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Abstract In this paper, a new numerical approximation is discussed for the two-dimensional
distributed-order time fractional reaction–diffusion equation. Combining with the idea of
weighted and shifted Grünwald difference (WSGD) approximation (Tian et al. inMath Com-
put 84:1703–1727, 2015; Wang and Vong in J Comput Phys 277:1–15, 2014) in time, we
establish orthogonal spline collocation (OSC) method in space. A detailed analysis shows
that the proposed scheme is unconditionally stable and convergentwith the convergence order
O(τ 2 + �α2 + hr+1), where τ,�α, h and r are, respectively the time step size, step size in
distributed-order variable, space step size, and polynomial degree of space. Interestingly, we
prove that the proposedWSGD-OSC scheme converges with the second-order in time, where
OSC schemes proposed previously (Fairweather et al. in J Sci Comput 65:1217–1239, 2015;
Yang et al. in J Comput Phys 256:824–837, 2014) can at most achieve temporal accuracy of
order which depends on the order of fractional derivatives in the equations and is usually less
than two. Some numerical results are also given to confirm our theoretical prediction.
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1 Introduction

In this article, we consider the following distributed order time fractional reaction diffusion
equation:

Dω
t u(x, t) = κ�u(x, t) − νu(x, t) + f (x, t),

x = (x, y) ∈ � = [0, L] × [0, L] ⊂ R
2, t ∈ (0, T ], (1.1)

with initial condition
u(x, 0) = ϕ(x), x ∈ �, (1.2)

and boundary condition

u(x, t) = 0, (x, t) ∈ ∂� × (0, T ]. (1.3)

where κ > 0 is the diffusion coefficient, ν > 0 is the constant reaction rate, � is the Laplace

differential operator, i.e., �u = ∂2u
∂x2

+ ∂2u
∂y2

. The symbols �, ∂� denote the transport field
and its boundary. f (x, t) and ϕ(x) are given functions, andDω

t u(x, t) denotes the distributed
order fractional derivative of u in time t , given by

Dω
t u(x, t) =

∫ 1

0
ω(α)C0 D

α
t u(x, t)dα. (1.4)

Here ω(α) is a continuous non-negative weight function, such that the conditions

ω(α) ≥ 0; ω �= 0, α ∈ [0, 1];
∫ 1

0
ω(α)dα = c0 > 0

hold true, where c0 is a positive constant. C0 D
α
t u(x, t) is the αth order time Caputo fractional

derivative defined by

C
0 D

α
t u(x, t) = 1

�(1 − α)

∫ t

0

∂u(x, s)

∂s

ds

(t − s)α
, 0 < α < 1, (1.5)

and �(·) is the Gamma function.
The sub-diffusion processes with themean square displacement with a logarithmic growth

have been introduced recently. One of the approaches for modelling of such processes is to
employ time-fractional diffusion equations of distributed order. There are numerous ref-
erences to the literature dealing with different methods and techniques for the analytical
solutions and other properties of the distributed-order time fractional diffusion equations.
We just mention a few part among them. Luchko [1,2] considered the maximum principle
and some uniqueness and existence results, and subsequently the asymptotic behaviors of
solutions is studied in [3]. Jia et al. [4] studied the well-posedness of the distributed-order
fractional abstract Cauchy problem using functional calculus technique. Meerschaert et al.
[5] established the explicit strong solutions and stochastic analogues. The fundamental solu-
tion of the distributed order time fractional diffusion equations in the unbounded domain was
obtained by Mainardi et al. [6] in terms of the Fourier–Laplace representation.

In recent years, several numerical methods have been applied for the solution of fractional
distributed order partial differential equations in one and two several space variables. Ye et al.
[7,8] analysed the difference scheme and compact difference scheme for a distributed-order
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time-fractional diffusion-wave equations and Riesz space fractional diffusion equation, and
proved unconditional stability and convergence by the discrete energy method and mathe-
matical induction. Katsikadelis [9] developed a new numerical method for solving distributed
order fractional differential equations of general form in the integration interval [α, β]. Gao
and Sun [10–12] proposed some different difference and alternating direction implicit (ADI)
difference schemes for distributed order fractional equations. Du et al. [13] devoted a high-
order difference schemes for the distributed-order time-fractional diffusion equations with
smooth solutions both one and two space dimensions. Jin et al. [14] presented a rigorous
numerical analysis of two fully discrete schemes for the distributed-order time fractional
diffusion equation with non-smooth initial data. Chen et al. [15] developed a spectral and
pseudospectral scheme for the distributed order time fractional reaction–diffusion equation
on a semi-infinite spatial domain. Morgado and Rebelo [16] presented an implicit scheme
for the numerical approximation of a distributed-order time-fractional reaction–diffusion
equation with a nonlinear source term.

However, numerical approximation referring OSCmethod for distributed-order time frac-
tional equations is still at an early stage of development. As pointed out in paper [17], in
comparison with finite difference schemes, orthogonal spline collocation methods show con-
tinuous approximations to the solution and its spatial derivatives at all points of the domain of
the problem and allow for arbitrarily high-order accuracy in the spatial approximation. Com-
pared to finite element Galerkin methods the calculation of the coefficient of the mass and
stiffiness matrices in the system of linear equations determining the approximate solution
is very fast and efficient, since no integrals need to be evaluated or approximated. More-
over, OSC scheme always lead to the almost block diagonal linear systems, which can be
implemented by the software packages efficiently.

Therefore, OSC methods have evolved as a robust and valuable technique for the numer-
ical solutions of a broad class of ordinary and partial differential equations; see [18] for a
comprehensive survey. Bialecki et al. [19] formulated the extrapolated Crank–Nicolson OSC
method with C1 splines of degree ≥ 3, and established an optimal order error bound in the
discrete maximum norm in time and the continuous maximum norm in space for a quasilin-
ear parabolic problem with nonlocal boundary conditions. Fernandes and Fairweather [20]
considered the ADI extrapolated Crank–Nicolson orthogonal spline collocation technique
for the approximate solution of nonlinear reaction–diffusion systems in fixed domains, and
Fernandes and Bialecki [21] subsequently generalized to evolving domains. Recently, we
formulated OSC and ADI OSC methods to solve fractional partial differential equations
[22–25], the convergence and stability were analyzed strictly.

