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Abstract We introduce a hybridizable discontinuous Galerkin method for the incom-
pressible Navier–Stokes equations for which the approximate velocity field is pointwise
divergence-free. The method builds on the method presented by Labeur and Wells (SIAM
J Sci Comput 34(2):A889–A913, 2012). We show that with modifications of the function
spaces in the method of Labeur and Wells it is possible to formulate a simple method with
pointwise divergence-free velocity fields which is momentum conserving, energy stable, and
pressure-robust. Theoretical results are supported by two- and three-dimensional numerical
examples and for different orders of polynomial approximation.

Keywords Navier–Stokes equations · Hybridized methods · Discontinuous Galerkin ·
Finite element methods · Solenoidal

1 Introduction

Numerous finite element methods for the incompressible Navier–Stokes equations result
in approximate velocity fields that are not pointwise divergence-free. This lack of pointwise
satisfaction of the continuity equation typically leads to violation of conservation laws beyond
just mass conservation, such as conservation of energy. A key issue is that, in the absence of
a pointwise solenoidal velocity field, the conservative and advective format of the Navier–
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Stokes equations are not equivalent. The review paper by John et al. [14] presents cases for
the Stokes limit where the lack of pointwise enforcement of the continuity equation can lead
to large solution errors. Elements that are stable (in sense of the inf-sup condition), but do
not enforce the continuity equation pointwise, such as the Taylor–Hood, Crouzeix–Raviart,
and MINI elements, can suffer from large errors in the pressure, which in turn can pollute the
velocity approximation. The concept of ‘pressure-robustness’ to explain the aforementioned
issues is discussed by John et al. [14]. A second issue is when a computed velocity field that
is not pointwise divergence-free is used as the advective velocity in a transport solver. The
lack of pointwise incompressibility can lead to spurious results and can compromise stability
of the transport equation.

Discontinuous Galerkin (DG) finite element methods provide a natural framework for
handling the advective term in theNavier–Stokes equations, andhavebeen studied extensively
in this context, e.g. [1,8,11,12,28,31]. A difficulty in the construction of DG methods for
the Navier–Stokes equations is that it is not possible to have both an energy-stable and
locallymomentum conservingmethod unless the approximate velocity is exactly divergence-
free [8, p. 1068]. To overcome this problem, a post-processing operator was introduced by
Cockburn et al. [8]. The operator, which is a slight modification of the Brezzi–Douglas–
Marini interpolation operator (see e.g. [2]), applied to the DG approximate velocity field
generates a post-processed velocity that is pointwise divergence-free. Key to the operator
is that it can be applied element-wise and is therefore inexpensive to apply. A second issue
with DG methods, and a common criticism, is that the number of degrees-of-freedom on a
given mesh is considerably larger than for a conforming method. This is especially the case
in three spatial dimensions.

An approach to representing pointwise divergence-free velocity fields is to use a H(div)-
conforming velocity field, in which the normal component of the velocity is continuous
across facets, together with a discontinuous pressure field from an appropriate space. Such
a velocity space can be constructed by using a H(div)-conforming finite element space, or
by enforcing the desired continuity via hybridization [2]. However, construction of H(div)-
conforming methods for the Navier–Stokes (and Stokes) equations is not straightforward as
the tangential components of the viscous stress on cell facets must be appropriately handled.
Moreover, for advection dominated flows it is not immediately clear how the advective terms
can be appropriately stabilized. Examples of hybridization for the Stokes equations can be
found in [3,5,6], and for the Navier–Stokes equations in [19].

A synthesis of discontinuousGalerkin and hybridizedmethods has lead to the development
of hybridizable discontinuousGalerkin (HDG) finite elementmethods [9,16]. Thesemethods
were introduced with the purpose of reducing the computational cost of DG methods on
a given mesh, while retaining the attractive conservation and stability properties of DG
methods. This is achieved as follows. The governing equations are posed cell-wise in terms
of the approximate fields on a cell and numerical fluxes, in which the latter depends on traces
of the approximate fields and fields that are defined only on facets. Fields defined on a cell are
not coupled directly to fields on neighboring cells, but ‘communicate’ only via the fields that
are defined on facets. By coupling degrees of freedom on a cell only to degrees of freedom
of the facet functions, cell degrees of freedom can be eliminated in favor of facet degrees of
freedom only. The result is that the HDG global system of algebraic equations is significantly
smaller than those obtained using DG.

It has been shown that, after post-processing, solutions obtained by HDG methods may
showsuper-convergence results for elliptic problems (for polynomial approximations of order
k, the order of accuracy is order k + 2 in the L2-norm). This property has been exploited
also in the context of the Navier–Stokes equations by, e.g., [4,23]. Although the velocity
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Table 1 Summary of the properties of the method of [17] and the proposed method of this paper. The skew-
symmetric and divergence forms refer to different formulations of the momentum equation. In [17] both an
equal- and mixed-order velocity–pressure approximation are introduced

Formulation Mass conserving Momentum
conserving

Energy stable Pressure robust

Equal order [17] × � Only in skew
-symmetric form

×

Mixed order [17] � Only in
divergence form

Only in skew-
symmetric form

×

Proposed method � � � �

field is not automatically pointwise divergence-free, a post-processing is applied that results
in an approximate velocity field that is exactly divergence-free and H(div)-conforming and
super-converges for low Reynolds number flows. Super-convergence is, however, lost when
the flow is convection dominated.

