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Abstract In this article, we address the numerical solution of the Dirichlet problem for
the three-dimensional elliptic Monge–Ampère equation using a least-squares/relaxation
approach. The relaxation algorithm allows the decoupling of the differential operators from
the nonlinearities. Dedicated numerical solvers are derived for the efficient solution of the
local optimization problems with cubicly nonlinear equality constraints. The approximation
relies on mixed low order finite element methods with regularization techniques. The results
of numerical experiments show the convergence of our relaxation method to a convex clas-
sical solution if such a solution exists; otherwise they show convergence to a generalized
solution in a least-squares sense. These results show also the robustness of our methodology
and its ability at handling curved boundaries and non-convex domains.
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1 Introduction

The Monge–Ampère equation can be considered as the prototypical example of fully non-
linear elliptic equations [11,21,29]. Theoretical investigations of fully nonlinear equations
started many years ago [6,39] and have received a lot of attention lately [4,5,8,14,16,19,35–
38], due to the many applications involving this type of equations, for instance in finance
[41], in seismic wave propagation [13], in geostrophic flows [15], in differential geometry
[2,18], and in mechanics and physics. However, the Monge–Ampère equation in three space
dimensions is a complicated problem, which is still lacking a full theoretical understanding,
particularly when the domain of interest is not strictly convex.

From a computational point of view, various approaches have been identified, relying in
particular on finite difference [5,13] or finite element [3,9,17,27] approximations.

Since the Monge–Ampère equation may not have smooth classical solutions, even for
smooth data (see [11]), notions of generalized solutions have been introduced, such as Alek-
sandrov solutions [1], and viscosity solutions [31,38]. Actually, another notion of generalized
solution for fully nonlinear elliptic equations has been introduced relatively recently, namely
generalized solutions in a least-squares sense. These least-squares generalized solutions have
been obtained via augmented Lagrangian or least-squares/relaxation approaches [9,12,24].
The least-squares approach will be the one used in this article.

We consider in this article three-dimensional bounded domainsΩ with a Lipschitz contin-
uous boundary ∂Ω . For data f and g sufficiently smooth, it makes sense from the existence,
uniqueness and regularity results reported in, e.g., [10], to look for ψ belonging to H2(Ω)

and convex, solution to the following Dirichlet problem for the Monge–Ampère equation

det D2ψ = f in Ω,

ψ = g on ∂Ω.

Indeed, note that, if Ω is a bounded strictly convex domain of R3 with a C∞ boundary ∂Ω ,
this problem has a unique convex solution belonging toC∞(Ω̄) (see, e.g., [10]). On the other
hand, if Ω is a bounded strictly convex domain of R3, the Dirichlet problem for the Monge–
Ampère equation has a unique convex generalized solution belonging to C0(Ω̄)∩W 2,∞

loc (Ω)

(see, e.g., [29]). Therefore, H2(Ω) is a reasonable choice to look for a solution to theMonge–
Ampère equation in three space dimensions.

The chosen least-squares formulationwe used here consists inminimizing the L2-distance
between D2ψ and a matrix-valued function p ∈ (L2(Ω))3×3, whereψ satisfies the boundary
conditions of the problem (but not the Monge–Ampère equation) and p satisfies det p = f .
Using a relaxation algorithm to minimize such a distance, we obtained a solution method
where one solves alternatively, until convergence, a sequence of linear variational problems
(to be approximated by mixed finite element methods) and a sequence of cubicly constrained
algebraic optimization problems. Using a similar approach, we have been able to compute
generalized solutions of the Monge–Ampère equation when this problem has no classical
solutions in two dimensions of space [9]. In this article, the methods discussed in [9] have
been generalized to three-dimensional problems.

In this article, the linear variational problems we mentioned above are solved by a precon-
ditioned conjugate gradient algorithm, whose computer implementation relies on low order
(P1 orQ1) mixed finite element approximations. The local cubicly constrained optimization
problems are solved by Newton-like methods [42] or time-stepping methods associated with
a dynamical flow (see, e.g., [30]). The main difference between the two-dimensional case
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discussed in [9] , and the present article is the cubic nature (vs quadratic) of the equality
constraints.

The structure of this article is as follows. In Sect. 2, we describe the proposedmethodology,
while the relaxation algorithm is described in Sect. 3. Sections 4 and 5 detail the algebraic
and differential solvers respectively. The mixed finite element discretization is discussed in
Sect. 6. The method is applied in Sect. 7 to the solution of several numerical examples,
including examples without a classical exact solution. Finally, in Sect. 8, some numerical
results are presented where P1 finite elements have been replaced with Q1 ones.

The numerical solution of the 3D elliptic Monge–Ampère equation has been discussed in
[8] using piecewise P3 continuous finite element approximations. A fast multigrid scheme
has been presented in [34], while smooth cases on structured meshes have been considered
in [3] (with numerical results that are consistent with [9]). However, to the best of our
knowledge, the method discussed in the present article is one of the very few able to solve the
3D elliptic Monge–Ampère equation on domains with curved boundaries, using piecewise
P1 continuous finite element approximations associated with unstructured meshes, while
preserving optimal, or nearly optimal, orders of convergence for the approximation errors,
including situations where the solution does not have the C2(Ω̄) regularity.

2 Mathematical Formulation and Least-Squares Approach

LetΩ be a bounded convex domain ofR3; we denote by Γ the boundary ofΩ . The Dirichlet
problem for the elliptic Monge–Ampère equation reads as follows:

{
det D2ψ = f (> 0) in Ω,

ψ = g on Γ,
(1)

where D2ψ =
(

∂2ψ
∂xi ∂x j

)
1≤i, j≤3

is the Hessian of the unknown function ψ .

Among the various methods available for the solution of (1) discussed in the introduction,
we advocate a nonlinear least-squares method that relies on the introduction of an additional
auxiliary variable. Namely, we look for:

(ψ, p) ∈ Vg × Q f such that J (ψ, p) ≤ J (ϕ, q), ∀(ϕ, q) ∈ Vg × Q f (2)

where:

J (ϕ, q) = 1

2

∫
Ω

∣∣D2ϕ − q
∣∣2 dx, (3)

using the Fröbenius norm and inner product defined by |T| = √
T : T,S : T =∑3

i, j=1 si j ti j ,

for all S = (si j ), T = (ti j ) ∈ R
3×3. The functional spaces in (2) are respectively defined by:

Vg = {ϕ ∈ H2(Ω), ϕ = g on Γ
}
,

Q f = {q ∈ Q, detq = f, q is a positive definite matrix-valued function} ,

Q = {q ∈ L2(Ω)3×3, q = qt} .

We assume that f ∈ L2/3(Ω) and g ∈ H3/2(Γ ), so that Vg and Q f are both non-empty.
Note that the space Q is a Hilbert space for the inner product (q, q′) → ∫

Ω
q : q′dx, and the

associated norm.
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3 Relaxation Algorithm

In order to decouple differential operators from the nonlinearity, we suggest using a relaxation
algorithm of the Gauss–Seidel-type. Furthermore, we wish to compute a convex solution to
problem (2) (or at least to force the convexity of the solution), and thus advocate the following
approach. First, the initialization is performed by solving:{

Δψ0 = 3 3
√

f in Ω,

ψ0 = g on Γ.
(4)

Then, for n ≥ 0 and assuming that ψn is known, one computes pn, ψn+1/2 and ψn+1 as
follows:

pn = arg min
q∈Q f

J (ψn, q); (5)

ψn+1/2 = arg min
ϕ∈Vg

J (ϕ, pn); (6)

ψn+1 = ψn + ω(ψn+1/2 − ψn), (7)

with 1 ≤ ω ≤ ωmax < 2. For the numerical experiments presented in Sect. 7, we used ω ≡ 1
(unless otherwise specified).

