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Abstract In this paper, we present and analyze implicit a posteriori error estimates for
the local discontinuous Galerkin (LDG) method applied to nonlinear convection–diffusion
problems in one space dimension. Optimal a priori error estimates for the solution and for
the auxiliary variable that approximates the first-order derivative are derived in the L2-norm
for the semi-discrete formulation. More precisely, we identify special numerical fluxes and
a suitable projection of the initial condition for the LDG scheme to achieve p + 1 order
of convergence for the solution and its spatial derivative in the L2-norm, when piecewise
polynomials of degree at most p are used. We further prove that the derivative of the LDG
solution is superconvergent with order p + 1 towards the derivative of a special projection
of the exact solution. We use this result to prove that the LDG solution is superconvergent
with order p + 3/2 towards a special Gauss–Radau projection of the exact solution. Our
superconvergence results allow us to show that the leading error term on each element is
proportional to the (p+ 1)-degree right Radau polynomial. We use these results to construct
asymptotically exact a posteriori error estimator. Furthermore, we prove that the a posteriori
LDG error estimate converges at a fixed time to the true spatial error in the L2-norm at
O(h p+3/2) rate. Finally, we prove that the global effectivity index in the L2-norm converge to
unity atO(h1/2) rate. Our proofs are valid for arbitrary regular meshes using P p polynomials
with p ≥ 1. Finally, several numerical examples are given to validate the theoretical results.
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1 Introduction

In this paper, we propose a residual-based a posteriori error estimator for the local discontin-
uous Galerkin (LDG) method for one-dimensional nonlinear convection–diffusion problems
of the form

ut + ( f (u))x = kuxx + g(x, t), x ∈ � = [a, b], t ∈ [0, T ], (1.1a)

subject to the initial and periodic boundary conditions

u(x, 0) = u0(x), x ∈ [a, b], (1.1b)

u(a, t) = u(b, t), ux (a, t) = ux (b, t), t ∈ [0, T ], (1.1c)

where the diffusion coefficient k > 0 is a constant. Here, g(x, t) and u0(x) are smooth func-
tions possessing all the necessary derivatives. The function f (u) is a nonlinear flux function.
In our analysis, we assume that f (u) is a differentiable function with respect to the variable
u. For the sake of simplicity, we only consider the case of periodic boundary conditions.
However, this assumption is not essential. We note that if other boundary conditions (e.g.,
Dirichlet or Neumann or mixed boundary conditions) are chosen, the LDG method can be
easily designed; see [8,9,11,22,41] for some discussion. In our analysis, the initial condition,
u0, and the source term, g(x, t), are assumed to be sufficiently smooth functions so that the
exact solution, u(x, t), is a smooth function on [a, b] × [0, T ].

The LDG method we discuss in this paper is an extension of the discontinuous Galerkin
(DG)method aimed at solving differential equations containing higher than first-order spatial
derivatives. The LDGmethod for solving convection–diffusion problemswas first introduced
by Cockburn and Shu in [30]. LDG methods are robust and high-order accurate, can achieve
stability without slope limiters, and are locally (element-wise) mass-conservative. This last
property is very useful in the area of computational fluid dynamics, especially in situations
where there are shocks, steep gradients or boundary layers. Moreover, LDG methods are
extremely flexible in the mesh-design; they can easily handle meshes with hanging nodes,
elements of various types and shapes, and local spaces of different orders. They further
exhibit strong superconvergence that can be used to estimate the discretization errors. LDG
schemes have been successfully applied to hyperbolic, elliptic, and parabolic partial differ-
ential equations [2,4–6,8,15,18,19,22,22,29–32,36,38,40], to mention a few. A review of
the LDG methods is given in [8,10,16,18,22,26–28,41].

The LDG method for solving convection–diffusion problems was first introduced by
Cockburn and Shu in [30]. They further studied the stability and error estimates for the
LDG method. Castillo et al. [14,17] presented the first a priori error analysis for the LDG
method for a model elliptic problem. They considered arbitrary meshes with hanging nodes
and elements of various shapes and studied general numerical fluxes. They showed that, for
smooth solutions, the L2 errors in ∇u and in u are of order p and p + 1/2, respectively,
when polynomials of total degree not exceeding p are used. Cockburn et al. [25] presented
a superconvergence result for the LDG method for a model elliptic problem on Cartesian
grids. They identified a special numerical flux for which the L2-norms of the gradient and
the potential are of orders p+1/2 and p+1, respectively, when tensor product polynomials
of degree at most p are used.

Related theoretical results in the literature including superconvergence results and
error estimates of the LDG methods for convection–diffusion problems are given in
[4,5,13,18,19,21–23,33,38,39,41,43]. In particular, we mention the work of Castillo et al.
[18,38] in which optimal a priori error estimates for the hp-version of the LDG method for
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linear convection–diffusion problems are investigated. Later Adjerid et al. [4,5] investigated
the superconvergence of the LDG method applied to diffusion and transient convection–
diffusion problems. Celiker and Cockburn [19] proved a new superconvergence property of a
large class of finite element methods for one-dimensional steady state linear convection–
diffusion problems. Cheng and Shu [21] studied the convergence behavior of the LDG
methods when applied to one-dimensional time dependent linear convection–diffusion equa-
tions. They observed that the LDG solution is superconvergent towards a particular projection
of the exact solution. The order of superconvergence is observed to be p+2when polynomials
of degree at most p are used. In [22], Cheng and Shu studied the superconvergence property
for the DG and LDGmethods for solving one-dimensional time-dependent linear convection
and linear convection–diffusion equations. They proved superconvergence towards a partic-
ular projection of the exact solution. The order of superconvergence is proved to be p+ 3/2,
when p-degree piecewise polynomials with p ≥ 1 are used. We also mention the recent
work of Shu, Zhiming et al. [13,41] in which sharp superconvergence of the LDG method
for linear convection–diffusion equations in one space dimension is analyzed. Finally, Cheng
et al. [20] studied the LDG method based on the generalized alternating numerical fluxes for
solving linear convection–diffusion equations in one dimension and two dimensions. They
derived the optimal error estimate in the L2-norm for the LDG method with generalized
alternating fluxes. More precisely, they proved the (p + 1)th-order convergence rate in one-
dimensional space and multi-dimensional space on Cartesian meshes with piecewise tensor
product polynomials of degree at most p ≥ 0.

In this paper, we study the superconvergence property for the LDG method for nonlinear
convection–diffusion problems, extending the results in [22] for linear problems and the
results in [7] for nonlinear scalar conservation laws in one space dimension. We also present
and analyze a residual-based a posteriori error estimator for the spatial discretization error.We
prove that the LDG solutions are (p+1)th order convergent in the L2-norm,when the space of
piecewise polynomials of degree p is used. Computational results indicate that the theoretical
order of convergence is optimal. Moreover, we show that the derivative of the LDG solution
is superconvergent with order p + 1 towards the derivative of a Gauss–Radau projection of
the exact solution.We also prove that the LDG solution is superconvergent with order p+3/2
towards a Gauss–Radau projection of the exact solution, while computational results show
higherO(h p+2) convergence rate. These results allow us to prove that the significant part of
the spatial discretization error is proportional to a (p + 1)-degree right Radau polynomial.
We use this result to develop a residual-based a posteriori error estimate of the spatial error.
The leading term of the discretization error is estimated by solving a local steady problem
with no boundary conditions on each element. We further prove that our LDG error estimate
converges to the true spatial error atO(h p+3/2) rate, while computational results show higher
O(h p+3) convergence rate. Finally, we prove that the global effectivity index in the L2-norm
converges to unity at O(h1/2) rate, while numerically it exhibits O(h2) rate. In our analysis
we proved these convergence results under mesh refinement and at a fixed time t and time
discretization is assumed to be exact. Our proofs are valid for any regular meshes and using
piecewise polynomials of degree p ≥ 1.

This paper is organized as follows: In Sect. 2 we present the semi-discrete LDG method
for solving nonlinear convection–diffusion problems. We also introduce some notation and
definitions. In Sect. 3 we present the LDG error analysis and prove several optimal L2

error estimates. In Sect. 4 we state and prove the main superconvergence results. In Sect. 5
we present and analyze our a posteriori error estimation procedure. In Sect. 6 we present
numerical results to confirm the theoretical results. We conclude and discuss our results in
Sect. 7.
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2 The LDG Method for Convection–Diffusion Problems

Without loss of generality, we may assume that the diffusion coefficient k = 1. In order to
construct the LDG scheme, we introduce an auxiliary variable q = ux and convert Eq. (1.1a)
into the following first-order system

ut + ( f (u))x − qx = g(x, t), q − ux = 0. (2.1)

We divide the computational domain � = [a, b] into N intervals Ii = [xi−1, xi ], i =
1, . . . , N , where a = x0 < x1 < · · · < xN = b. Let hi = xi − xi−1 be the length of the
interval Ii , and denote h = max

1≤i≤N
hi and hmin = min

1≤i≤N
hi to be the lengths of the largest and

smallest intervals, respectively. In this paper, we consider regular meshes, that is h ≤ Khmin ,
where K ≥ 1 is a constant during mesh refinement. For simplicity, we use v

∣
∣
i to denote the

value of the continuous function v = v(x, t) at x = xi . We also use v−∣
∣
i and v+∣

∣
i to denote

the left limit and the right limit of v at the discontinuity point xi , i.e.,

v−∣
∣
i = v(x−

i , t) = lim
s→0− v(xi + s, t), v+∣

∣
i = v(x+

i , t) = lim
s→0+ v(xi + s, t).

Multiplying the two equations in (2.1) by test functions v and w, respectively, integrating
over an arbitrary element Ii , and using integration by parts, we get

∫

Ii
utvdx +

∫

Ii
(q − f (u))vxdx + ( f (u) − q)v

∣
∣
i − ( f (u) − q)v

∣
∣
i−1 =

∫

Ii
gvdx,

(2.2a)
∫

Ii
qwdx +

∫

Ii
uwxdx − uw

∣
∣
i + uw

∣
∣
i−1 = 0. (2.2b)

We introduce the following discontinuous finite element approximation space

V p
h = {v : v|Ii ∈ P p(Ii ), i = 1, . . . , N },

where P p(Ii ) denotes the space of polynomials of degree at most p on Ii with coefficients
as functions of t . We would like to emphasize that polynomials in the finite element space
V p
h are allowed to be completely discontinuous at the mesh points.
Next, we replace the exact solutions u and q , at any fixed time t , by piecewise polynomials

of degree at most p and denote them by uh ∈ V p
h and qh ∈ V p

h , respectively. We also choose
the test functions v andw to be piecewise polynomials of degree at most p. The LDG scheme
can now be defined as: find approximations uh and qh ∈ V p

h such that ∀ i = 1, . . . , N ,
∫

Ii
(uh)tvdx +

∫

Ii
(qh − f (uh))vxdx + ( f̂ − q̂h)v

−∣
∣
i − ( f̂ − q̂h)v

+∣
∣
i−1 =

∫

Ii
gvdx,

(2.3a)
∫

Ii
qhwdx +

∫

Ii
uhwxdx − ûhw

−∣
∣
i + ûhw

+∣
∣
i−1 = 0, (2.3b)

where f̂ , ûh , and q̂h are the so-called numerical fluxes. The numerical fluxes ûh and q̂h are
the discrete approximations to the traces of u and q at the nodes. The numerical flux f̂ is a
single-valued function defined at the nodes and in general depends on the values of uh from
both sides i.e., f̂ = f̂ (u−

h , u+
h ). Here, f̂ is a monotone numerical flux, i.e., it satisfies the

following three conditions: (i) it is locally Lipschitz continuous, (ii) it is consistent with the
flux f (u), and (iii) it is a nondecreasing function of its first argument and a nonincreasing
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function of its second argument. The popular monotone numerical fluxes are the Godunov
flux, the Engquist–Osher flux, the Lax–Friedrichs flux, etc (see [35]). We would like to
mention that the numerical fluxes have to be suitably chosen in order to ensure the stability
of the method and also to improve the order of convergence. In this paper, we choose the
following fluxes:

• The numerical flux f̂ associated with the convection is taken as the upwind flux which
depends on the sign of f ′ i.e.,

f̂
∣
∣
i =

{
f (u−

h )
∣
∣
i , if f ′(uh) ≥ 0,

f (u+
h )

∣
∣
i , if f ′(uh) < 0,

i = 0, . . . , N . (2.3c)

• The numerical fluxes ûh and q̂h associated with the diffusion terms are taken as the
alternating fluxes (e.g., see [22]) i.e.,

ûh
∣
∣
i = u−

h

∣
∣
i , q̂h

∣
∣
i = q+

h

∣
∣
i , i = 0, . . . , N . (2.3d)

Even though the proofs of our results are given using the numerical fluxes (2.3d), the same
results can be proved using the following numerical fluxes with onlyminormodifications

ûh
∣
∣
i = u+

h

∣
∣
i , q̂h

∣
∣
i = q−

h

∣
∣
i , i = 0, . . . , N .

It is crucial that we take ûh and q̂h from the opposite directions.

To complete the definition of the LDG scheme, we still need to define the discrete initial
condition uh(x, 0) ∈ V p

h . In this paper we use a special projection of the exact initial con-
dition u0(x). This particular projection will be defined later and is needed to achieve global
superconvergence result towards the Gauss–Radau projection, which will be defined later.