We use the HDG approach to construct a simple discretization of the Navier–Stokes
equations in which the computed velocity field is H(div)-conforming and pointwise
divergence-free. To achieve this, we first note that unlike many other HDG methods for
incompressible flows [4,7,10,19,22–24], the HDG methods of Labeur and Wells [17] and
Rhebergen and Cockburn [25] involve facet unknowns for the pressure. The pressure field
on a cell plays the role of cell-wise Lagrange multiplier to enforce the continuity equation,
whereas the facet pressure unknowns play the role of Lagrangemultipliers enforcing continu-
ity of the normal component of the velocity across cell boundaries [26]. It was shown already
in [17] that if the polynomial approximation of the element pressure on simplices is one order
lower than the polynomial approximation of the velocity that the approximate velocity field
is exactly divergence-free on cells. However, the method in [17] could not simultaneously
satisfy mass conservation, momentum conservation and energy stability. This shortcoming is
due to the computed velocity field for the method in [17] not being H(div)-conforming. We
note that fast solvers for the Stokes part of the problem are developed and analysed in [27].

In this paper we show that if the facet pressure space is chosen appropriately, we obtain
approximate velocity fields that are H(div)-conforming and pointwise divergence-free. We
are guided in this by the stability analysis in [26] for the Stokes problem, which provides
guidance on the permissible function spaces. The consequences of this modification of the
method of [17] are profound: themethod proposed in this work results in a scheme that is both
mass and momentum conserving (locally and globally), energy stable and pressure-robust.
We summarize properties of the proposed method and those of [17] in Table 1.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
Navier–Stokes problem, which is followed by the main result of this paper in Sect. 3; a
momentum conserving and energy stable HDGmethod for the Navier–Stokes equations with
pointwise solenoidal and H(div)-conforming velocity field. Numerical results are presented
in Sect. 4 and conclusions are drawn in Sect. 5.

2 Incompressible Navier–Stokes Problem

Let Ω ⊂ R
d be a polygonal (d = 2) or polyhedral (d = 3) domain with boundary outward

unit normal n, and let the time interval of interest be given by I = (0, tN ]. Given the kinematic
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viscosity ν ∈ R
+ and forcing term f : Ω × I → R

d , the Navier–Stokes equations for the
velocity field u : Ω × I → R

d and kinematic pressure field p : Ω × I → R are given by

∂t u + ∇ · σ = f in Ω × I, (1a)

∇ · u = 0 in Ω × I, (1b)

where σ is the momentum flux:

σ := σa + σd with σa := u ⊗ u and σd := pI − ν∇u, (2)

and I is the identity tensor and (a ⊗ b)i j = aib j .
We partition the boundary of Ω such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. Given

h : ΓN × I → R
d and a solenoidal initial velocity field u0 : Ω → R

d , we prescribe the
following boundary and initial conditions:

u = 0 on ΓD × I, (3a)

σ · n − max (u · n, 0) u = h on ΓN × I, (3b)

u(x, 0) = u0(x) in Ω. (3c)

On inflow parts of ΓN (u · n < 0) we impose the total momentum flux, i.e., σ · n = h. On
outflow parts of ΓN (u · n ≥ 0), only the diffusive part of the momentum flux is prescribed,
i.e., σd · n = h.

Equation (1a) is the conservative form of the Navier–Stokes equation. With satisfaction of
the incompressibility constraint, Eq. (1b), the momentum equation (1a) can be equivalently
expressed as:

∂t u + (1 − χ)u · ∇u + χ∇ · σa + ∇ · σd = f, (4)

where χ ∈ [0, 1]. For numerous finite element methods, the approximate velocity field is
not pointwise or locally (in a weak sense) solenoidal. In such cases, it can be shown that
momentum is conserved if χ = 1, while energy stability can be proven if χ = 1/2. For
stabilized finite element methods in which the continuity equation is not satisfied locally,
manipulations of the advective term can be applied to achieve momentum conservation [13].

The mass conserving (mixed-order) hybridizable discontinuous Galerkin method of
Labeur and Well [17] is based on a weak formulation of Eq. (4). It was proven to be locally
momentum conserving for χ = 1 and energy stable for χ = 1/2, but in their analysis both
properties could not be satisfied simultaneously. We will prove how the method can be for-
mulated such that mass and momentum conservation, and energy stability can be satisfied
simultaneously, and the method be made invariant with respect to χ .

3 A Hybridizable Discontinuous Galerkin Method

We present a hybridizable discontinuous Galerkin method for the Navier–Stokes problem
for which the approximate velocity field is pointwise divergence-free.

3.1 Preliminaries

Let T := {K } be a triangulation of the domain Ω into non-overlapping simplex cells K . The
boundary of a cell is denoted by ∂K and the outward unit normal vector on ∂K by n. Two
adjacent cells K+ and K− share an interior facet F := ∂K+ ∩ ∂K−. A facet of ∂K that
lies on the boundary of the domain ∂Ω is called a boundary facet. The sets of interior and
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boundary facets are denoted by FI and FB , respectively. The set of all facets is denoted by
F := FI ∪ FB .

3.2 Semi-discrete Formulation

Consider the following finite element spaces:

Vh :=
{
vh ∈

[
L2(T )

]d
, vh ∈ [

Pk(K )
]d ∀K ∈ T

}
, (5a)

V̄h :=
{
v̄h ∈

[
L2(F)

]d
, v̄h ∈ [

Pk(F)
]d ∀F ∈ F, v̄h = 0 on ΓD

}
, (5b)

Qh :=
{
qh ∈ L2(T ), qh ∈ Pk−1(K ) ∀K ∈ T

}
, (5c)

Q̄h :=
{
q̄h ∈ L2(F), q̄h ∈ Pk(F)∀F ∈ F

}
, (5d)

where Pl(D) denotes the space of polynomials of degree l > 0 on a domain D. Note that the
spaces Vh and Qh are defined on the whole domain T , whereas the spaces V̄h and Q̄h are
defined only on facets of the triangulation.

