ≤ Chr+1.

Summing up (4.18), (4.19) with index j = 1, . . . , k − 1 and noting the above estimate with
a small ε, we get

k−1∑

j=1

(R1 + R2) ≤
k∑

j=1

(
ε

∥
∥
∥e j

Jp

∥
∥
∥
2

L2
+ ε

∥
∥
∥e j

Jn

∥
∥
∥
2

L2

)

+
k∑

j=1

(
ε−3C‖e j

p‖2L2 + ε−3C‖e j
n‖2L2 + ε−3C(τ + hr+1)2

)
. (4.30)

Finally, summing up the index j = 1, . . . , k − 1 and substituting estimates (4.17) and
(4.30) into the error equation (4.16), we arrive at

∥
∥
∥e j+1

p

∥
∥
∥
2

L2
+

∥
∥
∥e j+1

n

∥
∥
∥
2

L2
+ τ

j∑

m=0

(∥
∥
∥em+1

Jp

∥
∥
∥
2

L2
+

∥
∥
∥em+1

Jn

∥
∥
∥
2

L2

)

≤ τ

j∑

m=0

ε

(∥∥∥em+1
Jp

∥∥∥
2

L2
+

∥∥∥em+1
Jn

∥∥∥
2

L2

)

+ τ

j+1∑

m=0

ε−3
(

C

(∥∥∥em
p

∥∥∥
2

L2
+ ∥∥em

n

∥∥2
L2

)
+ C

(
τ 2 + h2r+2)

)

Then, we chose a small ε to deduce that

∥∥∥e j+1
p

∥∥∥
2

L2
+

∥∥∥e j+1
n

∥∥∥
2

L2
+ τ

j∑

m=0

(∥∥∥em+1
Jp

∥∥∥
2

L2
+

∥∥∥em+1
Jn

∥∥∥
2

L2

)

≤ τ

j+1∑

m=0

(
C

(∥∥∥em
p

∥∥∥
2

L2
+ ∥∥em

n

∥∥2
L2

)
+ C

(
τ 2 + h2r+2)

)
(4.31)

Thanks to the discrete Gronwall’s inequality in Lemma 2.2, when Cτ ≤ 1
2 , we have

∥∥∥e j+1
p

∥∥∥
2

L2
+

∥∥∥e j+1
n

∥∥∥
2

L2
+ τ

j∑

m=0

(∥∥∥em+1
Jp

∥∥∥
2

L2
+

∥∥∥em+1
Jn

∥∥∥
2

L2

)

≤ C exp

(
T C

1 − Cτ

) (
τ 2 + h2r+2)

≤ C exp(2T C)
(
τ 2 + h2r+2) . (4.32)

Thus, (4.5) holds for n = k if we take C1
2 ≥ C exp(2T C). We complete the induction.

(3.15) follows immediately from the the projection error estimates and inequalities (4.5)
and (4.22). ��
Remark 4.1 Combining the projection error estimates (4.2), with (4.22) and (4.5), we con-
clude at once that

∥∥∥σ
j
h − σ j

∥∥∥
L2

≤ C2
(
τ + hr+1) .
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With the help of (4.5), we can prove the following uniform boundedness of the numerical
solutions which is the basis in the proof of the error estimates (3.16) in the next subsection.

Corollary 4.1 Under the assumption in Theorem 3.1, there exist two positive constants τ0
and h0 such that when τ ≤ τ0 and h ≤ h0, the numerical solutions to the linearized mixed
FEM (3.8)–(3.13) possess the following uniform boundedness

max
0≤ j≤J

(∥
∥
∥P j

h

∥
∥
∥

L6
+

∥
∥
∥N j

h

∥
∥
∥

L6

)
≤ C, (4.33)

max
0≤ j≤J

∥
∥
∥σ

j
h

∥
∥
∥

L∞ ≤ C (4.34)

Proof We shall consider two cases. For τ ≤ h, by using the inverse inequality, we have
∥
∥
∥P j

h

∥
∥
∥

L6
≤

∥
∥
∥	h p j

∥
∥
∥

L6
+

∥
∥
∥e j

p

∥
∥
∥

L6

≤ C + h−1
∥
∥
∥e j

p

∥
∥
∥

L2

(by (4.5)) ≤ C + h−1

√
C1

2

(
τ 2 + h2r+2

)

≤ C + h−1

√
C1

2
h2

≤ C. (4.35)

For h ≤ τ , (4.5) gives that

J∑

m=1

τ

∥∥∥em
Jp

∥∥∥
2

L2
≤ C1

2

(
τ 2 + h2r+2) ≤ C1

2

(
τ 2 + τ 2r+2) ≤ C1τ

2

which leads to
∥∥∥em

Jp

∥∥∥
L2

≤ C1τ
1
2 , for m = 1, . . . , J.