The rationale behind the initialization procedure (4) is based on the above isotropic
assumption. If we denote the eigenvalues of D2ψ by λi , i = 1, 2, 3, the Monge–Ampère
equation reads λ1λ2λ3 = f . If λ1, λ2 and λ3 are “close” from each other (and thus all equal
to, let’s say, λ), we have λ3 = f , and thus λ = 3

√
f . Therefore:

Δψ = λ1 + λ2 + λ3 = 3λ = 3 3
√

f .

Since the initialization procedure is based on an isotropic assumption, the case when the
eigenvalues are very different from each other has to be put under scrutiny in the numerical
experiments. In the sequel, the numerical algorithms used for the solution of problems (5)
and (6) will be discussed in details. Despite several investigations, note that the question of
the uniqueness of the solution to the local problem (5) still remains an open question.

4 Numerical Approximation of the Local Nonlinear Problems

4.1 Explicit Formulation of the Local Nonlinear Problems

An explicit formulation of problem (5) reads as

pn = arg min
q∈Q f

[
1

2

∫
Ω

|q|2 dx −
∫

Ω

D2ψn : qdx
]

. (8)

Since the objective function in (8) does not contain derivatives ofq, thisminimization problem
can be solved point-wise (in practice at the vertices of a finite element or finite difference
grid). This leads, a.e. in Ω , to the solution of the following finite dimensional minimization
problem:

pn(x) = arg min
q∈E f (x)

[
1

2
|q|2 − D2ψn(x) : q

]
, (9)

where

E f (x) = {q ∈ R
3×3, q = qt , det q = f (x), q is positive definite

}
.
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In the case of the 2D Monge–Ampère equation, this step led to a class of quadratically
constrainedminimization problems,whose solutionwas addressed in [9,28] using a dedicated
algorithm. This dedicated approach does not apply when the constraint is a cubic equation as
here, implying that other approaches have to be considered. The two approaches below rely
on an appropriate re-parameterization of the problem in order to transform the constrained
minimization problem into an unconstrained one; both ending up with some kind of Newton-
related methods.

4.2 A Reduced Newton Method

For a. e. x ∈ Ω , (9) is an algebraic optimization problem. Using a Cholesky decomposition
of q, we write q = LDLt , where

L =
⎛
⎝ 1 0 0
a 1 0
b c 1

⎞
⎠ , D =

⎛
⎝

3
√

f (x)eρ1 0 0
0 3

√
f (x)eρ2 0

0 0 3
√

f (x)e−ρ1−ρ2

⎞
⎠ . (10)

This re-parameterization is arbitrary but serves two purposes: first, it guarantees that all
eigenvalues are strictly positive (convexity of the local solution). Second, the constraint
detq = f (x) is automatically satisfied. It thus allows one to replace (9) by an unconstrained
minimization problem in the variable X := (a, b, c, ρ1, ρ2). For the sake of simplicity, we
do not write the dependency on x ∈ Ω anymore. The problem becomes:

min
X∈R5

G(X) =
{
1

2
LDLt : LDLt − LDLt : D2ψn

}
. (11)

The first order optimality conditions corresponding to (11) can formally be written as

∇XG(X) = 0.

This nonlinear system can be solved with a safeguarded Newton method for the variable X.
Namely, given X0 ∈ R

5, solve, for k ≥ 0:

∇2
XG(Xk+1)δXk = −∇XG(Xk),

followed by

Xk+1 = Xk + λkδXk,

where λk ∈ R+ is a step-length to be adapted according to some Armijo rule (see, e.g., [7]).
Typically, we update the step-length if

∣∣∣∣∇G(Xk+1)
∣∣∣∣ > (1 − αλk)

∣∣∣∣∇G(Xk)
∣∣∣∣, where α =

10−4 and ||·|| denotes the canonical Euclidian norm of R5, and set in that case λk+1 = 1
2λ

k .
The stopping criterion is based on the residual value

∣∣∣∣∇G(Xk)
∣∣∣∣, and the iterations are

stopped if
∣∣∣∣∇G(Xk)

∣∣∣∣ < εNewton, where εNewton is a given tolerance.

4.3 A Runge–Kutta Method for the Dynamical Flow Problem

An alternative re-parameterization of the nonlinear problem (9) can be considered, based
on a eigenvalues-eigenvectors decomposition, in the spirit of the approach in [28]. Namely,
consider q = Q�Qt , where Q ∈ O(3) ⊂ R

3×3 is the orthogonal matrix whose columns
represent the eigenvectors of q (O(3) being the group of the 3× 3 orthogonal matrices), and
� ∈ R

3×3 is the diagonalmatrix whose diagonal elements are the corresponding eigenvalues.
We can denote
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Q = (T1 T2 T3
)
, � =

⎛
⎝

3
√

f (x)eρ1 0 0
0 3

√
f (x)eρ2 0

0 0 3
√

f (x)e−ρ1−ρ2

⎞
⎠

Again, this parameterization is not unique; it ensures that the relation detq = f (x) is auto-
matically satisfied and that the eigenvalues are positive in order to enforce convexity of the
local solutions. The property Q ∈ O(3) implies the following constraints for its column
vectors Ti , i = 1, 2, 3 (where Ti · T j denotes the dot product of vectors Ti and T j ):

Ti · T j = δi j , i, j = 1, 2, 3.

Let us define the variablesY = (ρ1, ρ2, T1, T2, T3) ∈ R
11. Problem (9) can be rewritten

as

min
Y∈R11

{
1

2
Q�Qt : Q�Qt − Q�Qt : D2ψn

}

s. t. T1 · T1 = T2 · T2 = T3 · T3 = 1

T1 · T2 = T1 · T3 = T2 · T3 = 0

Below, for i = 1, 2, 3, we will denote by |Ti | the quantity (Ti · Ti )
1/2. We penalize the

equality constraints in order to obtain an unconstrained problem that can be solved by a
Newton approach. Let ε1, ε2 > 0 be two given (small) parameters. The constraints are taken
into account by penalization, leading to the following unconstrained minimization problem:

min
Y∈R11

Gε1,ε2(Y) (12)

where

Gε1,ε2(Y) = 1

2
Q�Qt : Q�Qt − Q�Qt : D2ψn

+ 1

ε1
((|T1|2 − 1)2 + (|T2|2 − 1)2 + (|T3|2 − 1)2)

+ 1

ε2
((T1 · T2)

2 + (T1 · T3)
2 + (T2 · T3)

2).

Similarly to the solution of (11), the first order optimality conditions associated with (12)
can be written as

∇Gε1,ε2(Y) = 0.

In order to smoothen the transition to critical point(s), we favor an evolutive formulation of
the first order optimality conditions (in the sense of a flow problem in the dynamical systems
terminology), which read as follows: find Y : (0,+∞) → R

11 such that

dY
dt

+ ∇Gε1,ε2(Y) = 0, t ∈ (0,+∞) (13)

Y(0) = Y0 given. (14)

The steady state solution of (13) (14) corresponds to the desired critical point. In order to
increase the stability of the numerical scheme and allow larger time steps and therefore a
faster convergence to the steady state solution, it is customary to modify (13) into a modified
flow problem [32], namely: find Y : (0,+∞) → R

11 such that

dY
dt

+ (∇2Gε1,ε2(Y)
)−1 ∇Gε1,ε2(Y) = 0, t ∈ (0,+∞) (15)
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with the same initial condition. The stability of the scheme is important here since we are
aiming at solving such a flow problem for a.e. x ∈ Ω , which requires an efficient numer-
ical algorithm. The additional computational cost induced by the introduction of the term(∇2Gε1,ε2(Y)

)−1
is estimated in the sequel.