In this paper, our main purpose is to derive WSGD-OSC approximation for the problem
(1.1)–(1.3). The main contribution of the paper consists of: (1) We construct discrete-time
OSC methods for the numerical solution of the two dimensional distributed order time frac-
tional reaction diffusion equation. Meanwhile we introduce the two-dimensional numerical
example to demonstrate the effectiveness of proposed methods. (2) Based on the idea of
weighted and shifted Grünwald difference operator, we establish discrete-time OSC schemes
with temporal accuracy order equal to two, where OSC schemes proposed previously can at
most achieve temporal accuracy of order which depends on the order of fractional derivatives
in the equations and is usually less than two. (3) We carry out an analysis of stability and
convergence of the proposed method. A convergence rate of order O(τ 2 + �α2 + hr+1)

is rigourously proved. In particular, because the order of fractional derivatives in time dis-
tributed in the interval [0, 1], its stability and convergence analysis become more perplexing
to handle. We first discretize the integral term in the time distributed-order using numerical
approximation, thus the original problem is approximated by a multi-term time fractional

123



J Sci Comput (2018) 76:1502–1520 1505

reaction diffusion equation. We then use the weighted and shifted Grünwald difference oper-
ators [26–28] to approximate the fractional operators. Combined with OSC scheme in space,
we introduce some new techniques for the convergence analysis, which is a generalization
of the schemes proposed in [24] to the case of multi-term fractional derivatives.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations and
auxiliary lemmas. Meanwhile, the discrete-time OSC method is derived. Section 3 presents
the stability and convergence for WSGD-OSC scheme. Several examples are given in Sect. 4
and some conclusions are drawn in Sect. 5.

2 Discrete-Time OSC Scheme

2.1 Notations

In this subsection, we will introduce some notations, which will be frequently used in the
subsequent of this article. For a positive integer Nx and Ny , a uniform partition of I = [0, 1]
is defined as follows

δx : 0 = x0 < x1 < · · · < xNx = 1, δy : 0 = y0 < y1 < · · · < yNy = 1.

Let δ = δx × δy of � be quasi-uniform [29], hxk = xk − xk−1, h
y
l = yl − yl−1 and

h = max( max
1≤k≤Nx

hxk , max
1≤l≤Ny

hy
l ), 1 ≤ k ≤ Nx , 1 ≤ l ≤ Ny .

Set M (δ) be the space of piecewise polynomials in x and y defined by

M (δ) = M (r, δx ) ⊗ M (r, δy),

where M (r, δx ) = {
v|v ∈ C1( Ī ), v|[xk−1,xk ] ∈ Pr , k = 1, 2, . . . , Nx , v(0) = v(1) = 0

}
,

and Pr denotes the set of polynomials of degree at most r , with r ≥ 3. With M (r, δy)
defined similarly.

Define Gauss collocation points set in �: � = {ξ |ξ = (ξ x , ξ y), ξ x ∈ �x , ξ
y ∈ �y},

where �x = {ξ xi,k}Nx ,r−1
i,k=1 , ξ xi,k = xi−1 + λkhxi , and {λk}r−1

k=1 be the nodes of the (r − 1)-point

Gauss quadrature rule on I . With �y defined similarly.
Let {wk}r−1

k=1 be the weights of the (r − 1)-point Gauss quadrature rule on I . For any
function u and v defined on �, the discrete inner product and norm are defined as follows

〈u, v〉 =
Nx∑
i=1

Ny∑
j=1

hxi h
y
j

r−1∑
k=1

r−1∑
l=1

wkwl(uv)(ξ xi,k, ξ
y
j,l), ‖v‖2M r

= 〈v, v〉. (2.1)

For m a nonnegative integer, let Hm(�) denote the usual Sobolev space with norm

‖v‖Hm =
⎛
⎝ m∑

�=0

∑
i+ j=�

∥∥∥∥ ∂ i+ jv

∂xi∂y j

∥∥∥∥
2
⎞
⎠

1
2

,

where the norm ‖·‖ denotes the usual L2 norm, sometimes written as ‖·‖H0 for convenience.

Lemma 1 [23] The norms ‖ · ‖M r and ‖ · ‖ are equivalent on M (δ).

If X is a normed space with norm ‖ · ‖X , then we denote LP (X) by

LP (X) = {v : v(·, t) ∈ X, t ∈ [0, T ]; ‖v‖LP (X) < ∞},
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where

‖v‖LP (X) =
(∫ T

0
‖v‖P

Xdt

)1/p

, ‖v‖L∞(X) = sup
0≤t≤T

‖v‖X .

Next, we introduce the composite trapezoid formula that will be frequently used in the
discretization of the distributed order time derivative.

Divide the interval [0, 1] into 2J subintervals with �α = 1/2J and αl = l�α, l =
0, 1, · · · , 2J .

Lemma 2 [11,12] Let s(α) ∈ C2[0, 1], then we have
∫ 1

0
s(α)dα = �α

2J∑
l=0

cls(αl) − �α2

12
s

′′
(ς), ς ∈ (0, 1), (2.2)

where

cl =
{ 1

2 , l = 0, 2J ;
1, 1 ≤ l ≤ 2J − 1.