Applying Lemma 2.3 to (3.8), we have
∥∥∥P j

h

∥∥∥
L6

≤
∥∥∥(J p)

j+1
h

∥∥∥
L2

+
∥∥∥P j

h σ
j
h

∥∥∥
L2

≤
∥∥∥	h J

j+1
p

∥∥∥
L2

+
∥∥∥e j+1

Jp

∥∥∥
L2

+
∥∥∥P j

h

∥∥∥
L3

∥∥∥σ
j
h

∥∥∥
L6

(by (4.25)) ≤
∥∥∥	h J

j+1
p

∥∥∥
L2

+
∥∥∥e j+1

Jp

∥∥∥
L2

+ C
∥∥∥P j

h

∥∥∥
L3

≤ C + C1τ
1
2 + C

∥∥∥P j
h

∥∥∥
1/2

L2

∥∥∥P j
h

∥∥∥
1/2

L6

≤ 1

2

∥∥∥P j
h

∥∥∥
L6

+ C + C
∥∥∥P j

h

∥∥∥
L2

≤ 1

2

∥∥∥P j
h

∥∥∥
L6

+ C ,

which in turn implies ‖P j
h ‖L6 ≤ C .

Thus, for both the cases τ ≤ h and h ≤ τ , we obtain

max
0≤ j≤J

‖P j
h ‖L6 ≤ C, (4.36)
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and similarly, we can show that

max
0≤ j≤J

‖N j
h ‖L6 ≤ C. (4.37)

Combining the last two estimates, (4.33) is proved. By applying the L p estimate of mixed
FEM [12] to (4.24), we have

‖σ j
h‖L∞ ≤ ‖∇ζ‖L∞ + ‖σ j

h − ∇ζ‖L∞

(by Theorem 3.2 of 12) ≤ ‖∇ζ‖L∞ + C‖	h∇ζ − ∇ζ‖L∞

(by Lemma 2.1) ≤ C‖ζ‖W 2,6

(by the assumption on �) ≤ C‖P j
h − N j

h ‖L6

(by(4.33)) ≤ C . (4.38)

We proved Corollary 4.1. ��
4.2 The Proof of Estimate (3.16)

Proof We take Dτ to both sides of (4.12) and (4.14) to deduce that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Dτ e

j+1
Jp

+ Dτ θ
j+1
Jp

, χh

)
+

(
Dτ e j+1

p ,∇ · χh

)
=

(
Dτ (P j

h σ
j
h − p jσ j ) , χh

)

−
(

Dτ

(
p j+1σ j+1 − p jσ j

)
, χh

)
, ∀χh ∈ ◦

Hr
h(�) ,

(4.39)
(

Dτ e j+1
p , vh

)
−

(
∇ · e j+1

Jp
, vh

)
= −

(
Dτ p j+1 − ∂p(·, t j+1)

∂t
, vh

)
, ∀vh ∈ V r

h (�) ,

(4.40)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
Dτ e

j+1
Jn

+ Dτ θ
j+1
Jn

, χh

)
+

(
Dτ e j+1

n ,∇ · χh

)
=

(
Dτ (n

jσ j − N j
h σ

j
h) , χh

)

+
(

Dτ

(
n j+1σ j+1 − n jσ j

)
, χh

)
, ∀χh ∈ ◦

Hr
h(�) , (4.41)

(
Dτ e j+1

n , vh

)
−

(
∇ · e j+1

Jn
, vh

)
= −

(
Dτ n j+1 − ∂n(·, t j+1)

∂t
, vh

)
, ∀vh ∈ V r

h (�)

(4.42)
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Taking (χh, vh) = (e j+1
Jp

,−∇·e j+1
Jp

) into (4.39), (4.40) and (χh, vh) = (e j+1
Jn

,−∇·e j+1
Jn

)

into (4.41), (4.42), respectively, and summing up the results, we have
(

Dτ e
j+1
Jp

, e j+1
Jp

)
+

(
Dτ e

j+1
Jn

, e j+1
Jn

)
+

∥
∥
∥∇ · e j+1

Jp

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j+1

Jn

∥
∥
∥
2

L2

=
(

Dτ (P j
h σ

j
h − p jσ j ) , e j+1

Jp

)
+

(
Dτ (n

jσ j − N j
h σ

j
h) , e j+1

Jn

)

