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conditions for its local uniqueness. We develop semi-discrete and fully discrete algorithms to
approximate the solutions to our identification problem and provide a convergence analysis.
We present numerical illustrations that confirm and extend our theory.

Keywords Optimal control problems · Identification (inverse) problems · Fractional
diffusion · Bisection algorithm · Finite elements · Stability · Fully-discrete methods ·
Convergence

Mathematics Subject Classification 26A33 · 35J70 · 49J20 · 49K21 · 49M25 · 65M12 ·
65M15 · 65M60

Harbir Antil has been supported in part by NSF Grant DMS-1521590. Enrique Otárola has been supported in
part by CONICYT through FONDECYT Project 3160201. Abner J. Salgado has been supported in part by
NSF Grants DMS-1418784 and DMS-1720213.

B Abner J. Salgado
asalgad1@utk.edu
http://www.math.utk.edu/∼abnersg

Harbir Antil
hantil@gmu.edu
http://math.gmu.edu/∼hantil/

Enrique Otárola
enrique.otarola@usm.cl
http://eotarola.mat.utfsm.cl/

1 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

2 Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaiso, Chile

3 Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0703-0&domain=pdf


J Sci Comput (2018) 77:204–224 205

1 Introduction

Supported by the claim that they seem to better describe many processes, nonlocal models
have recently become of great interest in the applied sciences and engineering. This is spe-
cially the case when long range (i.e., nonlocal) interactions are to be taken into consideration;
we refer the reader to [2] for a far fromexhaustive list of exampleswhere such phenomena take
place. However, the actual range and scaling laws of these interactions—which determines
the order of the model—cannot always be directly determined from physical considerations.
This is in stark contrast with models governed by partial differential equations (PDEs), which
usually arise from a conservation law. This justifies the need to, on the basis of physical obser-
vations, identify the order of a fractional model.

In [12], for the first time, this problemwas addressed. The authors studied the optimization
with respect to the order of the spatial operator in a nonlocal evolution equation; existence
of solutions as well as first and second order optimality conditions were addressed. The
present work, in the stationary regime, provides a continuation of these studies and is a quest
to make them tractable from an implementation viewpoint. The novelty of our work can be
summarized as follows:we address the local uniqueness ofminimizers and propose a gradient
based numerical algorithm to approximate them. To realize the gradient we approximate the
sensitivity of the state using a finite difference scheme. In addition, we study the convergence
rates of our method.

To make matters precise, let Ω be an open and bounded domain in R
n (n ≥ 1) with

Lipschitz boundary ∂Ω . Given a desired state ud : Ω → R (the observations), we define the
cost functional

J (s,u) = 1

2
‖u − ud‖2L2(Ω)

+ ϕ(s), (1)

where, for some a and b satisfying that 0 ≤ a < b ≤ 1, s ∈ (a, b) and, ϕ ∈ C2(a, b) denotes
a nonnegative convex function that satisfies

lim
s↓a ϕ(s) = +∞ = lim

s↑b ϕ(s). (2)

Examples of functions with these properties are

ϕ(s) = 1

(s − a)(b − s)
, ϕ(s) = e

1
(b−s)

s − a
.

We shall thus be interested in the following identification (inverse) problem: Find (s̄, ū)

such that

J (s̄, ū) = min J (s,u) (3)

subject to the fractional state equation

(−Δ)su = f in Ω, (4)

where (−Δ)s denotes a fractional power of the Dirichlet Laplace operator −Δ. We imme-
diately remark that, with no modification, our approach can be extended to problems where
the state equation is Lsu = f, where Lw = −div(A∇w), supplemented with homogeneous
Dirichlet boundary conditions, as long as the diffusion coefficient A is fixed, bounded, sym-
metric and positive definite. In principle, one could also consider optimization with respect
to order s and the diffusion A, as this could accommodate for anisotropies in the diffusion
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process. We refer the reader to [8], and the references therein, for the case when s = 1 is
fixed and the optimization is carried out with respect to A.

We now comment on the choice of a and b. The practical situation can be envisioned as the
following: from measurements or physical considerations we have an expected range for the
order of the operator, and we want to optimize within that range to best fit the observations.
From the existence and optimality conditions point of view, there is no limitation on their
values, as long as 0 ≤ a < b ≤ 1. However, when we discuss the convergence of numerical
algorithms, many of the estimates and arguments that we shall make blow up as s ↓ 0 or
s ↑ 1 so we shall assume that a > 0 and b < 1. How to treat numerically the full range of s
is currently under investigation.

Our presentation is organized as follows. The notation and functional setting is introduced
in Sect. 2, where we also briefly describe, in Sect. 2.1, the definition of the fractional Lapla-
cian. In Sect. 3, we study the fractional identification (inverse) problem (3)–(4). We analyze
the differentiability properties of the associated control-to-state map (Sect. 3.1) and derive
existence results as well as first and second order optimality conditions and a local uniqueness
result (Sect. 3.2). Section 4 is dedicated to the design and analysis of a numerical algorithm
to approximate the solution to (3)–(4). Finally, in Sect. 5 we illustrate the performance of our
algorithm on several examples.

2 Notation and Preliminaries

Throughout this work Ω is an open, bounded and convex polytopal subset of Rn (n ≥ 1)
with boundary ∂Ω . The relation X � Y indicates that X ≤ CY , with a nonessential constant
C that might change at each occurrence.

2.1 The Fractional Laplacian

Spectral theory for the operator−Δyields the existence of a countable collection of eigenpairs
{λk, ϕk}k∈N ⊂ R

+ × H1
0 (Ω) such that {ϕk}k∈N is an orthonormal basis of L2(Ω) and an

orthogonal basis of H1
0 (Ω) and

− Δϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, k ∈ N. (5)

With this spectral decomposition at hand, we define the fractional powers of the Dirichlet
Laplace operator, which for convenience we simply call the fractional Laplacian, as follows:
For any s ∈ (0, 1) and w ∈ C∞

0 (Ω),

(−Δ)sw :=
∑

k∈N
λskwkϕk, wk = (w, ϕk)L2(Ω) :=

∫

Ω

wϕkdx . (6)

By density, this definition can be extended to the space

H
s(Ω) =

{
w =

∑

k∈N
wkϕk ∈ L2(Ω) :

∑

k∈N
λskw

2
k < ∞

}
, (7)

which we endow with the norm

‖w‖Hs (Ω) =
(

∑

k∈N
λskw

2
k

) 1
2

; (8)
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see [5,6,9] for details. The space Hs(Ω) coincides with [L2(Ω), H1
0 (Ω)]s , i.e., the interpo-

lation space between L2(Ω) and H1
0 (Ω); see [1, Chapter 7]. For s ∈ (0, 1), we denote by

H
−s(Ω) the dual space to H

s(Ω) and remark that it admits the following characterization:

H
−s(Ω) =

{
w =

∑

k∈N
wkϕk ∈ D′(Ω) :

∑

k∈N
λ−s
k w2

k < ∞
}

, (9)

whereD′(Ω) denotes the space of distributions on Ω . Finally, we denote by 〈·, ·〉 the duality
pairing between Hs(Ω) and H

−s(Ω).

