
J Sci Comput (2018) 76:1407–1435
https://doi.org/10.1007/s10915-018-0669-y

An Improved Eulerian Approach for the Finite Time
Lyapunov Exponent

Guoqiao You1 · Shingyu Leung2

Received: 13 September 2017 / Revised: 18 January 2018 / Accepted: 7 February 2018 /
Published online: 17 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We propose a new Eulerian numerical approach to compute the Jacobian of flow
maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov
exponent (FTLE) for Lagrangian coherent structure extraction. The original approach com-
putes the flow map and then numerically determines the Jacobian of the map using finite
differences. The new algorithm improves the original Eulerian formulation so that we first
obtain partial differential equations for each component of the Jacobian and then solve these
equations to obtain the required Jacobian. For periodic dynamical systems, based on the
time doubling technique developed for computing the longtime flow map, we also propose a
new efficient iterative method to compute the Jacobian of the longtime flow map. Numerical
examples will demonstrate that our new proposed approach is more accurate than the original
one in computing the Jacobian and thus the FTLE field, especially near the FTLE ridges.

Keywords Partial differential equations · Flow maps · Coherent structures · Finite time
Lyapunov exponent · Flow visualization

1 Introduction

Tools are needed to visualize, understand and then extract useful information in complex
continuous dynamical systems including ocean flows [15,27], hurricane structures [26],
flight path [3,29], gravity waves [30], blood mixing in cardiovascular flows [1] and some
other bio-inspired fluid flows [10,21,23]. A lot of work in dynamical systems focuses on

B Guoqiao You
270217@nau.edu.cn

Shingyu Leung
masyleung@ust.hk

1 School of Statistics and Mathematics, Nanjing Audit University, Nanjing 211815, China

2 Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0669-y&domain=pdf
http://orcid.org/0000-0001-9413-5691

1408 J Sci Comput (2018) 76:1407–1435

understanding different types of behaviors in a model, such as elliptical zones, hyperbolic
trajectories, chaotic attractors, and mixing regions. One interesting approach is to parti-
tion the space-time domain into subregions based on certain quantity measured along with
the passive tracer advected according to the associated dynamical system. Because of such a
Lagrangian property in the definition of these quantities, the corresponding partition is named
the Lagrangian coherent structure (LCS). There is clearly more than one way to precisely
define the LCS. One possible way to to extract the structure based on the so-called finite time
Lyapunov exponent (FTLE) [11–13,17,27]. This quantity measures the rate of change in the
distance between neighboring particles across a finite interval of time with an infinitesimal
perturbation in the initial position.

Since FTLE is long treated as a Lagrangian property of a continuous dynamical system,
most numericalmethods are developedbasedon the traditionalLagrangian ray tracingmethod
by solving theODEsystemusing anywell-developednumerical integrator. These approaches,
however, require the velocity field defined at arbitrary locations in the whole space depending
on the location of each individual particle. This implies that one has to in general implement
some interpolation routines in the numerical code. Unfortunately, it could be a numerically
challenging task to develop an interpolation approach which is computationally cheap, high
order accurate yet monotone (due to the numerical stability constraint for nonsmooth velocity
fields).

Incorporating the level set method [24], an Eulerian approach has been first proposed in
[18] to compute the flow map and the FTLE of continuous dynamical systems. Based on
the phase flow method [2,20], we have developed a backward phase flow method for the
Eulerian FTLE computations in [19]. In particular, a doubling technique is incorporated to
efficiently compute the longtime flow map and corresponding FTLE for periodic dynamical
systems.

No matter in the traditional Lagrangian approach or the Eulerian approach developed
in [18,19,33], one needs to first compute the flow map and then use certain finite dif-
ference scheme, e.g. the central difference scheme, to compute the corresponding FTLE.
However, the numerical dissipation in the standard finite difference scheme might lead to
large error when computing the Jacobian of the flow map. Having said that, the computed
FTLE values near the exact FTLE ridge still seem larger than those of nearby locations.
As a result, the computed location of the FTLE ridge will not deviate a lot from the exact
ridge location and this leads people to ignore the fact that the computed FTLE values near
the ridge might have large errors compared to their exact values. Indeed, there are vari-
ous high order numerical methods for the advection equation. In all of our previous work,
we have been applying some rather standard numerical approaches like WENO5-TVDRK2
[9,22,28] to obtain highly accurate numerical solutions. It is of course possible to further
improve the accuracy by replacing the finite difference scheme by other numerical approaches
such as the Runge–Kutta discontinuous galerkin (RKDG) methods [4–6]. Based on the
Lagrangian interpretation, various adaptive methods have also been proposed to improve
both the computational efficiency and the numerical accuracy. For example, [7] has pro-
posed adaptively refining the underlying Cartesian mesh locally so that the mesh size is
h/2l for some adaptive level l where h is the grid size on the coarsest level. Adaptive meth-
ods based on a triangular mesh have also been implemented in [16]. Graphics Processing
Unit (GPU) has also been applied for such computations for efficient parallel computations
[8].