−
(

Dτ θ
j+1
Jp

, e j+1
Jp

)
−

(
Dτ θ

j+1
Jn

, e j+1
Jn

)
−

(
Dτ

(
p j+1σ j+1 − p jσ j

)
, e j+1

Jp

)

+
(

Dτ

(
n j+1σ j+1 − n jσ j

)
, e j+1

Jn

)
+

(
Dτ p j+1 − ∂p(·, t j+1)

∂t
,∇ · e j+1

Jp

)

+
(

Dτ n j+1 − ∂n(·, t j+1)

∂t
,∇ · e j+1

Jn

)

:=
8∑

i=1

R̃i . (4.43)

Again, by noting the regularity assumption (3.14) and the projection errors (4.1) and (4.2),
we can derive the following estimate for the linear terms

8∑

i=3

R̃i ≤ ε(‖∇ · e j+1
Jp

‖2L2 + ‖∇ · e j+1
Jn

‖2L2) + C(‖e j+1
Jp

‖2L2 + ‖e j+1
Jn

‖2L2)

+ε−1C(τ 2 + h2r+2) . (4.44)

Then we turn to the two nonlinear terms R̃1 and R̃2. We can rewrite R̃1 by

R̃1 =
(
(Dτ P j

h )σ
j
h − (Dτ p j )σ j , e j+1

Jp

)
+

(
P j−1

h (Dτσ
j
h) − p j−1(Dτσ

j ) , e j+1
Jp

)

=
(
(Dτ e j

p + Dτ θ
j
p)σ

j
h , e j+1

Jp

)
+

(
(Dτ p j )(e j

σ + θ j
σ ) , e j+1

Jp

)

+
(

P j−1
h (Dτ e j

σ + Dτ θ
j
σ ) , e j+1

Jp

)
+

(
(e j−1

p + θ
j−1
p )(Dτσ

j ) , e j+1
Jp

)

:=
4∑

i=1

Ei . (4.45)

For the first term, we have

E1 ≤
∥∥∥Dτ e j

p + Dτ θ
j
p

∥∥∥
L2

∥∥∥σ
j
h

∥∥∥
L∞

∥∥∥e j+1
Jp

∥∥∥
L2

(by (4.34)) ≤ ε

∥∥∥Dτ e j
p + Dτ θ

j
p

∥∥∥
2

L2
+ ε−1C

∥∥∥e j+1
Jp

∥∥∥
2

L2

≤ ε

∥∥∥Dτ e j
p

∥∥∥
2

L2
+ Ch2r+2 + ε−1C

∥∥∥e j+1
Jp

∥∥∥
2

L2
. (4.46)

By noting the regularity assumption (3.14), the projection error estimates and (4.22), E2 can
be bounded by

E2 ≤
∥∥∥Dτ p j

∥∥∥
L∞

∥∥∥e j
σ + θ j

σ

∥∥∥
L2

∥∥∥e j+1
Jp

∥∥∥
L2

≤ C
∥∥∥e j

σ + θ j
σ

∥∥∥
2

L2
+ C

∥∥∥e j+1
Jp

∥∥∥
2

L2

(by (4.22)) ≤ C(τ 2 + h2r+2) + C
∥∥∥e j+1

Jp

∥∥∥
2

L2
. (4.47)
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Before proceeding to the estimate of E3, we shall take Dτ to both sides of (4.20) and (4.21)
to get

⎧
⎪⎨

⎪⎩

(
Dτ e j

σ + Dτ θ
j
σ , χh

)
+

(
Dτ e j

ψ,∇ · χh

)
= 0 , ∀χh ∈ ◦

Hr
h(�) (4.18)

−
(
∇ · (Dτ e j

σ + Dτ θ
j
σ ) , vh

)
=

(
Dτ e j

p − Dτ e j
n , vh

)
, ∀vh ∈ V r

h (�) , (4.19)

where we have used the fact that
(
∇ · Dτ θ

j
σ , vh

)
= 0, ∀vh ∈ V r

h (�),

It is easy to see that (Dτ e
j
σ + Dτ θ

j
σ , Dτ e j

ψ) can be viewed as the mixed FEM solution to
the following Poisson equation

−�ζ = Dτ e j
p − Dτ e j

n , for x ∈ � and
∂ζ

∂n
= 0, for x ∈ ∂�.