System (15) is solved by a two-stage (second order explicit) Runge–Kutta method (see,
e.g., [30]) in order to capture steady state solutions. Let Δt be a given time step, tn = nΔt
and Yn � Y(tn), n = 0, 1, . . .. Let us define Y0 = Y0; then, at each time step, solve

k1 = − (∇2Gε1,ε2(Yn)
)−1 ∇Gε1,ε2(Yn),

k2 = −
(

∇2Gε1,ε2(Yn + 2

3
Δt k1)

)−1

∇Gε1,ε2

(
Yn + 2

3
Δt k1

)
,

Yn+1 = Yn + Δt

(
1

4
k1 + 3

4
k2

)
.

An adaptive time stepping strategy for Runge–Kuttamethods is incorporated to the numerical
algorithm; numerical experiments will show that the adaptive time step is particularly useful
at the beginning of the outer iterations loop, when the initial solution is not close to the final
steady state solution.

It is worth noticing that, if we treat the modified flow problem with a first order Euler
explicit scheme, it leads to solving at each time step

(∇2Gε1,ε2(Y
n)
) Yn+1 − Yn

Δt
= −∇Gε1,ε2(Y

n);
this problem corresponds actually to a classical safeguarded Newton method, reminiscent
to the one we presented in Sect. 4.2, with Δt playing the role of the step-length λ. With
this remark, the adaptive time stepping algorithm for Runge–Kutta schemes can be seen as
an adaptive Armijo-like rule, with Δt = λ. Furthermore, one can see that the Runge–Kutta
approach is slower than the reduced Newton strategy (since it corresponds to solving two
Newton-type systems at each time step), but it is more accurate since the two-step Runge–
Kutta scheme is a higher order method than the Euler scheme. Finally, a study of the stability
of Runge–Kutta schemes [30] shows that its stability properties are better than those of the
Euler scheme.

5 Numerical Solution of the Linear Variational Problems

Written in variational form the Euler–Lagrange equation of the sub-problem (6) reads as
follows: find ψn+1/2 ∈ Vg satisfying:∫

Ω

D2ψn+1/2 : D2ϕdx =
∫

Ω

pn : D2ϕdx, ∀ϕ ∈ V0, (16)

where V0 = H2(Ω)∩H1
0 (Ω). The linear variational problem (16) is well-posed and belongs

to the following family of linear variational problems:

Find u ∈ Vg such that
∫

Ω

D2u : D2vdx = L(v), ∀v ∈ V0, (17)

with the functional L(·) linear and continuous over H2(Ω); problem (17) is a bi-harmonic
type problem, which can be solved by a conjugate gradient algorithm operating in well-
chosen Hilbert spaces (see, e.g., [22, Chapter 3]). Here, our conjugate gradient algorithm
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operates in the spaces V0 and Vg , both spaces being equipped with the inner product defined
by (v,w) → ∫

Ω
ΔvΔwdx, and the corresponding norm. It reads as follows:

Step 1
u0 ∈ Vg given. (18)

Step 2 Solve: find g0 ∈ Vg satisfying∫
Ω

Δg0Δvdx =
∫

Ω

D2u0 : D2vdx − L(v), ∀v ∈ V0, (19)

and set
w0 = g0. (20)

Then, for k ≥ 0, uk, gk and wk being known, the last two different from zero, we
compute uk+1, gk+1 and, if necessary, wk+1 as follows.

Step 3 Solve: find ḡk ∈ V0 satisfying∫
Ω

ΔḡkΔvdx =
∫

Ω

D2wk : D2vdx, ∀v ∈ V0, (21)

and compute

ρk =
∫
Ω

∣∣Δgk
∣∣2 dx∫

Ω
ΔḡkΔwkdx

, (22)

uk+1 = uk − ρkw
k, (23)

gk+1 = gk − ρk ḡ
k . (24)

Step 4 Compute

δk =
∫
Ω

∣∣Δgk+1
∣∣2 dx∫

Ω

∣∣Δg0
∣∣2 dx

. (25)

If δk < ε, take u = uk+1; otherwise, compute:

γk =
∫
Ω

∣∣Δgk+1
∣∣2 dx∫

Ω

∣∣Δgk
∣∣2 dx

; (26)

and
wk+1 = gk+1 + γkw

k . (27)

Step 5 Do k + 1 → k and return to Step 3.

6 Mixed Finite Element Approximation

Considering the highly variational flavor of the methodology discussed in the preceding
sections, it makes sense to look for finite element methods for the solution of (1). We will use
a mixed finite element approximation (closely related to those discussed in, e.g., [25] for the
solution of linear and nonlinear bi-harmonic problems) with low order (piecewise linear and
globally continuous) finite elements on a partition ofΩ made of tetrahedra. The modification
of the numerical approximation method obtained when replacing the P1 based finite element
spaces on tetrahedra by the Q1 based finite element spaces associated with partitions of Ω

made of hexahedra is discussed in Sect. 8 with some numerical experiments.
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6.1 Finite Element Spaces

For simplicity, let us assume that Ω is a bounded polyhedral domain of R3, and define
Th as a finite element partition of Ω made out of tetrahedra (see, e.g., [23, Appendix 1]).
Let Σh be the set of the vertices of Th , Σ0h = {P ∈ Σh, P /∈ Γ }, Nh = Card(Σh), and
N0h = Card(Σ0h). We suppose that Σ0h = {Pj

}N0h
j=1 and Σh = Σ0h ∪ {Pj

}Nh
j=N0h+1.

From Th , we approximate the spaces L2(Ω), H1(Ω) and H2(Ω) by the finite dimensional
space Vh defined by:

Vh = {v ∈ C0(Ω̄), v|T ∈ P1, ∀T ∈ Th
}
,

with P1 the space of the three-variable polynomials of degree ≤ 1. We define also V0h as

V0h = Vh ∩ H1
0 (Ω) = {v ∈ Vh, v = 0 on Γ } .

In the sequel, V0h will be used to approximate both H1
0 (Ω) and H2(Ω) ∩ H1

0 (Ω).

6.2 Finite Element Approximation of the Monge–Ampère Equation

When solving (17) by the conjugate gradient algorithm (18)–(27), one has to (i) compute
the discrete analogues of the second order derivatives, e.g., D2wk and D2u0, and (ii) solve
biharmonic problems such as (19) and (21).

Concerning (i) we will approximate the second order derivatives by functions belonging
to V0h , but this has to be handled carefully. For a function ϕ belonging to H2(Ω), it follows
from Green’s formula that, for i, j = 1, 2, 3:

∫
Ω

∂2ϕ

∂xi∂x j
vdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈ H1

0 (Ω), (28)

Consider now ϕ ∈ Vh . We define the discrete analogue D2
hi jϕ ∈ V0h of the second derivative

∂2ϕ
∂xi ∂x j

by : for all i, j , 1 ≤ i, j,≤ 3, D2
hi jϕ ∈ V0h and verifies

∫
Ω

D2
hi jϕvdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈ V0h . (29)

The functions D2
hi jϕ are thus uniquely defined; in order to simplify the computation of the

above discrete second order partial derivatives, we could use the trapezoidal rule to evaluate
the integrals in the left hand sides (mass lumping). Since the Hessian matrix D2ψ is in
(L2(Ω))3×3, and since H1

0 (Ω) is dense in L2(Ω), the approximation D2
hψ is considered to

be in V0h . Indeed, the underlying method being a collocation method, the Monge–Ampère
equation is approximated and imposed at the internal vertices of Ω only.