3 The Fractional Identification (Inverse) Problem

In this section we study the existence of minimizers for the fractional identification (inverse)
problem (3)–(4), as well as optimality conditions. We begin by introducing the so-called
control-to-state map associated with problem (3)–(4) and studying its differentiability prop-
erties. This will allow us to derive first order necessary and second order sufficient optimality
conditions for our problem, as well as existence results.

3.1 The Control-to-State Map

In this subsection we study the differentiability properties of the control-to-state map S
associated with (3)–(4), which we define as follows: Given a control s ∈ (0, 1), the map S
associates to it the state u = u(s) that solves problem (4) with the forcing term f ∈ H

−s(Ω).
In other words,

S : (0, 1) → H
s(Ω), s �→ S(s) =

∑

k∈N
λ−s
k fkϕk, (10)

where fk = 〈f, ϕk〉 and {λk, ϕk}k∈N are defined by (5). Since f ∈ H
−s(Ω), the characterization

of the spaceH−s(Ω), given in (9), allows us to immediately conclude that the map S is well-
defined; see also [6, Lemma 2.2].

Before embarking on the study of the smoothness properties of the map S we define, for
λ > 0, the function Eλ : (0, 1) → R

+ by

Eλ(s) = λ−s, s ∈ (0, 1). (11)

A trivial computation reveals that

Dm
s Eλ(s) = (−1)m lnm(λ)Eλ(s), m ∈ N, (12)

from which immediately follows that, for m ∈ N, we have the estimate
∣∣Dm

s Eλ(s)
∣∣ � s−m, (13)

where the hidden constant is independent of s, it remains bounded as λ ↑ ∞, but blows up
as λ ↓ 0; compare with [12, Eq. (2.27)].

With this auxiliary function at hand we proceed, following [12], to study the differen-
tiability properties of the map S. To begin we notice the inclusion S((0, 1)) ⊂ L2(Ω) so
we consider S as a map with range in L2(Ω) and we will denote by � · � the norm of
L(R, L2(Ω)).
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Theorem 1 (Properties of S) Let S : (0, 1) → L2(Ω) be the control-to-state map, defined
in (10), and assume that f ∈ L2(Ω). For every s ∈ (0, 1) we have that

‖S(s)‖L2(Ω) � 1, (14)

where the hidden constant depends on Ω and ‖f‖L2(Ω), but not on s. In addition, S is three
timesFréchet differentiable; the first and second derivatives ofS are characterized as follows:
for h1, h2 ∈ R, we have that

DsS(s)[h1] = h1Dsu(s), D2
s S(s)[h1, h2] = h1h2D

2
s u(s), (15)

where

Dsu(s) = −
∑

k∈N
λ−s
k ln(λk)fkϕk, D2

s u(s) =
∑

k∈N
λ−s
k ln2(λk)fkϕk .

Finally, for m = 1, 2, 3, we have

� Dm
s S(s)� � s−m, (16)

where the hidden constants are independent of s.

Proof Let s ∈ (0, 1). To shorten notation we set u = S(s). Using (10) we have that

‖u‖2L2(Ω)
=

∑

k∈N
λ−2s
k f2k ≤ λ−2s

1 ‖f‖2L2(Ω)
, (17)

where we used that, for all k ∈ N, 0 < λ1 ≤ λk . Since sups∈[0,1] λ−2s
1 is bounded, we obtain

(14).
We now define, for N ∈ N, the partial sum wN = ∑N

k=1 λ−s
k fkϕk . Evidently, as N → ∞,

we have that wN → u in L2(Ω). Moreover, differentiating with respect to s we immediately
obtain, in light of (12), the expression

DswN = −
∑

k≤N

λ−s
k ln(λk)fkϕk,

and, using (12) and (13), that

‖DswN‖2L2(Ω)
=

∑

k≤N

∣∣Ds Eλk (s)
∣∣2 f2k � 1

s2
‖f‖2L2(Ω)

,

where we used, again, that the eigenvalues are strictly away from zero. This estimate allows
us to conclude that, as N → ∞, we have DswN → Dsu in L2(Ω) and the bound

‖Dsu(s)‖L2(Ω) � s−1‖f‖L2(Ω). (18)

Let us now prove that S is Fréchet differentiable and that (15) holds. Taylor’s theorem, in
conjunction with (12), yields that, for every l ∈ N and h1 ∈ R, we have

el,s := ∣∣Eλl (s + h1) − Eλl (s) − DsEλl (s)h1
∣∣ = 1

2
h21

∣∣D2
s Eλl (θ)

∣∣ ,

for some θ ∈ (s − |h1|, s + |h1|). Now, if |h1| < s/2, we have that θ−2 < 4s−2, and thus,
in view of estimate (13), that

el,s = 1

2
h21

∣∣D2
s Eλl (θ)

∣∣ � h21s
−2.
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This last estimate allows us to write

‖S(s + h1) − S(s) − Dsu(s)h1‖2L2(Ω)
=

∑

k∈N
e2k,s f

2
k � h41s

−4‖f‖2L2(Ω)
,

where the hidden constant is independent of h1 and s. The previous estimate shows that
S : (0, 1) → L2(Ω) is Fréchet differentiable and that DsS(s)[h1] = h1Dsu(s). Finally,
using (18), we conclude, estimate (16) for m = 1.

Similar arguments can be applied to show the higher order Fréchet differentiability of S
and to derive estimate (16) for m = 2, 3. For brevity, we skip the details. ��
3.2 Existence and Optimality Conditions

We now proceed to study the existence of a solution to problem (3)–(4) as well as to charac-
terize it via first and second order optimality conditions. We begin by defining the reduced
cost functional

f (s) = J (s,S(s)), (19)

where S denotes the control-to-state map defined in (10) and J is defined as in (1); we
recall that ϕ ∈ C2(a, b). Notice that, owing to Theorem 1, S is three times Fréchet differen-
tiable. Consequently, f ∈ C2(a, b) and, moreover, it verifies conditions similar to (2). These
properties will allow us to show existence of an optimal control. We begin with a definition.

Definition 1 (Optimal pair) The pair (s̄, ū(s̄)) ∈ (a, b) × H
s̄(Ω) is called optimal for

problem (3)–(4) if ū(s̄) = S(s̄) and

f (s̄) ≤ f (s),

for all (s,u(s)) ∈ (a, b) × H
s(Ω) such that u(s) = S(s).

Theorem 2 (Existence) There is an optimal pair (s̄, ū(s̄)) ∈ (a, b) × H
s̄(Ω) for problem

(3)–(4).