2.2 Construction of the Fully Discrete Scheme

In this subsection, we will consider discrete-time OSC schemes for solving problem (1.1)–
(1.3). Firstly, the continuous-time OSC scheme to the solution u of (1.1) is a differentiable
map uh : (0, T ] → M (δ) such that

Dω
t uh(ξ

x
i,k, ξ

y
j,l , t) = κ�uh(ξ

x
i,k, ξ

y
j,l , t) − νuh(ξ

x
i,k, ξ

y
j,l , t)

+ fh(ξ
x
i,k, ξ

y
j,l , t), (ξ xi,k, ξ

y
j,l) ∈ �, t ∈ (0, T ], (2.3)

where fh(·, ·, t) ∈ M (δ) satisfying 〈 fh, ϑ〉 = 〈 f, ϑ〉, ∀ϑ ∈ M (δ).
Let temporal domain [0, T ] to be divided by the uniform partition {tk}Kk=0 such that

tk = kτ and τ = T/K , where K is a positive integer. In order to construct a second order
finite difference scheme for the problem (1.1) in time, we first discretize the integral term
in the distributed-order equation. Suppose ω(α) ∈ C2[0, 1], C0 Dα

t (·) ∈ C2[0, 1]. By using
Lemma 2, we have

Dω
t u(ξ xi,k, ξ

y
j,l , t) =

∫ 1

0
ω(α)C0 D

α
t u(ξ xi,k, ξ

y
j,l , t)dα

= �α

2J∑
l=0

clω(αl)
C
0 D

αl
t u(ξ xi,k, ξ

y
j,l , t) + O(�α2). (2.4)

In the following parts of this paper, we assume u(x, 0) ≡ 0, otherwise, we consider u = u−ϕ.
In this case, for 0 < α < 1, if g(0) = 0, then we have C

0 D
α
t g(t) = RL

0 Dα
t g(t), here

RL
0 Dα

t g(t) denote the left-sided Riemann-Liouville fractional derivative of order α. Thus
one can continuously extend the solution u(x, t) to be zero for t < 0. Now we consider the
weighted and shifted Grünwald-Letnikov approximation [26] for C0 D

α
t u(x, t), that is

C
0 D

α
t u(ξ xi,k, ξ

y
j,l , tn+1) = τ−α

n+1∑
k=0

λ
(α)
k u(ξ xi,k, ξ

y
j,l , tn+1−k) + R(α)

n+1, (2.5)

where

λ
(α)
0 = 2 + α

2
g(α)
0 , λ

(α)
k = 2 + α

2
g(α)
k − α

2
g(α)
k−1, k ≥ 1, (2.6)
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g(α)
0 = 1, g(α)

k = (−1)k
(

α

k

)
= (1 − α + 1

k
)g(α)

k−1, k ≥ 1.

Based on Theorem 1 in Tian et al. [26], we can derive the following estimate of the
truncation error.

Lemma 3 Suppose ∀γ > 0 and RL
0 Dγ+2

t u ∈ L(R). We have
∣∣∣∣∣RL0 Dγ

t u(tn) − τ−γ
n∑

k=0

λ
(γ )

k u(tn−k)

∣∣∣∣∣ ≤ Cτ 2
∥∥∥F[RL0 Dγ+2

t u](ω)

∥∥∥
L1

,

where F denotes the fourier transform symbol.
Therefore, the truncation error R(α)

n+1 satisfies∣∣∣R(α)
n+1

∣∣∣ ≤ C1τ
2
∥∥∥F[RL0 Dα+2

t u](ω)

∥∥∥
L1

= O(τ 2). (2.7)

Then on using (2.3)–(2.5), the WSGD-OSC scheme for Eq. (1.1) consists in finding
{unh}K−1

n=0 ⊂ M (δ) such that

�α

2J∑
l=0

clω(αl)D
αl
τ un+1

h − κ�un+1
h + νun+1

h = f n+1
h , n = 0, · · · , K − 1, (2.8)

where, for convenience, we have used the symbol Dαl
τ u(tn+1) = τ−αl

n+1∑
k=0

λ
(αl )
k u(tn−k+1)

and omitted the dependence of un+1(ξ xi,k, ξ
y
j,l) on (ξ xi,k, ξ

y
j,l) in the above equation.

If the initial condition u(x, 0) = ϕ(x) �= 0 the substitution u = u − ϕ will be considered.
Assume ϕ ∈ H2

0 (�), then we can write the homologous full-discrete form

�α

2J∑
l=0

clω(αl)D
αl
τ un+1

h − κ�un+1
h + νun+1

h

= f n+1
h + κ�ϕh − νϕh, n = 0, · · · , K − 1, (2.9)

where the quantity ϕh = u0h is a suitable approximation to the initial condition ϕ(x), which
we shall define later.

3 Analysis of the WSGD-OSC Scheme

In this section, we will derive and analyze the stability and convergence of fully-discrete
scheme (2.8). We commence with the following Lemma which is critical for establishing the
stability and convergence of the WSGD-OSC scheme.

Lemma 4 [28] Let {λ(α)
n }∞n=0 be defined as in (2.6), then for any positive integer k and real

vector (v1, v2, · · · , vk)
T ∈ R

k , it holds that

k−1∑
n=0

⎛
⎝ n∑

p=0

λ(α)
p vn+1−p

⎞
⎠ vn+1 ≥ 0. (3.1)
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3.1 Stability

The stability of the WSGD-OSC scheme (2.8) is given in the following theorem.

Theorem 1 The WSGD-OSC scheme (2.8) is unconditionally stable in the sense that for all
τ > 0, it holds

ντ

m∑
n=1

‖unh‖2M r
≤ τ

ν

m∑
n=1

‖ f nh ‖2M r
, 1 ≤ m ≤ K . (3.2)

Proof Making an inner product of (2.8) with un+1
h , we obtain

�α

2J∑
l=0

clω(αl)τ
−αl

〈
n+1∑
k=0

λ
(αl )
k un−k+1

h , un+1
h

〉
− κ〈�un+1

h , un+1
h 〉

+ ν〈un+1
h , un+1

h 〉 = 〈 f n+1
h , un+1

h 〉, n = 0, 1, . . . , K − 1. (3.3)

Note that, from Fernandes and Fairweather [30], for ϑ ∈ M (δ), there exists a positive
constant c such that

〈−�ϑ, ϑ〉 ≥ c‖∇ϑ‖2 ≥ 0. (3.4)

On using (3.4) with ϑ = un+1
h to the second term on LHS of (3.3), we have

− κ〈�un+1
h , un+1

h 〉 ≥ 0. (3.5)

Summing from n = 0 to n = m − 1 (1 ≤ m ≤ K ), and then multiplying the result
equation by 2τ , noticing that u0h = 0, we obtain

2�α

2J∑
l=0

clω(αl)τ
1−αl

m−1∑
n=0

〈
n∑

k=0

λ
(αl )
k un−k+1

h , un+1
h

〉

−2κτ

m−1∑
n=0

〈�un+1
h , un+1

h 〉 + 2ντ

m−1∑
n=0

‖un+1
h ‖2M r

= 2τ
m−1∑
n=0

〈 f n+1
h , un+1

h 〉. (3.6)

Applying the Cauchy–Schwarz inequality to the term on the RHS of (3.6), also using (3.5)
and Lemma 4, then removing the first and the second non-negative terms on the LHS of (3.6),
we obtain

2ντ

m−1∑
n=0

‖un+1
h ‖2M r

≤ τ

ν

m−1∑
n=0

‖ f n+1
h ‖2M r

+ ντ

m−1∑
n=0

‖un+1
h ‖2M r

, 0 ≤ n ≤ K − 1, (3.7)

by a simple calculation, we complete the proof of Theorem 1.