As emphasized in [9,40], when using piecewise linear mixed finite elements, the approx-
imation of the error on the second derivatives of the solution ψ is, in general, O(1) in the
L2-norm. Therefore, the convergence properties of the global algorithm strongly depends
on the type of partition of Ω one employs, and could be completely jeopardized in some
situations. One way to improve the approximation properties of the discrete second order
derivatives D2

hi jϕ is to use, as in [9], a Tychonoff-like regularization [43]. Let us introduce
a stabilization constant C (to be calibrated in the numerical experiments), and replace the
previous variational problem by: for all i, j , 1 ≤ i, j ≤ 3, D2

hi jϕ ∈ V0h and verifies
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∫
Ω

D2
hi jϕvdx + C

∑
K∈Th

|K |2/3
∫
K

∇D2
hi jϕ · ∇vdx

= −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈ V0h . (30)

The rationale behind (30) is to correct the approximation errors of (29), which deterio-
rate when h → 0. This behavior being associated with the high modes of the approximate
solutions. Similar ideas have been used for approximations of the Stokes problem in incom-
pressible fluid mechanics when using essentially the same finite element spaces for the
velocity components and the pressure (see, e.g., [23, Chapter 5]). Among the possible cures
of this unwanted behavior, let us mention the use of higher degree polynomials to define
the finite element spaces. However since piecewise affine approximations are optimal for
handling domains of (almost) arbitrary shape and with curved boundaries, we will try to
rescue them following the approach in [9]. The first step is to approximate (28) by : for all

i, j , 1 ≤ i, j ≤ 3,
(

∂2ψ
∂xi ∂x j

)
ε

∈ H1
0 (Ω) and verifies

ε

∫
Ω

∇
(

∂2ψ

∂xi∂x j

)
ε

· ∇vdx +
∫

Ω

(
∂2ψ

∂xi∂x j

)
ε

vdx

= −1

2

∫
Ω

[
∂ψ

∂xi

∂v

∂x j
+ ∂ψ

∂x j

∂v

∂xi

]
dx, ∀v ∈ H1

0 (Ω). (31)

with ε > 0 a “small” positive number (of the order of h2 in practice). Problem (31) is
well-posed and one can easily show that

lim
ε→0

(
∂2ψ

∂xi∂x j

)
ε

= ∂2ψ

∂xi∂x j
in L2(Ω).

In this article, we approximate both (28) and (31) by (30). Numerical experiments show that
this regularization procedure provides approximations of optimal or nearly optimal orders.

Defining D2
hψh(Pk) =

(
D2
hi jψh(Pk)

)3
i, j=1

, and assuming that the boundary function g

is continuous over Γ , the affine space Vg can be approximated by

Vgh = {ϕ ∈ Vh, ϕ(P) = g(P),∀P ∈ Σh ∩ Γ }
and the discrete Monge–Ampère equation reads: find ψh ∈ Vgh such that

detD2
hψh(Pk) = f (Pk), k = 1, . . . , N0h . (32)

Concerning issue (ii), that is the solution of the bi-harmonic problems encountered in
the conjugate gradient algorithm (18)–(27), after space discretization the resulting discrete
bi-harmonic problems are all particular cases of

Find r ∈ V0h such that
∫

Ω

ΔhrΔhϕdx = Λh(ϕ), ∀ϕ ∈ V0h, (33)

with Λh ∈ L(V0h,R) and Δh ∈ L(V0h, V0h) defined by

Δhϕ ∈ V0h, −
∫

Ω

Δhϕθdx =
∫

Ω

∇ϕ · ∇θ ∀(ϕ, θ) ∈ V0h × V0h,
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It follows from this definition that the discrete bi-harmonic problem (33) is equivalent to the
following system of easy to solve discrete Poisson–Dirichlet problems:

Find ω ∈ V0h,
∫

Ω

∇ω · ∇ϕdx = Λ(ϕ), ∀ϕ ∈ V0h,

Find r ∈ V0h,
∫

Ω

∇r · ∇ϕdx =
∫

Ω

ω ϕdx, ∀ϕ ∈ V0h .

6.3 Discrete Formulation of the Least-Squares Method

We define the discrete analogues of spaces Q and Q f as follows:

Qh = {qh ∈ (V0h)
3×3, qh(Pk) = qt

h(Pk), k = 1, . . . , N0h
}
,

Q f h = {qh ∈ Qh, detqh(Pk) = fh(Pk),

qh(Pk) is positive definite , k = 1, . . . , N0h} .

We associate with Vh (or V0h and Vgh) and Qh , the discrete inner products: (v,w)0h =
1
4

∑Nh
k=1 Akv(Pk)w(Pk) (with corresponding norm ||v||0h = √

(v, v)h), for all v,w ∈
V0h , and ((S, T))0h = 1

4

∑Nh
k=1 AkS(Pk) : T(Pk) (with corresponding norm |||S|||0h =√

((S, S))0h) for all S, T ∈ Qh , where Ak is the volume of the polyhedral domain which is
the union of those tetrahedra of Th which have Pk as a common vertex.

The solution of (32) is then addressed via a nonlinear least-squares method, namely find
(ψh, ph) ∈ Vgh × Q f h such that

Jh(ψh, ph) ≤ Jh(ϕh, qh), ∀(ϕh, qh) ∈ Vgh × Q f h (34)

where:

Jh(ϕh, qh) = 1

2

∣∣∣∣∣∣D2
hϕh − qh

∣∣∣∣∣∣2
0h (35)

6.4 A Discrete Relaxation Algorithm

The discrete relaxation algorithm we employ reads as follows: First find

ψ0
h ∈ Vgh such that

∫
Ωh

∇ψ0
h · ∇ϕhdx = −

(
3 3
√

fh, ϕh

)
0h

, ∀ϕh ∈ V0h .

For n ≥ 0, assuming that ψn
h is known, compute pn

h, ψ
n+1/2
h and ψn+1

h as follows:

pn
h = arg min

qh∈Q f h
Jh
(
ψn
h , qh

)
,

ψ
n+1/2
h = arg min

ϕh∈Vgh
Jh
(
ϕh, pn

h

)
,

ψn+1
h = ψn

h + ω
(
ψ

n+1/2
h − ψn

h

)
,

with 1 ≤ ω ≤ ωmax < 2.

6.5 Finite Element Approximation of the Local Nonlinear Problems

The finite dimensional minimization problems, discrete analogues of (9), are approximated,
at each grid point Pk ∈ Σ0h , by:

pn
h(Pk) = arg min

q∈E f (Pk )

[
1

2
|q|2 − D2

hψ
n(Pk) : q

]
.

123



64 J Sci Comput (2018) 77:53–78

The methods discussed in Sect. 4 still apply.

6.6 Finite Element Approximation of the Linear Variational Problems

The variational problems arising in the discrete version of the relaxation algorithm can be
solved similarly as in the continuous case using a conjugate gradient algorithm. Let us point
out however a particularity that arises in the discrete case. The discrete version of (16) reads
as follows: find ψ

n+1/2
h ∈ Vgh satisfying:((

D2
hψ

n+1/2
h , D2

hϕh

))
0h

= ((pn
h, D2

hϕh
))

0h , ∀ϕh ∈ V0h . (36)

The linear problem (36) leads to excessive computer resource requirements, which could be
acceptable for two-dimensional problems, but become prohibitive for three dimensional ones.
(Indeed, to derive the linear system equivalent to (36), we need to compute-via the solution
of (30)-the matrix-valued functions D2

hw
j , where the functions w j form a basis of V0h .)