Norms, projections, and properties of the finite element space: We define the inner
product of two integrable functions, u = u(x, t) and v = v(x, t), on Ii = [xi−1, xi ] and at
a fixed time t as (u(·, t), v(·, t))Ii = ∫

Ii
u(x, t)v(x, t)dx . The standard L2-norm of v over

Ii is denoted by ‖u(·, t)‖0,Ii = (u(·, t), u(·, t))1/2Ii
. Moreover, the L∞-norm of u(·, t) on Ii

at time t is defined by ‖u(·, t)‖∞,Ii = sup
x∈Ii

|u(x, t)|. For any s = 0, 1, . . ., we use Hs(Ii ) to

denote the standard Sobolev space Hs(Ii ) =
{

u : ∫

Ii
|∂kx u(x, t)|2dx < ∞, 0 ≤ k ≤ s

}

.

Moreover, the Hs(Ii )-norm is defined as ‖u(·, t)‖s,Ii =
(
∑s

k=0

∥
∥∂kx u(·, t)∥∥20,Ii

)1/2
. The

Hs(Ii )-seminorm of u on Ii is given by |u(·, t)|s,Ii = ∥
∥∂sxu(·, t)∥∥0,Ii . We also define the

norms on the whole computational domain � as follows:

‖u(·, t)‖s,� =
(

N
∑

i=1

‖u(·, t)‖2s,Ii
)1/2

, ‖u(·, t)‖∞,� = max
1≤i≤N

‖u(·, t)‖∞,Ii .

The seminorm on the whole computational domain � is defined as |u(·, t)|s,� =
(
∑N

i=1 |u|2s,Ii
)1/2

. We note that if u(·, t) ∈ Hs(�), the norm ‖u(·, t)‖s,� on the whole

computational domain is the standard Sobolev norm
(
∑s

k=0

∥
∥∂kx u

∥
∥
2
0,�

)1/2
. For simplicity,

if we consider the norm on the whole computational domain�, then the corresponding index
will be omitted. Thus, we use ‖u‖, ‖u‖s , and ‖u‖∞ to denote ‖u‖0,�, ‖u‖s,�, and ‖u‖∞,�,
respectively. We also use ‖u(t)‖ to denote the value of ‖u(·, t)‖ at time t . In particular, we
use ‖u(0)‖ to denote ‖u(·, 0)‖. Throughout the paper, we omit the argument t and we use
‖u‖ to denote ‖u(t)‖ whenever confusion is unlikely.
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For p ≥ 1, we define P±
h u as two special Gauss–Radau projections of u onto V p

h as
follows [22]: The restrictions of P+

h u and P−
h u to Ii are polynomials in P p(Ii ) satisfying

∫

Ii
(P−

h u − u)vdx = 0, ∀ v ∈ P p−1(Ii ), and (P−
h u − u)−

∣
∣
i = 0, (2.4a)

∫

Ii
(P+

h u − u)vdx = 0, ∀ v ∈ P p−1(Ii ), and (P+
h u − u)+

∣
∣
i−1 = 0. (2.4b)

These special projections are used in the error estimates of the DGmethods to derive optimal
L2 error bounds in the literature, e.g., in [22]. They are mainly used to eliminate the jump
terms at the element boundaries in the error estimates in order to prove the optimal L2 error
estimates. In our analysis, we need the following projection results [24]: If u ∈ H p+1(Ii ),
then there exists a positive constant C independent of the mesh size h, such that

∥
∥u − P±

h u
∥
∥
0,Ii

+ hi
∥
∥(u − P±

h u)x
∥
∥
0,Ii

≤ Chp+1
i |u|p+1,Ii . (2.5)

In the rest of the paper, we will not differentiate between various constants, and instead will
use a generic constant C (or accompanied by lower indices) to represent a positive constant
independent of the mesh size h, but which may depend upon the exact smooth solution of
the partial differential equation (1.1a) and its derivatives.

Next, we recall some inverse properties of the finite element space V p
h that will be used

in our error analysis: For any v ∈ V p
h , there exists a positive constant C independent of v

and h, such that

(i) ‖vx‖ ≤ Ch−1 ‖v‖ , (i i) ‖v‖∞ ≤ Ch−1/2 ‖v‖ ,

(i i i)

(
N

∑

i=1

v2(x+
i ) + v2(x−

i )

)1/2

≤ Ch−1/2 ‖v‖ . (2.6)

Finally, the Sobolev’s inequality implies that there exists a positive constantC is independent
of h such that

∥
∥u − P±

h u
∥
∥∞ ≤ Chp+1/2. (2.7)

The initial condition of the LDG method: To obtain a superconvergent LDG method,
we carefully design a suitable projection of the initial condition of the LDG scheme. In our
mathematical error analysis and numerical examples we approximate the initial condition of
our numerical scheme on each interval as follows

uh(x, 0) = P1
h u(x, 0), x ∈ Ii , i = 1, . . . , N , (2.8)

where P1
h is a special projection operator introduced by Cheng and Shu [22]. It is defined as

follows: For any smooth function u, P1
h u|Ii ∈ P p(Ii ), and suppose qh ∈ V p

h is the unique
solution to

∫

Ii
qhwdx +

∫

Ii
P1
h u wxdx − (P1

h u)−w−∣
∣
i + (P1

h u)−w+∣
∣
i−1 = 0, ∀ w ∈ V p

h . (2.9)

Then, we require

(P−
h u − P1

h u)−
∣
∣
i−1 = (P+

h q − qh)
+∣
∣
i−1, (2.10a)

∫

Ii
(P−

h u − P1
h u)vdx =

∫

Ii
(P+

h q − qh)vdx, ∀ v ∈ P p−1(Ii ). (2.10b)

Proof for the existence and uniqueness of P1
h u is provided in Cheng and Shu [22].
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Lemma 2.1 The operator P1
h exists and is unique. Moreover, we have the estimates
∥
∥(P−

h u − P1
h u)(0)

∥
∥ ≤ C hp+3/2. (2.11)

∥
∥(P+

h u − qh)(0)
∥
∥ ≤ Chp+3/2. (2.12)

Proof Cf. Cheng and Shu [22].More precisely, the estimate (2.11) can be found in its Lemma
3.1. The estimate (2.12) is proved in the proof of its Lemma 3.1 (see page 4064). ��

3 A Priori Error Estimates

In this section, we will derive optimal L2 error estimates for the LDG method. We assume
that the flux function f in (1.1) is smooth enough, for example, f ∈ C2(R). In particular,
we always assume that f (u) satisfies the following conditions

Assumption 1 f (u), f ′(u), and f ′′(u) are continuous functions on R.

Assumption 2 f ′(u) ≥ 0 so that f̂
∣
∣
i = f (u−

h )
∣
∣
i . The case f ′(u) < 0 can be handled in a

very similar manner. Let us emphasize that our conclusions actually holds true when general
flux functions are used; see the numerical results in Sect. 6.

Assumption 3 There exists constants C1 and C2 such that
∣
∣ f ′(u)

∣
∣ ≤ C1 and

∣
∣ f ′′(u)

∣
∣ ≤ C2

for all u ∈ R. This assumption is reasonable for smooth solutions of (1.1); see [42] for more
details.

By using theMeanValue Theorem, it can be shown that if f satisfies the above conditions,
then f satisfies the followingLipschitz condition onR in the variableuwith uniformLipschitz
constant L = C1

∣
∣ f (u) − f (v)

∣
∣ ≤ L

∣
∣u − v

∣
∣, for all u and v ∈ R. (3.1)

Throughout this paper, eu and eq , respectively, denote the errors between the exact solutions
of (2.1) and the LDG solutions defined in (2.3), i.e., eu = u − uh and eq = q − qh . Let the
projection errors be defined as εu = u − P−

h u and εq = q − P+
h q and the errors between the

numerical solutions and the projection of the exact solutions be defined as ēu = P−
h u − uh

and ēq = P+
h q − qh . We note that the true errors can be split as

eu = εu + ēu, eq = εq + ēq . (3.2)

We also note that, by the definitions of the projections P±
h (2.4), the following hold

ε−
u

∣
∣
i = ε+

q

∣
∣
i−1 = 0 and

∫

Ii
εuvxdx =

∫

Ii
εqvxdx = 0,

∀ v ∈ P p(Ii ), i = 1, . . . , N , (3.3)

since v is a polynomial of degree at most p and thus vx is a polynomial of degree at most
p − 1.

To dealwith the nonlinearity of the flux f (u), wewould like tomake an a priori assumption
that, for small enough h and p ≥ 1, there holds

‖ēu‖ ≤ Ch2, ∀ t ∈ [0, T ], (3.4)

whereC is a constant independent of h. This is obviously satisfied at time t = 0 since, initially,
||ēu(0)|| ≤ h p+3/2 ≤ Ch2, p ≥ 1, by (2.11). We will justify this a priori assumption for
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piecewise polynomials of degree p ≥ 1 after Theorem 4.3. In remark 4.1, wewill explain that
this a priori assumption is unnecessary for the linear flux f (u) = cu, where c is a constant.

As a consequence of the a priori assumption (3.4), we have the following results.

Corollary 3.1 Thea priori assumption (3.4) implies that, ∀ t ∈ [0, T ],
∥
∥ē′

u

∥
∥ ≤ Ch. (3.5)

‖ēu‖∞ ≤ Ch3/2. (3.6)

‖eu‖∞ ≤ Ch3/2. (3.7)

Proof Using the inverse property (2.6) and the a priori assumption (3.4), we obtain
∥
∥ē′

u

∥
∥ ≤ C1h

−1 ‖ēu‖ ≤ C1h
−1(C2h

2) ≤ Ch,

which completes the proof of (3.5). In order to prove (3.6), we use the inverse property (2.6)
and the a priori assumption (3.4), to obtain

‖ēu‖∞ ≤ C1h
−1/2 ‖ēu‖ ≤ C1h

−1/2C2h
2 ≤ Ch3/2.

Next, using (3.2), the triangle inequality, the estimate (2.7), and the estimate (3.6), we get,

‖eu‖∞ = ‖εu + ēu‖∞ ≤ ‖εu‖∞ + ‖ēu‖∞ ≤ C1h
p+1/2 + C2h

3/2 ≤ Ch3/2, ∀ p ≥ 1,

which completes the proof of (3.7). ��
In the next theorem, we derive a priori error estimates for ēu and eu in the L2-norm.

Theorem 3.1 Let p ≥ 1 and (u, q) and (uh, qh) respectively, are solutions of (2.1) and
(2.3), where uh(x, 0) = P1

h u0(x). Suppose that the a priori assumption (3.4) holds. Also, we
assume that the flux function f (u) is sufficiently smooth function with bounded derivatives.
To be more precise, the condition f (u) ∈ C2

b (R) is enough, where Cm
b (D) is the set of

real m-times continuously differentiable functions which are bounded together with their
derivatives up to the mth order. Then, for sufficiently small h, there exists a positive constant
C independent of h such that, ∀ t ∈ [0, T ],

‖ēu‖ ≤ Chp+1. (3.8a)

‖eu‖ ≤ Chp+1. (3.8b)

Proof Subtracting (2.3) from (2.2) with v, w ∈ V p
h and using the numerical fluxes (2.3c)

and (2.3d), we obtain the following error equations
∫

Ii
(eu)tvdx −

∫

Ii
( f (u) − f (uh) − eq)vxdx + ( f (u) − f (u−

h ) − e+
q )v−∣

∣
i

−( f (u) − f (u−
h ) − e+

q )v+∣
∣
i−1 = 0, (3.9a)

∫

Ii
eqwdx +

∫

Ii
euwxdx − e−

u w−∣
∣
i + e−

u w+∣
∣
i−1 = 0. (3.9b)

Using the classical Taylor’s series with integral remainder in the variable u and using the
relation u − uh = eu , we write the nonlinear term f (u) − f (uh) as

f (u) − f (uh) = θ(u − uh) = θeu = θ(ēu + εu), (3.10a)

where θ = θ(x, t) = ∫ 1
0 f ′(u + s(uh − u))ds = ∫ 1

0 f ′(u − seu)ds is the mean value.
Similarly, we write f (u) − f (u−

h ) and f (u+
h ) − f (u−

h ) as

f (u) − f (u−
h ) = θ−(u − u−

h ) = θ−(ē−
u + ε−

u ), (3.10b)
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f (u+
h ) − f (u−

h ) = f (u) − f (u−
h ) − ( f (u) − f (u+

h )) = θ−(ē−
u + ε−

u ) − θ+(ē+
u + ε+

u ),

(3.10c)

where θ± = ∫ 1
0 f ′(u − se±

u )ds.
Substituting (3.10a) and (3.10b) into (3.9), using (3.2), and applying (3.3), we get

∫

Ii
(ēu)tvdx −

∫

Ii
(θ ēu − ēq)vxdx + (θ−ē−

u − ē+
q )v−∣

∣
i − (θ−ē−

u − ē+
q )v+∣

∣
i−1

=
∫

Ii
θεuvxdx −

∫

Ii
(εu)tvdx, (3.11a)

∫

Ii
ēqwdx +

∫

Ii
ēuwxdx − ē−

u w−∣
∣
i + ē−

u w+∣
∣
i−1 = −

∫

Ii
εqwdx, (3.11b)

which, after integrating by parts, are equivalent to

∫

Ii
(ēu)tvdx−

∫

Ii
θ ēuvxdx+θ−ē−

u v−∣
∣
i−θ−ē−

u v+∣
∣
i−1 −

∫

Ii
(ēq)xvdx −

(

ē+
q − ē−

q

)

v−∣
∣
i

=
∫

Ii
θεuvxdx −

∫

Ii
(εu)tvdx, (3.12a)