In this paper, however, we are going to develop an improved Eulerian-based approach to
more accurately compute the FTLE. Instead of using a finite difference step after obtaining
the flowmap as in the original Eulerian approach [18], we first derive a PDE system regarding

123

J Sci Comput (2018) 76:1407–1435 1409

the components of the Jacobian of the flow map, and then solve the PDE system to directly
obtain the Jacobian and also the required FTLE field. Similar to some observations in [25],
we find that the numerical Jacobian is in general more accurate. Numerical experiments
show that the FTLE values near the FTLE ridge are more accurate using this new approach.
For periodic dynamical systems, an efficient Eulerian algorithm was proposed to compute
the longtime FTLE [19]. In particular, a doubling technique was introduced to compute
the longtime flow map first and then a finite difference step was imposed to obtain the
corresponding Jacobian for the FTLE computations. In this paper, we are also going to
propose an efficient algorithm to compute the longtime FTLE for periodic dynamical systems
based on our new Eulerian approach. Based on the doubling technique, we will directly
derive a formula linking the Jacobian of longtime flow maps to the Jacobian of short-time
flow maps and then compute the FTLE based on the Jacobian without any finite difference
step.

This paper is organized as follows. In Sect. 2 we will give a summary of some important
concepts and also our original Eulerian formulations for computing the flow maps and the
FTLE. In Sect. 3, we give our proposed Eulerian algorithms, including the new algorithm
to compute the longtime FTLE for periodic flows. After that, we use the idea of our new
approach to numerically solve the linear advection equation to show that our new approach
behaves better than the original Eulerian approach in computing the derivative of the solu-
tion to the linear advection equation. For completeness, a complexity analysis of our new
algorithm is given at the end of Sect. 3. Finally, some numerical examples will be given in
Sect. 4.

2 Background

In this section, we will summarize several useful concepts and methods, which will be useful
for the developments that we are proposing. We first introduce the definition of the finite
time Lyapunov exponent (FTLE) [11–13,17,27], then we summarize the original Eulerian
approach to compute the FTLE as in [18] and also the original Eulerian algorithm to compute
the longtime FTLE for periodic flows as in [19].

2.1 Finite Time Lyapunov Exponent (FTLE)

We consider a continuous dynamical system governed by the following ordinary differential
equation (ODE)

x′(t) = u(x(t), t) (1)

with the initial condition x(t0) = x0. The velocity field u : Ω ×R → R
d is a time dependent

Lipschitz function where Ω ⊂ R
d is a bounded domain in the d-dimensional space. To

simplify the notation in the later sections, we collect the solutions to this ODE for all initial
conditions in Ω at all time t ∈ R and introduce the flow map

Φb
a : Ω → R

d

such thatΦb
a (x0) = x(b) represents the arrival location x(b) at t = b of the particle trajectory

satisfying the ODE (1) with the initial condition x(a) = x0 at the initial time t = a. This

123

1410 J Sci Comput (2018) 76:1407–1435

implies that the mapping will take a point from x(a) at t = a to another point x(b) at
t = b.

FTLE [11–13,17,27] measures the rate of separation between adjacent particles over a
finite time interval with an infinitesimal perturbation in the initial location. Mathematically,
consider the initial time to be 0 and the final time to be t , we have the change in the initial
infinitesimal perturbation given by

δx(t) = Φ t
0(x + δx(0)) − Φ t

0(x)

= ∇Φ t
0(x)δx(0) + higher order terms.

The leading order term of the magnitude of this perturbation is given by

‖δx(t)‖ =
√〈

δx(0), [∇Φ t
0(x)]∗∇Φ t

0(x)δx(0)
〉
.