To avoid this difficulty, we are going to employ, as previously discussed in [9], an adjoint
equation approach (see, e,g., [26]) to derive an equivalent formulation of (36), well-suited to
a solution by a conjugate gradient algorithm. This adjoint approach reads as

Find ψ
n+1/2
h ∈ Vgh such that

〈
∂ Jh
∂ϕ

(
ψ

n+1/2
h , pn

h

)
, θh

〉
= 0, ∀θh ∈ V0h, (37)

where
〈
∂ Jh
∂ϕ

(ϕ, q), θ
〉
denotes the action of the partial derivative ∂ Jh

∂ϕ
(ϕ, q) on the test function

θ . In order to solve (37), we first determine D2
hi jϕ via (30). Then, we find λhi j ∈ V0h ,

1 ≤ i, j ≤ 3, by solving the (adjoint) systems:

(λhi j , θh)0h + C
∑
K∈Th

|K |2/3
∫
K

∇λhi j · ∇θhdx =
(

phi j − D2
hi jϕ, θh

)
0h

, ∀θh ∈ V0h,

and we can show (see, e.g., [26]) that, for all (ϕh, ph) ∈ Vgh × Qh :

〈
∂ Jh
∂ϕ

(ϕh, ph), θh

〉
=
∫

Ω

⎡
⎣ 3∑

i=1

3∑
j=1

∂λhi j

∂xi

∂θh

∂x j

⎤
⎦ dx, ∀θh ∈ V0h .

This last relation can be used directly in the conjugate gradient algorithm (18)–(27), to solve
(19) and (21). For instance, the discrete equivalent of (21) consists in finding ḡkh ∈ V0h such
that (with obvious notation):

(Δḡkh,Δθh)0h =
∫

Ω

⎡
⎣ 3∑

i=1

3∑
j=1

∂λki j

∂xi

∂θh

∂x j

⎤
⎦ dx, ∀θh ∈ V0h .

7 Numerical Results

The first numerical results we are going to report, in order to validate our methodology,
are associated with the unit cube Ω = (0, 1)3. Two types of partitions of the unit cube are
considered, in order to study the mesh-dependence of our methods. These partitions have
been constructed by using either advancing front 3D procedures, or successive extrusions
[20], and are visualized in Fig. 1. All experiments were performed on a desktop computer
with Intel® Xeon(R) CPU E5-1650 v3 @ 3.50GHz × 12.
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Fig. 1 Typical partitions of the unit cube Ω = (0, 1)3; left: isotropic mesh (h � 0.01826); right: structured
mesh (h � 0.00938)

In the numerical examples presented hereafter, we considerC = 0 for the structured mesh
(i.e. no Tychonoff regularization) and C = 1 for the isotropic mesh. The local nonlinear
problems are solved with a stopping criterion of εNewton = 10−9 on the residual for the
Newton method, with a maximal number of iterations equal to 1000.When using the Runge–
Kutta method for the dynamical flow approach, the time step is set to Δt = 0.1, and is
reduced only if needed (only for the first 2–3 times steps usually); the maximal number of
iterations is 20,000 and the stopping criterion is ε = 10−7 on two successive iterates.

Unless otherwise specified, the relaxation parameter is set to ω = 1 at the beginning of
the outer iterations, and gradually increased to 2 to speed up convergence. The conjugate
gradient algorithm for the solution of the variational problems has a stopping criterion of
ε = 10−8 on successive iterates, with a maximal number of iterations equal to 100. Actually,
numerical experiments show that the number of conjugate gradient iterations is never larger
than 35. The outer relaxation algorithmhas a stopping criterion of ε = 5×10−4 on the residual∣∣∣∣∣∣D2

hψ
n
h − pn

h

∣∣∣∣∣∣
0h , or on successive iterates if the problem does not admit a classical solution

(see Sect. 7.3), with a maximal number of iterations equal to 5000.

7.1 Polynomial Examples

Let us consider a first example involving a smooth, “reasonably” isotropic, exact solution.
More precisely, let us consider as exact solution

ψ(x, y, z) = 1

2

(
x2 + 5y2 + 15z2

)
, (x, y, z) ∈ Ω. (38)

By a direct calculation, one obtains λ1 = 1, λ2 = 5, λ3 = 15, and, therefore the data for the
Monge–Ampère problem correspond to

f (x, y) = 75 and g(x, y, z) = 1

2
(x2 + 5y2 + 15z2).

Figure 2 visualizes the L2(Ω) and H1(Ω) computed approximation errors obtained by
using both approaches for the solution of the local nonlinear problems (Newton stands for
the reduced Newton approach presented in Sect. 4.2, while RK stands for the dynamical flow
approach presented in Sect. 4.3). Both Newton and Runge–Kutta algorithms provide exactly
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Fig. 2 Visualization of the variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed

approximation error ψh − ψ , with ψ(x, y, z) = 1
2

(
x2 + 5y2 + 15z2

)
(Ω = (0, 1)3)

Table 1 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation

error ψh − ψ , with ψ(x, y, z) = 1
2

(
x2 + 5y2 + 15z2

)
and related convergence orders. (ii) Variations with

respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 Iter.

Structured mesh

2.00e−01 7.19e−02 – 1.58e−00 – 71

1.00e−01 1.80e−02 1.99 7.91e−01 0.99 228

6.25e−02 7.06e−03 1.99 4.95e−01 1.00 314

4.00e−02 2.89e−03 1.99 3.16e−01 0.99 375

Isotropic mesh

1.57e−01 1.97e−02 – 9.39e−01 – 84

1.03e−01 1.01e−02 1.75 6.11e−01 1.03 137

6.58e−02 5.44e−03 1.63 3.84e−01 1.03 220

4.10e−02 3.35e−03 1.38 2.35e−01 1.03 314

The local optimization problems are solved using the Runge–Kutta based method described in Sect. 4.3
(Ω = (0, 1)3)

the same results. For the structured mesh, the method is globally second-order, resp. first-
order, convergent for the L2 (resp. H1) norm of the approximation error. Table 1 confirms
those convergence results, for both structured and isotropicmeshes and for the approach based
on the Runge–Kutta approximation for the dynamical flow problem in R11. We observe that,
for the structured meshes, we have text-book second and first order convergence, while the
orders of convergence deteriorate for the isotropic unstructured meshes.

Table 2 provides CPU times versus the number of degrees of freedom involved in the
numerical approximation. Comparing mainly with [8,34] (who also performed CPU times
investigations), this test case is more stringent since the eigenvalues of the Hessian are not
close from each other, which makes the problem less isotropic than examples used in the
literature (typically the example presented in Sect. 7.2).
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Table 2 CPU time results and numbers of degrees of freedom for the smooth test case with ψ(x, y, z) =
1
2

(
x2 + 5y2 + 15z2

)
(the number of DOFs specified corresponds to the number of vertices of the finite

element mesh)

h #DOFs Algebraic
solver (s)

Variational
solver (s)

# outer iter. Max # CG iter. Total CPU (s)

Structured mesh

0.2000 216 0 16 71 12 16

0.1000 1331 3 655 228 19 658

0.0625 4913 26 6070 314 16 6096

0.0400 17,576 163 38,993 375 15 39,156

The reduced Newton method is used for the solution of the local nonlinear problems
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Fig. 3 Visualization of the variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed

approximation error ψh − ψ , with ψ(x, y, z) = 1
2

(
x2 + 10y2 + 100z2

)
(Ω = (0, 1)3)

The second test problem that we consider still has a polynomial exact solution, but this
solution is much more anisotropic than the one in (38), since it is given by

ψ(x, y, z) = 1

2

(
x2 + 10y2 + 100z2

)
, (x, y, z) ∈ Ω. (39)

Here λ1 = 1, λ2 = 10, λ3 = 100, and the data for the Monge–Ampère problem are given
by f (x, y) = 1000 and g(x, y, z) = 1

2 (x
2 + 10y2 + 100z2). This time, the initialisation

(4) of the relaxation algorithm is not close to the solution, implying, as expected, that more
iterations are needed to achieve convergence. Figure 3 illustrates the convergence orders for
the computed approximation error for both types of meshes. Despite the anisotropy of the
solution of this second test problem, the approximation errors are similar to those associated
with the first test problem, that is perfect second and first orders with the structured meshes
and slightly lower convergence orders for the anisotropic unstructured meshes. Note that
here we have to choose ω = 0.5 initially (under-relaxation), and increase it gradually to 2,
to ensure convergence of the relaxation algorithm, and C = 2.5 for the isotropic mesh.