Then, by an L p estimate of mixed FEM [12], we can derive that
∥
∥
∥Dτ e j

σ + Dτ θ
j
σ

∥
∥
∥

L3
≤ C

∥
∥
∥Dτ e j

p − Dτ e j
n

∥
∥
∥

L2
. (4.20)

Consequently, the term E3 can be bounded by

E3 ≤
∥∥∥P j−1

h

∥∥∥
L6

∥∥∥Dτ e j
σ + Dτ θ

j
σ

∥∥∥
L3

∥∥∥e j+1
Jp

∥∥∥
L2

(by (4.33)) ≤ C
∥∥∥Dτ e j

σ + Dτ θ
j
σ

∥∥∥
L3

∥∥∥e j+1
Jp

∥∥∥
L2

(by (4.20)) ≤ C
∥∥∥Dτ e j

p − Dτ e j
n

∥∥∥
L2

∥∥∥e j+1
Jp

∥∥∥
L2

≤ ε

∥∥∥Dτ e j
p

∥∥∥
2

L2
+ ε

∥∥∥Dτ e j
n

∥∥∥
2

L2
+ ε−1C

∥∥∥e j+1
Jp

∥∥∥
2

L2
. (4.21)

For the last term E4, it is easy to see that

E4 ≤
∥∥∥e j−1

p + θ
j−1
p

∥∥∥
L2

∥∥∥Dτσ
j
∥∥∥

L∞

∥∥∥e j+1
Jp

∥∥∥
L2

≤ C
∥∥∥e j−1

p + θ
j−1
p

∥∥∥
L2

∥∥∥e j+1
Jp

∥∥∥
L2

(by (4.5)) ≤ C(τ 2 + h2r+2) + C
∥∥∥e j+1

Jp

∥∥∥
2

L2
. (4.22)

Finally, taking all the above estimates of {Ei }4i=1 into (4.45) gives

R̃1 ≤ ε

∥∥∥Dτ e j
p

∥∥∥
2

L2
+ ε

∥∥∥Dτ e j
n

∥∥∥
2

L2
+ ε−1C

∥∥∥e j+1
Jp

∥∥∥
2

L2
+ ε−1C(τ 2 + h2r+2) .

Via a similar analysis, for the term R̃2, we can derive that

R̃2 ≤ ε

∥∥∥Dτ e j
n

∥∥∥
2

L2
+ ε

∥∥∥Dτ e j
p

∥∥∥
2

L2
+ ε−1C

∥∥∥e j+1
Jn

∥∥∥
2

L2
+ ε−1C(τ 2 + h2r+2) .

By taking vh = Dτ e j+1
p into (4.40) and vh = Dτ e j+1

n into (4.42), respectively, we can
deduce the following results

∥∥∥Dτ e j+1
p

∥∥∥
2

L2
≤ 2

∥∥∥∇ · e j+1
Jp

∥∥∥
2

L2
+ Cτ 2 ,

∥∥∥Dτ e j+1
n

∥∥∥
2

L2
≤ 2

∥∥∥∇ · e j+1
Jn

∥∥∥
2

L2
+ Cτ 2 .

123



810 J Sci Comput (2018) 77:793–817

Taking the last two inequalities into the estimates for R̃1 and R̃2, we have

R̃1 + R̃2 ≤ 2ε

(∥
∥
∥∇ · e j+1

Jp

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j+1

Jn

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j

Jp

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j

Jn

∥
∥
∥
2

L2

)

+ε−1C
∥
∥
∥e j+1

Jp

∥
∥
∥
2

L2
+ ε−1C

∥
∥
∥e j+1

Jn

∥
∥
∥
2

L2
+ ε−1C

(
τ 2 + h2r+1) . (4.23)

At last, taking the estimates (4.44) and (4.23) into (4.43) results in
(

Dτ e
j+1
Jp

, e j+1
Jp

)
+

(
Dτ e

j+1
Jn

, e j+1
Jn

)
+

∥
∥
∥∇ · e j+1

Jp

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j+1

Jn

∥
∥
∥
2

L2

= 2ε

(∥
∥
∥∇ · e j+1

Jp

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j+1

Jn

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j

Jp

∥
∥
∥
2

L2
+

∥
∥
∥∇ · e j

Jn

∥
∥
∥
2

L2

)

