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Abstract We consider the coupling of free and porous media flow governed by Stokes
and Darcy equations with the Beavers–Joseph–Saffman interface condition. This model is
discretized using a divergence-conforming finite element for the velocities in the whole
domain. Hybrid discontinuous Galerkin techniques andmixedmethods are used in the Stokes
and Darcy subdomains, respectively. The discretization achieves mass conservation in the
sense of H(div,�), and we obtain optimal velocity convergence. Numerical results are
presented to validate the theoretical findings.
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1 Introduction

The construction of new finite element methods for the Stokes–Darcy coupled problem, in
which the respective interface conditions are given by mass conservation, balance of normal
forces, and the Beavers–Joseph–Saffman law, is a very active research area; see [1,3,4,7,8,
12–14,16–18,20–22,31–33,37,39] and the references therein. These problems have many
important applications such as the modeling of groundwater contamination through streams
and filtration problems [27,28].
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Fig. 1 Sketch of Darcy and
Stokes domains and boundaries
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Among the methods cited above, Kanschat and Riviére [21] proposed a strongly conser-
vative finite element method, where the Darcy flow is discretized by a mixed finite element
method and Stokes flow by amixed (velocity–pressure) discontinuousGalerkin (DG)method
using a globally divergence-conforming velocity space on the whole domain. Such a method
has the advantage that mass conservation is achieved in the sense of H(div;�), hence the
name strongly conservative. Optimal error estimates of the method were proven in [20].

The divergence-conforming hybrid DG (HDG) method [9,15,24,25] for the Stokes flow
is an efficient variant of the divergence-conforming DG method [11]. Due to hybridization,
the HDG method has significant less globally coupled degrees of freedom, and has a better
sparsity pattern than the DG method to achieve the same accuracy; see [25, Table 2] for a
comparison.

In this paper, we present a strongly conservative HDG/mixed method for the Stokes-
Darcy coupled problem by replacing the divergence-conforming DG method in the Stokes
region with a divergence-conforming HDG method. Optimal error estimates of the method
are proven.Wemaintain the advantage of mass conservation in terms of H(div;�), and have
a reduced globally coupled degrees of freedom than the degrees of freedom for the method
[21].

The rest of the paper is organized as follows. In Sect. 2, we first introduce the model
problem then present our numerical method and show its wellposedness. In Sect. 3, we prove
our main results on the optimal velocity error estimates. In Sect. 4, numerical results are
presented to validate the theoretical findings. Finally, we conclude in Sect. 5.

2 Model Problem and Discretization

2.1 Model Problem

Let � be a bounded polygonal/polyhedral domain in R
d , d = 2, 3, split into two polygo-

nal/polyhedral subdomains �S and �D of free and porous media flow, respectively. Denote
by �SD the polygonal interface between �S and �D , cf. Fig. 1. The external boundaries are
defined by

�S = ∂� ∩ ∂�S, �D = ∂� ∩ ∂�D .

123



J Sci Comput (2018) 77:1605–1620 1607

The coupled Darcy/Stokes problem in conservative form reads

−∇·(2ν ε(u)) + ∇ p = f S, in �S, (1a)

K−1u + ∇ p = 0, in �D, (1b)

∇·u = fD χ�D , in �. (1c)

Here u is the velocity and p is the pressure. The deformation tensor is ε(u) = 1
2 (∇u+(∇u)T ),

the coefficient ν > 0 is the fluid kinematic viscosity, the variable K > 0 is ratio of the intrinsic
permeability tensor to the fluid viscosity, which is symmetric and positive definite, and the
function f S is a body force in Stokes region, and fD models source or sink in the porous
medium. Whenever we want to distinguish between the solution of the Stokes and the Darcy
subproblem, we refer to uS = u|�S

and uD = u|�D
and analogously for the pressures pS

and pD . On the interface �SD , this notation refers to the traces taken from the respective
subdomains.

On the interface, we impose the Beavers–Joseph–Saffman conditions (see Beavers and
Joseph [2] and Saffman [34]), and on the boundary, we assume no-slip and Neumann for
simplicity:

uS · n = uD · n, on �SD, (2a)

pS − 2νε(uS)n · n = pD, on �SD, (2b)

γ K−1/2(uS)
t + 2ν(ε(uS)n)t = 0, on �SD, (2c)

uS = 0, on �S, (2d)

uD · n = 0, on �D . (2e)

Here, γ > 0 is the phenomenological friction coefficient. On the interface �SD , n is the
unit normal vector pointing outward of �S , and, on �D , n is the unit normal vector pointing
outward of�D . The tangential component (·)t of a vector v is denoted by (v)t = v−(v ·n)n.