3.2 Convergence

We now consider the convergence of our WSGD-OSC scheme. In the error analysis, we
require the following elliptic projectionW of the exact solution u. DefineW : [0, T ] → M (δ)

by
�(u − W ) = 0 on � × [0, T ], (3.8)

where u is the solution of (1.1)–(1.3). The next two lemmas provide estimates for u−W and
its time derivatives, which will be useful for the analysis in the after-mentioned part.
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Lemma 5 [31] If ∂ l u/∂t l ∈ Hr+3− j , l = 0, 1, j = 0, 1, and W is defined by (3.8), then
there exists a constant C, independent of h, such that

∥∥∥∥∂ l(u − W )

∂t l

∥∥∥∥
H j

≤ Chr+1− j
∥∥∥∥∂ l u

∂t l

∥∥∥∥
Hr+3− j

, j = 0, 1, l = 0, 1. (3.9)

Lemma 6 [31] If ∂ i u/∂t i ∈ Hr+3, for t ∈ [0, T ], i = 0, 1, then

∥∥∥∥∂ l+i (u − W )

∂xl1∂yl2∂t i

∥∥∥∥
M r

≤ Chr+1−l
∥∥∥∥∂ i u

∂t i

∥∥∥∥
Hr+3

, (3.10)

where 0 ≤ l = l1 + l2 ≤ 4.

For the error analysis of the fully discrete scheme (2.8), we have the following main
convergence theorem.

Theorem 2 Suppose u is the solution of (1.1)–(1.3), and unh (0 ≤ n ≤ K) is the solution
of the problem (2.8) with u0h = W 0. If the hypotheses of Lemma 3 are satisfied and if
u, RL

0 Dαl
t u ∈ L∞(Hr+3), 0 ≤ l ≤ 2J , then there exists a positive constant C, independent

of h and τ , such that

ν

4
τ

m∑
n=1

‖u(tn) − unh‖2 ≤ CTh2r+2
[
‖u‖2L∞(Hr+3)

+ max
0≤l≤2J

‖RL
0 Dαl

t u‖2L∞(Hr+3)

]

+CuT

(
τ 4 max

0≤l≤2J

∥∥∥F[RL0 Dαl+2
t u](ω)

∥∥∥2
L1(H0)

+ �α4
)

, 1 ≤ m ≤ K . (3.11)

Proof With W defined in (3.8), we set

ηn = un − Wn, ζ n = unh − Wn, 0 ≤ n ≤ K , (3.12)

so that
un − unh = ηn − ζ n . (3.13)

Since estimates of ηn are known from Lemmas 5 and 6, it is sufficient to bound ζ n , then use
the triangle inequality to bound un − unh .

Firstly, from (1.1), (2.3)–(2.4), (2.8), (3.8) and (3.12), then for v ∈ M (δ), we obtain

�α

2J∑
l=0

clω(αl)〈Dαl
τ ζ n+1, v〉 − κ〈�ζ n+1, v〉 + ν〈ζ n+1, v〉

= �α

2J∑
l=0

clω(αl)〈Dαl
τ ηn+1, v〉 + ν〈ηn+1, v〉 + 〈Rn+1, v〉, 0 ≤ n ≤ K − 1,(3.14)

here, by using (2.7)

|Rn+1| ≤ cu max
0≤l≤2J

∥∥∥F[RL0 Dαl+2
t u](ω)

∥∥∥
L1

τ 2 + c�α2. (3.15)

Taking v = ζ n+1 in (3.14), we have
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�α

2J∑
l=0

clω(αl)τ
−αl

〈
n+1∑
k=0

λ
(αl )
k ζ n−k+1, ζ n+1

〉
− κ〈�ζ n+1, ζ n+1〉 + ν‖ζ n+1‖2M r

= �α

2J∑
l=0

clω(αl)〈Dαl
τ ηn+1, ζ n+1〉

+ ν〈ηn+1, ζ n+1〉 + 〈Rn+1, ζ n+1〉, 0 ≤ n ≤ K − 1, (3.16)

using Lemma 6, the second-to-last term in (3.16) can be bounded as

ν〈ηn+1, ζ n+1〉 ≤ ν‖ηn+1‖2M r
+ ν

4
‖ζ n+1‖2M r

≤ Cνh2r+2‖u‖2L∞(Hr+3)
+ ν

4
‖ζ n+1‖2M r

. (3.17)

Applying (2.4), (2.7) and (3.15), the last term in (3.16) can estimated as

〈Rn+1, ζ n+1〉
≤ 1

ν
cu

(
τ 4 max

0≤l≤2J

∥∥∥F[RL0 Dαl+2
t u](ω)

∥∥∥2
L1(H0)

+ �α4
)

+ ν

4
‖ζ n+1‖2M r

. (3.18)

Finally, in order to estimate the first term on RHS of (3.16), we first define a new elliptic
projection W̃ of the exact solution u by W̃ : [0, T ] → M (δ) by

�RL
0 Dα

t u − �W̃ = 0 on � × [0, T ],
then from Theorem 3.4 in [29], it follows that

‖RL
0 Dα

t u − W̃‖ ≤ Chr+1‖RL
0 Dα

t u‖Hr+3 , (3.19)

by introducing ρ defined by

−�ρ =RL
0 Dα

t W − W̃ , in � × [0, T ],
ρ = 0, on ∂� × [0, T ].