+ ε−1C
∥
∥
∥e j+1

Jp

∥
∥
∥
2

L2
+ ε−1C

∥
∥
∥e j+1

Jn

∥
∥
∥
2

L2
+ ε−1C

(
τ 2 + h2r+1) . (4.24)

By fixing the small constant ε and summing up the index j , we arrive at

∥
∥
∥e j+1

Jp

∥
∥
∥
2

L2
+

∥
∥
∥e j+1

Jn

∥
∥
∥
2

L2
+ τ

j+1∑

m=1

(∥
∥
∥∇ · em

Jp

∥
∥
∥
2

L2
+ ∥

∥∇ · em
Jn

∥
∥2

L2

)

≤ τ

j+1∑

m=1

(∥∥∥em
Jp

∥∥∥
2

L2
+ C

∥∥em
Jn

∥∥2
L2

)
+ C

(
τ 2 + h2r+1) . (4.25)

With the help of Gronwall’s inequality, we obtain when Cτ ≤ 1
2 , we have

∥∥∥e j+1
Jp

∥∥∥
2

L2
+

∥∥∥e j+1
Jn

∥∥∥
2

L2
+ τ

j+1∑

m=1

(∥∥∥∇ · em
Jp

∥∥∥
2

L2
+ ∥∥∇ · em

Jn

∥∥2
L2

)

≤ C exp

(
T C

1 − Cτ

)
(τ 2 + h2r+2)

≤ C2(τ
2 + h2r+2), for j = 0, . . . , J − 1.

Thus, by noting the projection error estimates (4.2) and last inequality, (3.16) is proved. We
complete the proof of Theorem 3.1. ��

5 Numerical Results

In this section, we provide some numerical examples to confirm our theoretical analyses.
The computations are performed with free software FEniCS [28].

Example 5.1 We rewrite the PNP equations (1.1–(1.3) as follow
⎧
⎨

⎩

∂p
∂t − ∇ · (∇ p − p∇ψ) = f1 ,
∂n
∂t − ∇ · (∇n + n∇ψ) = f2 ,

−�ψ = p − n .

(5.1)

We test the linearized backward Euler FEM (3.8)–(3.13) on the unit square � = (0, 1)2. A
uniform triangular partition with M + 1 nodes in each direction is used. An illustration with

M = 8 is shown in Fig. 1. Here we can see that h =
√
2

M .
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In our computations, we take
⎧
⎨

⎩

p = 2π2 exp(t) cos(πx) cos(πy)

n = 4π2t3 cos(2πx)

ψ = exp(t) cos(πx) cos(πy) − t3 cos(2πx)

to be the exact solution to (5.1). Correspondingly, the right-hand side function f1 and f2 are
determined by the above exact solution.

Clearly, f1 and f2 are nonzero source terms which are different from the zero source terms
in (1.1) and (1.2). However, we can easily testify that

∫ t

0

∫

�

f1(x, t) dxdt =
∫ t

0

∫

�

f2(x, t) dxdt = 0,

which guarantees (1.7) is still true, thus we still have the well-posedness of PNP equations.
Furthermore, it is easy to see that nonzero linear source terms do not introduce any difficulty
to the analyses of stability and convergence as illustrated in the previous sections. Therefore,
Theorem 3.1 holds true for the artificial problem (5.1).

We set the final time T = 1.0. To confirm our error estimate in Theorem 3.1, for
◦
Hr

h(�)×
V r

h (�) with r = 0, 1, and 2, we choose τ = ( 1
M

)r+1
. From Theorem 3.1, we have (r + 1)-th

order convergence for the L2-norm errors. We present the L2-norm errors in Table 1. From
Table 1, it is easy to see that the convergence rate for the linearized backward Euler RTmixed
FEM (3.8)–(3.13) is optimal.

To show the unconditional convergence of the proposed scheme, we use
◦
H1

h(�)× V 1
h (�)

to solve (5.1) with three different time steps τ = 0.1, 0.05, 0.01 on gradually refined meshes
with M = 2k+2, k = 1, 2, . . ., 5. The L2-norm errors are plot in Fig. 2. We can see from Fig.
2 that for a fixed τ , when refining the mesh gradually, the L2-norm errors asymptotically
converge to a small constant, i.e., the temporal error which is O(τ ). Thus, it is clear that
the linearized backward Euler FEM is unconditionally convergent (stable) and no mesh ratio
restriction is needed in the computation.