The least-squares approach never enforces directly the solutionψ to be convex. However,
it enforces explicitly the additionalmatrix-valued variablep to be symmetric positive definite.
It is thus remarkable that the positive definiteness property of p translates automatically to
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Fig. 4 Visualization of the variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed

approximation error ψh − ψ , with ψ(x, y, z) = e
1
2 (x2+y2+z2) (Ω = (0, 1)3)

the Hessian of the main variable ψ . More precisely, when the Monge–Ampère problem has
a smooth classical solution, the converged iterate satisfy D2ψ = p, and thus the convexity
of ψ is automatically verified. For this test problem, and for both types of meshes, D2ψ is
indeed symmetric positive definite for all grid points.

7.2 A Smooth Exponential Example

The third test problemwe consider has a smooth exponential exact solution, namely the radial
function ψ defined by

ψ(x, y, z) = e
1
2 (x2+y2+z2), (x, y, z) ∈ Ω. (40)

This test problem generalizes to three dimensions a two-dimensional one commonly used
in the community for Monge–Ampère solver benchmarking (see, e.g., [9,16]). Let us denote√
x2 + y2 + z2 by r . Taking advantage of the fact that, if φ is a radial function, one has (with

obvious notation) det D2φ = φ′′(φ′/r)2, the data for the Monge–Ampère–Dirichlet problem
(1) associated with the above function ψ are f (x, y, z) = (1 + r2)e3r

2/2, and g(x, y, z) =
er

2/2. The stopping criterion for the relaxation algorithm is
∣∣∣∣∣∣D2

hψ
n
h − pn

h

∣∣∣∣∣∣
0h < 5× 10−4,

and C = 1 for the isotropic unstructured mesh (as for the first test problem).
Figure 4 visualizes the L2(Ω) and H1(Ω) computed approximation errors for both

approaches for the solution of the local nonlinear problems. The conclusions are similar:
both Newton and Runge–Kutta methods provide exactly the same results, and the method
is globally second-order convergent for the L2 norm. Table 3 confirms these convergence
results, showing in particular no loss of convergence orders for the unstructured isotropic
mesh.

Table 4 provides CPU times versus the number of degrees of freedom involved in the
numerical approximation for both structured and unstructured discretizations of the unit
cube. When using a structured mesh of the unit cube, the performance of the algorithm is
comparable to the other algorithms from the literature, albeit slightly less efficient. Using
an unstructured isotropic mesh degrades the performance of the algorithm; computational
performance for the algebraic part is identical, the difference solely coming from the increased
number of conjugate gradient iterations. Note that, for this test case, the Hessian matrix D2ψ
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Table 3 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation

error ψh − ψ , with ψ(x, y, z) = e
1
2 (x2+y2+z2) and related convergence orders. (ii) Variations with respect

to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 Iter.

Structured mesh

2.00e−01 2.74e−02 – 5.16e−01 – 12

1.00e−01 7.52e−03 1.87 2.81e−01 0.87 20

6.25e−02 3.06e−03 1.91 1.83e−01 0.91 25

4.00e−02 1.26e−03 1.98 1.20e−01 0.95 28

Isotropic mesh

1.57e−01 1.58e−02 – 3.19e−01 – 24

1.03e−01 8.07e−03 1.61 2.05e−01 1.05 34

6.58e−02 3.54e−03 1.83 1.22e−01 1.15 41

4.57e−02 1.64e−03 2.11 7.67e−02 1.28 42

The local optimization problems are solved using the Runge–Kutta based method described in Sect. 4.3
(Ω = (0, 1)3)

Table 4 CPU time results and numbers of degrees of freedom for the smooth test case with ψ(x, y, z) =
e
1
2 (x2+y2+z2) (the number of DOFs specified corresponds to the number of vertices of the finite element

mesh)

h #DOFs Algebraic
solver (s)

Variational
solver (s)

# outer iter. Max # CG iter. Total CPU (s)

Structured mesh

0.2000 216 0 1 12 5 1

0.1000 1331 0 19 20 5 19

0.0625 4913 2 90 25 4 92

0.0400 17,576 8 423 28 4 431

Isotropic mesh

0.1570 1043 1 70 24 19 71

0.1030 3339 1 525 34 20 526

0.0658 12,191 5 3568 41 22 3573

0.0457 42,176 24 20,926 42 22 20,950

The reduced Newton method is used for the solution of the local nonlinear problems

admits the eigenvalues λ1 = er
2/2, λ2 = er

2/2 and λ3 = (1+ r2)er
2/2. This example is thus

rather isotropic (the eigenvalues of the Hessian are close to each other).

7.3 Non-smooth Test Problems

Some of the test problems we are going to consider in this section do not have exact solution
with the H2(Ω)-regularity or may have no solution at all (but may have generalized solu-
tions). These non-smooth problems are therefore ideally suited to test the robustness of our
methodology, and its ability at capturing generalized solutions when no exact solution does
exist.
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Table 5 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation
error ψh − ψ , with ψ(x, y, z) = −

√
R2 − (x2 + y2 + z2) (R = √

6) and related convergence orders. (ii)
Variations with respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 Iter.

Structured mesh

2.00e−01 4.96e−03 – 8.60e−02 – 4

1.00e−01 1.28e−03 1.95 4.41e−02 0.96 5

6.25e−02 5.09e−04 1.96 2.78e−02 0.97 6

4.00e−02 2.10e−04 1.97 1.79e−02 0.98 7

Isotropic mesh

1.57e−01 3.81e−03 – 8.60e−02 – 13

1.03e−01 1.81e−03 1.78 3.62e−02 2.07 16

6.58e−02 7.51e−04 1.94 2.12e−02 1.18 19

4.10e−02 3.35e−04 2.21 1.30e−02 1.33 19

The local optimization problems are solved using the Runge–Kutta based method described in Sect. 4.3
(Ω = (0, 1)3)

WithΩ still being the unit cube (0, 1)3, the first problem that we consider is the particular
case of problem (1) which has the convex function ψ defined, for R ≥ √

3, by

ψ(x, y, z) = −
√
R2 − (x2 + y2 + z2), ∀(x, y, z) ∈ Ω.

When R >
√
3, this function ψ belongs to C∞(Ω̄), while ψ ∈ C0(Ω̄) ∩ W 1,s(Ω), with

1 ≤ s < 2, if R = √
3. It is therefore interesting to see how our methodology can handle

the possible non-smoothness of the particular problem (1) associated with f and g defined

by f (x, y, z) = R2

(R2 − r2)5/2
and g(x, y, z) = −√R2 − (x2 + y2 + z2), with, as ear-

lier, r = √
x2 + y2 + z2. (a simple way to compute f is to use, as before, the relation

det D2φ = φ′′(φ′/r)2 if φ is a radial function). Of particular interest will be the behavior of
our methodology when R → √

3 from above (or even when R = √
3).

On Tables 5 and 6, we have reported, for R = √
6 and R = √

3, computed approximation
errors and orders of convergence as h varies, together with the number of iterations necessary
to achieve convergence of the relaxation algorithm. For R = √

6, the convergence orders of
the approximation errors are the ones we expect, namely second order (resp., first order) for
the L2-norm (resp., H1-norm), the number of iterations being pretty low. The case R = √

3
is more interesting; indeed despite the solution singularity at point (1, 1, 1), the L2(Ω)-norm
of the computed approximation error ψh − ψ still decreases super-linearly with respect to
h (for both mesh families), while the related H1(Ω)-norm stays stable around 0.62 for the
same values of h.