2.2 Discretization

2.2.1 Preliminaries

Let Th be a conforming simplicial triangulation of � such that the interface �SD is the union
of element facets. For any element T ∈ Th , we denote by hT its diameter and we denote by
h the maximum diameter over all mesh elements. Denote by Th,S the set of mesh elements
that belong to �S and by Th,D those belong to �D . Denote by Fh the set of facets of Th , by
Fh,S the set of facets that are interior to �S , and by Fh,SD the set of facets that lie on the
interface �SD . We also denote by �h,S the set of facets that lie on the boundary �S .

In the sequel, for the approximation of viscous forces in the Stokes region, we distinguish
functions with support only on facets indicated by a subscript F and those with support also
on the volume elements which is indicated by a subscript T . Compositions of both types are
used for the HDG discretization of the velocity and indicated by underlining, u = (uT , uF ).

2.2.2 Finite Elements

We use the following stable pair of divergence-conforming velocity space �h ⊂
H0(div,�) = {v ∈ H(div,�) : v · n|∂� = 0} and the matching pressure space
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Qh ⊂ L2
0(�) = {q ∈ L2(�) : ∫

�
q dx = 0}:

�h :=
⎧
⎨

⎩
vT ∈

∏

T∈Th

[Pk(T )]d , [[vT · n]]F = 0 ∀F ∈ Fh .

⎫
⎬

⎭
⊂ H0(div,�), (3a)

Qh :=
⎛

⎝
∏

T∈Th

P
k−1(T )

⎞

⎠ ∩ L2
0(�), (3b)

where [[·]] is the usual jump operator and P
k the space of polynomials up to degree k for

k ≥ 1. The Stokes operator is discretized by a divergence-conforming HDG method [25].
The benefits of divergence-conforming finite element discretizations for Stokes (or Navier–
Stokes) problems is manifold. On the one hand divergence-conforming discretizations lead
to solenoidal discrete solutions which can be crucial to obtain energy-stable discretizations
for Navier–Stokes simulations, cf. [10]. On the other hand, already for Stokes problems the
compatible treatment of the divergence-constraint is important to obtain pressure-robustness,
i.e. a numerical scheme where the velocity error does not depend on the regularity of the
pressure, cf. [26] and Theorems 1, 2 and 3 below. For amore detailed discussion of the benefit
of divergence-conforming methods, we also refer to [36].

Divergence-conforming DG discretizations for Stokes (or Navier–Stokes) problems come
with an increase of computational costs due to an increase of global couplings. To compensate
for that we consider a corresponding HDGmethod. For that, we need to introduce additional
unknowns on the skeleton Fh,S , the facet unknowns, which represent an approximation of
the tangential trace of the solution in the Stokes region:

Mh :=
⎧
⎨

⎩
vF ∈

∏

F∈Fh,S

[Pkf (T )]d , vF · n = 0 ∀F ∈ Fh,S, vF = 0 ∀F ∈ �h,S,

⎫
⎬

⎭
(3c)

where kf =
{

k if k = 1
k − 1 if k ≥ 2

. Functions in Mh are defined only on the mesh skeleton

in the Stokes regionFh,S and have normal component zero, and vanish on the Stokes boundary
�S . Here, due to a technical difficulty in proving a norm equivalence result, see Lemma 1
below, we can not decrease the polynomial degree kf to one order less for the lowest order
case k = 1. Note however that in the numerical example below, we obtain optimal order
results also for the choice k f = 0 for k = 1. The reduction of k f from k to k−1 results in an
additional significant reduction of global couplings in arising linear systems for the Stokes
part of the problem, cf. [24,25,29].

For the discretization of the velocity field we use the composite space

Uh := �h × Mh .

2.2.3 The Numerical Scheme

First, we introduce the L2 projection 	 for a fixed facet F ∈ Fh,S :