Here ∇Φ t
0(x) is the spatial derivatives or the Jacobian of the flow map. With the strain

tensor matrixΔt
0(x) = [∇Φ t

0(x)]∗∇Φ t
0(x), the finite time Lyapunov exponent (FTLE) σ t

0(x)
is defined as

σ t
0(x) = 1

|t | ln
√

λmax[Δt
0(x)] = 1

|t | ln
√

λt0(x). (2)

where λt0(x) = λmax(Δ
t
0(x)) denotes the largest eigenvalue of the Cauchy-Green tensor. The

absolute value of t in the expression reflects the fact that we can trace the particles either
forward or backward in time. In the case when t < 0, we are measuring the maximum stretch
backward in time and this corresponds to the maximum compression forward in time. To
distinguish different measures, we call σ t

0(x) the forward FTLE if t > 0 and the backward
FTLE if t < 0.

2.2 The Original Eulerian Approach for Computing the FTLE

According to the definition of the FTLE, we can see that the key point to compute FTLE is
to accurately approximate the Jacobian of the flow map. The typical Lagrangian approach
first solves ODE system (1) by some high-order numerical integration methods to obtain the
flow map and then uses certain finite difference method, e.g. the central difference method,
to compute the required Jacobian.

In contrast to the Lagrangian approach, we proposed an Eulerian approach to compute the
FTLE of given velocity fields [18]. We briefly summarize the ideas as follows and we refer
interested readers to [18] and thereafter.

We define a vector-valued function Ψ = (Ψ 1, Ψ 2, . . . , Ψ d) : Ω × R → R
d . At t = 0,

we initialize these functions by

Ψ (x, 0) = x = (x1, x2, . . . , xd). (3)

These functions provide a labeling for any particle in the phase space at t = 0. In partic-
ular, any particle initially located at (x, t) = (x0, 0) = (x10 , x

2
0 , . . . , x

d
0 , 0) in the extended

123

J Sci Comput (2018) 76:1407–1435 1411

Fig. 1 Lagrangian and Eulerian interpretations of the function Ψ [18]. a Lagrangian ray tracing from a given
grid location x at t = 0. Note that y might be a non-grid point. b Eulerian values of Ψ at a given grid location
y at t = T gives the corresponding take-off location at t = 0. Note the take-off location might not be a mesh
point

phase space can be implicitly represented by the intersection of d codimension-1 surfaces
represented by ∩d

i=1{Ψ i (x, 0) = xi0} in R
d . Following the particle trajectory with x = x0

as the initial condition in a given velocity field, any particle identity should be preserved
in the Lagrangian framework and this implies that the material derivative of these level set
functions is zero, i.e.

DΨ (x, t)
Dt

= 0.

This implies the following level set equations, or the Liouville equations,

∂Ψ (x, t)
∂t

+ (u · ∇)Ψ (x, t) = 0 (4)

with the initial condition (3).
The above implicit representation embeds all path lines in the extended phase space. For

instance, the trajectory of a particle initially located at (x0, 0) can be found by determining
the intersection of d codimension-1 surfaces represented by ∩d

i=1{Ψ i (x, t) = xi0} in the
extended phase space. Furthermore, the forward flow map at a grid location x = x0 from
t = 0 to t = T is given byΦT

0 (x0) = ywhere y satisfiesΨ (y, 0+T) = Ψ (x0, 0) ≡ x0. Note
that, in general, y is a non-mesh location. The typical two dimensional scenario is illustrated
in Fig. 1a.

The solution to (4) contains much more information than what was referred to above.
Consider a given mesh location y in the phase space at the time t = T , as shown in Fig. 1b,
i.e. (y, T) in the extended phase space. As discussed in our previous work, these level set
functions Ψ (y, T) defined on a uniform Cartesian mesh in fact give the backward flow
map from t = T to t = 0, i.e. Φ0

T (y) = Ψ (y, T). Moreover, the solution to the level set
equations (4) for t ∈ (0, T) provides also backward flow maps for all intermediate times, i.e.
Φ0

t (y) = Ψ (y, t).
To compute the forward flow map, on the other hand, [18] has proposed to simply reverse

the above process by initializing the level set functions at t = T by Ψ (x, T) = x and solving
the corresponding level set equations (4) backward in time. Based on the forward flow map,
the Jacobian of the flow map and hence the forward FTLE can be easily computed. A typical
algorithm of this type in 2D case is given in Algorithm 1.

123

1412 J Sci Comput (2018) 76:1407–1435

Algorithm 1: Computing the forward FTLE σ T
0 (x):

1. Discretize the computational domain to get xi , y j , tk .
2. Initialize the level set functions on the last time level t = T = tK

Ψ 1(xi , y j , tK) = xi

Ψ 2(xi , y j , tK) = y j .