Proof Let {al}l∈N, {bl}l∈N ⊂ (a, b) be such that, for every l ∈ N, a < al+1 < al < bl <

bl+1 < b and al → a, bl → b as l → ∞. Denote Il = [al , bl ] and consider the problem of
finding

sl = argmin
s∈Il

f (s).

The properties of f guarantee its existence. Notice that, since the intervals Il are nested, we
have

f (sm) ≤ f (sl), m ≥ l.

Wehave thus constructed a sequence {sl}l∈N ⊂ (a, b) fromwhichwe can extract a convergent
subsequence, which we still denote by the same {sl}l∈N, such that sl → s̄ ∈ [a, b]. We claim
that f attains its infimum, over (a, b), at the point s̄.

Let us begin by showing that, in fact, s̄ ∈ (a, b). The decreasing property of { f (sl)}l∈N
shows that

f (s̄) ≤ f (sl), ∀l ∈ N,

which, if s̄ = a or s̄ = b, would lead to a contradiction with the fact that f (s) ≥ ϕ(s) and
(2).

123



210 J Sci Comput (2018) 77:204–224

Let s� be any point of (a, b). The construction of the intervals Il guarantee that there is
L ∈ N for which s� ∈ Il whenever l > L . Therefore, we have

f (s̄) ≤ f (sl) = min
s∈Il

f (s) ≤ f (s�).

Which shows that s̄ is a minimizer.
Since S, as a map from (a, b) to L2(Ω), is continuous—even differentiable—we see that

there is ū ∈ L2(Ω), for which S(sl) → ū in L2(Ω) as l → ∞. Let us now show that, indeed,
ū ∈ H

s̄(Ω) and that it satisfies the state equation.
Set ū = ∑

k∈N ūkϕk and notice that, as l → ∞,
(S(sl) − ū, ϕm

)
L2(Ω)

= λ−sl
m fm − ūm → λ−s̄

m fm − ūm .

Therefore ūm = λ−s̄
m fm . This shows that ū ∈ H

s̄(Ω) and that ū solves (4).
The result is thus proved. ��
We now provide first order necessary and second order sufficient optimality conditions

for the identification (inverse) problem (3)–(4). Their form is standard in constrained mini-
mization, but we record them as they will serve us later to design a numerical method.

Theorem 3 (Optimality conditions) Let (s̄, ū) be an optimal pair for problem (3)–(4). Then
it satisfies the following first order necessary optimality condition

(
ū − ud , Ds ū

)
L2(Ω)

+ ϕ′(s̄) = 0. (20)

On the other hand, if (s̄, ū), with ū = S(s̄), satisfies (20) and, in addition, the second order
optimality condition

(
Ds ū, Ds ū

)
L2(Ω)

+ (
ū − ud , D2

s ū
)
L2(Ω)

+ ϕ′′(s̄) > 0 (21)

holds, then (s̄, ū) is an optimal pair.

Proof Since, as shown in Theorem 2, s̄ ∈ (a, b), the first order optimality condition reads:

f ′(s̄) = (S(s̄) − ud , DsS(s̄))L2(Ω) + ϕ′(s̄) = 0. (22)

The characterization of the first order derivative of S, given in Theorem 1, allows us to
conclude (20). A similar computation reveals that

f ′′(s̄) = (DsS(s̄), DsS(s̄))L2(Ω) + (S(s̄) − ud , D2
s S(s̄)

)
L2(Ω)

+ ϕ′′(s̄). (23)

Using, again, the characterization for the first and second order derivatives of S given in
Theorem 1 we obtain (21). This concludes the proof. ��

Let us now provide a sufficient condition for local uniqueness of the optimal parameter s̄.
To accomplish this task we assume that the function ϕ, that defines the functional J in (1),
is strongly convex with parameter ξ , i.e., for all points s1, s2 in (a, b), we have that

(
ϕ′(s1) − ϕ′(s2)

) · (s1 − s2) ≥ ξ |s1 − s2|2. (24)

We thus present the following result.

Lemma 1 (Second-order sufficient conditions) Let s̄ be optimal for problem (3)–(4) and f
be defined as in (19). If ‖f‖L2(Ω) and ‖ud‖L2(Ω) are sufficiently small, then there exist a
constant ϑ > 0 such that

f ′′(s̄) ≥ ϑ. (25)
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Proof On the basis of (23), we invoke the strong convexity of ϕ to conclude that

f ′′(s̄) ≥ ‖DsS(s̄)‖2L2(Ω)
+ (S(s̄) − ud , D2

s S(s̄)
)
L2(Ω)

+ ξ.

It thus suffices to control the term (S(s̄)−ud , D2
s S(s̄))L2(Ω); and to do sowe use the estimates

of Theorem 1. In fact, we have that
∣∣∣
(S(s̄) − ud , D2

s S(s̄)
)
L2(Ω)

∣∣∣ ≤ C1
(
C2‖f‖L2(Ω) + ‖ud‖L2(Ω)

)
s̄−2‖f‖L2(Ω),

where C1 andC2 depend onΩ and the operator−Δ but are independent of s̄, f and ud . Since
Theorem 2 guarantees that s̄ ∈ (a, b), we conclude that the right hand side of the previous
expression is bounded. This, in view of the fact that ‖f‖L2(Ω) and ‖ud‖L2(Ω) are sufficiently
small, concludes the proof. ��

As a consequence of the previous Lemma we derive, for the reduced cost functional f , a
convexity property that will be important to analyze the fully discrete scheme of Sect. 4, and
a quadratic growth condition that implies the local uniqueness of s̄.

Corollary 1 (Convexity and quadratic growth) Let s̄ be optimal for problem (3)–(4) and f
be defined as in (19). If ‖f‖L2(Ω) and ‖ud‖L2(Ω) are sufficiently small, then there exists δ > 0
such that

(
f ′(s) − f ′(s̄)

) · (s − s̄) ≥ ϑ

2
|s − s̄|2 ∀s ∈ (a, b) ∩ (s̄ − δ, s̄ + δ), (26)

where ϑ is the constant that appears in (25). In addition, we have the quadratic growth
condition

f (s) ≥ f (s̄) + ϑ

4
|s − s̄|2 ∀s ∈ (a, b) ∩ (s̄ − δ, s̄ + δ). (27)

In particular, f has a local minimum at s̄. Moreover, this minimum is unique in (s̄ − δ, s̄ +
δ) ∩ (a, b).

Proof Estimates (26) and (27) follow immediately from an application of Taylor’s theo-
rem and estimate (25); see [14, Theorem 4.23] for details. The local uniqueness follows
immediately from (27). ��

4 A Numerical Scheme for the Fractional Identification (Inverse) Problem

In this section we propose a numerical method that approximates the solution to the fractional
identification (inverse) problem (3)–(4). To be able to provide a convergence analysis of the
proposed method we make the following assumption.

Assumption 1 (Compact subinterval) The optimization bounds a and b satisfy

0 < a < b < 1.