∫

Ii
ēqwdx −

∫

Ii
(ēu)xwdx − (

ē+
u − ē−

u

)

w+∣
∣
i−1 = −

∫

Ii
εqwdx . (3.12b)

Taking v = ēu in (3.11a) and w = ēq in (3.12b) then adding the resulting equations, we get

1

2

d

dt

∫

Ii
ē2udx +

∫

Ii
ē2qdx −

∫

Ii
θ ēu(ēu)xdx + θ−(ē−

u )2
∣
∣
i − θ−ē−

u ē
+
u

∣
∣
i−1

+ ē−
u ē

+
q

∣
∣
i−1 − ē−

u ē
+
q

∣
∣
i =

∫

Ii
θεu(ēu)xdx −

∫

Ii
(εu)t ēudx −

∫

Ii
εq ēqdx . (3.13)

For each element Ii = [xi−1, xi ], we denote by ui the value of the exact solution u at the
point xi−1 and at time t . Adding and subtracting the constant θi = f ′(ui ) to θ , we rewrite
(3.13) as

1

2

d

dt

∫

Ii
ē2udx +

∫

Ii
ē2qdx =

5
∑

k=1

Tk,i , (3.14a)

where

T1,i = θi

(∫

Ii
ēu(ēu)xdx − (ē−

u )2
∣
∣
i + ē−

u ē
+
u

∣
∣
i−1

)

, (3.14b)

T2,i =
∫

Ii
(θ − θi )ēu(ēu)xdx − (θ− − θi )(ē

−
u )2

∣
∣
i + (θ− − θi )ē

−
u ē

+
u

∣
∣
i−1, (3.14c)

T3,i =
∫

Ii
(θ − θi )εu(ēu)xdx + θi

∫

Ii
εu(ēu)xdx, (3.14d)

T4,i = −
∫

Ii
(εu)t ēudx −

∫

Ii
εq ēqdx, (3.14e)

T5,i = − ē−
u ē

+
q

∣
∣
i−1 + ē−

u ē
+
q

∣
∣
i . (3.14f)
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Summing the error equation (3.14a) over all elements, we obtain

1

2

d

dt
‖ēu‖2 + ∥

∥ēq
∥
∥2 =

5
∑

k=1

Tk, (3.15)

where Tk = ∑N
i=1 Tk,i , k = 1, . . . , 5. Next, we will estimate Tk, k = 1, . . . , 5 one by one.

Estimate of T1. Taking w = ēu in (3.11b), we obtain
∫

Ii
ēq ēudx +

∫

Ii
ēu(ēu)xdx − ē−

u ē
−
u

∣
∣
i + ē−

u ē
+
u

∣
∣
i−1 = −

∫

Ii
εq ēudx .

Consequently, we have
∫

Ii
ēu(ēu)xdx − (ē−

u )2
∣
∣
i + ē−

u ē
+
u

∣
∣
i−1 = −

∫

Ii
ēq ēudx −

∫

Ii
εq ēudx . (3.16)

Using (3.16), we rewrite T1,i as

T1,i = θi

(

−
∫

Ii
ēq ēudx −

∫

Ii
εq ēudx

)

.

Summing over all elements, using the assumption | f ′| ≤ C on R, applying the Cauchy–
Schwarz inequality, the projection result (2.5), and the inequality ab ≤ a2 + 1

4b
2, we get

T1 ≤
N

∑

i=1

∣
∣θi

∣
∣

(∫

Ii

∣
∣ēq

∣
∣
∣
∣ēu

∣
∣dx +

∫

Ii

∣
∣εq

∣
∣
∣
∣ēu

∣
∣dx

)

≤ C
N

∑

i=1

(∥
∥ēq

∥
∥
0,Ii

‖ēu‖0,Ii + ∥
∥εq

∥
∥
0,Ii

‖ēu‖0,Ii
)

≤ C
(∥
∥ēq

∥
∥ ‖ēu‖ + ∥

∥εq
∥
∥ ‖ēu‖

)

≤ C1
(

h2p+2 + ‖ēu‖2
) + 1

4

∥
∥ēq

∥
∥
2
. (3.17)

Estimate of T2. We first rewrite θ − θi on each element Ii as follows

θ − θi =
∫ 1

0
f ′(u − seu)ds − f ′(ui ) =

∫ 1

0

(

f ′(u − seu) − f ′(ui )
)

ds,

since f ′(ui ) is a constant in s. Adding and subtracting f ′(u), we write

θ − θi =
∫ 1

0

(

f ′(u) − f ′(ui )
)

ds +
∫ 1

0

(

f ′(u − seu) − f ′(u)
)

ds. (3.18)

Using Taylor’s theorem, we can bound the interpolation error f ′(u)− f ′(ui ) on each element
Ii as

∣
∣ f ′(u) − f ′(ui )

∣
∣ = ∣

∣ f ′′(ū)
∣
∣
∣
∣u − ui

∣
∣ ≤ ∣

∣ f ′′(ū)
∣
∣
∣
∣ux (ξi , t)

∣
∣|x − xi−1|,

where ū = λ1u + (1 − λ1)ui , ξi = xi−1 + λ2(x − xi−1), and λk ∈ [0, 1], k = 1, 2. Using
the smoothness of the exact solution u and f , we get

∣
∣ f ′(u) − f ′(ui )

∣
∣ ≤ C1C2|x − xi−1| ≤ C1C2hi ≤ C3h. (3.19)

Similarly, we can bound the error f ′(u − seu) − f ′(u) on each element Ii as
∣
∣ f ′(u − seu) − f ′(u)

∣
∣ = ∣

∣ f ′′(ũ)
∣
∣
∣
∣ − seu

∣
∣ ≤ ∣

∣ f ′′(ũ)
∣
∣
∣
∣eu

∣
∣ ≤ ∣

∣ f ′′(ũ)
∣
∣ ‖eu‖∞ ,
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since s ∈ [0, 1], where ũ = λ(u − seu) + (1 − λ)u, λ ∈ [0, 1]. Using the estimate (3.7) and
the assumption | f ′′| ≤ C2, we get

∣
∣ f ′(u − seu) − f ′(u)

∣
∣ ≤ C2(C1h

3/2) ≤ Ch3/2. (3.20)

Combining (3.18), (3.19), and (3.20), we conclude that

∣
∣θ − θi

∣
∣ ≤

∫ 1

0

∣
∣ f ′(u) − f ′(ui )

∣
∣ds +

∫ 1

0

∣
∣ f ′(u − seu) − f ′(u)

∣
∣ds

≤
∫ 1

0
C1hds +

∫ 1

0
C2h

3/2ds ≤ Ch. (3.21)

We can use the same argument to show that the errors (θ− − θi )
∣
∣
i and (θ− − θi )

∣
∣
i−1 are

bounded by
∣
∣(θ− − θi )

∣
∣
i

∣
∣ ≤ Ch,

∣
∣(θ− − θi )

∣
∣
i−1

∣
∣ ≤ Ch. (3.22)

Now, applying the Cauchy–Schwarz inequality, (3.21), (3.22), the inverse inequalities in
(2.6), we obtain

T2 ≤
N

∑

i=1

∫

Ii

∣
∣θ − θi

∣
∣
∣
∣ēu

∣
∣
∣
∣(ēu)x

∣
∣dx +

N
∑

i=1

∣
∣θ− − θi

∣
∣
∣
∣ē−

u

∣
∣
2∣
∣
i +

N
∑

i=1

∣
∣θ− − θi

∣
∣
∣
∣ē−

u

∣
∣
∣
∣ē+

u

∣
∣
∣
∣
i−1

≤ C3h

⎛

⎝

∫

�

∣
∣ēu

∣
∣
∣
∣(ēu)x

∣
∣dx +

N
∑

i=1

∣
∣ē−

u

∣
∣2

∣
∣
i +

(
N

∑

i=1

∣
∣ē−

u

∣
∣2

∣
∣
i−1

)1/2 (
N

∑

i=1

∣
∣ē+

u

∣
∣2

∣
∣
i−1

)1/2⎞

⎠

≤ C3h
(‖ēu‖ ‖(ēu)x‖ + C4h

−1 ‖ēu‖2 + C5h
−1/2 ‖ēu‖C6h

−1/2 ‖ēu‖
)

≤ C3h
(

C7h
−1 ‖ēu‖2 + C4h

−1 ‖ēu‖2 + C7h
−1 ‖ēu‖2

) ≤ C2 ‖ēu‖2 . (3.23)

Estimate of T3. Since εu is orthogonal to (ēu)x ∈ P p−1(Ii ) (due to the properties in (2.4a)),
T3,i simplifies to

T3,i =
∫

Ii
(θ − θi )εu(ēu)xdx .

Summing over all elements, using the estimate (3.21), applying theCauchy–Schwarz inequal-
ity, invoking the inverse inequality (2.6), using the projection result (2.5), and applying the
inequality ab ≤ 1

2a
2 + 1

2b
2, we get

T3 ≤
N

∑

i=1

∫

Ii

∣
∣θ − θi

∣
∣
∣
∣εu

∣
∣
∣
∣(ēu)x

∣
∣dx ≤ C1h

∫

�

∣
∣εu

∣
∣
∣
∣(ēu)x

∣
∣dx ≤ C1h ‖εu‖ ‖(ēu)x‖

(3.24)

≤ C1hC2h
p+1C4h

−1 ‖ēu‖ ≤ C3
(

h2p+2 + ‖ēu‖2
)

. (3.25)

Estimate of T4. Applying the Cauchy–Schwarz inequality, the projection result (2.5), and the
inequality ab ≤ a2 + 1

4b
2, we get

T4 ≤
∫

�

(∣
∣(εu)t

∣
∣
∣
∣ēu

∣
∣ + ∣

∣εq
∣
∣
∣
∣ēq

∣
∣
)

dx ≤ ‖(εu)t‖ ‖ēu‖ + ∥
∥εq

∥
∥

∥
∥ēq

∥
∥

≤ C4
(

h2p+2 + ‖ēu‖2
) + 1

4

∥
∥ēq

∥
∥2 . (3.26)
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Estimate of T5. Using the periodic boundary conditions, we get

T5 =
N

∑

i=1

−ē−
u ē

+
q

∣
∣
i−1 + ē−

u ē
+
q

∣
∣
i = −ē−

u ē
+
q

∣
∣
0 + ē−

u ē
+
q

∣
∣
N = 0. (3.27)

Now, combining (3.15) with (3.17), (3.23), (3.25), (3.26), and (3.27), we arrive at

1

2

d

dt
‖ēu‖2 + ∥

∥ēq
∥
∥2 ≤ Ch2p+2 + C ‖ēu‖2 + 1

2

∥
∥ēq

∥
∥2 . (3.28)

Thus, we establish the estimate

1

2

d

dt
‖ēu‖2 ≤ C1h

2p+2 + C2 ‖ēu‖2 .

Integrating this inequality over the interval [0, t] and using the estimate (2.11) (note that
initially ēu = P−

h u − uh = P−
h u − P1

h u), which is due to the special choice of the initial
condition yields

‖ēu‖2 ≤ ‖ēu(0)‖2 + 2tC1th
2p+2 + 2C2

∫ t

0
‖ēu(s)‖2 ds

≤ C3h
2p+3 + C4h

2p+2 + 2C2

∫ t

0
‖ēu(s)‖2 ds.

Invoking the classical Gronwall inequality (see, e.g., [37]), we get ‖ēu‖2 ≤ (C3h2p+3 +
C4h2p+2)e2C2t ≤ Ch2p+2, ∀ t ∈ [0, T ], which completes the proof of (3.8a). Using eu =
ēu + εu and applying the triangle inequality and the projection result (2.5), we obtain

‖eu‖ = ‖ēu + εu‖ ≤ ‖ēu‖ + ‖εu‖ ≤ C1h
p+1 + C2h

p+1 ≤ Chp+1,

which establishes (3.8b).

Next, we state and prove optimal L2 error estimates for ‖(eu)t‖ and
∥
∥eq

∥
∥.

Theorem 3.2 Under the assumptions of Theorem 3.1, we have

‖(ēu)t (0)‖ ≤ Chp+1. (3.29)

‖(ēu)t‖ ≤ Chp+1. (3.30)

‖(eu)t‖ ≤ Chp+1. (3.31)
∥
∥ēq

∥
∥ ≤ Chp+1. (3.32)

∥
∥eq

∥
∥ ≤ Chp+1. (3.33)

Proof At time t = 0, (2.11) gives

‖ēu(0)‖ ≤ Chp+3/2, (3.34)
∥
∥ēq(0)

∥
∥ ≤ Chp+3/2, (3.35)

since initially ēu = P−
h u − uh = P−

h u − P1
h u.

Next, we will prove (3.29). Since uh(x, 0) = P1
h u(x, 0), (2.10) can be written as

ē−
u

∣
∣
i−1 = ē+

q

∣
∣
i−1,

∫

Ii
ēuvxdx =

∫

Ii
ēqvxdx, ∀ v ∈ P p(Ii ), (3.36)

since v is a polynomial of degree at most p and thus vx is a polynomial of degree at most
p − 1.
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Combining (3.11a) with (3.36), we obtain, at t = 0,
∫

Ii
(ēu)tvdx −

∫

Ii
θ ēuvxdx + θ−ē−

u v−∣
∣
i − θ−ē−

u v+∣
∣
i−1 +

∫

Ii
ēuvxdx

− ē−
u v−∣

∣
i + ē−

u v+∣
∣
i−1 =

∫

Ii
θεuvxdx −

∫

Ii
(εu)tvdx .