According the proof of Lemma3.5 in [31], and a straightforwardmodification of the argument
given in the proof of Theorem 2.1 of [32], we can obtain

‖RL
0 Dα

t W − W̃‖ ≤ Chr+1
(
‖RL
0 Dα

t u‖Hr+2 + ‖u‖Hr+2

)
, (3.20)

using the triangle inequality, (3.19), (3.20), we can obtain

‖RL
0 Dα

t u −RL
0 Dα

t W‖ ≤ Chr+1
(
‖RL
0 Dα

t u‖Hr+3 + ‖u‖Hr+2

)
. (3.21)

Since Dαl
τ ηn+1 =RL

0 Dαl
t ηn+1 + O(τ 2), then using (3.21), we have

�α

2J∑
l=0

clω(αl)〈Dαl
τ ηn+1, ζ n+1〉

≤ 2

ν
�α

2J∑
l=0

c2l (ω(αl))
2‖Dαl

τ ηn+1‖2M r
+ �α

2J∑
l=0

ν

8
‖ζ n+1‖2M r

≤ Ch2r+2
(

max
0≤l≤2J

‖RL
0 Dαl

t u‖2L∞(Hr+3)
+ ‖u‖2L∞(Hr+2)

)
+ Cuτ

4 + ν

4
‖ζ n+1‖2M r

.

(3.22)
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Substituting (3.17)–(3.18) and (3.22) in (3.16), then summing up (3.16) from n = 0 to
n = m − 1 (1 ≤ m ≤ K ), and using (3.4) and Lemma 4, we attain

ν

4
τ

m∑
n=1

‖ζ n‖2M r

≤ Ch2r+2τ

m∑
n=1

[
‖u‖2L∞(Hr+3)

+ max
0≤l≤2J

‖RL
0 Dαl

t u‖2L∞(Hr+3)

]

+Cuτ

m∑
n=1

(
τ 4 max

0≤l≤2J

∥∥∥F[RL0 Dαl+2
t u](ω)

∥∥∥2
L1(H0)

+ �α4
)

. (3.23)

Therefore, using the equivalence of the norms ‖ · ‖ and ‖ · ‖M r onM (δ) in Lemmas 1, 5 and
6, and the triangle inequality, (3.23) then yield the desired result.

4 Numerical Experiments

In this section, we carry out numerical experiments using the new developed numerical
algorithms to illustrate our theoretical statements. In our implementations, we used the space
of piecewiseHermite bicubics (r = 3)with the standard value and scaled slope basis functions
[17] on identical uniform partitions of I . The initial condition is approximated by using
u0h = W 0, the OSC elliptic projection of ϕ, as specified in Theorem 2. The forcing function
f (x, t) is approximated by using interpolant projection in the collocation point. For our
method, we present L∞ and L2 errors and the corresponding rates of convergence, also the
convergence rates determined by

Convergence rate ≈ log(em/em+1)

log(hm/hm+1)
, (4.1)

where h = 1/Nm is the step size with N = Nm , and em is the norm of the corresponding
error.

Example 1 We consider the following problem similar to [15]:⎧⎨
⎩

Dω
t u − �u + u = f (x, y, t),

u(x, y, 0) = 0, (x, y) ∈ �,

u(x, y, t) = 0, (x, y, t) ∈ ∂� × (0, T ],
where ω(α) = �(4 − α), � = [0, 1] × [0, 1], T = 0.5,

f (x, y, t) = 8

[
6(t3 − t2)

ln t
+ (8π2 + 1 − 6

(1 + x)2
− 6

(1 + y)2
)t3

]
sin(2πx) sin(2πy)

(1 + x)2(1 + y)2

+ 8t3[8π cos(2πx) sin(2πy)

(1 + x)3(1 + y)2
+ 8π

sin(2πx) cos(2πy)

(1 + x)2(1 + y)3
].

The exact solution of the example is given by u(x, y, t) = 8t3 sin(2πx) sin(2πy)
(1+x)2(1+y)2

.

From our theoretical estimates, the numerical convergence order of WSGD-OSC (2.8) is
expected to be O(τ 2 + �α2 + h4) when r = 3, so we can select the time steps τ = h2 (with
J big enough) to verify the second order accuracy in t and fourth order accuracy in space
concurrently for our proposed method. In Table 1, we take τ = h2, and fix J = 100 big
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Table 1 Example 1: Numerical convergence orders in spatial and temporal direction with τ = h2, J = 100

N L2 error Rate L∞ error Rate

4 1.4199e−03 2.2491e−03

8 9.1024e−05 3.9634 1.6154e−04 3.7994

16 5.7862e−06 3.9756 9.9709e−06 4.0180

32 3.6122e−07 4.0017 6.1927e−07 4.0091

Table 2 Example 1: Numerical convergence orders in distributed-order variable with fixing τ = h2 = 1/322

J L2 error Rate L∞ error Rate

2 2.0748e−04 3.8251e−04

4 5.1790e−05 2.0022 9.5440e−05 2.0028

8 1.2900e−05 2.0053 2.3723e−05 2.0083

16 3.1938e−06 2.0140 5.8383e−06 2.0227

Table 3 Example 1: Numerical convergence orders in distributed-order variable and spatial direction with
�α = h2, K = 2000

N L2 error Rate L∞ error Rate

4 1.4199e−03 2.2491e−03

8 9.1024e−05 3.9634 1.6154e−04 3.7994

16 5.7862e−06 3.9756 9.9709e−06 4.0180

32 3.6122e−07 4.0017 6.1927e−07 4.0091

enough to eliminate the errors caused by quadrature errors in the distributed-order variable.
The data in Table 1 verify 2nd order accuracy in time and 4th order in space concurrently.

We can check the numerical accuracy in distributed-order variable by choosing τ = h2

small enough to eliminate the errors caused by temporal and spatial discretization. In Table
2 by fixing the time and space steps small enough (τ = h2 = 1/322), we also verify 2nd
order accuracy in distributed-order variable.

Also we can select �α = h2 (with K big enough to eliminate the contamination of the
temporal error) to verify the second order accuracy in distributed-order variable and fourth
order accuracy in space simultaneously. Table 3 shows the expected 2nd order accuracy in
distributed-order variable and 4th order in space with �α = h2 and K = 2000.