Note that we are, essentially, minimizing the univariate function f , given in (19), over a
bounded interval (a, b). However, this is not as simple as it initially seems. The evaluation
of f (s) requires knowledge of u(s), i.e., the solution of an infinite dimensional nonlocal
problem, and this must be numerically approximated. In addition, trying to use a higher
order technique, like a Newton method, is not feasible as it requires the evaluation of Dsu(s),
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which also needs to be numerically approximated. For these reasons we opt to devise a
method that is convergent independently of the initial guess and for which we can derive
error estimates. The scheme that we propose below is based on the discretization of the
first order optimality condition (20): we discretize the first derivative Dsu(s) in (20) using a
centered difference and then we approximate the solution to the state Eq. (4) with the finite
element techniques introduced in [9].

4.1 Discretization in s

To set the ideas, we first propose a scheme that only discretizes the variable s and analyze
its convergence properties. We begin by introducing some terminology. Let σ > 0 and
s ∈ (a, b) such that s ± σ ∈ (a, b). We thus define, for ψ : (a, b) → R, the centered
difference approximation of Dsψ at s by

dσ ψ(s) := ψ(s + σ) − ψ(s − σ)

2σ
. (28)

If ψ ∈ C3(a, b), a basic application of Taylor’s theorem immediately yields the estimate

|Dsψ(s) − dσ ψ(s)| ≤ σ 2

3

∥∥D3
sψ

∥∥
L∞(s−σ,s+σ)

. (29)

We also define the function jσ : (a, b) → R by

jσ (s) = (u(s) − ud , dσu(s))L2(Ω) + ϕ′(s), (30)

where u(s) denotes the solution to (4). Finally, a point sσ ∈ (a, b) for which

jσ (sσ ) = 0, (31)

will serve as an approximation of the optimal parameter s̄.
Notice that, in (30), the definition of jσ coincides with the first order optimality condition

(20), when we replace the derivative of the state, i.e., Dsu, by its centered difference approx-
imation, as defined in (28). The existence of sσ will be shown by proving convergence of
Algorithm 1 which, essentially, is a bisection algorithm. In addition, if the algorithm reaches
line 14, since jσ ∈ C([sl , sr ]) and it takes values of different signs at the endpoints, the inter-
mediate value theorem guarantees that the bisection step will produce a sequence of values
that we use to approximate the root of jσ . It remains then to show that we can eventually find
the requisite interval [sl , sr ] ⊂ (a, b). This is the content of the following result.

Lemma 2 (Root isolation) If σ is sufficiently small, there exist sl and sr in (a, b) such that
jσ (sl) < 0 and jσ (sr ) > 0, i.e., the root isolation step in Algorithm 1 terminates.

Proof We begin the proof by noticing that, for s ∈ (σ, 1 − σ) ⊂ (a, b), the estimates of
Theorem 1 immediately yield the existence of a constant C > 0 such that

∣∣(u(s) − ud , dσu(s))L2(Ω)

∣∣ ≤ C

σ
, (32)

where C depends on Ω , ud and f but not on s or σ .
On the other hand, since property (2) implies that ϕ′(s) → −∞ as s ↓ a, we deduce the

existence of εl > 0 such that, if s ∈ (a, a + εl) then ϕ′(s) < −C/σ . Assume that σ < εl .
Consequently, in view of the bound (32), definition (30) immediately implies that, for every
s ∈ (a + σ, a + εl), we have the estimate

jσ (s) ≤ C

σ
+ ϕ′(s) < 0.
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Algorithm 1 Bisection algorithm.
1: 0 < σ � 1 and set sl , sr ∈ (a, b), with sl < sr .; � Initialization

� We take care of possible degenerate cases
2: if jσ (sl ) = 0 then
3: sσ = sl ;
4: end if
5: if jσ (sr ) = 0 then
6: sσ = sr ;
7: end if

� Root isolation
8: while jσ (sr ) < 0 do
9: sr := sr + σ ;
10: end while
11: while jσ (sl ) > 0 do
12: sl := sl − σ ;
13: end while

� Bisection
14: k = 1;
15: repeat
16: sk = 1

2 (sl + sr );
17: if jσ (sk ) = 0 then
18: sσ = sk ;
19: break; � The solution has been found
20: end if
21: if jσ (sl ) jσ (sk ) > 0 then � Sign check
22: sl = sk ;
23: else
24: sr = sk ;
25: end if
26: k = k + 1;
27: until forever

Similar arguments allow us to conclude the existence of εr > 0 such that, if s ∈ (b − εr , b)
then ϕ′(s) > C/σ . Assume that σ < εr . We thus conclude that, for every s ∈ (b−εr , b−σ),
we have the bound

jσ (s) ≥ −C

σ
+ ϕ′(s) > 0.

In light of the previous estimates we thus conclude that, for σ < min{εl , εr }, we can find
sl and sr in (a, b) such that jσ (sl) < 0 and jσ (sr ) > 0. This concludes the proof. ��

From Lemma 2 we immediately conclude that the bisection algorithm can be performed
and exhibits the following convergence property.

Lemma 3 (Convergence rate: bisection method) The sequence {sk}k≥1 generated by the
bisection algorithm satisfies

|sσ − sk | � 2−k . (33)

In addition, there exists sl and sr such that a < sl < sr < b and sσ ∈ (sl , sr ).

The results of Lemmas 2 and 3 guarantee that, for a fixed σ , the bisection algorithm
can be performed and exhibits a convergence rate dictated by (33). Let us now discuss the
convergence properties, as σ → 0, of this semi-discrete method.We begin with two technical
lemmas.
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Lemma 4 (Convergence of jσ ) Let jσ : (a, b) → R be defined as in (30), then, jσ ⇒ f ′,
that is uniformly, on (a, b) as σ → 0.

Proof From the definitions we obtain that, whenever s ∈ (a, b)
∣∣ f ′(s) − jσ (s)

∣∣ = ∣∣(u(s) − ud , Dsu(s) − dσu(s))L2(Ω)

∣∣

� sup
s∈[a,b]

‖Dsu(s) − dσu(s)‖L2(Ω) ,

where the hidden constant depends on ud and estimate (14). Since, from Theorem 1, we
know that the control-to-state map is three times differentiable, we can conclude that

‖Dsu(s) − dσu(s)‖L2(Ω) � σ 2

a3
,

where we used a formula analogous to (29) and estimate (16). The fact that a > 0 (Assump-
tion 1) and the observation that the deduced bound is uniform for s ∈ [a, b] allows us to
conclude. ��

With the uniform convergence of jσ at hand, we can obtain the convergence of its roots
to parameters that are optimal.

Lemma 5 (Convergence of sσ ) The family {sσ }σ>0 contains a convergent subsequence.
Moreover, the limit of any convergent subsequence satisfies (20).

Proof The existence of a convergent subsequence follows from the fact that {sσ }σ>0 ⊂ [a, b].
Moreover, as in Theorem 2, we conclude that the limit is in (a, b). Let us now show that any
limit satisfies (20).