	 : [Pk(F)]d → [Pkf (F)]d ,
∫

F
(	 f )v ds =

∫

F
f v ds ∀v ∈ [Pkf (F)]d .
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Then, for all u, v ∈ Uh and q ∈ Qh , we introduce the bilinear and linear forms

aS,h(u, v) :=
∑

T∈Th,S

∫

T
2ν ε(uT ) : ε(vT ) dx −

∫

∂T
2ν ε(uT )n · [[vt ]] ds

−
∫

∂T
2ν ε(vT )n · [[ut ]] ds +

∫

∂T
ν
α

h
	[[ut ]] · 	[[vt ]] ds, (4a)

aD(u, v) :=
∑

T∈Th,S

∫

T
K−1uT · vT dx, (4b)

aI (u, v) :=
∑

F∈Fh,SD

∫

F
γ K−1/2uF · vF ds, (4c)

ah(u, v) := aS,h(u, v) + aD(u, v) + aI (u, v),

b(u, q) = −
∑

T∈Th

∫

T
∇·uT q dx, (4d)

f1(v) =
∑

T∈Th,S

∫

T
f S · vT dx, (4e)

f2(q) =
∑

T∈Th,D

∫

T
fD q dx, (4f)

where [[ut ]] = utT − uF is the (tangential) jump between interior and facet unknowns, and
α = α0k2 with α0 a sufficiently large positive constant. We note that (only) as long as u, v
are finite element functions in Uh we have

∫

∂T
2νε(uT )n · [[vt ]]ds =

∫

∂T
2νε(uT )n · 	[[vt ]]ds

for (4a) as 2νε(uT )n is a polynomial of degree k − 1 on each facet.
The numerical scheme then reads: Find (uh, ph) ∈ Uh × Qh such that

ah(uh, vh) + b(vh, ph) = f1(vh), ∀vh ∈ Uh, (5a)

b(uh, qh) = − f2(qh), ∀qh ∈ Qh . (5b)

Remark 1 (Strongmass conservation)By the divergence conformity of the space�h , Eq. (5b)
can be written as

−
∫

�

∇·uh,T qh dx = −
∫

�

χD fD qh dx ∀qh ∈ Qh .

Hence, ∇·uh,T − χD PQ fD ≡ 0 where PQ is the L2-projection onto Qh . This is a strong
mass conservation in terms of H(div;�).
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We define the following seminorms:

|u|2e,S :=
∑

T∈Th,S

ν

(

‖ε(uT )‖2T + 1

h
‖	[[ut ]]‖2∂T

)

, (6a)

|u|21,S :=
∑

T∈Th,S

ν

(

‖∇uT ‖2T + 1

h
‖[[ut ]]‖2∂T

)

, (6b)

|u|21∗,S :=
∑

T∈Th,S

ν

(

‖∇uT ‖2T + h2‖∇2(uT )‖2T + 1

h
‖	[[ut ]]‖2∂T

)

, (6c)

|u|2D :=
∑

T∈Th,D

‖K−1/2uT ‖2T , (6d)

|u|2I :=
∑

F∈Fh,SD

‖γ 1/2K−1/4uF‖2F , (6e)

where ‖ · ‖D denotes the standard L2-norm on the domain D. We note that the semi-norms
in (6a)–(6c) are slight variations of each other with different handling of the volume control
(ε(uT ) vs. ∇(uT )), the jump terms (	[[ut ]] vs. [[ut ]]) and control in higher order derivatives
(∇2(uT ) vs. no control). All three norms (and their equivalence on discrete spaces) will be
used in the analysis below.

Throughout this work, we write

A � B

to indicate that there exists a constant C , independent of the mesh size h and the numerical
solution, such that A ≤ CB.

2.2.4 Wellposedness

Lemma 1 For vh ∈ Uh, there holds

|vh |1∗,S � |vh |1,S, and |vh |1,S � |vh |e,S .
Proof Take vh = (vT , vF ) ∈ Uh . The first inequality comes from the inverse inequality for
finite dimensional spaces and stability of the L2 projection. To prove the second inequality,
we shall use the following discrete Korn’s inequality [6]:

|vh |21,S �
∑

T∈Th,S

ν

(

‖ε(vT )‖2T + 1

h
‖[[vth]]‖2∂T

)

.

Since the space of rigid motions RM(T ) lies in [P1(T )]d ⊂ [Pkf (T )]d ,
h−1/2‖[[vth]]‖∂T = h−1/2‖	[[vth]]‖∂T + h−1/2‖vT − 	 vT ‖∂T

= h−1/2‖	[[vth]]‖∂T + h−1/2 inf
�∈RM(T )

‖(vT − �) − 	 (vT − �)‖∂T

≤ h−1/2‖	[[vth]]‖∂T + h−1/2 inf
�∈RM(T )

‖(vT − �) − (vT − �)‖∂T

≤ h−1/2‖	[[vth]]‖∂T + C inf
�∈RM(T )