Adding and subtracting the constant θi = f ′(ui ) to θ and using the fact that
∫

Ii
θiεuvxdx =

θi
∫

Ii
εuvxdx = 0, we get

∫

Ii
(ēu)tvdx −

∫

Ii
(θ − θi )ēuvxdx + (θ− − θi )ē

−
u v−∣

∣
i − (θ− − θi )ē

−
u v+∣

∣
i−1

− (θi − 1)

(∫

Ii
ēuvxdx − ē−

u v−∣
∣
i + ē−

u v+∣
∣
i−1

)

=
∫

Ii
(θ − θi )εuvxdx −

∫

Ii
(εu)tvdx .

(3.37)

We note that it follows from (3.11b) that, at time t = 0,
∫

Ii
ēqwdx +

∫

Ii
ēuwxdx − ē−

u w−∣
∣
i + ē−

u w+∣
∣
i−1 = −

∫

Ii
εqwdx . (3.38)

Combining (3.39) with (3.38) with w = v, we get, at t = 0,
∫

Ii
(ēu)tvdx −

∫

Ii
(θ − θi )ēuvxdx + (θ− − θi )ē

−
u v−∣

∣
i − (θ− − θi )ē

−
u v+∣

∣
i−1

+ (θi − 1)

(∫

Ii
ēqvdx +

∫

Ii
εqvdx

)

=
∫

Ii
(θ − θi )εuvxdx −

∫

Ii
(εu)tvdx . (3.39)

Taking v = (ēu)t (x, 0), we obtain, at time t = 0,

∫

Ii
(ēu)

2
t dx =

3
∑

k=1

Bk,i , (3.40a)

where

B1,i =
∫

Ii
(θ − θi )ēu(ēu)xt dx − (θ− − θi )ē

−
u (ēu)

−
t

∣
∣
i + (θ− − θi )ē

−
u (ēu)

+
t

∣
∣
i−1,

(3.40b)

B2,i = − (θi − 1)

(∫

Ii
ēq(ēu)t dx +

∫

Ii
εq(ēu)t dx

)

−
∫

Ii
(εu)t (ēu)t dx, (3.40c)

B3,i =
∫

Ii
(θ − θi )εu(ēu)xt dx . (3.40d)

Summing over all elements, we obtain

‖(ēu)t (0)‖2 =
3

∑

k=1

Bk, (3.41)

where Bk = ∑N
i=1 Bk,i , k = 1, 2, 3. Next, we will estimate Bk, k = 1, 2, 3 separately.
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Estimate of B1. Applying the Cauchy–Schwarz inequality, (3.21), (3.22), the inverse inequal-
ities in (2.6), and the estimate (3.34), we obtain, at t = 0,

B1 ≤
N

∑

i=1

∫

Ii

∣
∣θ − θi

∣
∣
∣
∣ēu

∣
∣
∣
∣(ēu)xt

∣
∣dx +

N
∑

i=1

∣
∣θ− − θi

∣
∣
∣
∣ē−

u

∣
∣
∣
∣(ēu)

−
t

∣
∣
∣
∣
i

+
N

∑

i=1

∣
∣θ− − θi

∣
∣
∣
∣ē−

u

∣
∣(

∣
∣ēu)

+
t

∣
∣
∣
∣
i−1

≤ C2h
∫

�

∣
∣ēu

∣
∣
∣
∣(ēu)xt

∣
∣dx + C2h

(
N

∑

i=1

∣
∣ē−

u

∣
∣
2∣
∣
i

)1/2 (
N

∑

i=1

∣
∣(ēu)

+
t

∣
∣
2∣
∣
i

)1/2

+ C2h

(
N

∑

i=1

∣
∣ē−

u

∣
∣2

∣
∣
i−1

)1/2 (
N

∑

i=1

∣
∣(ēu)

+
t

∣
∣2

∣
∣
i−1

)1/2

≤ C3 ‖ēu(0)‖ ‖(ēu)t (0)‖ + C3 ‖ēu(0)‖ ‖(ēu)t (0)‖ + C3 ‖ēu(0)‖ ‖(ēu)t (0)‖
≤ C4 ‖ēu(0)‖ ‖(ēu)t (0)‖ ≤ C1h

p+3/2 ‖(ēu)t (0)‖ . (3.42)

Estimate of B2. Using the assumption | f ′| ≤ C onR, applying the Cauchy–Schwarz inequal-
ity, the projection result (2.5), and the estimate (3.35), we get, at time t = 0,

B2 ≤
N

∑

i=1

(
∣
∣θi

∣
∣ + 1)

(∫

Ii

∣
∣ēq

∣
∣
∣
∣(ēu)t

∣
∣dx +

∫

Ii

∣
∣εq

∣
∣
∣
∣(ēu)t

∣
∣dx

)

+
∫

Ii

∣
∣(εu)t

∣
∣
∣
∣(ēu)t

∣
∣dx

≤ C3

N
∑

i=1

(∥
∥ēq(0)

∥
∥
0,Ii

+ ∥
∥εq(0)

∥
∥
0,Ii

+ ‖(εu)t (0)‖0,Ii
)

‖(ēu)t (0)‖0,Ii
≤ C3

(∥
∥ēq(0)

∥
∥ + ∥

∥εq(0)
∥
∥ + ‖(εu)t (0)‖

) ‖(ēu)t (0)‖
≤ C4

(

h p+3/2 + h p+1) ‖(ēu)t (0)‖ ≤ C2h
p+1 ‖(ēu)t (0)‖ . (3.43)

Estimate of B3. Applying the Cauchy–Schwarz inequality, (3.21), the projection result (2.5),
and the inverse inequality, we get, at t = 0,

B3 ≤
N

∑

i=1

∫

Ii

∣
∣θ − θi

∣
∣
∣
∣εu

∣
∣
∣
∣(ēu)xt

∣
∣dx ≤ C1h

∫

�

∣
∣εu

∣
∣
∣
∣(ēu)xt

∣
∣dx ≤ C2 ‖εu(0)‖ ‖(ēu)t (0)‖

≤ C3h
p+1 ‖ēu(0)‖ ‖(ēu)t (0)‖ ≤ C3h

p+1 ‖(ēu)t (0)‖ . (3.44)

Now, combining (3.41) with (3.42), (3.43), and (3.44), we conclude that

‖(ēu)t (0)‖2 ≤ (C1h
p+3/2 + C2h

p+1 + C3h
p+1) ‖(ēu)t (0)‖ ≤ Chp+1 ‖(ēu)t (0)‖ , (3.45)

which completes the proof of the (3.29).
Next, we will show (3.30). Taking the first time derivation of (3.11a) and (3.12b), we get
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∫

Ii
(ēu)t tvdx −

∫

Ii
((θ ēu)t − (ēq)t )vxdx + ((θ−ē−

u )t − (ē+
q )t )v

−∣
∣
i

− ((θ−ē−
u )t − (ē+

q )t )v
+∣
∣
i−1 =

∫

Ii
(θεu)tvxdx −

∫

Ii
(εu)tvdx, (3.46a)

∫

Ii
(ēq)twdx −

∫

Ii
(ēu)xtwdx − (

(ē+
u )t − (ē−

u )t
)

w+∣
∣
i−1 = −

∫

Ii
(εq)twdx,

(3.46b)

since (3.11a) and (3.12b) are satisfied when v and w are replaced with vt and wt .
Choosing v = (ēu)t in (3.46a) and w = (ēq)t in (3.46b) then adding the resulting

equations, we obtain

1

2

d

dt

∫

Ii
(ēu)

2
t dx +

∫

Ii
(ēq)

2
t dx −

∫

Ii
(θ ēu)t (ēu)xt dx + θ−(ē−

u ))2t

∣
∣
i − θ−(ēu)

−
t (ēu)

+
t

∣
∣
i−1

+ θ−
t ē−

u (ē−
u )t

∣
∣
i − θ−

t ē−
u (ēu)

+
t

∣
∣
i−1 + (ēu)

−
t (ēq)

+
t

∣
∣
i−1 − (ēu)

−
t (ēq)

+
t

∣
∣
i

=
∫

Ii
(θεu)t (ēu)xt dx −

∫

Ii
(εu)t t (ēu)t dx −

∫

Ii
(εq)t (ēq)t dx . (3.47)

Adding and subtracting the constant θi = f ′(ui ) to θ , we rewrite (3.13) as

1

2

d

dt

∫

Ii
(ēu)

2
t dx +

∫

Ii
(ēq)

2
t dx =

8
∑

k=1

Sk,i , (3.48a)

where

S1,i = θi

(∫

Ii
(ēu)t (ēu)xt dx − ((ēu)

−
t )2

∣
∣
i + (ēu)

−
t (ēu)

+
t

∣
∣
i−1

)

, (3.48b)

S2,i =
∫

Ii
(θ − θi )ēu(ēu)xdx − (θ− − θi )((ēu)

−
t )2

∣
∣
i + (θ− − θi )(ēu)

−
t (ēu)

+
t

∣
∣
i−1,

(3.48c)

S3,i =
∫

Ii
(θ − θi )(εu)t (ēu)xt dx + θi

∫

Ii
(εu)t (ēu)xt dx, (3.48d)

S4,i = −
∫

Ii
(εu)t t (ēu)t dx −

∫

Ii
(εq)t (ēq)t dx, (3.48e)

S5,i = − (ēu)
−
t (ēq)

+
t

∣
∣
i−1 + (ēu)

−
t (ēq)

+
t

∣
∣
i , (3.48f)

S6,i = (θi )t

(∫

Ii
ēu(ēu)xt dx − ē−

u (ē−
u )t

∣
∣
i + ē−

u (ēu)
+
t

∣
∣
i−1

)

, (3.48g)

S7,i =
∫

Ii
(θ − θi )t ēu(ēu)xt dx − (θ− − θi )t ē

−
u (ē−

u )t
∣
∣
i + (θ− − θi )t ē

−
u (ēu)

+
t

∣
∣
i−1,

(3.48h)

S8,i =
∫

Ii
(θ − θi )tεu(ēu)xt dx + (θi )t

∫

Ii
εu(ēu)xt dx . (3.48i)

Summing the error equation (3.48) over all elements, we obtain

1

2

d

dt
‖(ēu)t‖2 + ∥

∥(ēq)t
∥
∥2 =

8
∑

k=1

Sk, (3.49)
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where Sk = ∑N
i=1 Sk,i , k = 1, . . . , 8. From here, we can easily obtain the estimate (3.30) by

following the same lines as in the proofs of (3.8a). In particular, estimates for Sk , k = 1, . . . , 5
are similar to the estimates for Tk, k = 1, . . . , 5. To estimate S6, S7, and S8 we follow the steps
used to estimate T1, T2, and T3, respectively. Details are omitted for the sake of conciseness.

The proof of (3.31) follows from (3.2), the estimate (3.30), and the projection result (2.5)

‖(eu)t‖ = ‖(ēu)t + (εu)t‖ ≤ ‖(ēu)t‖ + ‖(εu)t‖ ≤ C1h
p+1 + C2h

p+1 ≤ Chp+1,

which establishes (3.31).
Next, wewill show (3.32).We start with the estimate derived in (3.28). Since 1

2
d
dt ‖ēu‖2 =

∫

�
ēu(ēu)t dx , we have

∥
∥ēq

∥
∥2 ≤ C ‖ēu‖2 + Chp+1 ‖ēu‖ + Chp+1

∥
∥ēq

∥
∥ −

∫

�

ēu(ēu)t dx .

Applying the Cauchy–Schwarz inequality and using the inequality ab ≤ 1
2a

2 + 1
2b

2 with
a = ∥

∥ēq
∥
∥ and b = Chp+1, we obtain

∥
∥ēq

∥
∥2 ≤ 2C ‖ēu‖2 + 2Chp+1 ‖ēu‖ + C2h2p+2 + 2 ‖ēu‖ ‖(ēu)t‖ . (3.50)

Using the estimates (3.8a) and (3.30), we establish (3.32). Since eq = ēq + εq , the proof of
estimate (3.33) follows straightforwardly from (3.32) and the projection result (2.5)

∥
∥eq

∥
∥ = ∥

∥ēq + εq
∥
∥ ≤ ∥

∥ēq
∥
∥ + ∥

∥εq
∥
∥ ≤ C1h

p+1 + C2h
p+1 ≤ Chp+1. ��

4 Superconvergence Error Analysis

In this section, we will prove that the derivative of the LDG solution (uh)x is O(h p+1)

superconvergent to (P−
h u)x . We will also prove that the LDG solution is O(h p+3/2) super-

convergent to P−
h u, when p-degree piecewise polynomials with p ≥ 1 are used.

In our analysis, we need some properties of Radau polynomials. We denote by L̃ p the
Legendre polynomial of degree p on [−1, 1], which can be defined by the Rodrigues formula
[1]

L̃ p(ξ) = 1

2p p!
d p

dξ p

(

(ξ2 − 1)p
)

, −1 ≤ ξ ≤ 1. (4.1a)

The Legendre polynomial satisfies the properties L̃ p(1) = 1, L̃ p(−1) = (−1)p , and the
orthogonality relation

∫ 1

−1
L̃ p(ξ)L̃q(ξ)dξ = 2

2p + 1
δpq , where δpq is the Kronecker symbol. (4.1b)

We note that the (p + 1)-degree Legendre polynomial on [−1, 1] can be written as

L̃ p+1(ξ) = (2p + 2)!
2p+1[(p + 1)!]2 ξ p+1 + q̃p(ξ), where q̃p ∈ P p([−1, 1]).