To conclude this section, we will consider the particular problem (1) associated with
Ω = (0, 1)3, f = 1 and g = 0. For these particular data, problem (1) has no smooth solution
(the arguments developed in [9,23] for the related two-dimensional problem still apply here).

Figure 5 shows different features of the approximated solution inside the unit cube. The

stopping criterion for this particular case without a classical solution is
∣∣∣∣∣∣ψn+1

h − ψn
h

∣∣∣∣∣∣
0,h

<

10−5. When studying the number of outer iterations of the relaxation algorithm, we observe
that the number of iterations is larger for structured meshes than isotropic ones, and that it
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Table 6 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation
error ψh − ψ , with ψ(x, y, z) = −

√
R2 − (x2 + y2 + z2) (R = √

3) and related convergence orders. (ii)
Variations with respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 Iter.

Structured mesh

2.00e−01 1.15e−02 – 6.60e−01 – 9

1.00e−01 3.06e−03 1.91 6.31e−01 – 14

6.25e−02 1.24e−03 1.92 6.25e−01 – 17

4.00e−02 5.17e−04 1.96 6.22e−01 – 19

Isotropic mesh

1.57e−01 6.76e−03 – 6.31e−01 – 13

1.03e−01 3.31e−03 1.69 6.25e−01 – 16

6.58e−02 1.39e−03 1.93 6.22e−01 – 19

4.10e−02 6.41e−04 1.63 6.21e−01 – 19

The local optimization problems are solved using the Runge–Kutta based method described in Sect. 4.3
(Ω = (0, 1)3)
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Fig. 5 Visualization of the numerical solution ψh for f (x, y, z) = 1, g(x, y, z) = 0 on the unit cube; top
left: along cuts for x = 1/2 and y = 1/2 (h � 0.0625); top right: number of iterations needed for the

convergence of the relaxation method for the stopping criterion
∣∣∣∣∣∣ψn+1

h − ψn
h

∣∣∣∣∣∣
0,h

< 10−5; bottom left:

graphs of the computed solutions restricted to the line y = z = 1/2; bottom right: graphs of the computed
solutions restricted to the lines x = y, z = 1/2
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Table 7 (i) Variations with respect to h of the norm of the residuals
∣∣∣∣∣∣D2ψh − ph

∣∣∣∣∣∣
L2(Ω)

and∣∣∣
∣∣∣D2ψh − ph

∣∣∣
∣∣∣
L2(Ω ′) when Ω = (0, 1)3, Ω ′ = (0.2, 0.8)3, f = 1 and g = 0. (ii) Variations with respect to

h of the number of relaxation iterations necessary to achieve convergence

h
∣∣∣∣∣∣D2ψh − ph

∣∣∣∣∣∣
L2((0,1)3)

∣∣∣∣∣∣D2ψh − ph
∣∣∣∣∣∣
L2((0.2,0.8)3)

# iter.

1.00e−01 4.29931e−04 4.20694e−05 467

6.25e−02 4.32211e−04 8.47222e−06 1857

4.00e−02 4.32995e−04 2.42009e−06 37,522

increases as expected when h → 0. Figure 5 (bottom row) visualizes graphs of the computed
solutions restricted to the lines y = z = 1/2 and x = y, z = 1/2 for x ∈ (0, 1), and shows
little influence of the type of partition on the solution.

We can also observe that D2ψ is symmetric positive definite for 100% of the grid points,
independently of the nature of the discretization when h � 0.04, even though the Monge–
Ampère equations does not have a classical solution, that is D2ψ �= p. The (necessary) loss
of convexity of the solution is thus located (near the corners) in a region smaller than the
mesh size. When arbitrarily refining the mesh in a corner of the domain, we observe that
the Hessian D2ψ is not symmetric positive definite when evaluated in some grid points in
a neighborhood of size 10−3 around that corner. This effect is highlighted when calculating∣∣∣∣D2ψh − ph

∣∣∣∣
L2 , using a structured mesh of the unit cube, both on Ω , but also on Ω ′ ⊂ Ω ,

as illustrated in Table 7 for Ω ′ = (0.2, 0.8)3. These results show that the error inside the
domain Ω ′ = (0.2, 0.8)3 is significantly smaller than the error on Ω , implying that the error
is mainly committed near the boundary.

7.4 Curved Boundaries and Non Convex Domains

In order to further validate the robustness and flexibility of our methodology, we
are going to consider test problems where Ω has a curved boundary and/or is non-
convex. The first domain with a curved boundary we consider is the unit ball B1 ={
(x, y, z) ∈ R

3, x2 + y2 + z2 < 1
}
. Assuming that Ω = B1, f = 1

3
√
3
and g = 0, the

unique convex solution ψ of the related Monge–Ampère–Dirichlet problem (1) is given by

ψ(x, y, z) = − 1

2
√
3

(
1 − x2 − y2 − z2

)
. (41)

On Fig. 6 (left) we have visualized a typical finite element mesh used for computation
and some cuts of the computed solution. On Fig. 6 (right) and Table 8 we have provided
information on the L2(Ω) and H1(Ω)-norms of the approximation error ψh − ψ and of
the related rates of convergence, and on the number of relaxation iterations necessary to
achieve convergence. Albeit the L2(Ω)-approximation error isO(h1.8), approximately, these
numerical results show that our methodology can handle rather accurately domains Ω with
curved boundaries. Table 9 provides CPU times versus the number of degrees of freedom
involved in the numerical approximation of the solution on the unit sphere. Results are
comparable to those obtained when using unstructured meshes on the unit cube, and thus
show that the curved boundaries are handled appropriately.

The non-convexity of Ω may prevent problem (1) to have solutions (see, e.g., [11]).
However, it makes sense to assess the capabilities of our methodology at handling problems
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Fig. 6 Left: visualization of the finite element mesh and of computed solution cuts (h � 0.1610). Right:
visualization of the variationswith respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation

error ψh − ψ , with ψ(x, y, z) = − 1
2
√
3

(
1 − x2 − y2 − z2

)
(Ω = B1)

Table 8 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation

error ψh − ψ , with ψ(x, y, z) = − 1
2
√
3

(
1 − x2 − y2 − z2

)
and related convergence orders. (ii) Variations

with respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 Iter.

2.98e−01 3.26e−02 2.60e−01 – 14

1.61e−01 1.11e−02 1.74 1.28e−01 1.14 19

8.32e−02 3.22e−03 1.88 6.16e−02 1.11 21

4.34e−02 9.89e−04 1.80 2.86e−02 1.17 20

The local optimization problems are solved using the reduced Newtonmethod described in Sect. 4.2 (Ω = B1)

Table 9 CPU time results and numbers of degrees of freedom for the smooth test case with ψ(x, y, z) =
− 1

2
√
3

(
1 − x2 − y2 − z2

)
on the unit sphere (the number of DOFs specified corresponds to the number of

vertices of the finite element mesh)

h #DOFs Algebraic
solver (s)

Variational
solver (s)

# outer iter. Max # CG iter. Total CPU (s)

Structured mesh

0.2980 631 0 34 14 25 34

0.1610 3570 0 327 19 19 327

0.0832 22,640 4 4385 21 22 4399

0.0434 184,034 23 66,027 20 23 66,050

The reduced Newton method is used for the solution of the local nonlinear problems

having smooth solutions despite the non-convexity ofΩ . To do so, we consider the particular
problem (1) where: (i) Ω is the subset of B1 obtained by removing from this ball a part of
angular size θ , symmetric about Ox and oriented along the Oz axis (as shown on Fig. 7 for
θ = π/2 and θ = π/9), (ii) f = 1/(3

√
3), g being the restriction to ∂Ω of the function

ψ defined by (41). The function ψ defined by (41) is clearly a convex solution of the above
problem (1). The solutionmethodology discussed in Sects. 3–6 still applies for this casewhere
an exact smooth solution does exist, some of the numerical results we obtained being reported
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Fig. 7 First row: visualization of the variations with respect to h of the L2(Ω) and H1(Ω) norms of the
computed approximation errorψh −ψ , withψ defined by (41),Ω being the truncated unit ball (left: θ = π/2,
right: θ = π/9). Second row: visualization of the truncated balls (left: θ = π/2, right: θ = π/9). Third row:
visualization of the restrictions of the computed solutions to the plane z = 0 (left: θ = π/2, right: θ = π/9)

in Fig. 7. We observe in particular that the convergence orders are essentially independent of
the value of the re-entrant angle θ .