‖∇(vT − �)‖T
≤ h−1/2‖	[[vth]]‖∂T + C‖ε(vT )‖T ,
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where � is the average of � in T , and the last step follows from the local Korn’s inequality
[30, Lemma 4.1]. The proof is completed by combing the above two inequalities. ��

Lemma 2 The bilinear form aS,h(·, ·) chosen in the Stokes subdomain �S has the following
properties:

(a) Coercivity: For α0 sufficiently large, there holds

|vh |21,S � aS,h(vh, vh) ∀vh ∈ Uh . (7a)

(b) Boundedness: There holds

aS,h(v,w) � |v|1∗,S |w|1∗,S, ∀v,w ∈ V + Uh, (7b)

where

V =
{ (

vT , (vT )t |Fh,S

) : vT |�S ∈ H2(�S), vT |�S = 0,

vT |�D ∈ H1(�D), vT · n|�D = 0
}
. (7c)

(c) Consistency: Let (uS, pS) ∈ H2(�S) × H1(�S) be part of the solution to Eqs. (1) and
(2), and set u = (uS, utS |Fh,S ). Then, for all v = (vT , vF ) ∈ V + Uh, there holds

aS,h(u, v) =
∫

�S

( f S − ∇ pS) · vT dx +
∫

�SD

(2νε(uS)n · n)vT · n ds

−
∫

�SD

γ K−1/2utS · vF ds. (7d)

Proof Take vh = (vT , vF ) ∈ Uh . By Lemma 1, we only need to prove coercivity on the
weaker seminorm | · |e,S . Since ε(vT )n|F ∈ [Pk−1(F)]d , we have

∫

∂T
ν ε(vT )n · [[vth]] ds =

∫

∂T
ν ε(vT )n · 	[[vth]] ds

≤ ν‖ε(vT )n‖∂T ‖	[[vth]]‖∂T ≤ C νh−1/2
T ‖ε(vT )‖T ‖	[[vth]]‖∂T

≤ 1

4
ν‖ε(vT )‖2T + C2 νh−1

T ‖	[[vth]]‖2∂T ,

where C is the constant arising in the trace-inverse inequality [38]. Now,

aS,h(vh, vh) =
∑

T∈Th,S

∫

T
2ν ε(vT ) : ε(vT ) dx − 4

∫

∂T
ν ε(vT )n · [[vth]] ds

+
∫

∂T
ν
α

h
	[[vth]] · 	[[vth]] ds

≥
∑

T∈Th,S

ν
(
‖ε(vT )‖2T +

(α

h
− 4C2h−1

T

)
‖	[[vth]]‖2∂T

)
.

The right hand side of the above expression is an upper bound for |vh |21,S for sufficiently large
α0. This completes the proof of coercivity (7a).

Boundedness (7b) is a direct consequence of the Cauchy–Schwarz inequality and the trace
inequality.
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Finally, let us prove the consistency result (7d). By definition, we have

aS,h(u, v) =
∑

T∈Th,S

∫

T
2ν ε(uS) : ε(vT ) dx −

∫

∂T
2ν ε(uS)n · [[vt ]] ds

=
∑

T∈Th,S

∫

T
2ν ε(uS) : ε(vT ) dx −

∫

∂T
2ν ε(uS)n · (

vtT − vF
)
ds

=
∑

T∈Th,S

∫

T
−(∇·2ν ε(uS)) · vT dx +

∫

∂T
2ν ε(uS)n · (

vT − vtT
)
ds

+
∫

∂T
2ν ε(uS)n · vF ds. (8)

By Eq. (1a), we have

∑

T∈Th,S

∫

T
−(∇·2ν ε(uS)) · vT dx =

∫

�S

( f S − ∇ pS) · vT dx.

By smoothness of u, H(div)-conformity of vT , and the boundary conditions (2c)–(2d), the
first boundary term on the right hand side of (8) can be simplified as

∑

T∈Th,S

∫

∂T
2ν ε(uS)n · (

vT − vtT
)
ds =

∫

�SD

2ν ε(uS)n · n(vT · n) ds,

and the second boundary term can be simplified as

∑

T∈Th,S

∫

∂T
2ν ε(uS)n · vF ds =

∫

�SD

2ν (ε(uS)n)t · vF ds

= −
∫

�SD

γ K−1/2utS · vF ds.

The equality (7d) is obtained by combining the above identities. ��

Proposition 1 For α0 sufficiently large, there exists a unique solution (uh, ph) ∈ Uh × Qh

for the scheme (5).

Proof Since the equations in (5) form a quadratic system, we only need to proof uniqueness
of the solution, that is, the only solution to the scheme (5) with vanishing right hand sides is
zero.