Next, we define the (p + 1)-degree right Radau polynomial on [−1, 1] as
R̃p+1(ξ) = L̃ p+1(ξ) − L̃ p(ξ), −1 ≤ ξ ≤ 1. (4.1c)

The (p + 1)-degree right Radau polynomial on [−1, 1] has p + 1 real distinct roots −1 <

ξ0 < · · · < ξp = 1.
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Mapping the physical element Ii into the reference element [−1, 1] by the standard affine
mapping

x(ξ, hi ) = xi + xi−1

2
+ hi

2
ξ, (4.1d)

we obtain the p-degree shifted Legendre and right Radau polynomials on Ii

L p,i (x) = L̃ p

(
2x − xi − xi−1

hi

)

, Rp,i (x) = R̃p

(
2x − xi − xi−1

hi

)

.

Using the mapping (4.1d) and the orthogonality relation (4.1b), we obtain

∥
∥L p,i

∥
∥
2
0,Ii

=
∫

Ii
L2
p,i (x)dx = hi

2

∫ 1

−1
L̃2
p(ξ)dξ = hi

2

2

2p + 1
= hi

2p + 1
≤ hi . (4.1e)

Throughout this paper the roots of Rp+1,i (x), x ∈ Ii are denoted by

xi, j = xi + xi−1

2
+ hi

2
ξ j , j = 0, 1, . . . , p. (4.1f)

Next, we define the (p + 1)-degree monic right Radau polynomial on Ii as

ψp+1,i (x) =
p

∏

j=0

(x − xi, j ) = ((p + 1)!)2
(2p + 2)! h p+1

i Rp+1,i (x) = cph
p+1
i Rp+1,i (x),

where cp = ((p + 1)!)2
(2p + 2)! . (4.1g)

In the next lemma, we recall a result which will be needed in our a posteriori error analysis.

Lemma 4.1 The (p+1)-degreemonic Radau polynomials on Ii ,ψp+1,i , satisfy the property

∥
∥ψp+1,i

∥
∥2
0,Ii

= 2(2p + 2)

(2p + 1)(2p + 3)
c2ph

2p+3
i , where cp = [(p + 1)!]2

(2p + 2)! . (4.2)

Proof The proof of this lemma can be found in [8], more precisely in its Lemma 2.1. ��
4.1 Superconvergence for the Derivative of the LDG Solution

Here, we prove that (uh)x is O(h p+1) superconvergent to (P−
h u)x in the L2-norm.

Theorem 4.1 Under the assumptions of Theorem 3.1, we have, at any fixed t ∈ [0, T ],
‖(ēu)x‖ ≤ Chp+1. (4.3)

Proof Taking w = (ēu)x − (−1)p(ēu)+x
∣
∣
i−1L p,i (x) ∈ P p(Ii ) in (3.12b), using the property

L p,i (xi−1) = (−1)p , and applying (4.1b), we get
∫

Ii
(ēu)

2
xdx =

∫

Ii
eq

(

(ēu)x − (−1)p(ēu)
+
x

∣
∣
i−1L p,i (x)

)

dx,

since for this choice w+∣
∣
i−1 = 0 and

∫

Ii
(ēu)x L p,i dx = 0.

Applying the Cauchy–Schwarz inequality, the inverse inequality, and the estimate (4.1e)
yields
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‖(ēu)x‖20,Ii ≤
∫

Ii

∣
∣eq

∣
∣

(

|(ēu)x | +
∣
∣
∣(ēu)

+
x

∣
∣
i−1

∣
∣
∣

∣
∣L p,i

∣
∣

)

dx

≤ ∥
∥eq

∥
∥
0,Ii

(

‖(ēu)x‖0,Ii +
∣
∣
∣(ēu)

+
x

∣
∣
i−1

∣
∣
∣

∥
∥L p,i

∥
∥
0,Ii

)

≤ ∥
∥eq

∥
∥
0,Ii

(

‖(ēu)x‖0,Ii + C3h
−1/2
i ‖(ēu)x‖0,Ii h1/2i

)

≤ (1 + C3)
∥
∥eq

∥
∥
0,Ii

‖(ēu)x‖0,Ii ≤ C4
∥
∥eq

∥
∥
0,Ii

‖(ēu)x‖0,Ii .

Consequently, ‖(ēu)x‖0,Ii ≤ C4
∥
∥eq

∥
∥
0,Ii

. Squaring both sides, summing over all elements,
and using the estimate (3.33), we obtain

‖(ēu)x‖2 ≤ C4
∥
∥eq

∥
∥
2 ≤ Ch2p+2,

which completes the proof of (4.3). ��
4.2 Superconvergence for the LDG Solution Towards P−

h u

Since ēu ∈ V p
h and ēq ∈ V p

h are piecewise polynomials, they can be written on each element
Ii as

ēu = ai (t) + x − xi
hi

ri (x, t), ēq = bi (t) + x − xi−1

hi
si (x, t), x ∈ Ii , (4.4)

where ai = ē−
u

∣
∣
i , bi = ē+

q

∣
∣
i−1, and ri (·, t), si (·, t) ∈ P p−1(Ii ).

Throughout this section, r ∈ V p−1
h and s ∈ V p−1

h denote piecewise polynomials which
are defined as follows:

r(x, t) = ri (x, t), s(x, t) = si (x, t), on Ii . (4.5)

In the next lemma, we recall the following results which will be needed in our analysis.

Lemma 4.2 If f (x) ∈ C1(Ii ), then
∫

Ii

x − xi−1

hi
f (x)

d

dx

(
x − xi
hi

f (x)

)

dx = 1

2hi

∫

Ii
f 2(x)dx . (4.6a)

∫

Ii

x − xi
hi

f (x)
d

dx

(
x − xi−1

hi
f (x)

)

dx = − 1

2hi

∫

Ii
f 2(x)dx . (4.6b)

Proof The proof of this lemma can be found in [8], more precisely in its Lemma 2.3. ��

Next, we prove the following theorem which will be needed to prove our main superconver-
gence result.

Theorem 4.2 Suppose that the assumptions of Theorem 3.1 are satisfied. If r ∈ V p−1
h and

s ∈ V p−1
h are given in (4.5) then there exists a positive constant C independent of h such

that, at any fixed t ∈ [0, T ],
‖r‖ ≤ Chp+2, ‖s‖ ≤ Chp+2. (4.7)

Proof Substituting ēu = ai (t) + x−xi
hi

ri (x, t) into (3.12b) and choosing w = x−xi−1
hi

ri , we
get
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∫

Ii

(
x − xi
hi

ri

)

x

x − xi−1

hi
ri dx =

∫

Ii
eq

x − xi−1

hi
ri dx,

since (ai (t))x = 0, w+∣
∣
i−1 = 0, and eq = ēq + εq .

Using (4.6a) with f = ri , we obtain

1

2hi

∫

Ii
r2i dx =

∫

Ii
eq

x − xi−1

hi
ri dx .

Since x − xi−1 ≤ hi ≤ h for all x ∈ Ii , we have
∫

Ii
r2i dx = 2

∫

Ii
eq(x − xi−1)ri dx ≤ 2h

∫

Ii

∣
∣eq

∣
∣ |ri | dx .

Summing over all elements, applying the Cauchy–Schwarz inequality, and invoking the
estimate in (3.33), we obtain

‖r‖2 =
N

∑

i=1

∫

Ii
r2i dx ≤ 2h

∥
∥eq

∥
∥ ‖r‖ ≤ Chp+2 ‖r‖ ,

which completes the proof of the first estimate in (4.7).
Next, we show the second estimate in (4.7). Substituting ēq = bi (t) + x−xi−1

hi
si (x, t) into

(3.12a) and taking v = x−xi
hi

si , we obtain

∫

Ii

(
x − xi−1

hi
si

)

x

x − xi
hi

si dx =
∫

Ii
(eu)t

x − xi
hi

si dx −
∫

Ii
θeu

(
x − xi
hi

si

)

x
dx + θ−ē−

u s
+
i

∣
∣
i−1,

(4.8)

where we used the fact that (bi (t))x = 0, v−∣
∣
i = 0, v+∣

∣
i−1 = −s+

i

∣
∣
i−1, and eu = ēu + εu .

Applying (4.6b) with f = si yields

− 1

2hi

∫

Ii
s2i dx =

∫

Ii
(eu)t

x − xi
hi

si dx −
∫

Ii
θeu

(
x − xi
hi

si

)

x
dx + θ−ē−

u s
+
i

∣
∣
i−1. (4.9)

Consequently, we have
∫

Ii
s2i dx = − 2

∫

Ii
(eu)t (x − xi )si dx + 2

∫

Ii
θeu ((x − xi )si )x dx − 2hiθ

−ē−
u s

+
i

∣
∣
i−1.

(4.10)

Adding and subtracting the constant θi = f ′(u(xi−1, t)) to θ then summing over all elements,
we obtain

‖s‖2 =
4

∑

k=1

Ak, (4.11a)

where Ak = ∑N
i=1 Ak,i , k = 1, . . . , 4 and

A1,i = − 2
∫

Ii
(eu)t (x − xi )si dx, (4.11b)

A2,i = 2
∫

Ii
(θ − θi )eu ((x − xi )si )x dx, (4.11c)
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A3,i = 2θi

(∫

Ii
eu ((x − xi )si )x dx − hi ē

−
u s

+
i

∣
∣
i−1

)

, (4.11d)

A4,i = − 2hi (θ
− − θi )ē

−
u s

+
i

∣
∣
i−1. (4.11e)

Next, we will estimate each of these terms separately.
Estimate of A1. Using the fact that x − xi ≤ h for x ∈ Ii , applying the Cauchy–Schwarz
inequality, and using the estimate (3.31), we get

A1 ≤ 2
N

∑

i=1

∫

Ii

∣
∣(eu)t

∣
∣
∣
∣x − xi

∣
∣
∣
∣si

∣
∣dx ≤ 2h

N
∑

i=1

∫

Ii

∣
∣(eu)t

∣
∣
∣
∣si

∣
∣dx

≤ 2h ‖(eu)t‖ ‖s‖ ≤ C1h
p+2 ‖s‖ . (4.12)

Estimate of A2.Applying (3.21), using theCauchy–Schwarz inequality, the inverse inequality,
the estimate x − xi ≤ hi for x ∈ Ii , and invoking the estimate (3.8b), we obtain

A2 ≤ 2
N

∑

i=1

∫

Ii

∣
∣θ − θi

∣
∣
∣
∣eu

∣
∣
∣
∣ ((x − xi )si )x

∣
∣dx ≤ 2h

N
∑

i=1

∫

Ii

∣
∣eu

∣
∣
∣
∣ ((x − xi )si )x

∣
∣dx

≤ 2h
N

∑

i=1

‖eu‖0,Ii
∥
∥((x − xi )si )x

∥
∥
0,Ii

≤ 2hC1

N
∑

i=1

‖eu‖0,Ii h−1
i ‖(x − xi )si‖0,Ii

≤ 2hC1

N
∑

i=1

‖eu‖0,Ii ‖si‖0,Ii ≤ 2hC1 ‖eu‖ ‖s‖ ≤ C2h
p+2 ‖s‖ . (4.13)

Estimate of A3. Since eu = ēu + εu and εu is orthogonal to ((x − xi )si )x ∈ P p−1(Ii ) (due
to the properties in (2.4a)), A3 simplifies to

A3 = 2
N

∑

i=1

θi

(∫

Ii
ēu ((x − xi )si )x dx − hi ē

−
u s

+
i

∣
∣
i−1

)

. (4.14)

Taking w = (x − xi )si in (3.11b) yields
∫

Ii
eq(x − xi )si dx +

∫

Ii
ēu ((x − xi )si )x dx − hi ē

−
u s

+
i

∣
∣
i−1 = 0,

since w−∣
∣
i = 0 and w+∣

∣
i−1 = −s+

i

∣
∣
i−1. Multiplying by θi and summing over all elements,

we get

N
∑

i=1

θi

(∫

Ii
ēu ((x − xi )si )x dx − hi ē

−
u s

+
i

∣
∣
i−1

)

= −
N

∑

i=1

θi

∫

Ii
eq(x − xi )si dx . (4.15)

Combining (4.14) and (4.15), we obtain

A3 = − 2
N

∑

i=1

θi

∫

Ii
eq(x − xi )si dx .