At the same time, in Table 4, we choose τ = �α = h so that the error stemming from the
spatial approximation is negligible. In this case, we can verify 2nd order accuracy in time
and distributed-order variable, simultaneously. The expected convergence rates can be seen
in Table 4.

At last, with an optimal step ratio we can choose τ = �α = h2 to verify the second
order accuracy in t , the second order accuracy in distributed-order variable, and fourth order
accuracy in space, simultaneously. Table 5 lists the solution errors on the gradually refined
grids, from which, one can read that, as the step sizes are reduced by a factor of 2, the
errors are approximately decreased by a factor of 16. Hence, the convergence order in three
directions matched that of the theoretical one.
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Table 4 Example 1: Numerical convergence orders in temporal direction and distributed-order variable with
τ = �α = h

N L2 error Rate L∞ error Rate

10 1.4260e−03 2.6417e−03

20 3.7593e−04 1.9234 7.0003e−04 1.9160

40 9.6403e−04 1.9633 1.7729e−04 1.9813

80 2.4402e−05 1.9821 4.4649e−05 1.9894

160 6.1381e−05 1.9911 1.1196e−05 1.9956

320 1.5393e−06 1.9955 2.8038e−06 1.9975

Table 5 Example 1: Numerical convergence orders in temporal, spatial direction and distributed-order vari-
able with τ = �α = h2

N L2 error Rate L∞ error Rate

6 2.8462e−04 5.0224e−04

12 1.8174e−05 3.9691 3.1017e−05 4.0172

24 1.1532e−06 3.9782 1.9661e−06 3.9797

48 7.2727e−08 3.9870 1.2272e−07 4.0019

Example 2 We consider the following problem similar to [11]:⎧⎨
⎩

Dω
t u − �u + u = ( t−1

t ln t �(p + 1) + 8π2 + 1)2pt p sin(2πx + 2πy),
u(x, y, 0) = 0, (x, y) ∈ �,

u(x, y, t) = 0, (x, y, t) ∈ ∂� × (0, T ],
where ω(α) = �(p + 1 − α), � = [0, 1] × [0, 1], T = 0.5, p > 0.

The exact solution of the example is given by u(x, y, t) = 2pt p sin(2πx + 2πy).

In Table 6, we first test the temporal and spatial accuracy and convergence rates for our
proposed method, and select τ = h2 with J = 100 big enough so that the error stemming
from the quadrature approximation in the distributed-order variable is negligible. Table 6
verifies 2nd order accuracy in time and 4th order accuracy in space for all four different
values of p (p = 3, 2.5, 2, 1.5, 1), which are in keeping with the theoretical predictions.

In Table 7, we choose τ = �α = h so that the error stemming from the spatial approxima-
tion is negligible. The data in Table 7 can tell us that the numerical convergence order in time
and distributed-order variable are both two for p = 2.5, 2, 1.5. Whereas, the convergence
order of both directions are polluted for p = 1. The reason might be that the exact solution
behaves as u(t) = t1 and therefore RL

0 Dα+2
t u /∈ L(R) as required. Also, In Table 8, we take

τ = h and J = 100 enough small such that the dominated errors come from the approxi-
mation for temporal direction. The second-order convergence in time can be suggested by
the data in Table 8 for p = 3.5, 3, 2.5, 2. In the same way, the convergence order in time is
polluted for p = 1, 1.5. It may be certain regularity conditions on the analytical solutions
are required to ensure the expected numerical accuracy. How to establish an estimate with
respect to the data regularity (instead of solution smoothness) which is one of the interesting
problems relate to the fractional diffusion model [14,33–35].

Next, we can only check the numerical accuracy in distributed-order variable with fixed
small enough temporal and spatial step sizes to eliminate the errors caused by temporal and
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Table 6 Example 2: Numerical convergence orders in spatial and temporal direction with τ = h2, J = 100

p N L2 error Rate L∞ error Rate

p = 3 4 4.2253e−03 6.6803e−03

8 2.6561e−04 3.9917 3.9842e−04 4.0667

16 1.6752e−05 3.9869 2.4420e−05 4.0282

32 9.2980e−07 4.1713 1.3353e−06 4.1928

p = 2.5 4 3.4919e−03 5.5212e−03

8 2.1393e−04 4.0288 3.2089e−04 4.1048

16 1.3436e−05 3.9930 1.9586e−05 4.0342

32 7.7292e−07 4.1196 1.1100e−06 4.1412

p = 2 4 3.2210e−03 5.0928e−03

8 1.9511e−04 4.0451 2.9267e−04 4.1211

16 1.2243e−05 3.9943 1.7848e−05 4.0354

32 7.2600e−07 4.0758 1.0426e−06 4.0975

p = 1.5 4 3.1335e−03 4.9546e−03

8 1.8897e−04 4.0515 2.8345e−04 4.1276

16 1.1857e−05 3.9943 1.7285e−05 4.0355

32 7.1629e−07 4.0491 1.0287e−06 4.0706

p = 1 4 3.1143e−03 4.9241e−03

8 1.8705e−04 4.0574 2.8058e−04 4.1334

16 1.1664e−05 4.0033 1.7004e−05 4.0445

32 6.9517e−07 4.0686 9.9836e−06 4.0902

spatial discretization. In Table 9, we take the fixed and sufficiently small temporal and spatial
step sizes τ = h2 = 1/502, and the expected second-order convergence of WSGD-OSC
(2.8) in distributed order can be observed for all four different values of p = 2.5, 2, 1.5, 1.

Table 10 lists the numerical errors and convergence orders under τ = �α = h2 with
an optimal step ratio, and the expected convergence O(τ 2 + �α2 + h4) can be seen by the
Table 10 with different value of p (p = 2.5, 2, 1.5, 1). Hence, the convergence order in three
directions matched that of the theoretical one.

In the following Example 3, we would like to test the efficiency of our WSGD-done
globallyOSC method if the initial data ϕ �= 0. The initial condition is approximated by using
u0h = W 0, the OSC elliptic projection of ϕ, as specified in Theorem 2. According to our
analysis, the WSGD-OSC scheme (2.9) will be used under this conditions.