Assuming f1 = f2 = 0, taking vh = uh and qh = −ph in (5), and adding up the resulting
equations, we obtain

ah(uh,uh) = aS,h(uh,uh) + |uh |2D + |uh |2I = 0.

Hence, for sufficiently large α0, uh = 0 by (7a) in Lemma 2. Then, Eq. (5a) implies that
b(vh, ph) = − ∫

�
∇·vT ph dx = 0. Due to the special compatibility of pressure and velocity

spaces we can take vT be such that ∇·vT = ph which yields ph = 0 and completes the
proof. ��
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3 Error Analysis

In this section, we present our main result on the velocity error estimates. The analysis is
based on the results in [20,25].

Denote PM , PQ as the standard L2 projections onto the spaces Mh and Qh , and 	V as
the following H(div)-conforming BDM projection [5]: for all T ∈ Th ,

∫

T
	V u · v dx =

∫

T
u · v dx, ∀v ∈ ∇P

k−1(T ) ⊕ Bk(T ),

∫

F
	V u · nμ ds =

∫

F
u · nμ ds, ∀v ∈ P

k(F),∀F ∈ F(T ),

where Bk(T ) := {v ∈ [Pk(T )]d : ∇·v|T = 0, v · n|∂T = 0} is the divergence-free bubble
space.

The following commuting diagram property of the projection pair (	V , PQ) is well-
known:

∇·	Vφ = PQ∇·φ, ∀φ ∈ H1(�).

We define discrete error (eu, ep) and an approximation error (δu, δp) to simplify notation:

eu,T =	V u − uh,T , eu,F = PMut − uh,F , eu = (eu,T , eu,F ), (9a)

δu,T =	V u − u, δu,F = PMut |Fh,S − ut |Fh,S , δu = (δu,T , δu,F ), (9b)

ep = PQ p − ph, δp = PQ p − p. (9c)

Here ut |Fh,S is the restriction of the tangential component of u on the facets Fh,S .

3.1 Energy Norm Estimate

Theorem 1 Assume that the solution (u, p) of the Eqs. (1), (2) is in Xs × Ys where

Xs = {v ∈ H0(div;�) : v|�S ∈ Hs(�S), v|�D ∈ Hs−1(�D), v|�S = 0},
Ys = {q ∈ L2

0(�) : q|�S ∈ Hs−1(�S), q|�D ∈ Hs(�D)}.
for some s ∈ [2, k + 1]. Then, for stabilization parameter α0 sufficiently large, the solution
uh to the system (5) has the energy error estimate

|eu |1,S + |eu |I + |eu |D � |δu |1∗,S + |δu |D (10a)

� hs−1
(
ν‖u‖Hs (�S) + λ

−1/2
min ‖u‖Hs−1(�D)

)
, (10b)

where λmin is the minimal eigenvalue of the permeability tensor K .

The following Lemmas will be used to prove Theorem 1.

Lemma 3 (Approximation) For u ∈ Hs(�S) with some s ∈ [2, k + 1], there holds
|δu |1∗,S � ν1/2hs−1‖u‖Hs (�S).

Proof We have

|δu |21∗,S =
∑

T∈Th,S

ν

(

‖∇δu,T ‖2T + h2‖∇2(δu,T )‖2T + 1

h
‖	[[δtu]]‖2∂T

)

,
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where we obtain the desired bounds for the first two terms by standard estimates for the BDM
projection. For the latter boundary term, we have

‖	[[δtu]]‖2∂T = ‖PM [[δtu]]‖2∂T = ‖PM
(
(	V u)t − PMut

) ‖2∂T
=‖PM

(
(	V u)t − ut

) ‖2∂T ≤ ‖	V u − u‖2∂T ,

The above right hand side is further handled by a trace inequality:

‖	V u − u‖∂T � h− 1
2 ‖	V u − u‖T + h

1
2 ‖∇(	V u − u)‖T � hs−

1
2 ‖u‖Hs (T ).