3. Solve the Liouville equations for each individual level set function l = 1, 2

∂Ψ l

∂t
+ (u · ∇)Ψ l = 0

from t = tK down to t = 0 using anywell-developed high order numericalmethods
like WENO5-TVDRK2 [9,22,28] with the boundary conditions

Ψ (x, t)|x∈∂Ω = x if n · u < 0 (5)

n · ∇Ψ l(x, t)|x∈∂Ω = 0 if n · u > 0 (6)

where n is the outward normal of the boundary.
4. Assign ΦT

0 (xi , y j) = Ψ (xi , y j , 0) and compute the Cauchy-Green deformation
tensor

ΔT
0 (xi , y j) =

[
∇ΦT

0 (xi , y j)
]∗ ∇ΦT

0 (xi , y j).

5. Determine the forward FTLE at t = 0 by computing the largest eigenvalue of the
deformation tensor at each grid point (xi , y j)

σ T
0 (xi , y j) = 1

T
ln

√
λmax

[
ΔT

0 (xi , y j)
]
.

Remark 1 In this Eulerian algorithm, one also needs to first compute the flow map in step 3
and then use certain finite difference method to obtain the Jacobian in step 4.

2.3 The Doubling Technique to Compute the Longtime Flow Map

In [19], we have proposed an efficient method to compute the longtime FTLE for periodic
flows. The idea is to develop a map doubling phase flow method for longtime flow map
computations. To compute the longtime backward flow map, for example, we first construct
the solution Ψ (x, Tm) by solving the Liouville equations (4) forward in time from t = 0 to
t = Tm where Tm is the period of the flow. To determine Ψ (x, 2Tm), we use the phase flow
property and obtain Ψ (x, 2Tm) = Ψ (Ψ (x, Tm), Tm).

In general, once we have obtained the solution Ψ (x, 2k−1Tm), we can obtain

Ψ (x, 2kTm) = Ψ (Ψ (x, 2k−1Tm), 2k−1Tm).

Finally, if we take T = 2nTm , the backward flow map from t = T to t = 0 is given by
Φ0

T (x) = Ψ (x, T).
The idea to compute the forward flow map is simple. We can solve the Liouville equation

backward in time from t = T to t = T − Tm . Then we iterate the map n-times to get the

123

J Sci Comput (2018) 76:1407–1435 1413

overall flow map forward in time from t = 0 to t = T = Tm · 2n . Once the longtime flow
map is computed, the corresponding Jacobian can be easily obtained by any finite difference
method.

3 An Improved Eulerian Approach to Compute the FTLE

As mentioned in the previous section, most, if not all, approaches for computing the FTLE
first determine the flow map, then use certain finite difference method to obtain the Jacobian
and the deformation tensor, and finally determine its eigenvalues. Since these eigenvalues are
in general very sensitive to any perturbation in the deformation tensor, accurate computations
in the Jacobian matrix is crucial in determining the FTLE fields.

In this section, we will give an improved Eulerian approach to compute the FTLE where
the Jacobian can be obtained by directly solving a PDE system, rather than by applying
the finite difference step to the computed flow map. Corresponding to this new Eulerian
approach, we are also proposing an efficient way to compute the longtime FTLE for periodic
dynamical systems. After that, we will use the idea of our new approach to numerically
solve the linear advection equation to show that our new approach behaves better than the
original Eulerian approach by computing the derivatives of the solution to the linear advection
equation. For completeness, a complexity analysis of our new algorithm is given at the end
of this section.

3.1 An Improved Eulerian Algorithm to Compute the FTLE

Based on the Eulerian-formulation, we here propose a newmethod to compute the Jacobian of
the flow map and hence the FTLE. Since the flow map has the same order of regularity as the
velocity field, Ψ (x, t), solution to Liouville equations (4), has continuous partial derivatives
as long as the velocity field u is smooth enough. Taking partial derivatives to both sides
of equations (4) with respect to each spatial variable gives (in two-dimensional case for
example):

⎧
⎪⎨
⎪⎩

∂φx

∂t
+ (u · ∇)φx = −uxφx − vxφy

∂φy

∂t
+ (u · ∇)φy = −uyφx − vyφy

(7)

and similarly

⎧
⎪⎨
⎪⎩

∂ψx

∂t
+ (u · ∇)ψx = −uxψx − vxψy

∂ψy

∂t
+ (u · ∇)ψy = −uyψx − vyψy .