Using the assumption | f ′| ≤ C1 on R, the estimate x − xi ≤ h for x ∈ Ii , the Cauchy–
Schwarz inequality, and the estimate (3.33) gives
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A3 ≤ 2
N

∑

i=1

∣
∣θi

∣
∣

∫

Ii

∣
∣eq

∣
∣
∣
∣x − xi

∣
∣
∣
∣si

∣
∣dx ≤ 2C1h

N
∑

i=1

∫

Ii

∣
∣eq

∣
∣
∣
∣si

∣
∣dx

≤ 2C1h
N

∑

i=1

∥
∥eq

∥
∥
0,Ii

‖si‖0,Ii ≤ 2C1h
∥
∥eq

∥
∥ ‖s‖ ≤ C3h

p+2 ‖s‖ . (4.16)

Estimate of A4. Using (3.22), we have

A4 ≤ 2
N

∑

i=1

hi
∣
∣(θ− − θi )

∣
∣
i−1

∣
∣
∣
∣ē−

u s
+
i

∣
∣
i−1

∣
∣ ≤ 2h

N
∑

i=1

hi
∣
∣ē−

u s
+
i

∣
∣
i−1

∣
∣. (4.17)

On the other hand, we take w = (x − xi )si in (3.11b) to get
∫

Ii
eq(x − xi )si dx +

∫

Ii
ēu ((x − xi )si )x dx − hi ē

−
u s

+
i

∣
∣
i−1 = 0,

since w−∣
∣
i = 0 and w+∣

∣
i−1 = −s+

i

∣
∣
i−1. Thus,

N
∑

i=1

hi
∣
∣ē−

u s
+
i

∣
∣
i−1

∣
∣ =

∣
∣
∣
∣

N
∑

i=1

∫

Ii
eq(x − xi )si dx +

N
∑

i=1

∫

Ii
ēu ((x − xi )si )x dx

∣
∣
∣
∣

≤
N

∑

i=1

∫

Ii

∣
∣eq

∣
∣
∣
∣x − xi

∣
∣
∣
∣si

∣
∣dx +

N
∑

i=1

∫

Ii

∣
∣ēu

∣
∣
∣
∣ ((x − xi )si )x

∣
∣dx .

(4.18)

Combining (4.17) and (4.18), we obtain

A4 ≤ 2h
N

∑

i=1

(∫

Ii

∣
∣eq

∣
∣
∣
∣x − xi

∣
∣
∣
∣si

∣
∣dx +

∫

Ii

∣
∣ēu

∣
∣
∣
∣ ((x − xi )si )x

∣
∣dx

)

.

Applying the Cauchy–Schwarz inequality, the inverse inequality, using the fact that x − xi ≤
hi for x ∈ Ii , and invoking the estimates (3.33) and (3.8a) yields

A4 ≤ 2h
N

∑

i=1

(∥
∥eq

∥
∥
0,Ii

‖(x − xi )si‖0,Ii + ‖ēu‖0,Ii
∥
∥((x − xi )si )x

∥
∥
0,Ii

)

≤ 2h
N

∑

i=1

(

hi
∥
∥eq

∥
∥
0,Ii

‖si‖0,Ii + C1h
−1
i ‖ēu‖0,Ii ‖(x − xi )si‖0,Ii

)

≤ 2h2
N

∑

i=1

∥
∥eq

∥
∥
0,Ii

‖si‖0,Ii + 2hC1

N
∑

i=1

‖ēu‖0,Ii ‖si‖0,Ii

≤ 2h2
∥
∥eq

∥
∥ ‖s‖ + 2hC1 ‖ēu‖ ‖s‖

≤ C2h
p+3 ‖s‖ + C3h

p+2 ‖s‖ ≤ C4h
p+2 ‖s‖ . (4.19)

Now, combining (4.11a) with the estimates (4.12), (4.13), (4.16), and (4.19), we deduce that

‖s‖2 ≤ (C1 + C2 + C3 + C4)h
p+2 ‖s‖ = Chp+2 ‖s‖ ,

which completes the proof of (4.7). ��
Now, we are ready to prove that uh is O(h p+3/2) superconvergent to P−

h u in the L2-norm.
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Theorem 4.3 Suppose that the assumptions of Theorem 3.1 are satisfied. Then there exists
a positive constant C independent of h such that, at any fixed t ∈ [0, T ],

‖ēu‖ ≤ Chp+3/2. (4.20)

Proof We start from the error equation (3.15). We will be using the estimates (3.17), (3.23),
and (3.27). However, we will use the superconvergence result (4.3) to obtain better estimates
of (3.25) and (3.26).
Estimate of T3. We start from (3.24). Using the estimate (4.3) and the projection result (2.5),
we obtain

T3 ≤ C1h(C2h
p+1)(C4h

p+1) ≤ C3h
2p+3. (4.21)

Estimate of T4. Substituting the definitions of ēu and ēq , given in (4.4), into (3.14e), and
using the fact that (εu)t and εq are orthogonal to any piecewise constant functions (due to
the properties given in (2.4)), we get

T4 = −
N

∑

i=1

∫

Ii

(

(εu)t
x − xi
hi

ri + εq
x − xi−1

hi
si

)

dx . (4.22)

Using the fact that |x − xi | ≤ hi and |x − xi−1| ≤ hi for all x ∈ Ii , then applying the
Cauchy–Schwarz inequality, the projection result (2.5), and (4.7), we get

T4 ≤
N

∑

i=1

∫

Ii

(∣
∣(εu)t

∣
∣
∣
∣ri

∣
∣ + ∣

∣εq
∣
∣si

∣
∣
)

dx ≤ ‖(εu)t‖ ‖r‖ + ∥
∥εq

∥
∥ ‖s‖ ≤ C4h

2p+3. (4.23)

Now, combining (3.15) with (3.17), (3.23), (4.21), (4.23), and (3.27), we obtain

1

2

d

dt
‖ēu‖2 + ∥

∥ēq
∥
∥2 ≤ C1h

2p+3 + C2 ‖ēu‖2 .

Integrating with respect to time and using (2.11) (note that initially ēu = P−
h u − uh =

P−
h u − P1

h u), we get

‖ēu‖2 +
∫ t

0

∥
∥ēq(s)

∥
∥2 ds ≤ ‖ēu(0)‖2 + C1th

2p+3 + C2

∫ t

0
‖ēu(s)‖2 ds

≤ C3h
2p+3 + C2

∫ t

0
‖ēu(s)‖2 ds.

By the continuous Gronwall inequality (see, e.g., [37]), we conclude that,

‖ēu‖2 +
∫ t

0

∥
∥ēq(s)

∥
∥
2
ds ≤ C3h

2p+3eC2t ≤ Ch2p+3, ∀ t ∈ [0, T ],

where C is independent of h. Thus, we completed the proof of the theorem. ��
Justification of the a priori assumption: Now, to complete the proof of Theorem 4.3, let
us justify the a priori assumption (3.4). We will follow the same arguments used in [34,39].
First of all, the a prior assumption is satisfied at t = 0 since, initially (due to (2.11)),

‖ēu‖ = ∥
∥P−

h u − uh
∥
∥ = ∥

∥P−
h u − P1

h u
∥
∥ ≤ Chp+3/2 ≤ Ch3/2, for p ≥ 1.

Next, for p ≥ 1, we can choose h small enough so that Chp+1 < 1
2h

3/2, where C is the
constant in (3.8a) determined by the final time T . Define t∗ = sup{s ≤ T : ‖ēu(t)‖ ≤
h3/2, t ∈ [0, s]}, then we have ‖ēu(t∗)‖ = h3/2 by continuity if t∗ < T . On the other hand,
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our proof implies that (3.8a) holds for t ≤ t∗, in particular ‖ēu(t∗)‖ ≤ Chp+1 < 1
2h

3/2. This
is a contradiction if t∗ < T . Hence t∗ ≥ T and our a priori assumption (3.4) is justified.

Remark 4.1 We remark that when f (u) is linear, we have f ′(u) is a constant. Therefore,
T2,i = 0. Consequently, the a priori assumption (3.4) is unnecessary.

4.3 Superconvergence Towards the Right Radau Interpolating Polynomial

Here, we prove an important superconvergence result towards the p-degree right Radau
interpolating polynomial. This result will be used to show that the actual error can be split
into a significant part (proportional to the (p+ 1)-degree right Radau polynomial) and a less
significant part (converges to zero in the L2-norm at O(h p+3/2) rate).

We first define two interpolation operators π and π̂ [8]. The projection π is defined as
follows: For any function u, πu

∣
∣
Ii

∈ P p(Ii ) and interpolates u at the roots of the (p + 1)-
degree right Radau polynomial shifted to Ii , xi, j , j = 0, 1, . . . , p. Next, the interpolation
operator π̂ is such that π̂u

∣
∣
Ii

∈ P p+1(Ii ) and is defined as follows: π̂u
∣
∣
Ii
interpolates u at

xi, j , j = 0, 1, . . . , p, and at an additional point x̄i in Ii with x̄i �= xi, j , j = 0, 1, . . . , p.

Remark 4.2 The operator π̂ is only needed for technical reasons in the proof of the error
estimates.We also would like to emphasize that the polynomial π̂u depends on the additional
point x̄i . For clarity of presentation, we may choose x̄i = xi−1 (left-end point of Ii ). We note
that x̄i �= xi, j , j = 0, 1, . . . , p. Moreover, we can easily verify that π̂u is given by

π̂u = πu + ci (t)ψp+1,i (x), (4.24)

since both ψp+1,i (x) vanish at the Radau points xi,k, k = 0, 1, . . . , p. Using (4.24) and

the fact that π̂u(xi−1, t) = u(xi−1, t), we find ci (t) = u(xi−1,t)−πu(xi−1,t)
ψp+1,i (xi−1)

. We note that
ψp+1,i (xi−1) �= 0.

In the next lemma, we recall some properties of P−
h and π [8], which play important roles

in our a posteriori error analysis. In particular, we show that the interpolation error can be
divided into a significant and a less significant parts.

Lemma 4.3 Let u ∈ H p+2(Ii ), t ∈ [0, T ] fixed, and P−
h and π as defined above. Then the

interpolation error can be split as:

u − πu = φi + γi , φi = αi (t)ψp+1,i (x), γi = u − π̂u, on Ii , (4.25a)

where αi (t) is the coefficient of x p+1 in the (p + 1)-degree polynomial π̂u and

‖φi‖k,Ii ≤ Chp+1−k
i ‖u‖p+1,Ii , 0 ≤ k ≤ p,

‖γi‖k,Ii ≤ Chp+2−k
i ‖u‖p+2,Ii , 0 ≤ k ≤ p + 1. (4.25b)

Moreover,
∥
∥πu − P−

h u
∥
∥
0,Ii

≤ Chp+2
i ‖u‖p+2,Ii . (4.26)

Proof The proof of this lemma can be found in [8], more precisely in its Lemma 2.4.

Now, we are ready to prove our main superconvergence result towards the right Radau
interpolating polynomial. Furthermore, we show that the significant part of the discretization
error for the LDG solution is proportional to the (p + 1)-degree right Radau polynomial.
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Theorem 4.4 Under the assumptions of Theorem 3.1, there exists a constant C such that

‖uh − πu‖ ≤ Chp+3/2, (4.27)

and
eu(x, t) = αi (t)ψp+1,i (x) + ωi (x, t), on Ii , (4.28a)

where ωi = γi + πu − uh, and

N
∑

i=1

∥
∥
∥∂kxωi

∥
∥
∥

2

0,Ii
≤ Ch2(p−k)+3, k = 0, 1, ∀ t ∈ [0, T ]. (4.28b)

Proof Adding and subtracting P−
h u to uh − πu, we write

uh − πu = (uh − P−
h u) + (P−

h u − πu) = −ēu + P−
h u − πu.

Taking the L2-norm and applying the triangle inequality, we get

‖uh − πu‖ ≤ ‖ēu‖ + ∥
∥P−

h u − πu
∥
∥ .

Using the estimates (4.20) and (4.26), we establish (4.27).
Adding and subtracting πu to eu , we get

eu = u − πu + πu − uh .

Furthermore, one can split the interpolation error u − πu on Ii as in (4.25a) to obtain

eu = φi + γi + πu − uh = φi + ωi , where ωi = γi + πu − uh . (4.29)

Next, we use the Cauchy–Schwarz inequality and the inequality ab ≤ 1
2 (a

2 + b2) to write

‖ωi‖20,Ii = ‖γi‖20,Ii +2
∫

Ii
γi (πu−uh)dx+‖πu − uh‖20,Ii ≤ 2

(‖γi‖20,Ii + ‖πu − uh‖20,Ii
)

.

Summing over all elements and applying (4.25b) and (4.27) yields

N
∑

i=1

‖ωi‖20,Ii ≤ C1h
2p+4 + C2h

2p+3 ≤ Ch2p+3,

which complete the proof of (4.28b) for k = 0. Next, we use the Cauchy–Schwarz inequality
and the inequality ab ≤ 1

2 (a
2 + b2) to get

‖(ωi )x‖20,Ii =
∫

Ii

(

(γi + πu − uh)x
)2

dx ≤ 2
(‖(γi )x‖20,Ii + ‖(πu − uh)x‖20,Ii

)

.

Using the inverse inequality ‖(πu − uh)x‖0,Ii ≤ ch−1 ‖πu − uh‖0,Ii , we obtain the esti-
mates

‖(ωi )x‖20,Ii ≤ C
(‖(γi )x‖20,Ii + h−2 ‖πu − uh‖20,Ii

)

.

Summing over all elements and applying (4.27) and the standard error estimate (4.25b), we
establish (4.28b) for k = 1. ��
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5 Global a Posteriori Error Estimation

In this section,we present a residual-based a posteriori error estimator for the LDGmethod for
nonlinear convection–diffusion problems. It is computed by solving a local steady problem
with no boundary conditions on each element. The proposed LDG error estimate is shown
to converge to the true spatial error as h → 0.