Example 3 In this example, the initial data are u(x, y, 0) = xy(1− x)(1− y)e−x−y , x, y ∈
[0, 1], and we choose the forcing function f (x, y, t) so that

u(x, y, t) = (1 + t2.5)xy(1 − x)(1 − y)e−x−y

is the exact solution. where we set ω(α) = �(3.5 − α), � = [0, 1] × [0, 1], T = 0.5.

The numerical results for this example are presented in Tables 11, 12, 13 and 14. In
Table 11, we take τ = h2 and fix J = 1000 big enough to eliminate the errors caused
by quadrature errors in the distributed-order variable. The data in Table 1 verify 2nd order
accuracy in time and 4th order in space concurrently. In Table 12 by fixing the time and space
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Table 7 Example 2: Numerical convergence orders in temporal direction and distributed-order variable with
τ = �α = h

p N L2 error Rate L∞ error Rate

p = 2.5 10 7.9206e−04 1.1173e−03

20 1.8505e−04 2.0977 2.6817e−04 2.0588

40 4.5609e−05 2.0205 6.5301e−05 2.0380

80 1.1381e−05 2.0027 1.6196e−05 2.0115

160 2.8466e−06 1.9993 4.0383e−06 2.0038

320 7.1191e−07 1.9995 1.0090e−06 2.0008

p = 2 10 1.9440e−04 2.7424e−04

20 3.3552e−05 2.5346 4.8621e−05 2.4958

40 7.4099e−06 2.1789 1.0609e−05 2.1963

80 1.7879e−06 2.0512 2.5443e−06 2.0599

160 4.4261e−07 2.0142 6.2792e−07 2.0186

320 1.1020e−07 2.0059 1.5677e−07 2.0019

p = 1.5 10 2.7677e−05 3.9043e−05

20 6.7720e−06 2.0310 9.8136e−06 1.9922

40 2.5325e−06 1.4190 3.6260e−06 1.4364

80 6.8623e−07 1.8838 9.7653e−07 1.8926

160 1.7613e−07 1.9621 2.4988e−07 1.9664

320 4.5077e−08 1.9662 6.4570e−08 1.9523

p = 1 10 1.8990e−05 2.6788e−05

20 1.0477e−05 0.8580 1.5182e−05 0.8192

40 3.8977e−06 1.4265 5.5806e−06 1.4439

80 1.2120e−06 1.6852 1.7247e−06 1.6941

160 3.9064e−07 1.6335 5.5419e−07 1.6379

320 1.3693e−07 1.5124 1.9470e−07 1.5091

steps small enough (τ = h2 = 1/322), we also verify 2nd order accuracy in distributed-
order variable. In Table 13, we choose τ = �α = h so that the error stemming from the
spatial approximation is negligible.We can verify 2nd order accuracy in time and distributed-
order variable, simultaneously. At last, in Table 14 with an optimal step ratio we can choose
τ = �α = h2 to verify the second order accuracy in time and distributed-order variable,
and fourth order accuracy in space, simultaneously. Hence, the convergence order in three
directions matched that of the theoretical one. Once again, we obtain the similar results as
the Example 1 for the initial data ϕ �= 0.

In the last Example 4, we would like to test the efficiency of WSGD-OSC method where
the exact solution cannot be found readily.

Example 4 In this example, the initial data are u(x, y, 0) = sin(πx + πy), x, y ∈ [0, 1],
and the forcing function

f (x, y, t) =
((

�( 113 )(t
8
3 − t

5
3 )

lnt
− (1 − 2π2)t

8
3

)
sin(π(x + y)) + 4π cos(π(x + y))t

8
3

)
e−x−y .

where we set ω(α) = �(11/3 − α), � = [0, 1] × [0, 1], T = 0.5.
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Table 8 Example 2: Numerical convergence orders in temporal direction with τ = h, J = 100

p N L2 error Rate L∞ error Rate

p = 3.5 30 8.2848e−04 1.1845e−03

60 2.1248e−04 1.9631 3.0299e−04 1.9669

120 5.3651e−05 1.9857 7.6190e−05 1.9916

240 1.3320e−05 2.0100 1.8877e−05 2.0130

p = 3 30 2.9110e−04 4.1619e−04

60 7.3603e−05 1.9837 1.0495e−04 1.9875

120 1.8426e−05 1.9980 2.6167e−05 2.0039

240 4.5185e−06 2.0278 6.4034e−06 2.0308

p = 2.5 30 8.4863e−05 1.2133e−04

60 2.1060e−05 2.0106 3.0030e−05 2.0145

120 5.2043e−06 2.0167 7.3906e−06 2.0226

240 1.2407e−06 2.0685 1.7582e−06 2.0716

p = 2 30 1.5808e−05 2.2602e−05

60 3.7170e−06 2.0884 5.3002e−06 2.0923

120 8.7849e−07 2.0810 1.2476e−06 2.0869

240 1.8092e−07 2.2797 2.5645e−07 2.2824

p = 1.5 30 2.6497e−06 3.7884e−06

60 8.5093e−07 1.6387 1.2134e−06 1.6425

120 2.4976e−07 1.7685 3.5471e−07 1.7743

240 8.9595e−08 1.4791 1.2703e−07 1.4815

p = 1 30 5.0556e−06 7.2280e−06

60 1.7053e−06 1.5679 2.4317e−06 1.5716

120 5.7270e−07 1.5742 8.1332e−07 1.5801

240 2.1719e−07 1.3988 3.0785e−07 1.4016

Table 9 Example 2: Numerical convergence orders in distributed-order variable with fixing τ = h2 = 1/502