(8)

where φ and ψ are used to respectively replace Ψ 1 and Ψ 2 for notational simplicity.
Given initial conditions (φx (x, y, 0), φy(x, y, 0)) = (1, 0) and (ψx (x, y, 0), ψy(x, y, 0))

= (0, 1), solving PDE systems (7) and (8) from t = 0 up to t = T will give us the Jacobian
J 0T (x, y) of the backward flow map Φ0

T (x, y) and subsequently the FTLE can be easily
computed without any finite difference step upon the flow map.

123

1414 J Sci Comput (2018) 76:1407–1435

3.2 An Improved Algorithm to Compute the Longtime FTLE for Periodic
Dynamical Systems

Corresponding to the new Eulerian approach for the FTLE proposed in Sect. 3.1, we here
also present an efficient algorithm to compute the longtime FTLE for periodic dynamical
systems.

3.2.1 The Algorithm

The first step of the algorithm is to solve PDE systems (7) and (8) together with (4)
from t = 0 to t = Tm with initial conditions (φx (x, y, 0), φy(x, y, 0)) = (1, 0),
(ψx (x, y, 0), ψy(x, y, 0)) = (0, 1) and Ψ (x, y, 0) = (x, y), respectively, where Tm is the
period of the dynamical system.After that,we can obtain the backwardflowmapΦ0

Tm
(x, y) =

Ψ (x, y, Tm) from t = Tm to t = 0 and its spatial derivatives (φx (x, y, Tm), φy(x, y, Tm))

and (ψx (x, y, Tm), ψy(x, y, Tm)), i.e. components of the Jacobian J 0Tm (x, y).

Lemma 1 Suppose x(t) = (x(t), y(t)) is the trajectory of the particle located at x0 =
(x0, y0) initially at t = 0, then

{
f (t) = φx (Φ

t
0(x0), t)

g(t) = φy(Φ
t
0(x0), t)

and

{
f (t) = ψx (Φ

t
0(x0), t)

g(t) = ψy(Φ
t
0(x0), t)

are

solutions to the following ODE system
⎧
⎪⎨
⎪⎩

d f

dt
= −ux (x(t), t) f − vx (x(t), t)g

dg

dt
= −uy(x(t), t) f − vy(x(t), t)g

(9)

with the initial conditions

{
f (0) = 1

g(0) = 0
and

{
f (0) = 0

g(0) = 1
, respectively.

Proof It can be easily seen from PDE systems (7) and (8).

As ODE system (9) is linear, we have the following lemma.

Lemma 2 The solution to ODE system (9)with the initial condition (f (0), g(0)) = (f0, g0)
is given by

f (t) = f0φx (Φ
t
0(x0), t) + g0ψx (Φ

t
0(x0), t)

g(t) = f0φy(Φ
t
0(x0), t) + g0ψy(Φ

t
0(x0), t) .

Corollary 1 For any positive integer k, we have

J 02k Tm (x, y) = J 02k−1Tm
(x, y) J 02k−1Tm

(Ψ (x, 2k−1Tm)) (10)

where J 0t (x, y) �
(

φx (x, y, t) ψx (x, y, t)
φy(x, y, t) ψy(x, y, t)

)
.

Proof Due to the periodicity of the velocity field, (φx (x, y, 2Tm), φy(x, y, 2Tm)) is the solu-

tion to ODE system (9) at t = Tm with the initial condition

{
f (0) = φx (Ψ (x, Tm), Tm)

g(0) = φy(Ψ (x, Tm), Tm)

and x0 = Ψ (x, Tm).

123

J Sci Comput (2018) 76:1407–1435 1415

With Lemma 2, we have

(φx (x, y, 2Tm), φy(x, y, 2Tm)) = φx (Ψ (x, Tm), Tm) · (φx (x, y, Tm), φy(x, y, Tm))

+φy(Ψ (x, Tm), Tm) · (ψx (x, y, Tm), ψy(x, y, Tm))

and similarly

(ψx (x, y, 2Tm), ψy(x, y, 2Tm)) = ψx (Ψ (x, Tm), Tm) · (φx (x, y, Tm), φy(x, y, Tm))

+ψy(Ψ (x, Tm), Tm) · (ψx (x, y, Tm), ψy(x, y, Tm))

which implies

J 02Tm (x, y) = J 0Tm (x, y) J 0Tm (Ψ (x, Tm))

and, therefore, (10).