Example 5.2 In this example, we study the dynamics of PNP equations with the following
initial values

p0 =
{
1, (0, 1)2\{(0, 0.75) × (0, 1) ∪ (0.75, 1) × (0, 11

20 )},
10−6, else,

n0 =
{
1, (0, 1)2\{(0, 0.75) × (0, 1) ∪ (0.75, 1) × ( 9

20 , 1)},
10−6, else,

Fig. 1 A uniform triangulation
on the unit square with M = 8
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in the unit square. This example was first used in [35], where a fully nonlinear backward
Euler scheme with a linear Lagrange element was analyzed. Later, the authors in [17] applied
a conservative decoupled finite element method to investigate this example. For comparison,
we test the performance of the linearized backward Euler RT mixed FEM (3.8)–(3.13) with
the same settings in [17,35].

In the computation, we take τ = 10−3 and
◦
H1

h(�) × V 1
h (�) on a uniform mesh with

M = 32. We show the snapshots of the numerical solutions Ph , −(J p)h , Nh , −(Jn)h , �h

and −σ h at T = 0.002 in Fig. 3, at T = 0.02 in Fig. 4 and at T = 0.1 in Fig. 5, respectively.
All plots in Figs. 3, 4 and 5 agree well with previous results in [17,35].

In addition, we plot in Fig. 6 the global masses {(P j
h , 1)}J

j=0 and {(N j
h , 1)}J

j=0 and the

electric energy 1
2‖σ j

h‖2
L2 . From Fig. 6, it is easy to see the mass conservation of Ph and Nh

and the decrease of the electric energy 1
2‖σ j

h‖2
L2 as time evolves.

6 Conclusions and Discussion

We have proposed a linearized RT mixed FEM for solving PNP equations. An optimal
error estimate in L∞(L2) norm for the proposed scheme is established unconditionally (i.e.,
the analysis does not require mesh ratio restriction τ ≤ Chα for a certain α > 0) for all
six unknowns: the concentrations p and n, the mass fluxes J p = ∇ p + pσ and Jn =
∇n − nσ , the potential ψ and the potential flux σ = ∇ψ . The method is based on the RT
mixed FEM in the spatial discretization and linearization for the coupled terms p ∇ψ and
n∇ψ . Numerical experiments demonstrate that the proposed method is efficient, accurate
and stable for simulations of dynamics of ion concentrations, of electrostatic potential and
of coupling between two physical processes. As a result of using RT mixed FEMs, the
local mass preserving property is also satisfied for all ion concentrations and electrostatic
potential. Moreover, the mass fluxes of ion concentrations J p and Jn are solved directly and
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Fig. 2 L2-norm errors of the linearized backward Euler RT mixed FEM (3.8)–(3.13) on the unit square.
(Example 5.1)
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Fig. 3 Snapshots of Ph , −(J p)h , Nh ,−(Jn)h , �h and −σ h at time T = 0.002. The results are obtained by
the (3.8)–(3.13) with r = 1 on the mesh with M = 32 and τ = 10−3. (Example 5.2)

Fig. 4 Snapshots of Ph , −(J p)h , Nh , −(Jn)h , �h and −σ h at time T = 0.02. The results are obtained by
the (3.8)–(3.13) with r = 1 on the mesh with M = 32 and τ = 10−3. (Example 5.2)

accurately, which is very important in studies of electric current–voltage curves and Debye
layer phenomena. We shall make the following remarks.
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Fig. 5 Snapshots of Ph , −(J p)h , Nh , −(Jn)h , �h and −σ h at time T = 0.1. The results are obtained by
the (3.8)–(3.13) with r = 1 on the mesh with M = 32 and τ = 10−3. (Example 5.2)
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Fig. 6 The evolution of global masses and electric energy computed by the linearized backward Euler FEM
(3.8)–(3.13) with r = 1 on the mesh with M = 32 and τ = 10−3. (Example 5.2)

Remark 6.1 Here we assume the domain � is a convex polygon or polyhedron. The main
reason is that we used the H2 estimates of elliptic equations. For more general smooth
domains with curved boundary, we refer to [24,41] for detailed description.

Remark 6.2 In this paper we focus on the RT mixed FEM. It is possible to use the Brezzi–
Douglas–Marini (BDM) mixed FEM for the flux approximation. Our error analysis also
applies to the BDM mixed FEM. However, we do not recommend to use the BDM element
which may suffer from a suboptimal convergence for the PNP model, see [9] for more
discussion.
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