��
Lemma 4 (Galerkin orthogonality) Let the assumptions of Theorem 1 hold. Denoting u =
(u, ut |Fh,S

), then

ah(u − uh, vh) + b(vh, p − ph) = 0, ∀vh ∈ Uh, (11a)

b(u − uh, qh) = 0, ∀qh ∈ Qh . (11b)

Proof Let v = (vT , vF ) ∈ V +Uh , where the space V is given by (7c). By smoothness of p
and boundary conditions (2d), (2e), we have

b(v, p) = −
∫

�

∇·vT p dx

=
∫

�D

vT · ∇ pD dx +
∫

�S

vT · ∇ pS dx −
∫

�SD

vT · n(pS − pD) ds,

where the normal direction on �SD points outward of �S . Hence, by (7d) and boundary
condition (2b), we get

ah(u, v) + b(v, p) =
∫

�S

f S · vT dx +
∫

�D

(K−1uD + ∇ pD) · vT dx

−
∫

�SD

(pS − pD − 2νε(uS)n · n)vT · n ds

=
∫

�S

f SvT dx. (12)

Moreover, for any qh ∈ Qh , we have

b(u, qh) = −
∫

�

∇·u qh dx = −
∫

�D

fD qh dx.

We complete the proof by comparing the above equations with the scheme (5). ��
Now, we are ready to prove Theorem 1.

Proof of Theorem 1

By definition of the projections PQ and 	V , we have

b(vh, δp) = 0 ∀vh ∈ Uh, and b(δu, qh) = 0 ∀qh ∈ Qh .

Hence, by Lemma 4, the following error equation holds

ah(eu, vh) + b(vh, ep) = − ah(δu, vh), ∀vh ∈ Uh,

b(eu, qh) = 0, ∀qh ∈ Qh .
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Taking vh = eu in the first equation and qh = −ep in the second equation, and adding, we
obtain

ah(eu, eu) = −ah(δu, eu) = −aS,h(δu, eu) − aD(δu, eu) − aI (δu, eu)︸ ︷︷ ︸
=0

. (13)

where the last part vanishes due to the definition of the L2 projection PM ,

aI (δu, eu) = 0.

Now, with continuity, cf. Lemma 2 and the norm equivalence on Uh of Lemma 1 we have

aS,h(δu, eu) � |δu |1∗,S |eu |1∗,S � |δu |1∗,S |eu |1,S
which combined with coercivity from Lemma 2 yields

|eu |21,S + |eu |2I + |eu |2D � ah(eu, eu) = −aS,h(δu, eu) − aD(δu, eu)

�
(
|δu |21∗,S + |δu |2D

) 1
2
(
|eu |21,S + |eu |2D

) 1
2

which implies (10a). We bound both terms on the right hand side of (10a) to obtain (10b).
There holds

|δu |D = ‖K−1/2δu,T ‖�D‖ � λ
−1/2
min hs−1‖u‖Hs−1(�D).

and by Lemma 3, we further have

|δu |1∗,S � (ν1/2hs−1‖u‖Hs (�S)).

This completes the proof. ��
3.2 L2-Estimate in the Stokes Subdomain

We will use the following dual problem: Assume (u∗, p∗) solve Eqs. (1), (2) with source
terms f S = ψ and fD = 0, and further assume the following regularity estimates:

‖u∗‖H1+r (�S)
≤ C‖ψ‖�S , ‖u∗‖Hr (�D) ≤ C‖ψ‖�S , (14a)

‖p∗‖Hr (�S) ≤ C‖ψ‖�S , ‖p∗‖H1+r (�D) ≤ C‖ψ‖�S , (14b)

for some real number 1/2 < r ≤ 1. This assumption is justified, for instance if �S and �D

are convex.

Theorem 2 Let the assumptions of Theorem 1 hold. Assume further the regularity estimates
(14) hold. Then, the following error estimate holds

‖u − uh,T ‖�S � hs−1+r (‖u‖Hs (�S) + ‖u‖Hs−1(�D) + ‖ fD‖Hs−1(�D)). (15)

Proof Let (u∗, p∗) be solutions to (1), (2) with f S = u − uh,T , and fD = 0. Denote
u∗ = (u∗, (u∗)t |Fh,S ). By (12), we get

ah(u∗, v) + b(v, p∗) = (u − uh,T , vT )�S , ∀v ∈ V + Uh .

Taking v = u − uh , we get

‖u − uh,T ‖2�S
= ah(u∗,u − uh) + b(u − uh, p

∗)
= ah(u − uh,u

∗) + b(u − uh, p
∗)

123



1616 J Sci Comput (2018) 77:1605–1620

Let us bound each of the above terms on the right hand side. We denote u∗
h =

(	V u∗, PM (u∗)t ). We have ∇·	V u∗ = ∇·u∗ = 0. Taking vh = u∗
h in (11a), we get

ah(u − uh,u
∗
h) = 0. Hence,

ah(u − uh,u
∗) = ah(u − uh,u

∗ − u∗
h).