By Lemma 4, for any ε > 0, if σ is sufficiently small, we have that
∣∣ f ′(sσ )

∣∣ = ∣∣ f ′(sσ ) − jσ (sσ )
∣∣ < ε

which implies that f ′(sσ ) → 0 as σ → 0. Let now {sσk }k∈N ⊂ {sσ } be a convergent
subsequence. Denote the limit point by s ∈ (a, b). By continuity of f ′ we have f ′(sσk ) →
f ′(s) which implies that

f ′(s) = 0.

��
Remark 1 (Stronger convergence) It is expected that we cannot provemore than convergence
up to subsequences, since theremight bemore than one s that satisfies (20). If there is a unique
optimal s, then the previous result implies that the family {sσ }σ>0 converges to it.

In what follows, to simplify notation, we denote by {sσ }σ>0 any convergent subfamily.
The next result then provides a rate of convergence.

Theorem 4 (Convergence rate in σ ) Let s̄ denote a solution to the identification (inverse)
problem (3)–(4) and let sσ be its approximation defined as the solution to Eq. (31). If σ is
sufficiently small then we have

|s̄ − sσ | � σ 2

a3
(‖f‖L2(Ω) + ‖ud‖L2(Ω)

)
,

where the hidden constant is independent of s̄, sσ , σ , f and ud .
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Proof Webegin by considering the parameterσ sufficiently small such that sσ ∈ (s̄−δ, s̄+δ),
where δ > 0 is as in the statement of Corollary 1. Thus, an application of the estimate (26)
in conjunction with the fact that jσ (sσ ) = 0 allow us to conclude that

ϑ
2 |s̄ − sσ |2 ≤ (

f ′(s̄) − f ′ (sσ )) · (s̄ − sσ
) = f ′(sσ )(sσ − s̄)

= ( f ′(sσ ) − jσ (sσ )) · (sσ − s̄).

Consequently, following Lemma 4 we obtain that

ϑ

2
|s̄ − sσ | ≤ ∣∣(u(sσ ) − ud , Dsu(sσ ) − dσu(sσ ))L2(Ω)

∣∣

� σ 2

a3
(‖f‖L2(Ω) + ‖ud‖L2(Ω)

)
.

(34)

The theorem is thus proved. ��
4.2 Space Discretization

The goal of this section is to propose, on the basis of the bisection algorithmof Sect. 4.1, a fully
discrete scheme that approximates the solution to problem (3)–(4). To accomplish this task
we will utilize the discretization techniques introduced in [9] that provide an approximation
to the solution to the fractional diffusion problem (4). In order to make the exposition self-
contained and as clear as possible, we briefly review the techniques of [9] in Sect. 4.2.1. In
Sect. 4.2.2 we design a fully discrete scheme for our identification problem and present an
analysis for it; we emphasize that the results presented in Sect. 4.2.2 are the main novelty of
Sect. 4.2.

4.2.1 A Discretization Technique for Fractional Diffusion

Exploiting the cylindrical extension proposed and investigated in [3,6,13], that is in turn
inspired in the breakthrough by Caffarelli and Silvestre analyzed in [4], the authors of [9]
have proposed a numerical technique to approximate the solution to problem (4) that is based
on an anisotropic finite element discretization of the following local and nonuniformly elliptic
PDE:

div(yα∇U ) = 0 in C, U = 0 on ∂LC, ∂ναU = ds f in Ω. (35)

Here, C denotes the semi-infinite cylinder with base Ω defined by

C = Ω × (0,∞) ⊂ R
n+1+ = {(

x ′, y
) : x ′ ∈ R

n, y > 0
}
,

and ∂LC = ∂Ω × [0,∞) its lateral boundary. In addition, ds = 2α�(1 − s)/�(s) and

∂ναU = − lim
y→0+ yαUy .

Finally, α = 1 − 2s ∈ (−1, 1). Although degenerate or singular, the variable coefficient yα

satisfies a key property. Namely, it belongs to the Muckenhoupt class A2(R
n+1). This allows

for an optimal piecewise polynomial interpolation theory [9].
To state the results of [3,4,6,13], we define the weighted Sobolev space

◦
H1
L

(
yα, C) = {

w ∈ H1(yα, C) : w = 0 on ∂LC
}
,
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and the trace operator

tr� : ◦
H1
L

(
yα, C) → H

s(Ω), w �→ tr� w, (36)

where tr� w denotes the trace of w onto Ω × {0}.
The results of [3,4,6,13] thus read as follows: Let U ∈ ◦

H1
L(yα, C) and u ∈ H

s(Ω) be the
solutions to (35) and (4), respectively, then

u = tr� U . (37)

A first step toward a discretization scheme is to truncate, for a given truncation parameter
Y > 0, the semi-infinite cylinder C to CY := Ω × (0,Y) and seek solutions in this bounded
domain. In fact, let v ∈ ◦

H1
L(yα, CY ) be the solution to

∫

CY
yα∇v · ∇φ = ds 〈f, tr� φ〉 ∀φ ∈ ◦

H1
L

(
yα, CY

)
, (38)

where
◦
H1
L(yα, CY ) = {

w ∈ H1(yα, CY ) : w = 0 on ∂LCY ∪ Ω × {Y}}. Then the exponen-
tial decay of U in the extended variable y implies the following error estimate

‖∇(U − v)‖L2(yα,C) � e−√
λ1Y/4‖f‖H−s (Ω),

provided Y ≥ 1, and the hidden constant depends on s, but is bounded on compact subsets
of (0, 1). We refer the reader to [9, Sect. 3] for details. With this truncation at hand, we thus
recall the finite element discretization techniques of [9, Sect. 4].

To avoid technical difficulties, we assume that Ω is a convex polytopal subset of Rn and
refer the reader to [11] for results involving curved domains. LetTΩ = {K } be a conforming
and shape regular triangulation of Ω into cells K that are isoparametrically equivalent to
either a simplex or a cube. Let IY = {I } be a partition of the interval [0,Y] with mesh
points

y j =
(

j

M

)γ

Y, j = 0, . . . , M, γ >
3

1 − α
= 3

2s
> 1. (39)

We then construct a mesh of the cylinder CY by TY = TΩ ⊗ IY , i.e., each cell T ∈ TY
is of the form T = K × I where K ∈ TΩ and I ∈ IY . We note that, by construction,
#TY = M#TΩ . When TΩ is quasiuniform with #TΩ ≈ Mn we have #TY ≈ Mn+1 and,
if hTΩ = max{diam(K ) : K ∈ TΩ }, then M ≈ h−1