The spaces Vh and Qh are discontinuous across cell boundaries, hence the trace of a
function a ∈ Vh may be double-valued on cell boundaries. At an interior facet, F , we denote
the traces of a ∈ Vh by a+ and a−. We introduce the jump operator [[a]] := a+ ·n++a− ·n−,
where n± the outward unit normal on ∂K±.

We now state the weak formulation of the proposed method: given a forcing term f ∈
[L2(Ω)]d , boundary condition h ∈ [L2(ΓN )]d and viscosity ν, find uh, ūh, ph, p̄h ∈ Vh ×
V̄h × Qh × Q̄h such that:

0 =
∑
K

∫
K
uh · ∇qh dx −

∑
K

∫
∂K

uh · n qh ds ∀qh ∈ Qh, (6a)

0 =
∑
K

∫
∂K

uh · n q̄h ds −
∫

∂Ω

ūh · n q̄h ds ∀q̄h ∈ Q̄h, (6b)

and ∫
Ω

f · vh dx =
∫

Ω

∂t uh · vh dx −
∑
K

∫
K

σh : ∇vh dx +
∑
K

∫
∂K

σ̂h : (vh ⊗ n) ds

+
∑
K

∫
∂K

ν
(
(ūh − uh) ⊗ n

) : ∇vh ds ∀vh ∈ Vh, (6c)

∫
ΓN

h · v̄h ds =
∑
K

∫
∂K

σ̂h : (v̄h ⊗ n) ds

−
∫

ΓN

(1 − λ) (ūh · n) ūh · v̄h ds ∀v̄h ∈ V̄h, (6d)

where σ̂h := σ̂a,h + σ̂d,h is the ‘numerical flux’ on cell facets. The advective part of the
numerical flux is given by:

σ̂a,h := σa,h + (ūh − uh) ⊗ λuh, (7)

where λ is an indicator function that takes on a value of unity on inflow cell boundaries (where
uh · n < 0) and a value of zero on outflow cell facets (where uh · n ≥ 0). This definition of
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the numerical flux provides upwinding of the advective component of the flux. The diffusive
part of the numerical flux is defined as

σ̂d,h := p̄hI − ν∇uh − να

hK
(ūh − uh) ⊗ n, (8)

where α > 0 is a penalty parameter as is typical of Nitsche and interior penalty methods. It
is proven in [26,32] that α needs to be sufficiently large to ensure stability.

A key feature of this formulation, and what distinguishes it from standard discontinuous
Galerkin methods, is that functions on cells (functions in Vh and Qh) are not coupled across
facets directly via the numerical flux. Rather, fields on neighboring cells are coupled via the
facet functions ūh and p̄h . The fields uh and ph can therefore be eliminated locally via static
condensation, resulting in a global system of equations in terms of the facet functions only.
This substantially reduces the size of the global systems compared to a standard discontinuous
Galerkin method on the same mesh, yet still permits the natural incorporation of upwinding
and cell-wise balances.

The weak formulation presented here is the weak formulation of Labeur and Wells [17]
with conservative form of the advection term χ = 1 in Eq. 4). The key difference is that we
have been more prescriptive on the relationships between the finite element spaces in Eq. (5),
and we will prove that this leads to some appealing properties. In particular, the spaces in
Eq. (5) are such that: for uh ∈ [Pk(K )]d , ∇ · uh ∈ Pk−1(K ) and uh · n ∈ Pk(F); and for
ūh ∈ [Pk(F)]d , ūh · n ∈ Pk(F). Furthermore, the function spaces have been chosen such
that the resulting method is inf-sup stable, see [26]. The resulting weak formulation can be
shown to be equivalent to a weak formulation in which the approximate velocity field lies in
the Brezzi–Douglas–Marini (BDM) finite element space [26, Section 3.4]. Hybridization of
other H(div) conforming finite element spaces, see e.g. [2], are also possible.

Proposition 1 (Mass conservation) If uh ∈ Vh and ūh ∈ V̄h satisfy Eq. (6), with Vh and V̄h
defined in Eq. (5), then

∇ · uh = 0 ∀x ∈ K , ∀K ∈ T , (9)

and

[[uh]] = 0 ∀x ∈ F, ∀F ∈ FI , (10a)

uh · n = ūh · n ∀x ∈ F, ∀F ∈ FB . (10b)

Proof Applying integration-by-parts to Eq. (6a):

0 =
∫
K
qh∇ · uh dx ∀qh ∈ Pk−1(K ), ∀K ∈ T . (11)

Since qh , ∇ · uh ∈ Pk−1(K ), pointwise satisfaction of the continuity equation, Eq. (9),
follows.

It follows from Eq. (6b) that:

0 =
∑
F∈FI

∫
F
[[uh]]q̄h ds +

∑
F∈FB

∫
F

(uh − ūh) · nq̄h ds ∀q̄h ∈ Q̄h . (12)

Since q̄h , uh · n, ūh · n ∈ Pk(F), Eq. (10) follows. �

Proposition 1 is a stronger statement of mass conservation than in Labeur and Wells [17,

Proposition 4.2], in which mass conservation for the mixed-order case was proved locally
(cell-wise) in an integral sense only. Under certain conditions, implementations in [17] satisfy
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Eq. (9), but not Eq. (10).Wewill show that this difference is critical for the formulation in this
work as it allows simultaneous satisfaction of momentum conservation and energy stability.