We have

aS,h(u − uh,u
∗ − u∗

h) � |u − uh |1∗,S |u∗ − u∗
h |1∗,S

� ν1/2hr |u∗|H1+r (�S)
|u − uh |1∗,S,

aI (u − uh,u
∗ − u∗

h) ≤ |u − uh |I |u∗ − u∗
h |I

� γ 1/2λ
−1/4
min h1/2+r |u∗|H1+r (�S)

|u − uh |I ,
aD(u − uh,u

∗ − u∗
h) ≤ |u − uh |D|u∗ − u∗

h |D
� λ

−1/2
min hr |u∗|Hr (�D)|u − uh |D .

Combing the above estimates with the regularity assumption (14), we get

ah(u − uh,u
∗) � hr

(|u − uh |1∗,S + h1/2|u − uh |I + |u − uh |D
) ‖u − uh,T ‖�S .

The norm in the parentheses of the above right hand side is bounded by Chs−1(‖u‖Hs (�S) +
‖u‖Hs−1(�D)) by Theorem 1.

On the other hand, we have

b(u − uh, p
∗) = −

∫

�

∇·(u − uh)p
∗ dx

= −
∫

�D

( fD − PQ fD)p∗ dx since ∇·uh,T = PQ fD

= −
∫

�D

( fD − PQ fD)(p∗ − PQ p∗) dx

≤ ‖ fD − PQ fD‖�D‖p∗ − PQ p∗‖�D � hs−1+r‖ fD‖Hs−1(�D)‖p∗‖Hr (�D)

� hs−1+r‖ fD‖Hs−1(�D)‖u − uh,T ‖�S .

The proof is concluded by combing the above estimates. ��
3.3 L2-Estimate in the Darcy Subdomain

Theorem 3 Let the assumptions of Theorem 2 hold. Assume further that uD ∈ Hs(�D) for
s ∈ [2, k + 1]. Then, the following error estimate holds

‖u − uh,T ‖�D � hs−1+r (‖u‖Hs (�S) + ‖u‖Hs (�D) + ‖ fD‖Hs−1(�D)). (16)

We need the following Lemma to prove Theorem 3.

Lemma 5 We have

‖(u − uh,T ) · n‖H−1/2(�SD) � hs−1+r (‖u‖Hs (�S) + ‖u‖Hs−1(�D) + ‖ fD‖Hs−1(�D)).

Moreover, there is a function w ∈ H(div;�D) ∩ H1/2(�D) satisfying ∇·w = 0 on �,
w · n = 0 on �D, and w · n = (u − uh,T ) · n on �SD, such that

‖w‖�D � ‖(u − uh,T ) · n‖H−1/2(�SD),

‖w‖H1/2(�D) � ‖(u − uh,T ) · n‖�SD .
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Proof Since u − uh,T ∈ H(div;�S), its normal trace satisfies, c.f. [19],

‖(u − uh,T ) · n‖H−1/2(∂�S)
� ‖u − uh,T ‖H(div;�S).

Since (u − uh,T ) · n = 0 on �S , following the approach [16], we have

‖(u − uh,T ) · n‖H−1/2(�SD) � ‖u − uh,T ‖H(div;�S).

Since ∇·(u − uh,T ) = 0 on �S , we have with Theorem 2

‖u − uh,T ‖H(div;�S) = ‖u − uh,T ‖�S

� hs−1+r (‖u‖Hs (�S) + ‖u‖Hs−1(�D) + ‖ fD‖Hs−1(�D)).

The other two inequalities are given in [20, Lemma 11]. ��
Now, we are ready to prove Theorem 3.

Proof of Theorem 3

Let w be given by Lemma 5. Let v be such that v = 0 on �S , and v = 	V u− uh,T − 	Vw

on �D . We have v ·n = (	V u− uh,T −	Vw) ·n = 0 on �SD , hence v ∈ �h and ∇·v = 0.
Taking vh = (v, 0) in Eq. (11a), we get

ah(u − uh, vh) =
∫

�D

K−1(u − uh,T )(	V u − uh,T − 	Vw) dx = 0.

This implies that

‖u− uh,T ‖�D ≤ ‖u − 	V u − 	Vw‖�D

� ‖u − 	V u‖�D + ‖	Vw‖�D

� hs‖u‖Hs (�D) + ‖(u − uh,T ) · n‖H−1/2(�SD)

� hs‖u‖Hs (�D) + hs−1+r
(
‖u‖Hs (�S) + ‖u‖Hs−1(�D) + ‖ fD‖Hs−1(�D)

)
.