TΩ
. Having constructed the mesh TY we

define the finite element space

V(TY ) := {
W ∈ C0 (C̄Y

) : W|T ∈ P(K ) ⊗ P1(I ) ∀T ∈ TY , W|�D = 0
}
,

where, �D = ∂Ω ×[0,Y)∪Ω ×{Y}, and if K is isoparametrically equivalent to a simplex,
P(K ) = P1(K ) i.e., the set of polynomials of degree at most one. If K is a cube P(K ) =
Q1(K ), that is, the set of polynomials of degree at most one in each variable. We must
immediately comment that, owing to (39), the meshes TY are not shape regular but satisfy:
if T1 = K1 × I1 and T2 = K2 × I2 are neighbors, then there is κ > 0 such that

hI1 ≤ κhI2 , hI = |I |.
The use of anisotropicmeshes in the extended direction y is imperative if onewishes to obtain
a quasi-optimal approximation error since U , the solution to (35), possesses a singularity as
y ↓ 0; see [9, Theorem 2.7].
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We thus define a finite element approximation of the solution to the truncated problem
(38): Find VTY ∈ V(TY ) such that

∫

CY
yα∇VTY · ∇W = ds 〈f, tr� W 〉 ∀W ∈ V(TY ). (40)

With this discrete function at hand, and on the basis of the localization results of Caffarelli
and Silvestre, we define an approximation UTΩ ∈ U(TΩ) = tr� V(TY ) of the solution u to
problem (4) as follows:

UTΩ := tr� VTY . (41)

4.2.2 A Fully Discrete Scheme for the Fractional Identification (Inverse) Problem

Following the discussion in [9] one observes that many of the stability and error estimates
in this work contain constants that depend on s. While these remain bounded in compact
subsets of (0, 1) many of these degenerate or blow up as s ↓ 0 or s ↑ 1. In fact, it is not clear
if the PDE (35) is well-posed under the passage of these limits. Even if this problem made
sense, the Caffarelli–Silvestre extension property (37) does not hold as we take the limits
mentioned above. For this reason, we continue to work under Assumption 1. We begin by
defining the discrete control-to-state map ST as follows:

ST : (a, b) → U(TΩ), s �→ UTΩ (s),

where UTΩ (s) is defined as in (41). We also define the function jσ,T : (a, b) → R as

jσ,T (s) = (
UTΩ (s) − ud , dσUTΩ (s)

)
L2(Ω)

+ ϕ′(s), (42)

where the centered difference dσ is defined as in (28). With these elements at hand, we
thus define a fully discrete approximation of the optimal parameter s̄ as the solution to the
following problem: Find sσ,T ∈ (a, b) such that

jσ,T (sσ,T ) = 0. (43)

We notice that, under the assumption that the map ST is continuous in (a, b), the same
arguments developed in the proof of Lemma 2 yield the existence of sr,T and sl,T in (a, b)
such that jσ,T (sr,T ) < 0 and jσ,T (sl,T ) > 0. This implies that, if in the bisection algorithm
of Sect. 4.1 we replace jσ by jσ,T , the step Root isolation can be performed. Consequently,
we deduce the convergence of the bisection algorithm and thus the existence of a solution
sσ,T ∈ (a, b) to problem (43).

It is then necessary to study the continuity of ST , but this can be easily achieved because
we are in finite dimensions and the problem is linear.

Proposition 1 (Continuity of ST ) For every mesh TY , defined as in Sect. 4.2.1, the map
ST is continuous on (a, b).

Proof Let {sk}k∈N ⊂ (a, b) be such that sk → s ∈ (a, b). Since the operator tr�, defined as
in (36), is continuous [9, Proposition 2.5], it suffices to show that the application s �→ VTY (s)
is continuous. Consider

VTY (s) ∈ V(TY ) :
∫

CY
y1−2s∇VTY (s) · ∇Ws = ds 〈f, tr� Ws〉 ∀Ws ∈ V(TY ),
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and

VTY (sk) ∈ V(TY ) :
∫

CY
y1−2sk∇VTY (sk) · ∇Wk = dsk 〈f, tr� Wk〉 ∀Wk ∈ V(TY ).

Set Ws = VTY (s) − VTY (sk) and Wk = VTY (sk) − VTY (s) and add these two identities to
obtain

∥∥∇ (
VTY (s) − VTY (sk)

)∥∥2
L2(y1−2s ,CY )

= (
ds − dsk

) 〈
f, tr�

(
VTY (s) − VTY (sk)

)〉

+
∫

CY

(
y1−2sk − y1−2s) ∇VTY (sk) · ∇ (

VTY (s) − VTY (sk)
) = I + II.

We now proceed to estimate each one of these terms.
For the first term we have

|I| ≤ ∣∣ds − dsk
∣∣ ‖f‖L2(Ω)

∥∥tr�
(
VTY (s) − VTY (sk)

∥∥
L2(Ω)

→ 0

as k → ∞. This is the case because ‖ tr�(VTY (s) − VTY (sk)‖L2(Ω) is uniformly bounded
[9, Proposition 2.5] and, by Assumption 1, we have that dsk → ds .

We estimate the second term as follows

|II| ≤ |Ω|‖∇VTY (sk)‖L∞(CY )

∥∥∇ (
VTY (s) − VTY (sk)

)∥∥
L∞(CY )

∫ Y

0

∣∣y1−2s − y1−2sk
∣∣ .

Using that we are in finite dimensions, the question reduces to the convergence
∫ Y

0

∣∣y1−2s − y1−2sk
∣∣ → 0,

which follows from the a.e. convergence of y1−2sk to y1−2s , the fact that, for 0 < y < 1,
we have 0 < y1−2sk ≤ y1−2a ∈ L1(0, 1) and an application of the dominated convergence
theorem.

This concludes the proof. ��
We now proceed to derive an a priori error bound for the error between the exact parameter

s̄ and its approximation sσ,T given as the solution (43). We begin by noticing that, following
the proof of Lemma 4, using [10, Proposition 28] and Assumption 1 we have

∣∣ jσ (s) − jσ,T (s)
∣∣ � 1

σ
|log (#TY )|2b (#TY )−(1+a)/(n+1) , (44)

where the hidden constant depends on a and b but is uniform in (a, b). Clearly, for fixed σ ,
this implies the uniform convergence of jσ,T to jσ as we refine the mesh. By repeating the
arguments of Lemma 5 we conclude the convergence, up to subsequences, of {sσ,T }T to
sσ , a root of jσ . Arguing as in Remark 1, we see that we cannot expect convergence of the
entire family.

Finally, we denote one of these convergent subsequences by {sσ,T }T and provide an error
estimate.

Theorem 5 (Error estimate: discretization in s and space) Let s̄ be optimal for the identifi-
cation (inverse) problem (3)–(4) and sσ,T its approximation defined as the solution to (43).
If σ is sufficiently small, #TY is sufficiently large and, f ∈ H

1−a(Ω), then
∣∣s̄ − sσ,T

∣∣ � σ−1 |log (#TY )|2b (#TY )−(1+a)/(n+1) ‖f‖H1−a(Ω) + σ 2, (45)

where the hidden constant is independent of s̄, sσ,T , f and the mesh TY .
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Proof We begin by remarking that, by setting σ sufficiently small and #TY sufficiently large,
respectively, we can assert that sσ,T ∈ (s̄−δ, s̄+δ)with δ being the parameter of Corollary 1.
By invoking the estimate (26) and in viewof the fact that f ′(s̄) = 0 = jσ,T (sσ,T ), we deduce
the following estimate:

ϑ

2

∣∣s̄ − sσ,T

∣∣2≤(
f ′(s̄)− f ′(sσ,T )

) · (s̄−sσ,T )=(
jσ,T (sσ,T ) − f ′(sσ,T )

) · (
s̄ − sσ,T

)
.