We next show momentum conservation for the semi-discrete weak formulation in terms
of the numerical flux.

Proposition 2 (Momentum conservation) Let uh, ūh, ph, p̄h ∈ Vh × V̄h × Qh × Q̄h satisfy
Eq. (6). Then,

d

dt

∫
K
uh dx =

∫
K

f dx −
∫

∂K
σ̂hn ds ∀K ∈ T . (13)

Furthermore, if ΓD = ∅,
d

dt

∫
Ω

uh dx =
∫

Ω

f dx −
∫

∂Ω

(1 − λ)(ūh · n)ūh ds −
∫

∂Ω

h ds. (14)

Proof In Eq. (6c), set vh = e j on K , where e j is a canonical unit basis vector, and set vh = 0
on T \K in Eq. (6c):

d

dt

∫
K
uh · e j dx +

∫
∂K

(
σ̂h · n) · e j ds =

∫
K

f · e j dx, (15)

which proves Eq. (13). Equation (14) follows immediately by setting vh = e j in Eq. (6c),
v̄h = − e j in Eq. (6d) and summing the two results. �


We next prove that the method is also globally energy stable.

Proposition 3 (Global energy stability) If uh, ūh, ph, p̄h ∈ Vh × V̄h × Qh × Q̄h satisfy
Eq. (6), for homogeneous boundary conditions, f = 0 and for a suitably large α:

d

dt

∑
K

∫
K
|uh |2 dx ≤ 0. (16)

Proof Setting qh = −ph , q̄h = − p̄h , vh = uh and v̄h = − ūh in Eqs. (6a)–(6d) and inserting
the expressions for the numerical fluxes (Eqs. (2), (7) and (8)), and summing:

∑
K

1

2

∫
K

∂t |uh |2 dx +
∑
K

1

2

∫
∂K

(uh · n)|uh |2 ds

−
∑
K

1

2

∫
∂K

(uh · n)|ūh |2 ds +
∑
K

1

2

∫
∂K

|uh · n||uh − ūh |2 ds

+
∑
K

∫
K

ν|∇uh |2 dx +
∑
K

∫
∂K

να

hK
|ūh − uh |2 ds

+ 2
∑
K

∫
∂K

ν (∇uh · n) · (ūh − uh) ds +
∫

ΓN

(1 − λ)(ūh · n)|ūh |2 ds

−
∑
K

∫
K

(uh ⊗ uh) : ∇uh dx = 0, (17)

where we have used that λuh · n = (
uh · n − |uh · n|) /2, and applied integration-by-parts to

the pressure gradient terms. Since ūh is single-valued on facets, the normal component of uh
is continuous across facets and ūh · n = uh · n on the domain boundary (see Proposition 1),
the third integral on the left-hand side of Eq. (17) can be simplified:

−
∑
K

1

2

∫
∂K

(uh · n)|ūh |2 ds = −1

2

∫
ΓN

(ūh · n)|ūh |2 ds. (18)
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We consider now the last term on the left-hand side of Eq. (17). On each cell K it holds that
− uh ⊗ uh : ∇uh = (∇ · uh)(uh · uh)/2−∇ · ((uh ⊗ uh) · uh)/2 = −∇ · ((uh ⊗ uh) · uh)/2,
since ∇ · uh = 0 (by Proposition 1). It follows that

−
∑
K

∫
K

(uh ⊗ uh) : ∇uh dx = −1

2

∑
K

∫
∂K

(uh · n)|uh |2 ds. (19)

Combining Eqs. (17)–(19),

1

2

∑
K

∫
K

∂t |uh |2 dx = −1

2

∑
K

∫
∂K

|uh · n||uh − ūh |2 ds

−
∑
K

∫
K

ν|∇uh |2 dx −
∑
K

∫
∂K

να

hK
|ūh − uh |2 ds

− 2
∑
K

∫
∂K

ν (∇uhn) · (ūh − uh) ds

−1

2

∫
ΓN

|ūh · n||ūh |2 ds, (20)

where we have used that∫
ΓN

(1 − λ)(ūh · n)|ūh |2 ds − 1

2

∫
ΓN

(ūh · n)|ūh |2 ds = 1

2

∫
ΓN

|ūh · n||ūh |2 ds. (21)

It can be proven that there exists an α > 0, independent of hK , such that

∑
K

∫
K

ν|∇uh |2 dx +
∑
K

∫
∂K

να

hK
|ūh − uh |2 ds

≥ 2

∣∣∣∣∣∣
∑
K

∫
∂K

ν (∇uh · n) · (ūh − uh) ds

∣∣∣∣∣∣ , (22)

(see [32, Lemma 5.2] and [26, Lemma 4.2]). Therefore, the right-hand side of Eq. (20) is
non-positive, proving Eq. (16). �


The key results that enable us to prove global energy stability for this conservative form of
theNavier–Stokes equations are: (a) the pointwise solenoidal velocity field; and (b) continuity
of the normal component of the velocity field across facets. The latter point is not fulfilled
by the method in [17].