��

4 Numerical Results

In this section, we present numerical results in two dimensions to verify the theoretical
findings in Sect. 3. The numerical results are performed using the NGSolve software [35].

We consider an example with a smooth manufactured exact solution constructed in [12].
The domain is a unit square � = [0, 1] × [0, 1] with the Darcy subdomain �D = [0, 1] ×
[0, 0.5], and Stokes subdomain �S = [0, 1] × [0.5, 1]. We take ν = K = 1, and γ =
(1 + 4π2)/2. The source terms are chosen such that the problem has the exact solution:

uS(x, y) =
[ −1/(2π2) sin(πx) exp(y/2)

1/π cos(πx) exp(y/2)

]

, pS(x, y) = −1/π cos(πx) exp(y/2),

uD(x, y) =
[ −2 sin(πx) exp(y/2)

1/π cos(πx) exp(y/2)

]

, pD(x, y) = −2/π cos(πx) exp(y/2).

We apply the numerical scheme (5) using polynomial degree k for the velocity space �h ,
k − 1 for the pressure space Qh , and k − 1 for the facet tangential velocity space Mh with
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Table 1 History of convergence of the L2-velocity errors

k k f Mesh ‖uS − uh,T ‖�S ‖uD − uh,T ‖�D ‖∇·uh,T − χD PQ fD‖�

h Error Order Error Order

1 0 1/4 1.197E−2 − 5.165E−2 − 1.297E−15

1/8 2.238E−3 2.43 1.069E−2 2.25 3.434E−15

1/16 4.792E−4 2.29 2.834E−3 1.94 5.939E−15

1/32 1.106E−4 2.14 6.932E−4 2.03 1.278E−14

1/64 2.745E−5 2.04 1.735E−4 2.01 2.680E−14

2 1 1/4 5.166E−4 − 4.491E−3 − 1.094E−15

1/8 4.121E−5 3.65 3.745E−4 3.58 3.447E−15

1/16 4.504E−6 3.19 5.148E−5 2.86 6.185E−15

1/32 4.876E−7 3.21 5.678E−6 3.18 1.248E−14

1/64 6.145E−8 2.99 6.853E−7 3.05 2.732E−14

3 2 1/4 4.088E−5 − 1.306E−4 − 1.192E−15

1/8 1.590E−6 4.68 3.851E−6 5.08 3.788E−15

1/16 6.681E−8 4.57 2.269E−7 4.09 6.525E−15

1/32 3.383E−9 4.30 1.236E−8 4.20 1.228E−14

1/64 2.023E−10 4.06 7.3410E−10 4.07 2.679E−14

4 3 1/4 1.554E−6 − 1.087E−5 − 1.669E−15

1/8 2.485E−8 5.97 1.997E−7 5.77 3.435E−15

1/16 5.914E−10 5.39 6.334E−9 4.98 6.792E−15

1/32 1.485E−11 5.32 1.602E−10 5.31 1.253E−14

1/64 9.610E−13 3.95 1.215E−11 3.72 2.693E−14

k varying from 1 to 4. For all the tests, we take the stabilization parameter α = 10 k2. The
history of convergence for the L2-error of the velocity in each subdomain and the L2 norm
of the quantity ∇·uh,T − χD PQ fD are recorded in Table 1. We observe optimal order of
convergence k + 1 for each error. This result is in full agreement with our main results in
Theorems 2 and 3 for k ≥ 2. However, our analysis could not explain the optimal convergence
for the lowest-order case (k = 1), since the analysis requires the facet tangential velocity
space to include polynomials of degree 1, see Lemma 1. The optimal convergence of this
lowest order case requires further investigation.We also observe the strongmass conservation
result, c.f. Remark 1, that the quantity ∇·uh,T − χDPQ fD is machine zero for all the tests.

Finally, we remark that, if we increase the polynomial degree of the facet tangential
velocity space to be k, similar error and convergence rates were obtained in our numerical
results not recorded here.

Hence, this modification is less attractive to the method tested here as it gives similar
accuracy but has a lot more globally coupled degrees of freedom, see also the performance
comparisons for vector-Laplace and Stokes problems with similar discretizations in [25,
Section 4.3] and [23, Section 5.2].
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5 Conclusion

We presented a new finite element method for the coupling of Stokes and Darcy flow, where
the Stokes flow is discretized by a divergence-conforming HDG method, and the Darcy flow
by amixed finite element method. Exact mass conservation is guaranteed.We presented opti-
mal error estimates of the proposed method with numerical results supporting the theoretical
findings.
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