In order to find a procedure for computing the a posteriori error estimate for nonlinear
convection–diffusion problems, we replace u by uh + eu and q by qh + eq in the second
equation of (2.1) i.e., q − ux = 0 to obtain

(eu)x = qh − (uh)x + eq , x ∈ Ii . (5.1)

Multiplying (5.1) by a smooth test function v and integrating over Ii , we get
∫

Ii
(eu)xvdx =

∫

Ii

(

qh − (uh)x + eq
)

vdx . (5.2)

Substituting (4.28a) into the left-hand side of (5.2) and choosing v = L p,i (x) yields
(∫

Ii

(

ψp+1,i
)′
L p,i dx

)

αi =
∫

Ii

(

qh − (uh)x + eq − (ωi )x
)

L p,i dx . (5.3)

Next, we compte
∫

Ii

(

ψp+1,i
)′
L p,i dx . Using the definition of ψp+1,i given by (4.1g) and

the orthogonality relation (4.1b), we get
∫

Ii

(

ψp+1,i
)′
L p,i dx = cph

p+1
i

∫

Ii

(

L ′
p+1,i − L ′

p,i

)

L p,i dx = cph
p+1
i

∫

Ii
L ′
p+1,i L p,i dx,

since L ′
p,i is a polynomial of degree p − 1 on Ii .

Using a simple integration by parts and the orthogonality relation (4.1b), we obtain
∫

Ii

(

ψp+1,i
)′
L p,i dx = cph

p+1
i

(

L p+1,i (xi )L p,i (xi ) − L p+1,i (xi−1)L p,i (xi−1)

−
∫

Ii
L p+1,i L

′
p,i dx

)

= cph
p+1
i

(

L p+1,i (xi )L p,i (xi ) − L p+1,i (xi−1)L p,i (xi−1)
)

.

By the definition of the Legendre polynomial, we have L̃ p(1) = 1 and L̃ p(−1) = (−1)p .
Therefore, the shifted Legendre polynomials on Ii satisfy L p+1,i (xi ) = L p,i (xi ) = 1,
L p,i (xi−1) = (−1)p , and L p+1,i (xi−1) = (−1)p+1. Thus,

∫

Ii

(

ψp+1,i
)′
L p,i dx = cph

p+1
i

(

(1)(1) − (−1)p+1(−1)p
) = 2cph

p+1
i . (5.4)

Using (5.4), we obtain from (5.3)

αi (t) = 1

2cph
p+1
i

∫

Ii

(

qh − (uh)x + eq − (ωi )x
)

L p,i dx . (5.5)

Our error estimate procedure consists of approximating the true error on each element Ii by
the leading term as

eu(x, t) ≈ Eu(x, t) = ai (t)ψp+1,i (x), x ∈ Ii , (5.6)
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where the coefficient of the leading term of the error at fixed time t , ai (t), is obtained from
the coefficient αi (t) defined in (5.5) by neglecting the terms ωi and eq , i.e.,

ai (t) = 1

2cph
p+1
i

∫

Ii
(qh − (uh)x ) L p,i dx . (5.7)

We note that Eu is a computable quantity since it only depends on the LDG solutions uh
and qh . Thus, our LDG error estimate is computationally simple and is obtained by solving
a local steady problem with no boundary conditions on each element.

An accepted efficiency measure of a posteriori error estimate is the effectivity index. In
this paper, we use the global effectivity index �u(t) = ‖Eu‖‖eu‖ . Ideally, the global effectivity
index should stay close to one and should converge to one under mesh refinement.

The main results of this section are stated in the following theorem. In particular, we will
show that the error estimate Eu converges to the true error eu in the L2-norm as h → 0.
Furthermore, we will prove the convergence to unity of the global effectivity index �u(t)
under mesh refinement.

Theorem 5.1 Suppose that the assumptions of Theorem 3.1 are satisfied. If αi and ai are
given by (5.5) and (5.7), respectively, and Eu(x, t) = ai (t)ψp+1,i (x), then there exists a
constant C independent of h such that

‖eu − Eu‖ ≤ Chp+3/2. (5.8)

Consequently, we have
∣
∣ ‖eu‖ − ‖Eu‖

∣
∣ ≤ C1h

p+3/2. (5.9)

Finally, if there exists a constant c = c(u) > 0 independent of h with

‖eu‖ ≥ ch p+1, (5.10)

then, at a fixed time t, the global effectivity index in the L2 converges to unity atO(h1/2) rate
i.e.,

�u(t) = ‖Eu‖
‖eu‖ = 1 + O(h1/2). (5.11)

Proof First, we will prove (5.8). Since eu = αiψp+1,i + ωi , and Eu = aiψp+1,i , we have

‖eu − Eu‖20,Ii = ∥
∥(αi − ai )ψp+1,i + ωi

∥
∥2
0,Ii

≤ 2(αi − ai )
2
∥
∥ψp+1,i

∥
∥2
0,Ii

+ 2 ‖ωi‖20,Ii ,

where we used the inequality (a+b)2 ≤ 2a2+2b2. Summing over all elements and applying
the estimate (4.28b) with k = 0 yields

‖eu − Eu‖2 =
N

∑

i=1

‖eu − Eu‖20,Ii ≤ 2
N

∑

i=1

(αi − ai )
2
∥
∥ψp+1,i

∥
∥
2
0,Ii

+ 2
N

∑

i=1

‖ωi‖20,Ii

≤ 2
N

∑

i=1

(αi − ai )
2
∥
∥ψp+1,i

∥
∥
2
0,Ii

+ C1h
2p+3. (5.12)

Next,wewill estimate
∑N

i=1(αi−ai )2
∥
∥ψp+1,i

∥
∥2
0,Ii

. Subtracting (5.7) from (5.5) and applying
the triangle inequality, we get

∣
∣αi − ai

∣
∣ =

∣
∣
∣
∣

1

2cph
p+1
i

∫

Ii

(

eq − (ωi )x
)

L p,i dx

∣
∣
∣
∣
≤ 1

2cph
p+1
i

∫

Ii

(∣
∣eq

∣
∣ + ∣

∣(ωi )x
∣
∣
) ∣
∣L p,i

∣
∣dx .
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Using the inequality (a + b)2 ≤ 2(a2 + b2) yields

(αi − ai )
2 ≤ 1

2c2ph
2p+2
i

[(∫

Ii

∣
∣eq

∣
∣
∣
∣L p,i

∣
∣dx

)2

+
(∫

Ii

∣
∣(ωi )x

∣
∣
∣
∣L p,i

∣
∣dx

)2
]

.

Applying the Cauchy–Schwarz inequality and the estimate (4.1e), we obtain

(αi − ai )
2 ≤

∥
∥L p,i

∥
∥2
0,Ii

2c2ph
2p+2
i

(∥
∥eq

∥
∥
2
0,Ii

+ ‖(ωi )x‖20,Ii
)

≤ 1

2c2ph
2p+1
i

(∥
∥eq

∥
∥
2
0,Ii

+ ‖(ωi )x‖20,Ii
)

.

(5.13)

Multiplying by
∥
∥ψp+1,i

∥
∥2
0,Ii

and using (4.2) yields

(αi − ai )
2
∥
∥ψp+1,i

∥
∥
2
0,Ii

≤
∥
∥ψp+1,i

∥
∥2
0,Ii

2c2ph
2p+1
i

(∥
∥eq

∥
∥
2
0,Ii

+ ∥
∥(ω−

i )x
∥
∥
2
0,Ii

)

= Cph
2
i

(∥
∥eq

∥
∥2
0,Ii

+ ‖(ωi )x‖20,Ii
)

,

where Cp = (2p+2)
(2p+1)(2p+3) .

Finally, summing over all elements and using the fact that h = max
1≤i≤N

hi , we arrive at

N
∑

i=1

(αi − ai )
2
∥
∥ψp+1,i

∥
∥
2
0,Ii

≤ Cph
2

(

∥
∥eq

∥
∥
2 +

N
∑

i=1

‖(ωi )x‖20,Ii
)

.

Applying the estimates (3.33) and (4.28b), we establish

N
∑

i=1

(αi − ai )
2
∥
∥ψp+1,i

∥
∥
2
0,Ii

≤ Ch2p+3. (5.15)

Now, combining (5.12) with (5.15) yields

‖eu − Eu‖2 ≤ C1h
2p+3 + C2h

2p+3 ≤ Ch2p+3,

which completes the proof of (5.8).
In order to prove (5.9), we use the reverse triangle inequality to have

∣
∣ ‖Eu‖ − ‖eu‖

∣
∣ ≤ ‖Eu − eu‖ . (5.16)

Combining (5.16) and (5.8) completes the proof of (5.9).
In order to prove (5.11), we divide the inequality in (5.16) by ‖eu‖ and we use the estimate

(5.8) and the assumption (5.10) to obtain
∣
∣
∣
∣

‖Eu‖
‖eu‖ − 1

∣
∣
∣
∣
≤ ‖Eu − eu‖

‖eu‖ ≤ C1h p+3/2

ch p+1 ≤ Ch1/2.

Therefore, ‖Eu‖‖eu‖ = 1 + O(h1/2), which completes the proof of (5.11). ��
In the previous theorem, we proved that the residual-based a posteriori error estimate con-
verges to the true spatial error at O(h p+3/2) rate. We also proved that the global effectivity
index in the L2-norm converges to unity atO(h1/2) rate. We note that ||Eu || is computation-
ally efficient because our LDG error estimate is obtained by solving a local steady problem
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with no boundary conditions on each element. Additionally, (5.11) indicates that the com-
putable quantity ‖Eu‖ provides an asymptotically exact a posteriori estimator on the actual
error ‖eu‖. Finally, we would like to mention that the computable quantity uh + Eu converge
to the exact solution u at O(h p+3/2) rate. We emphasize that this accuracy enhancement is
achieved by adding the error estimate to the approximate solution only once at the end of the
computation i.e., at t = T .

Remark 5.1 The assumption in (5.10) imply that the term of orderO(h p+1) is present in the
error. Even though the proof of (5.11) is valid under the assumption (5.10), our computational
results given in the next section suggest that the global effectivity index �u in the L2-norm
converges to unity with at least O(h) rate. Thus, the proposed a posteriori error estimation
technique is an excellent measure of the error and (5.11) indicates that our a posteriori error
estimator is asymptotically exact.

6 Numerical Examples

The purpose of this section is to numerically validate our superconvergence results and the
global convergence of the proposed residual-based a posteriori error estimates. The initial
condition is determined by uh(x, 0) = P1

h u(x, 0). Temporal integration is performed by
the fourth-order classical implicit Runge–Kutta method. A time step �t is chosen so that
temporal errors are small relative to spatial errors. We do not discuss the influence of the
time discretization error in this paper.

Example 6.1 In this example, we consider the following nonlinear convection–diffusion
problem subject to the periodic boundary condition

⎧

⎨

⎩

ut + (u3 + u)x = uxx + (

(2 + 3esin(x+t)) cos(x + t) − sin(x + t) + cos2(x + t)
)

esin(x+t), x ∈ [0, 2π ], t ∈ [0, 1],
u(x, 0) = esin(x), x ∈ [0, 2π ].

(6.1)
The exact solution is given by u(x, t) = esin(x+t). Since f ′(u) = 3u2 + 1 ≥ 0, we use
the upwind flux f̂

∣
∣
i = f (u−

h )
∣
∣
i . We solve this problem using the LDG method on uniform

meshes obtained by partitioning the computational domain [0, 2π] into N subintervals with
N = 10, 20, 30, 40, 50, 60, 70, 80 and using the spaces P p with p = 1 − 4. Figure 1
shows the L2 errors ||eu || and ||eq || at t = 1 with log-log scale as well as their orders of
convergence. The errors are plotted in log scale just for easy visualization. For each P p

space, we fit, in a least-squares sense, the data sets with a linear function and then calculate
from the fitting result the slopes of the fitting lines. The slopes of the fitting lines are shown
on the graph. These results indicate that ||eu || and ||eq || are both O(h p+1). Thus, the error
estimates proved in this paper are optimal in the exponent of the parameter h. In Fig. 2, we
report the L2-norm of the errors ||ēu || and ||uh −πu|| as well as their orders of convergence.
We observe that ||ēu || = O(h p+2) and ||uh −πu|| = O(h p+2). Thus, the LDG solution uh is
superconvergentwith order p+2 to the particular projection P−

h u and to the interpolating right
Radau polynomial πu. Although the superconvergence rate is proved to be of order p+3/2,
our computational results indicate that the observed numerical convergence rate is higher
than the theoretical rate. In Fig. 3 we present the global errors

∣
∣||eu ||−||Eu ||

∣
∣ and ||eu − Eu ||

at t = 1. These results indicate that
∣
∣||eu ||− ||Eu ||

∣
∣ = O(h p+2) and ||eu − Eu || = O(h p+2).