3.3 A Fully-Discrete Weak Formulation

We now consider a fully-discrete formulation.We partition the time interval I into an ordered
series of time levels 0 = t0 < t1 < · · · < t N . The difference between each time level is
denoted by Δtn = tn+1 − tn . To discretize in time, we consider the θ -method and denote
midpoint values of a function y by yn+θ := (1− θ)yn + θyn+1. Following Labeur andWells
[17], the convective velocity will be evaluated at the current time tn , thereby linearizing the
problem, i.e.:
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σ n+θ
h = σ n+θ

a,h + σ n+θ
d,h where σ n+θ

a,h = un+θ
h ⊗ unh, (23)

and

σ̂ n+θ
h = σ̂ n+θ

a,h + σ̂ n+θ
d,h where σ̂ n+θ

a,h = σ n+θ
a,h +

(
ūn+θ
h − un+θ

h

)
⊗ λunh . (24)

The time-discrete counterpart of Eq. (6) is: given unh, ū
n
h, p

n
h , p̄

n
h ∈ Vh × V̄h × Qh × Q̄h at

time tn , the forcing term f n+θ ∈ [L2(Ω)]d , the boundary condition hn+θ ∈ [L2(ΓN )]d ,
and the viscosity ν, find un+1

h , ūn+1
h , pn+1

h , p̄n+1
h ∈ Vh × V̄h × Qh × Q̄h such that mass

conservation,

0 =
∑
K

∫
K
un+1
h · ∇qh dx −

∑
K

∫
∂K

un+1
h · n qh ds, (25a)

0 =
∑
K

∫
∂K

un+1
h · n q̄h ds −

∫
∂Ω

ūn+1
h · n q̄h ds, (25b)

and momentum conservation,
∫

Ω

f n+θ · vh dx =
∫

Ω

un+1
h − unh

Δtn
· vh dx −

∑
K

∫
K

σ n+θ
h : ∇vh dx

+
∑
K

∫
∂K

σ̂ n+θ
h : vh ⊗ n ds

+
∑
K

∫
∂K

ν

((
ūn+θ
h − un+θ

h

)
⊗ n

)
: ∇vh ds, (25c)

∫
ΓN

hn+θ · v̄h ds =
∑
K

∫
∂K

σ̂ n+θ
h : v̄h ⊗ n ds

−
∫

ΓN

(1 − λ)
(
ūnh · n)

ūn+θ
h · v̄h ds, (25d)

are satisfied for all vh, v̄h, qh, q̄h ∈ Vh × V̄h ×Qh × Q̄h . Here λ is evaluated using the known
velocity field at time tn .

In Sect. 3.2we proved that the semi-discrete formulation Eq. (6) ismomentum conserving,
energy stable and exactly mass conserving when using the function spaces given by Eq. (5).
We show next that the fully-discrete formulation given by Eq. (25) inherits these properties.

Proposition 4 (Fully-discrete mass conservation) If un+1
h ∈ Vh and ūn+1

h ∈ V̄h satisfy
Eq. (25), then

∇ · un+1
h = 0 ∀x ∈ K , ∀K ∈ T , (26)

and

[[un+1
h ]] = 0 ∀x ∈ F, ∀F ∈ FI , (27a)

un+1
h · n = ūn+1

h · n ∀x ∈ F, ∀F ∈ FB . (27b)

Proof The proof is similar to that of Proposition 1 and therefore omitted. �

Proposition 5 (Fully-discretemomentum conservation) If unh, ū

n
h, p

n
h , p̄

n
h ∈ Vh× V̄h×Qh×

Q̄h and un+1
h , ūn+1

h , pn+1
h , p̄n+1

h ∈ Vh × V̄h × Qh × Q̄h satisfy Eq. (25), then
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∫
K

un+1
h − unh

Δtn
dx =

∫
K

f n+θ dx −
∫

∂K
σ̂ n+θ
h n ds ∀K ∈ T . (28)

Furthermore, if ΓD = ∅,

∑
K

∫
K

un+1
h − unh

Δtn
dx =

∑
K

∫
K

f n+θ dx −
∫

∂Ω

(1 − λ)(ūnh · n)ūn+θ
h ds

−
∫

∂Ω

hn+θ ds. (29)

Proof The proof is similar to that of Proposition 2 and therefore omitted. �


Proposition 6 (Fully-discrete energy stability) If unh, ū
n
h, p

n
h , p̄

n
h ∈ Vh × V̄h × Qh × Q̄h and

un+1
h , ūn+1

h , pn+1
h , p̄n+1

h ∈ Vh × V̄h × Qh × Q̄h satisfy Eq. (25), then with homogeneous
boundary conditions, no forcing terms, for suitably large α, and θ ≥ 1/2,

∑
K

∫
K

∣∣∣un+1
h

∣∣∣2 dx ≤
∑
K

∫
K

∣∣unh∣∣2 dx . (30)

Proof Setting qh = − θpn+θ
h , q̄h = − θ p̄n+θ

h , vh = un+θ
h and v̄h = − ūn+θ

h , in Eqs. (25a)–
(25d), adding the results, using the expressions for the diffusive fluxes, given by Eqs. (2)
and (8), partial integration of the pressure gradient terms and using that ∇ · unh = 0 by
Proposition 4, we obtain, using the same steps as in the proof of Proposition 3,

∫
Ω

un+1
h − unh

Δtn
· un+θ

h dx +
∑
K

1

2

∫
∂K

∣∣unh · n∣∣∣∣∣un+θ
h − ūn+θ

h

∣∣∣2 ds

+
∑
K

∫
K

ν

∣∣∣∇un+θ
h

∣∣∣2 dx +
∑
K

∫
∂K

να

hK

∣∣∣ūn+θ
h − un+θ

h

∣∣∣2 ds

+ 2
∑
K

∫
∂K

ν
(
∇un+θ

h · n
) (

ūn+θ
h − un+θ

h

)
ds

+ 1

2

∫
ΓN

∣∣ūnh · n∣∣∣∣∣ūn+θ
h

∣∣∣2 ds = 0. (31)