We proceed to bound the right hand side of the previous expression. To accomplish this
task, we invoke the definition (42) of jσ,T and repeating the arguments of Lemma 4 we
obtain that

| jσ,T (sσ,T ) − f ′(sσ,T )| ≤
∣∣∣
(
UTΩ (sσ,T ) − ud , dσUTΩ (sσ,T ) − Dsu(sσ,T )

)
L2(Ω)

∣∣∣

+
∣∣∣
(
UTΩ (sσ,T ) − u(sσ,T ), Dsu(sσ,T )

)
L2(Ω)

∣∣∣ = I + II.

(46)

We thus examine each term separately. We start with II: its control relies on the a priori error
estimates of [9,10]. In fact, combining the results of [10, Proposition 28] with the estimate
(16) for m = 1, we arrive at

|II| ≤ ‖Dsu(sσ,T )‖L2(Ω)‖UTΩ (sσ,T ) − u(sσ,T )‖L2(Ω)

� s−1
σ,T | log(#TY )|2sσ,T (#TY )−(1+sσ,T )/(n+1)‖f‖

H
1−sσ,T (Ω)

� | log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω)

where the hidden constant depends on a and b but is independent of s̄, sσ,T , f andTY . Notice
that here we used Assumption 1 to, for instance, control the term s−1

σ,T .
We now proceed to control the term I in (46). A basic application of the Cauchy–Schwarz

inequality yields

|I| ≤ ‖UTΩ (sσ,T ) − ud‖L2(Ω)‖dσUTΩ (sσ,T ) − Dsu(sσ,T )‖L2(Ω).

We thus apply the estimate (14) and the triangle inequality to obtain that

|I| � ‖dσ

(
UTΩ (sσ,T ) − u(sσ,T )

) ‖L2(Ω) + ‖dσu(sσ,T ) − Dsu(sσ,T )‖L2(Ω).

We estimate the first term on the right hand side of the previous expression: the definition
(28) of dσ and [10, Proposition 28] imply that

∥∥dσ

(
UTΩ (sσ,T ) − u(sσ,T )

)∥∥
L2(Ω)

≤ 1

2σ

(‖UTΩ (sσ,T + σ) − u(sσ,T + σ)‖L2(Ω)

+ ∥∥UTΩ (sσ,T − σ) − u(sσ,T − σ)
∥∥
L2(Ω)

)
� 1

σ
| log(#TY )|2b(#TY )−

1+a
n+1 ‖f‖H1−a(Ω);

we notice that σ is small enough such that sσ,T ±σ ∈ (a, b). On the other hand, an estimate
similar to (29) yields that

‖Dsu(sσ,T ) − dσu(sσ,T )‖L2(Ω) � σ 2a−3.

Collecting the previous estimates we arrive at the following bound for the term I:

|I| � σ−1| log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω) + σ 2a−3. (47)

On the basis of (46), this bound, and the estimate for the term II yield

|s̄ − sσ,T | � σ−1| log(#TY )|2b(#TY )−(1+a)/(n+1)‖f‖H1−a(Ω) + σ 2,
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where the hidden constant depends on a and b, but is independent of σ and #TY . This
concludes the proof. ��

A natural choice of σ comes from equilibrating the terms on the right-hand side of (45):
σ ≈ | log(#TY )|2b/3(#TY )−(1+a)/3(n+1). This implies the following error estimate.

Corollary 2 (Error estimate: discretization in s and space) Let s̄ be optimal for the identi-
fication (inverse) problem (3)–(4) and sσ,T be its approximation defined as the solution to
(43). If #TY is sufficiently large, the parameter σ is chosen as

σ ≈ | log(#TY )|2b/3(#TY )−(1+a)/3(n+1),

and f ∈ H
1−a(Ω) then

|s̄ − sσ,T | � | log(#TY )|4b/3(#TY )
− 2(1+a)

3(n+1) , (48)

where the hidden constant depends on a and b but is independent of s̄, sσ,T , and the mesh
TY .

5 Numerical Examples

In this section, we study the performance of the proposed bisection algorithm of Sect. 4 when
applied to the fully discrete parameter identification (inverse) problem of Sect. 4.2.2 with the
help of four numerical examples.

The implementation has been carried out within the MATLAB software library iFEM
[7]. The stiffness matrices of the discrete system (40) are assembled exactly and the forcing
terms are computed by a quadrature rule which is exact for polynomials up to degree 4.
Additionally, the first term in (42) is computed by a quadrature formula which is exact for
polynomials of degree 7. All the linear systems are solved exactly using MATLAB’s built-in
direct solver.

In all examples, n = 2, Ω = (0, 1)2, and the initial values of sl , and sr are 0.3, and 0.9,
respectively. In Algorithm 1, we used as a stopping criterion | jσ (sk)| < TOL = 10−14, where
jσ is defined as in (30). The truncation parameter for the cylinder CY is Y = 1 + 1

3 (#TΩ)

which allows balancing the approximation and truncation errors for our state equation, see
[9, Remark 5.5]. Moreover,

σ = 1

2.5
(#TY )−

(1+ε)
9 ,

with ε = 10−10.
Under the above setting, the eigenvalues and eigenvectors of −Δ are:

λk,l = π2(k2 + l2), ϕk,l(x1, x2) = sin(kπx1) sin(lπx2), k, l ∈ N.

Consequently, by letting f = λs2,2ϕ2,2 for any s ∈ (0, 1) we obtain ū = ϕ2,2.
In what follows we will consider four examples. In the first one we set s̄ = 1/2, f and

ū as above and we set ud = ū. The second one differs from the first one in that we set
s̄ = (3 − √

5)/2. In our third example, the exact solution is not known. Finally, in our last
example we explore the robustness of our algorithm with respect to perturbations in the data.
We accomplish this by considering the same setting as in the first example but we add a
random perturbation r ∈ (−e, e) to the right hand side f. We then explore the behavior of the
optimal parameter s̄ as the size of the perturbation e varies.
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Table 1 The first column indicates the degrees of freedom, the second one corresponds to the solution sσ,T
of our discrete optimality system (43) and the third column illustrates the corresponding value of jσ,T at
sσ,T