8 An Alternative Discretization Method Based on Q1 Finite Elements

We finally report some numerical results that were obtained using Q1 finite elements for
the space discretization instead of the P1 finite elements used earlier. The finite element
library libmesh [33] has been used for implementation. The discretization of the unit
cube Ω = (0, 1)3 is based on a structured mesh of elementary cubes, as visualized in
Fig. 8. The least-squares/relaxation methodology is still applicable. The nonlinear problems
(9) are solved for each vertex of the hexahedral mesh with the Newton and Runge–Kutta
methods discussed in Sects. 4.2 and 4.3, respectively. The variational problem (17) is solved
by a conjugate gradient algorithm, using Gauss quadrature rules (of order up to 4) for the
numerical computation of integrals; all other techniques and approaches remain the same.
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Fig. 8 A uniform structured
hexahedral partition of the unit
cube Ω = (0, 1)3 (h = 0.1)

Table 10 (i) Variationswith respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation error

ψh − ψ , with ψ(x, y, z) = e
1
2 (x2+y2+z2) and ψ(x, y, z) = 1

2

(
x2 + 5y2 + 15z2

)
and related convergence

orders. (ii) Variations with respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 Iter.

Exact solution ψ(x, y, z) = e
1
2 (x2+y2+z2)

1/10 8.09e−03 – 1.18e−01 – 56

1/20 2.28e−03 1.82 5.67e−02 1.06 50

1/30 1.05e−03 1.90 3.71e−02 1.04 46

1/40 6.02e−04 1.93 2.75e−02 1.03 44

1/50 3.90e−04 1.95 2.18e−02 1.03 42

Exact solution ψ(x, y, z) = 1
2

(
x2 + 5y2 + 15z2

)
1/10 1.26e−02 – 1.65e−01 – 713

1/20 3.62e−03 1.79 7.88e−02 1.06 716

1/30 1.71e−03 1.85 5.15e−02 1.05 696

1/40 9.91e−04 1.88 3.82e−02 1.03 681

1/50 6.48e−04 1.90 3.03e−02 1.03 671

The space approximation relies on Q1 based finite element spaces while the local optimization problems are
solved using the Newton method described in Sect. 4.2 (Ω = (0, 1)3)

All the numerical results reported below are related to Ω = (0, 1)3. On Table 10 we have
reported the variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed

approximation error ψh − ψ , for ψ defined by ψ(x, y, z) = e
1
2 (x2+y2+z2) and ψ(x, y, z) =

1
2

(
x2 + 5y2 + 15z2

)
, the related convergence orders, and the number of relaxation iterations

necessary to achieve convergence. The local optimization problems are solved using the
Newton method described in Sect. 4.2. As expected, nearly optimal orders of convergence
are obtained for both the L2(Ω) and H1(Ω) norms of the computed approximation error.
Both solutions exhibit comparable orders of convergence, however, the larger anisotropy of
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Table 11 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation
error ψh − ψ , with ψ(x, y, z) = −

√
R2 − (x2 + y2 + z2) with R = √

6; related convergence orders. (ii)
Variations with respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 ||D2
hψn

h − D2ψ ||L2 Iter.

1/10 1.63e−03 2.24e−02 – 8.18e−03 – 22

1/20 4.49e−04 1.85 1.06e−02 1.07 2.95e−03 1.47 18

1/30 2.06e−04 1.91 6.94e−03 1.05 1.62e−03 1.48 16

1/40 1.18e−04 1.94 5.14e−03 1.03 1.05e−03 1.48 15

1/50 7.65e−05 1.94 4.09e−03 1.03 7.55e−04 1.49 15

The space approximation relies on Q1 based finite element spaces while the local optimization problems are
solved using the Newton method described in Sect. 4.2 (Ω = (0, 1)3)

Table 12 (i) Variations with respect to h of the L2(Ω) and H1(Ω) norms of the computed approximation
error ψh − ψ , with ψ(x, y, z) = −

√
R2 − (x2 + y2 + z2) with R = √

3; related convergence orders. (ii)
Variations with respect to h of the number of relaxation iterations necessary to achieve convergence

h ||ψh − ψ ||L2 |ψh − ψ |H1 ||D2
hψn

h − D2ψ ||L2 Iter.

1/10 3.06e−03 4.70e−02 – 2.71e−01 35

1/20 8.66e−04 1.82 2.30e−02 1.02 2.59e−01 34

1/30 4.00e−04 1.90 1.53e−02 1.01 2.55e−01 31

1/40 2.29e−04 1.93 1.14e−02 1.00 2.55e−01 30

The space approximation relies on Q1 based finite element spaces while the local optimization problems are
solved using the Newton method described in Sect. 4.2 (Ω = (0, 1)3)

the second one implies a larger number of iterations for the relaxation algorithm to achieve its
convergence. Approximation errors and iteration numbers are consistent with those reported
in Sect. 7.2 for the same test problems.

The next test problem we consider, is the one, already investigated in Sect. 7.3, whose
exact solution ψ is given by ψ(x, y, z) = −√R2 − (x2 + y2 + z2), with R ≥ √

3, Ω still
being the unit cube (0, 1)3. Tables 11 and 12 show that, for R = √

6 and R = √
3, the

L2(Ω) and H1(Ω)-norms of the approximation error ψh − ψ are nearly of optimal order;
moreover, the above tables show that ||D2

hψ
n
h − D2ψ ||L2(Ω) � O(h3/2) if R = √

6, while

||D2
hψ

n
h − D2ψ ||L2(Ω) � O(1) if R = √

3.
The numerical results we have just reported show that, as long as accuracy and number of

iterations are concerned, Q1 based finite element approximations of problem (1) compared
well with P1 based ones if Ω is a cube and uniform structured partitions of Ω are used to
define the finite element spaces. However the P1 based methods can easily handle domains
Ω of arbitrary shapes and unstructured finite element partitions, properties that theQ1 based
methods do not share.

9 Further Comments and Conclusions

In this article,we have discussed a least-squares/relaxation/mixedfinite elementmethodology
for the numerical solution of the Dirichlet problem for the three-dimensional elliptic Monge–
Ampère equation det D2ψ = f (> 0) in Ω . The results reported in Sects. 7 and 8 show the
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robustness and flexibility of this methodology and its ability at approximating smooth convex
solutions (if such solutions do exist) with nearly optimal orders of accuracy for the L2(Ω) and
H1(Ω) norms of the approximation error ψh − ψ . To the best of our knowledge, the above
methodology is one of the very few which can solve, with nearly optimal orders of accuracy,
the three-dimensionalMonge–Ampère equation on domainsΩ with curved boundaries using
P1 based finite element approximations.
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