The first term on the left-hand side of Eq. (31) can be reformulated as

∫
Ω

un+1
h − unh

Δtn
· un+θ

h dx =
(

θ − 1

2

) ∫
Ω

∣∣∣un+1
h − unh

∣∣∣2
Δtn

dx

+1

2

∫
Ω

∣∣∣un+1
h

∣∣∣2
Δtn

dx − 1

2

∫
Ω

∣∣unh∣∣2
Δtn

dx . (32)
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Inserting this expression into Eq. (31):

1

2

∫
Ω

∣∣∣un+1
h

∣∣∣2
Δtn

dx − 1

2

∫
Ω

∣∣unh∣∣2
Δtn

dx = −
(

θ − 1

2

) ∫
Ω

∣∣∣un+1
h − unh

∣∣∣2
Δtn

dx

−
∑
K

1

2

∫
∂K

∣∣unh · n∣∣∣∣∣un+θ
h − ūn+θ

h

∣∣∣2 ds

− 2
∑
K

∫
∂K

ν
(
∇un+θ

h · n
) (

ūn+θ
h − un+θ

h

)
ds

−
∑
K

∫
∂K

να

hK

∣∣∣ūn+θ
h − un+θ

h

∣∣∣2 ds

−1

2

∫
ΓN

∣∣ūnh · n∣∣∣∣∣ūn+θ
h

∣∣∣2 ds −
∑
K

∫
K

ν

∣∣∣∇un+θ
h

∣∣∣2 dx . (33)

As in Proposition 3, there exists an α > 0, independent of hK , such that the right hand side
of Eq. (33) is non-positive. The result follows. �


4 Numerical Examples

We now demonstrate the performance of the method for a selection of numerical examples,
paying close attention to mass and momentum conservation, and energy stability.

For all stationary examples considered, exact solutions are known. For the stationary
examples we use a fixed-point iteration with stopping criterion |ei+1

p − eip|/(ei+1
p + eip) ≤

TOL, where eip is the pressure error in the L2 norm at the i th iterate, and TOL is a given
tolerance that we set to 10−4. All unsteady examples use θ = 1. In all examples we set the
penalty parameter to be α = 6k2.

In the implementationwe apply cell-wise static condensation such that only the degrees-of-
freedom associated with the facet spaces appear in the global system. Compared to standard
discontinuous Galerkin methods, this significantly reduces the size of the global system. We
could eliminate the facet pressure field and use a BDM element, see [19], and the BDM
normal velocity in place of ūh · n. However, we feel that handling all fields in a hybridized
framework offers some simplicity.

Examples have been implemented using the NGSolve finite element library [30]. All
examples use unstructured simplicial meshes.

4.1 Kovasznay Flow

We consider the steady, two-dimensional analytical solution of the Navier–Stokes equations
from Kovasznay [15] on a domain Ω = (− 0.5, 1

) × (− 0.5, 1.5
)
. For a Reynolds number

Re, let the viscosity be given by ν = 1/Re. The solution to the Kovasznay problem is:

ux = 1 − eλx1 cos(2πx2), (34a)

uy = λ

2π
eλx1 sin(2πx2), (34b)

p = 1

2

(
1 − e2λx1

)
+ C, (34c)
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Table 2 Computed velocity,
pressure and divergence errors in
the L2 norm for the HDG method
applied to the Kovasznay problem

Cells
∥∥uh − u

∥∥ Rate
∥∥ph − p

∥∥ Rate
∥∥∇ · uh

∥∥
k = 2

64 1.8e−2 – 1.6e−2 – 3.8e−14

256 2.2e−3 3.0 4.0e−3 2.0 6.7e−14

1024 2.8e−4 3.0 9.8e−4 2.0 1.3e−13

4096 3.5e−5 3.0 2.4e−4 2.0 2.5e−13

k = 3

64 1.4e−3 – 2.0e−3 – 1.9e−13

256 9.4e−5 3.9 2.0e−4 3.3 6.1e−13

1024 5.8e−6 4.0 2.3e−5 3.1 7.8e−13

4096 3.6e−7 4.0 2.8e−6 3.1 1.6e−12

where C is an arbitrary constant, and where

λ = Re

2
−

(
Re2

4
+ 4π2

)1/2

(35)

We choose C such that the mean pressure on Ω is zero. The Kovasznay flow solution in
Eq. (34) is used to set Dirichlet boundary conditions for the velocity on ∂Ω .

The L2-error and rates of convergence are presented in Table 2 for Re = 40 using a series
of refined meshes. Optimal rates of convergence are observed for both the velocity field
(order k + 1) and pressure field (order k). The divergence of the approximate velocity field
is of machine precision in all cases.

4.2 Position-Dependent Coriolis Force

We now consider the test case from [20, Section 3.2]. In particular, we consider on the
unit square (0, 1) × (0, 1) the steady Navier–Stokes equations augmented with a position-
dependent Coriolis force: ∇ · σ + 2C × u = 0 and ∇ · u = 0, where we set 2C × u =
− 2x2(− u2, u1). On boundaries we set u = (1, 0). The exact solution to this problem is
given by p = x22 − 1/3 and u = (1, 0).

It was shown in [20] that the Scott–Vogelius finite element, in which the velocity is
approximated in divergence-free function spaces, is able to produce the exact velocity field
while the velocity computed using a Taylor–Hood finite element method is polluted by the
pressure error, in part due to the approximate velocity field not being exactly divergence-
free. Furthermore, it is shown in [20] that as ν → 0, the velocity error increases for the
Taylor–Hood finite element method.