#TY sσ,T jσ,T (sσ,T ) N

3146 4.96572e−01 −8.89011e−14 53

10,496 4.98371e−01 −8.38218e−14 53

25,137 4.99069e−01 3.49235e−14 53

49,348 4.99402e−01 1.52327e−12 53

85,529 4.99585e−01 6.28221e−12 53

The final column shows, N , the number of iterations taken by the bisection algorithm to converge. The values
of N are moderate. Additionally, we observe that sσ,T matches with the exact solution s̄ = 1/2 and the
pattern in N shows a mesh independent behavior upon mesh refinement

104
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10−2
| s̄−sσ,T|

Degrees of Freedom (DOFs)

E
rr
or

|s − sσ , T
DOFs−0 . 6

104

10−4

10−3

| s̄−sσ,T|

Degrees of Freedom (DOFs)

E
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|s − sσ , T
DOFs−0 . 6

Fig. 1 The left panel (dotted curve) shows the convergence rate for Example 1 and the right one for Example 2.
The solid line is the reference line. We notice that the computational rates of convergence, in both examples,
are much higher than the theoretically predicted rates in Corollary 2

5.1 Example 1

We recall the definition of the cost function J (u, s) from (1) and set ϕ(s) = 1
s(1−s) . The

latter is strictly convex over the interval (0, 1) and fulfills the conditions in (2). The optimal
solution s̄ to (3)–(4) is given by s̄ = 1/2.

Table 1 illustrates the performance of our optimization solver. The first column indicates
the degrees of freedom #TY , the second column shows the value of sσ,T obtained by solving
(43), and the third column shows the corresponding value jσ,T at sσ,T . The final column
shows the total number of optimization iterations N taken, for the bisection algorithm to
converge. We notice that the observed values of sσ,T matches almost perfectly with s̄. In
addition, the pattern in N , as we refine the mesh, indicates a mesh-independent behavior.

Figure 1 (left panel) shows the computational rate of convergence. We observe that

|s̄ − sσ,T | � (#TY )−0.6

which is significantly better than the predicted rate of (#TY )−0.22 by Corollary 2. Indeed this
suggests that our theoretical rates are pessimistic and in practice, our algorithm works much
better.
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Table 2 The first column indicates the degrees of freedom, the second one corresponds to the solution sσ,T
of our discrete optimality system (43) and the third column illustrates the corresponding value of jσ,T at
sσ,T

#TY sσ,T jσ,T (sσ,T ) N

3146 3.81417e−01 9.99201e−16 46

10,496 3.81697e−01 −2.52812e−13 53

25,137 3.81811e−01 1.36418e−12 53

49,348 3.81866e−01 2.66251e−12 53

85,529 3.81897e−01 3.53083e−12 53

The final column shows, N , the number of iterations taken by the bisection algorithm to converge. The values
of N are moderate. Additionally, we observe that sσ,T matches with the exact solution s̄ = (3 − √

5)/2 and
the pattern in N shows a mesh independent behavior upon mesh refinement

5.2 Example 2

We set ϕ(s) = s−1e
1

(1−s) which is again strictly convex over the interval (0, 1) and fulfills
the conditions in (2). The optimal solution s̄ to (3)–(4) is given by s̄ = (3 − √

5)/2.
Table 2 illustrates the performance of our optimization solver. As we noted in Sect. 5.1,

the numerically computed solution sσ,T matches almost perfectly with s̄ and the pattern of
N , with mesh refinement, again indicates a mesh independent behavior.

Figure 1 (right panel) shows the computational rate of convergence. We again see that

|s̄ − sσ,T | � (#TY )−0.6

Thus the observed rate is far superior than the theoretically predicted rate in Corollary 2.

5.3 Example 3

In our third example, we take ϕ(s) = s−1e
1

(1−s) , f = 10, and ud = max
{
0.5 −√|x1 − 0.5|2 + |x2 − 0.5|2, 0}. We notice that f is large, thus the requirements of Theorem 4

are not necessarily fulfilled. In addition, for μ ≤ 1/2, f /∈ H
1−μ(Ω) thus the requirements

of Corollary 2 are not fulfilled. Nevertheless, as we illustrate in Table 3, we can still solve
the problem. We again notice a mesh independent behavior in the number of iterations (N )
taken by the bisection algorithm to converge.

Table 3 The first column indicates the degrees of freedom, the second one corresponds to the solution sσ,T
of our discrete optimality system (43) and the third column illustrates the corresponding value jσ,T at sσ,T

#TY sσ,T jσ,T (sσ,T ) N

3146 4.44005e−01 4.22951e−12 53

10,496 4.47239e−01 2.97451e−11 53

25,137 4.48182e−01 −3.20792e−11 53

49,348 4.48544e−01 4.83542e−11 53

85,529 4.48690e−01 2.68390e−10 53

The final column shows, N , the number of iterations taken by the bisection algorithm to converge. The values
of N are moderate and show a mesh independent character
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Table 4 Robustness of our algorithm with respect to noisy data

e sσ,T jσ,T (sσ,T ) N

200 6.33937e−01 7.28484e−12 53

20 5.06469e−01 −5.17408e−12 53

2 4.99341e−01 −7.37949e−12 53

0.5 4.99581e−01 −5.68941e−12 53

0.25 4.99586e−01 3.64379e−12 53

0.125 4.99584e−01 3.33318e−13 53

The number of spatial degrees of freedom is fixed to #TY = 85,529. The first column indicates the range of
the uniformly distributed parameter r which is added to the right hand side f, the second one corresponds to
the solution sσ,T of our discrete optimality system (43) and the third column illustrates the corresponding
value jσ,T at sσ,T . The final column shows N , the number of iterations taken by the bisection algorithm to
converge. Notice that even with a noise which is 200 times more than the actual signal f the recovery of s̄ is
reasonable (first row). If the noise is of the same order as f we can recover s̄ perfectly. The values of N are
moderate and show a mesh independent character

5.4 Example 4

In our final example we consider a similar setup to Sect. 5.1. We modify the right hand
side f = λs̄2,2 sin(2πx1) sin(2πx2), with s̄ = 1/2, by adding a uniformly distributed random
parameter r ∈ (−e, e). We fix the spatial mesh to #TY = 85,529.

At first we set e = 200, as a result r is more than 200 times the actual signal f, see the first
row on Table 4. Despite such a large noise, the recovery of s̄ is reasonable. Letting e ↓ 0, we
can recover s̄ almost perfectly.

6 Conclusion

We have proposed a gradient based numerical algorithm to identify the fractional order of
the spectral Dirichlet fractional Laplace operator. We have also studied the well-posedness of
such an identification (inverse) problem and derived second order sufficient conditions, that
ensure local uniqueness, under the assumption that suitable norms of the data are sufficiently
small. As a first step for a solution scheme, we discretize, on the basis of a finite difference
method, the sensitivity of the solution to the state with respect to the parameter in the first-
order optimality condition (20). This leads to a semi-discrete scheme. As a second step, we
discretize the solution to the state Eq. (4) using the finite element method of [9]; this leads
to a fully discrete scheme. Convergence analysis in both cases has been carried out and the
proposed fully discrete algorithm has been tested on several numerical examples.
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