p J L2 error Rate p J L2 error Rate

p = 2.5 2 2.0250e−04 p = 2 2 1.2500e−04

4 5.0514e−05 2.0032 4 3.1156e−05 2.0043

8 1.2520e−05 2.0124 8 7.6911e−06 2.0182

16 3.0222e−06 2.0506 16 1.8247e−06 2.0755

p = 1.5 2 8.4587e−05 p = 1 2 6.5337e−05

4 2.1057e−05 2.0061 4 1.6257e−05 2.0068

8 5.1700e−06 2.0261 8 3.9773e−06 2.0312

16 1.1978e−06 2.1098 16 9.0678e−07 2.1330

In order to confirm the expected convergence rates in space, we take the numerical solution
with N = 48, M = 2304, J = 1000 as the “true” solution, and select τ = h2, J = 1000 .
Just as we hope, the results in Table 15 affirm the expected convergence rates of 4th (when
r = 3) order in space and 2nd order accuracy in time.
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Table 10 Example 2: Numerical convergence orders in temporal, spatial direction and distributed-order
variable with τ = �α = h2

p N L2 error Rate L∞ error Rate

p = 2.5 6 6.7442e−04 8.9218e−04

12 4.2350e−05 3.9932 6.2350e−05 3.8392

24 2.6775e−06 3.9834 3.8647e−06 4.0117

48 1.6870e−07 3.9884 2.4106e−07 4.0029

p = 2 6 6.1749e−04 8.1686e−04

12 3.8589e−05 4.0002 5.6802e−05 3.8461

24 2.4369e−06 3.9851 3.5174e−06 4.0134

48 1.5350e−07 3.9887 2.1933e−06 4.0033

p = 1.5 6 5.9910e−04 7.9253e−04

12 3.7368e−05 4.0029 5.5004e−05 3.8489

24 2.3582e−06 3.9860 3.4037e−06 4.0144

48 1.4845e−07 3.9896 2.1212e−07 4.0042

p = 1 6 5.9415e−04 7.8599e−04

12 3.6886e−05 4.0097 5.4295e−05 3.8556

24 2.2972e−06 4.0051 3.3157e−06 4.0334

48 1.3798e−07 4.0573 1.9716e−07 4.0719

Table 11 Example 3: Numerical convergence orders in spatial and temporal direction with τ = h2, J = 1000

N L2 error Rate L∞ error Rate

4 2.4496e−05 3.8508e−05

8 1.5973e−06 3.9388 2.3824e−06 4.0147

16 1.0243e−07 3.9629 1.4848e−07 4.0041

32 6.4224e−09 3.9954 9.2154e−09 4.0101

Table 12 Example 3:Numerical convergence orders in distributed-order variablewith fixing τ = h2 = 1/322

J L2 error Rate L∞ error Rate

2 1.9305e−05 2.7639e−05

4 4.8160e−06 2.0031 6.8950e−06 2.0031

8 1.1988e−06 2.0062 1.7163e−06 2.0062

16 2.9480e−07 2.0238 4.2204e−07 2.0239

We take the numerical solution with N = M = J = 320 as the “true” solution when
verifying the temporal and distributed-order accuracy and convergence rates for our proposed
method, and select τ = h = �α so that the error stemming from the spatial approximation
is negligible. Table 16 verifies 2nd order accuracy in time and in distributed-order variable,
which are in keeping with the theoretical predictions.

In Table 17, we take the numerical solution with N = 48, M = 2304, J = 2304 as the
“true” solution and select τ = �α = h2. Table 17 verifies the second order accuracy in
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Table 13 Example 3: Numerical convergence orders in temporal direction and distributed-order variable with
τ = �α = h

N L2 error Rate L∞ error Rate

10 7.0609e−05 1.0383e−04

20 1.7826e−05 1.9859 2.5722e−05 2.0131

40 4.4884e−06 1.9897 6.4040e−06 2.0060

80 1.1264e−06 1.9945 1.5979e−06 2.0028

160 2.8216e−07 1.9971 3.9904e−07 2.0016

320 7.0605e−08 1.9987 9.9700e−08 2.0009

Table 14 Example 3: Numerical convergence orders in temporal, spatial direction and distributed-order
variable with τ = �α = h2

N L2 error Rate L∞ error Rate

4 2.3382e−05 3.6762e−05

8 1.5252e−06 3.9383 2.2752e−06 4.0141

16 9.7866e−08 3.9620 1.4188e−07 4.0033

32 6.2053e−09 3.9792 8.9046e−09 3.9940

Table 15 Example 4: Numerical convergence orders in spatial and temporal direction with τ = h2, J = 1000

N L2 error Rate L∞ error Rate

4 1.5430e−04 2.1506e−04

8 9.6805e−06 3.9945 1.3487e−05 3.9951

16 1.9133e−06 3.9986 2.7137e−06 3.9545

32 6.0533e−07 4.0003 8.6029e−07 3.9933

Table 16 Example 4: Numerical convergence orders in temporal direction and distributed-order variable with
τ = �α = h

N L2 error Rate L∞ error Rate

10 3.7715e−04 5.3117e−04

20 9.4218e−05 2.0011 1.3328e−04 1.9947

40 2.3576e−05 1.9987 3.3381e−05 1.9974

80 5.8973e−06 1.9992 8.3524e−06 1.9988

time and in distributed-order variable, and fourth order accuracy in space, simultaneously.
So, from the three Tables 15, 16 and 17, we can see that the scheme still works properly in
this situation.
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Table 17 Example 4: Numerical convergence orders in temporal, spatial direction and distributed-order
variable with τ = �α = h2

N L2 error Rate L∞ error Rate

4 1.4941e−04 2.0815e−04

8 9.3777e−06 3.9939 1.3075e−05 3.9927

12 1.8538e−06 3.9981 2.6303e−06 3.9550

16 5.8671e−07 3.9991 8.3399e−07 3.9927

5 Conclusion

In the present work, we have developed an effective WSGD-OSC scheme for the two-
dimensional distributed order time fractional reaction diffusion equation (1.1)–(1.3). So far,
we have not found any reports on the OSCmethod for solving the problem. Based onWSGD
approximation in time, we establish discrete-time OSC method. The unconditional stability
and convergence are strictly analyzed. Numerical experiments illustrate the efficiency and
numerical accuracy of the proposedWSGD-OSC scheme. In the future, wewill prove the sta-
bility and convergence in the H2-norm. Future work of OSC methods will involve extending
to problem involving space fractional diffusions. Extension of the OSC method to evolving
domain in R3 is also of interest for our future research.
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