In Table 3 we show the results obtained using the HDG method presented in Sect. 3
for k = 2. It shows the computed error in the L2 norm for the velocity, pressure and divergence
errors. Errors in the velocity and velocity divergence are of machine precision, regardless
of ν. The HDG method therefore obtains the same quality of solution as produced using the
Scott–Vogelius finite element in [20]. We do not consider the k = 3 case because for this
discretization the pressure is approximated by quadratic polynomials and so the pressure
error is also of machine precision.
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Table 3 Computed errors in the L2 norm for the HDG method with the position-dependent Coriolis forcing
term with different viscosity values. Note that the pressure error does not depend on the viscosity

Cells ν = 0.001, k = 2 ν = 1, k = 2∥∥uh − u
∥∥ ∥∥∇ · uh

∥∥ ∥∥ph − p
∥∥ Rate

∥∥uh − u
∥∥ ∥∥∇ · uh

∥∥ ∥∥ph − p
∥∥ Rate

64 3.7e−15 4.6e−14 9.0e−4 – 1.3e−14 4.6e−14 9.0e−4 –

256 5.1e−15 9.3e−14 2.3e−4 2.0 9.9e−15 9.2e−14 2.3e−4 2.0

1024 6.4e−15 1.8e−13 5.6e−5 2.0 7.8e−14 1.9e−13 5.6e−5 2.0

4096 2.2e−14 6.3e−13 1.4e−5 2.0 2.3e−13 3.7e−13 1.4e−5 2.0

4.3 Pressure-Robustness

We next demonstrate that our method is pressure-robust and compare the results with those
obtained using the method of [17]. For this we use a test case proposed in [18, Section 6.1].
On the unit square (0, 1)× (0, 1) we consider the steady Navier–Stokes equations where the
boundary conditions and source terms are such that the exact solution is given by u = curlζ ,
with ζ = x21 (x1 − 1)2x22 (x2 − 1)2 and p = x71 + x72 − 1/4. We choose k = 3 and vary the
viscosity ν.

For a mixed velocity-pressure approximation, it can be proven that the method of [17]
results in an approximate velocity field that is pointwise divergence free, but not H(div)-
conforming. As such, the method of [17] cannot be shown to be pressure-robust. This is
confirmed by the results presented in Table 4. For the method of [17] it is observed that the
error in the velocity field depends on ν−1

∥∥ph − p
∥∥, while the proposed method is pressure

robust. The velocity error does not change with viscosity in Table 4.

4.4 Transient Higher-Order Potential Flow

In this test, taken from [21, Section 6.6],we solve the timedependentNavier–Stokes equations
Eq. (1) on the domainΩ = [−1, 1]2. This test case studies the time-dependent exact velocity
u(t) = min(t, 1)∇χ where χ is a smooth harmonic potential given by χ = x31 x2 − x32 x1.
The pressure gradient then satisfies ∇ p = −∇|u|2 /2 − ∂t

(
min(t, 1)∇χ

)
. We impose the

exact velocity solution as Dirichlet boundary condition on all of ∂Ω .
For the simulations we used a grid with 2048 cells, set the time step equal to Δt = 0.01

and compute the solution on the time interval [0, 2]. Figure 1 shows the velocity and pressure
errors as a function of time. We used both k = 2 and k = 3, and consider ν = 1/500 and
ν = 1/2000. We observe that the error in pressure and velocity is more or less the same
regardless of ν.

Over the computational time interval, using k = 2 or k = 3 on a mesh with 2048 cells,
for either ν = 1/500 and ν = 1/2000, the L2-norm of the divergence reaches 1.4 × 10−10

in one point but is otherwise always of the order 10−11. The momentum balance, in absolute
value, never exceeds 3.4 × 10−12.

4.5 Two-Dimensional Flow Past a Circular Obstacle

In this test case we consider flow past a circular obstacle (see e.g. [19,29]). The domain
is a rectangular channel, [0, 2.2] × [0, 0.41], with a circular obstacle of radius r = 0.05
centered at (0.2, 0.2). On the inflow boundary (x1 = 0) we prescribe the x1-component of
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Table 4 Computed errors in the L2 norm for the HDG method with different viscosity values. A comparison
of the proposed method with the method of [17]. Note that the errors in the velocity for the proposed method
do not depend on ν, in contrast with the method of [17]

Cells
∥∥uh − u

∥∥ Rate
∥∥∇(uh − u)