We note that the observed numerical convergence rates are higher than the theoretical rates
established in Theorem 5.1. The results shown in Table 1 indicate that the global effectivity
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Fig. 1 Log–log plots of ||eu || (left) and ||eq || (right) versus mesh sizes h for Example 6.1 on uniform meshes
having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4
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Fig. 2 Log–log plots of ||ēu || (left) and ||uh − πu|| (right) versus mesh sizes h for Example 6.1 on uniform
meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4

10 20 30 40 50 60 70 80
10-14

10-12

10-10

10-8

10-6

10-4

10-2

p=1, slope =3.6907
p=2, slope =5.0548
p=3, slope =6.2647
p=4, slope =6.7425

10 20 30 40 50 60 70 80
10-12

10-10

10-8

10-6

10-4

10-2

100

p=1, slope =2.9606
p=2, slope =3.9876
p=3, slope =4.9754
p=4, slope =5.9716

Fig. 3 Log–log plots of
∣
∣||eu || − ||Eu ||∣∣ (left) and ||eu − Eu || (right) versus mesh sizes h for Example 6.1

on uniform meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4

indices converge to unity under h-refinement. The numerical convergence rates at t = 1 for
∣
∣�u − 1

∣
∣ are also shown in Table 1, which suggest that the convergence rates is higher than

the theoretical rate established in Theorem 5.1.
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Table 1 � and the errors
∣
∣�u − 1

∣
∣ with their orders of convergence at t = 1 for Example 6.1 on uniform

meshes having N = 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4

N p = 1 p = 2

�u
∣
∣�u − 1

∣
∣ Order �u

∣
∣�u − 1

∣
∣ Order

20 0.9910 9.0336e−3 0.9983 1.7255e−3

30 0.9954 4.6129e−3 1.6576 0.9993 7.2502e−4 2.1385

40 0.9972 2.8304e−3 1.6978 0.9996 4.4504e−4 1.6964

50 0.9981 1.9228e−3 1.7327 0.9997 3.0996e−4 1.6210

60 0.9986 1.3947e−3 1.7612 0.9998 2.2925e−4 1.6544

70 0.9989 1.0593e−3 1.7844 0.9998 1.7624e−4 1.7059

80 0.9992 8.3249e−4 1.8044 0.9999 1.3946e−4 1.7529

N p = 3 p = 4

�u
∣
∣�u − 1

∣
∣ Order �u

∣
∣�u − 1

∣
∣ Order

20 0.9974 2.5616e−3 0.9982 1.8370e−3

30 0.9990 9.9372e−4 2.3354 0.9992 7.9506e−4 2.0655

40 0.9995 5.2023e−4 2.2497 0.9996 4.3487e−4 2.0974

50 0.9997 3.2143e−4 2.1578 0.9997 2.7282e−4 2.0894

60 0.9998 2.1914e−4 2.1011 0.9998 1.8687e−4 2.0754

70 0.9998 1.5929e−4 2.0693 0.9999 1.3592e−4 2.0652

80 0.9999 1.2114e−4 2.0503 0.9999 1.0332e−4 2.0537

Example 6.2 In this example, we solve the following viscous Burgers’ equationwith a source
term
{

ut + (u2/2)x = uxx + cos(x + t) − sin(x + t)+ 1
2 sin(2x+2t), x ∈ [0, 2π], t ∈ [0, 1],

u(x, 0) = sin(x), x ∈ [0, 2π ],
(6.2)

subject to the periodic boundary conditions (1.1c). The exact solution is given by u(x, t) =
sin(x + t). We note that f ′(u) = u changes sign in the computational domain. In this case,
we use the Godunov flux which is an upwind flux. We solve this problem using the LDG
method on uniform meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements and using P p

polynomials with p = 1−4. The L2 LDG errors ||eu || and ||eq || at time t = 1 shown in Fig. 4
suggest optimalO(h p+1) convergence rate. Figure 5 shows that ||ēu || and ||uh−πu|| at t = 1
are O(h p+2) convergent. Consequently, the LDG solution uh is superconvergent with order
p + 2 to the Gauss–Radau projection P−

h u and to the p-degree interpolating right Radau
polynomial πu. Again the computational results indicate that the numerical convergence
rate is higher than the theoretical rate, which is proved to be of order p + 3/2. In Fig. 6
we present the errors

∣
∣||eu || − ||Eu ||

∣
∣, ||eu − Eu ||, and their order of convergence at t = 1.

Clearly both errors converge with order p+2 under mesh refinement. Table 2 lists the global
effectivity indices and the errors

∣
∣�u − 1

∣
∣ with their order of convergence at t = 1. These

results indicate that the proposed a posteriori LDG error estimate is asymptotically exact
under mesh refinement. The convergence rate at t = 1 for

∣
∣�u − 1

∣
∣ is O(h). Even though

the assumption f ′(u) ≥ 0 does not always hold true, the same results are observed.
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Fig. 4 Log–log plots of ||eu || (left) and ||eq || (right) versus mesh sizes h for Example 6.2 on uniform meshes
having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4
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Fig. 5 Log–log plots of ||ēu || (left) and ||uh − πu|| (right) versus mesh sizes h for Example 6.2 on uniform
meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4
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Fig. 6 Log–log plots of
∣
∣||eu || − ||Eu ||∣∣ (left) and ||eu − Eu || (right) versus mesh sizes h for Example 6.2

on uniform meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4
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Table 2 � and the errors
∣
∣�u − 1

∣
∣ with their orders of convergence at t = 1 for Example 6.2 on uniform

meshes having N = 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4

N p = 1 p = 2

�u
∣
∣�u − 1

∣
∣ Order �u

∣
∣�u − 1

∣
∣ Order

20 0.9804 1.9605e−2 0.9941 5.9039e−3

30 0.9876 1.2397e−2 1.1304 0.9960 4.0231e−3 0.9460

40 0.9910 9.0547e−3 1.0921 0.9972 2.8389e−3 1.2119

50 0.9929 7.1284e−3 1.0719 0.9977 2.3052e−3 0.9333

60 0.9941 5.8754e−3 1.0603 0.9981 1.9182e−3 1.0080

70 0.9950 4.9973e−3 1.0501 0.9984 1.6213e−3 1.0909

80 0.9957 4.3466e−3 1.0447 0.9986 1.4218e−3 0.9833

N p = 3 p = 4

�u
∣
∣�u − 1

∣
∣ Order �u

∣
∣�u − 1

∣
∣ Order

20 0.9915 8.4945e−3 0.9963 3.7201e−3

30 0.9944 5.6280e−3 1.0153 0.9977 2.3280e−3 1.1561

40 0.9958 4.2057e−3 1.0126 0.9983 1.7355e−3 1.0210

50 0.9966 3.3581e−3 1.0086 0.9986 1.3676e−3 1.0676

60 0.9972 2.7953e−3 1.0061 0.9989 1.1226e−3 1.0828

70 0.9976 2.3937e−3 1.0062 0.9990 9.6768e−4 0.9634

80 0.9979 2.0932e−3 1.0046 0.9992 8.4147e−4 1.0466

Example 6.3 We consider the viscous Burgers’ equation with mixed Dirichlet–Neumann
boundary conditions

⎧

⎨

⎩

ut + (u2/2)x = uxx + 1
2e

−2t sin(2x), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = sin(x), x ∈ [0, 2π ]
u(0, t) = 0, ux (2π, t) = e−t , t ∈ [0, 1].

(6.3)

The exact solution is given by u(x, t) = e−t sin(x). In this example, we test our
superconvergence results and the global convergence of our error estimates using mixed
Dirichlet–Neumann boundary conditions. The numerical flux f̂ associated with the con-
vection is taken as the Godunov flux. The numerical fluxes ûh and q̂h associated with the
diffusion terms are taken as

ûh
∣
∣
i =

{
u(0, t), i = 0,
u−
h

∣
∣
i , i = 1, . . . , N ,

, q̂h
∣
∣
i =

{

q+
h

∣
∣
i , i = 0, . . . , N − 1,

ux (2π, t), i = N .
(6.4)

We test this example using P p polynomials with p = 1 − 4 on a uniform mesh. Figure 7
shows the errors ||eu || and ||eq || at time t = 1. We observe that the order of convergence
of the errors eu and eq is p + 1. This is in full agreement with our theoretical results. In
Fig. 8 we present the errors ||ēu || and ||uh − πu|| at t = 1. We observe that both errors
converge at an O(h p+2) rate. Again these rates are higher than the theoretical rate, which is
proved to beO(h p+3/2). In Fig. 9 we present the errors

∣
∣||eu ||−||Eu ||

∣
∣, ||eu − Eu ||, and their

order of convergence at t = 1. We observe that these errors achieve at least (p + 2)th order
of convergence. Although Theorem 5.1 indicates that the convergence rate is O(h p+3/2),
we observe higher convergence rate. Next, we present the global effectivity indices and the
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Fig. 7 Log–log plots of ||eu || (left) and ||eq || (right) versus mesh sizes h for Example 6.3 on uniform meshes
having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4
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Fig. 8 Log–log plots of ||ēu || (left) and ||uh − πu|| (right) versus mesh sizes h for Example 6.3 on uniform
meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4
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Fig. 9 Log–log plots of
∣
∣||eu || − ||Eu ||∣∣ (left) and ||eu − Eu || (right) versus mesh sizes h for Example 6.3

on uniform meshes having N = 10, 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 1 to 4

errors
∣
∣�u − 1

∣
∣ with their order of convergence at t = 1 in Table 3. We observe that the �u

converges to unity under h-refinement. The convergence rate at t = 1 for
∣
∣�u − 1

∣
∣ is O(h).

This example demonstrates that all conclusions hold true for convection–diffusion problems
subject to mixed boundary conditions.
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Table 3 � and the errors
∣
∣�u − 1

∣
∣ with their orders of convergence at t = 1 for Example 6.3 on uniform

meshes having N = 20, 30, 40, 50, 60, 70, 80 elements using P p , p = 2 to 4

N p = 2 p = 3

�u
∣
∣�u − 1

∣
∣ Order �u

∣
∣�u − 1

∣
∣ Order

20 0.8721 1.2794e−1 0.9964 3.5949e−3

30 0.9686 3.1438e−2 3.4616 0.9978 2.2439e−3 1.1624

40 0.9889 1.1082e−2 3.6245 0.9984 1.6429e−3 1.0837

50 0.9949 5.0715e−3 3.5031 0.9987 1.2965e−3 1.0612

60 0.9972 2.7878e−3 3.2820 0.9989 1.0707e−3 1.0496

70 0.9982 1.7507e−3 3.0181 0.9991 9.1186e−4 1.0417

80 0.9988 1.2133e−3 2.7460 0.9992 7.9400e−4 1.0365

N p = 4

�u
∣
∣�u − 1

∣
∣ Order

20 0.9985 1.4824e−3

30 0.9991 9.3201e−4 1.1445

40 0.9993 6.7764e−4 1.1079

50 0.9995 5.3184e−4 1.0857

60 0.9996 4.3790e−4 1.0660

70 0.9996 3.7297e−4 1.0411

80 0.9997 3.2546e−4 1.0204

Remark 6.1 We also solved (6.3) but subject to the Dirichlet boundary conditions u(0, t) =
u(2π, t) = 0 and observed similar results. Moreover, we repeated the previous experiments
with all parameters kept unchanged except for meshes where we used nonuniform meshes.
We also observed similar conclusions. These results are not included to save space.

Example 6.4 In this example, we solve a convection–diffusion problem, where the exact
solution has a steep front. We consider the viscous Burgers’ equation with mixed Dirichlet–
Neumann boundary conditions

⎧

⎨

⎩

ut + (u2/2)x = uxx + f (x, t), x ∈ [0, 1], t ∈ [0, T ],
u(x, 0) = 1 − 2 tanh(100x), u(0, t) = 1 − 2 tanh(−100t),
ux (1, t) = −200 sech2(100(1 − t)).

(6.5)

The source term f (x, t) is chosen so that the exact solution is the smooth function

u(x, t) = 1 − 2 tanh(100(x − t)),

which has a steep front along the line x = t . In particular, at time t = 0.5, the exact solution
is smooth function but it has a steep front at the neighborhood of the point x = 0.5. In
Fig. 10 we present the exact solution, the LDG solution, and the exact error using N = 100,
�t = 10−5, T = 0.5, and p = 1. The results indicate that the scheme converges towards
the analytic solution and the steep front is well captured. The global effectivity index �u(t)
is shown in Fig. 11 using p = 1, T = 1, and N = 40, 60. We observe that the effectivity
index remains constant as we refine the mesh. Moreover, �u approaches 1 as we refine the
mesh These computational results indicate that our estimator is effective.
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Fig. 10 Graph of the exact solution u (left), the LDG solution uh (middle, and the exact error u − uh (right)
for Example 6.4 using N = 100, �t = 10−5, and p = 1
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Fig. 11 Global effectivity index �u(t), t ∈ [0, 1] versus time for Example 6.4 using p = 1 on uniform
meshes having N = 40 elements (left) and N = 60 (right)

7 Concluding Remarks

In this paper, we proposed and analyzed a posteriori error estimate for local discontinuous
Galerkin (LDG) method applied to nonlinear convection–diffusion problems in one space
dimension. We proved several L2 error estimates and superconvergence results towards a
special projection, when the upwind flux is used for the convection term and the alternating
flux is used for the diffusion term.More precisely,we showed that theLDGsolutions converge
to the exact solutions with order p + 1, when the space of piecewise polynomials of degree
p ≥ 1 is used. We further proved that the derivative of the LDG solution is superconvergent
with order p + 1 towards the derivative of a Gauss–Radau projection of the exact solution.
Moreover, we proved that the LDG solution is O(h p+3/2) superconvergent towards Gauss–
Radau projection of the exact solution. We used the superconvergence results to construct
asymptotically exact a posteriori error estimates by solving a local steady problem with no
boundary conditions on each element. We further proved that the proposed a posteriori error
estimates converge to the true spatial errors at O(h p+3/2) rate. Finally, we proved that the
global effectivity indices in the L2-norm converge to unity at O(h1/2) rate. We are currently
investigating the superconvergence properties and the asymptotic exactness of a posteriori
error estimates for LDGmethods applied to two-dimensional convection–diffusion and wave
equations on rectangular and triangular meshes. Our future work will focus on extending our
a posteriori error analysis to problems on tetrahedral meshes. We are also planning to use the
a posteriori error estimators to construct efficient adaptive LDG methods and reach similar
conclusions as in our previous work [3], where we tested similar a posteriori error estimates
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of DG discretization errors [12] for hyperbolic problems on adaptively refined unstructured
triangular meshes. We expect that our error estimates will converge to the true error under
adaptive mesh refinement.
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