∥∥ Rate
∥∥ph − p

∥∥ Rate
∥∥∇ · uh

∥∥
Proposed method: ν = 0.001

128 4.2e−6 2.8e−4 4.5e−4 1.5e−14

512 2.4e−7 4.1 3.4e−5 3.0 5.7e−5 3.0 4.3e−14

2048 1.4e−8 4.1 4.2e−6 3.0 7.2e−6 3.0 2.3e−14

8192 8.5e−10 4.1 5.2e−7 3.0 9.0e−7 3.0 2.4e−14

Proposed method: ν = 1

128 4.2e−6 – 2.8e−4 – 6.5e−4 – 2.2e−15

512 2.4e−7 4.1 3.4e−5 3.0 7.6e−5 3.1 4.5e−15

2048 1.4e−8 4.1 4.2e−6 3.0 9.1e−6 3.1 8.8e−15

8192 8.5e−10 4.1 5.2e−7 3.0 1.1e−6 3.0 1.8e−14

Method of [17]: ν = 0.001

128 6.4e−4 – 5.3e−2 – 4.6e−4 – 2.9e−14

512 4.1e−5 4.0 6.7e−3 3.0 5.8e−5 3.0 4.8e−14

2048 2.6e−6 4.0 8.4e−4 3.0 7.2e−6 3.0 1.7e−14

8192 1.6e−7 4.0 1.1e−4 3.0 9.0e−7 3.0 2.3e−14

Method of [17]: ν = 1

128 3.9e−6 – 2.8e−4 – 6.2e−4 – 2.2e−15

512 2.3e−7 4.1 3.4e−5 3.0 7.3e−5 3.1 4.4e−15

2048 1.4e−8 4.1 4.2e−6 3.0 8.8e−6 3.1 8.9e−15

8192 8.3e−10 4.0 5.2e−7 3.0 1.1e−6 3.0 1.8e−14

0.0 0.5 1.0 1.5 2.0
t

10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4

|| u
−

u
h
|| 2

ν = 1/2000 k = 2
ν = 1/500 k = 2
ν = 1/2000 k = 3
ν = 1/500 k = 3

(a) Velocity error.

0.0 0.5 1.0 1.5 2.0
t

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

||p
−

p h
|| 2

ν = 1/2000, k = 2
ν = 1/500, k = 2
ν = 1/2000, k = 3
ν = 1/500, k = 3

(b) Pressure error.

Fig. 1 Velocity and pressure errors in the L2 norm for the transient higher-order potential flow test case.
Approximations were obtained using k = 2 and k = 3 on a mesh with 2048 cells

the velocity to be u1 = 6x2(0.41−x2)/0.412. The x2-component of the velocity is prescribed
as u2 = 0. Homogeneous Dirichlet boundary conditions are applied on the walls (x2 = 0 and
x2 = 0.41), and on the obstacle. On the outflow boundary (x1 = 2.2) we prescribe σd ·n = 0.
The viscosity is set as ν = 10−3. We choose k = 3 and set Δt = 5× 10−5 so that the spatial
discretization error dominates the temporal discretization error. For the initial condition, we
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Fig. 2 Two-dimensional flow past a cylinder test case: velocity magnitude past a two-dimensional circular
object in a channel at t = 5. Approximations were obtained using k = 3 on a mesh with 6784 cells

impose the steady Stokes solution of this problem. The mesh of the domain has 6784 cells
and we consider the time interval [0, 5].

At each time step we compute the drag and lift coefficients, which are defined as

CD = −1

r

∫
Γc

(σd · n) · e1 ds, CL = −1

r

∫
Γc

(σd · n) · e2 ds, (36)

where e1 and e2 are unit vectors in the x1 and x2 directions, respectively, and ΓC is the
surface of the circular object.We compute amaximum drag coefficient ofCD = 3.23232 and
minimum drag coefficient of CD = 3.16583. The maximum and minimum lift coefficients
we compute are, respectively, CL = 0.98251 and CL = − 1.02246. These are comparable
to those found in literature [19,29]. The velocity magnitude at t = 5 is shown Fig. 2.

4.6 Three-Dimensional Flow Past a Cylinder

In this test case we consider three-dimensional flow past a cylinder (see e.g. [19,29]) with a
time dependent inflow velocity. The domain is a cuboid shaped channel [0, 2.5]×[0, 0.41]×
[0, 0.41] with a cylinder of radius rcyl = 0.05 around the x3-axis centered at (x1, x2) =
(0.5, 0.2). On the inflow boundary (x1 = 0) we prescribe the x1-component of the velocity
to be u1 = 36 sin(π t/8)x2x3(0.41−x2)(0.41−x3)/0.414. The x2- and x3-components of the
velocity are prescribed as u2 = 0 and u3 = 0. We impose homogeneous Dirichlet boundary
conditions on the walls (x2 = 0, x2 = 0.41, x3 = 0 and x3 = 0.41) and on the cylinder. On
the outflow boundary (x1 = 2.5) we prescribe σd · n = 0. The viscosity is set as ν = 10−3.

We choose k = 3 and set Δt = 5× 10−4 so that the spatial discretization error dominates
the temporal discretization error. The initial condition is the Stokes solution to this problem.
The mesh has 4091 cells and we compute on the time interval [0, 8]. At each time step we
compute the drag and lift coefficients, defined by Eq. (36), where r = 0.41rcyl and ΓC is the
surface of the cylinder. We compute maximum drag and lift coefficients of CD = 2.98815
andCL = 0.00348, respectively. Compared to Schäfer et al. [29], inwhich themaximumdrag
and lift coefficients lie in the intervals CD ∈ [3.2000, 3.3000] and CL ∈ [0.0020, 0.0040],
we slightly under-predict the drag coefficient, but the lift coefficient lies within the same
interval. Figure 3 shows the velocity magnitude at t = 4.

5 Conclusions

We have introduced a formulation of a hybridizable discontinuous Galerkin method for the
incompressible Navier–Stokes equations that computes velocity fields that are pointwise
divergence-free. The construction of solenoidal velocity fields does not require post-
processing or the use of finite dimensional spaces of divergence-free functions. The pointwise
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Fig. 3 Three-dimensional flow past a cylinder test: slice through a 3D channel showing the 3D velocity
magnitude past a cylinder in a channel at t = 4. Approximations were obtained using k = 3 on a mesh with
4091 cells

satisfaction of the continuity equation and the continuity of the normal component of the
velocity field across cell facets allows us to prove that the method conserves momentum
locally (cell-wise) and is energy stable. This is in contrast with the closely related method in
Labeur and Wells [17] which when satisfying the continuity equation pointwise can satisfy
local momentum conservation or global energy stability, but not both simultaneously. The
analysis that we present is supported by a range of numerical examples in two and three
dimensions.
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