As a result, once we have computed J 0Tm (x, y), we can easily obtain J 02Tm (x, y) based

on formula (10) where J 0Tm (Ψ (x, Tm)) can be obtained by interpolation. After that we can

iteratively obtain the Jacobian J 0
2k Tm

(x, y) for any k ≥ 2. An algorithm of this approach is
given in Algorithm 2.

Algorithm 2: Computing the backward FTLE σ 0
T (x) for periodic flows where T = 2nTm

where n ∈ N+:

1. Solve PDE systems (4), (7) and (8) together from t = 0 to t = Tm with
initial conditions Ψ (xi , y j , 0) = (xi , y j), (φx (x j , y j , 0), φy(xi , y j , 0)) = (1, 0)
and (ψx (xi , y j , 0), ψy(xi , y j , 0)) = (0, 1), respectively. Then Ψ (xi , y j , Tm) and
J 0Tm (xi , y j) are obtained.

2. For k = 0, 1, . . . , n−1, interpolate to obtainΨ (xi , y j , 2kTm), J 0
2k Tm

(Ψ (xi , y j , 2kTm))

and thus

J 02k+1Tm
(xi , y j) = J 02k Tm (xi , y j) · J 02k Tm (Ψ (xi , y j , 2

kTm))

can be obtained.
3. Compute the Cauchy-Green deformation tensor Δ0

T (xi , y j) = [J 0T (xi , y j)]∗
J 0T (xi , y j) and thus the backward FTLE is computed as σ 0

T (xi , y j) = 1
T ln√

λmax [Δ0
T (xi , y j)].

To end this section, we discuss the Lagrangian implementation of directly solving the
ODE system (9). The stiffness of the system clearly depends on the property of the flow

velocity. We let M =
(
ux vx
uy vy

)
such that the evolution of the Jacobian is governed by

d J
dt = −MJ. The eigenvalue of the matrix M is given by

λ± =
ux + vy ±

√
(ux + vy)2 − 4(uxvy − uyvx)

2
= 1

2

[
∇ · u ±

√
(∇ · u)2 − 4 det(M)

]
.

If the underlying flow is potential so that the velocity u is given by (−ψy, ψx) for some
stream function ψ , the eigenvalues λ± is given by

λ± = ±√−det(M) = ±√−det[H(ψ)]

123

1416 J Sci Comput (2018) 76:1407–1435

where H(ψ) is the hessian of the stream function. Therefore, if the stream function has a
settle point, the hessian matrix has one positive and one negative eigenvalues which implies
that the determinant of suchmatrix would be negative. As a result, thematrixM has a positive
eigenvalue and so the ODE system (9) will be stiff. Such a stiff ODE system will therefore
require a smaller timestep to guarantee numerical stability.

3.2.2 The Influence of the Interpolation Scheme on the Accuracy of Algorithm 2

In step 2 of Algorithm 2, we have proposed to use the interpolation method to obtain
the longtime flow map and the corresponding Jacobian for periodic dynamical systems. In
this part we will show some results about how the interpolation scheme will influence the
accuracy of Algorithm 2.Wefirst give the following two lemmaswhich are natural extensions
of Lemma 4 and Lemma 5 from [32] and will be used in our proof.

Lemma 3 Suppose that the velocity field u(x, t) is smooth enough and has the Lipschitz
constant L on the computational domain x ∈ M. We have

|Φ t
0(x1) − Φ t

0(x2)| ≤ eLt |x1 − x2|, ∀x1, x2 ∈ M.

Lemma 4 Suppose that the velocity field u is smooth enough. For each s ≥ 2, there exists a
constant Cs such that for any multi-index γ with |γ | = s and any x ∈ M, we have

|∂γ Φ t
0(x)| ≤ Cs t e

(2s−1)Lt , ∀t > 0.

In the following Theorem 1 and Lemma 5, we assume that the interpolation operator has
a bounded norm which is independent of the mesh size.

Theorem 1 Assuming that Ψ (xi , y j , Tm) computed in step 1 of Algorithm 2 has second
order accuracy and the interpolation scheme in step 2 is at least second order accurate,
Ψ (xi , y j , 2Tm) is also second order accurate.

Proof We use ·̃ to denote the numerical solution and I to denote the interpolation operator.
Then Ψ (xi , y j , 2Tm) is approximated by

Ψ̃ (xi , y j , 2Tm) = Φ̃0
2Tm (xi, j) = IΦ̃0

Tm

(
Φ̃0

Tm (xi, j)
)

with the error∣∣∣Φ̃0
2Tm (xi, j) − Φ0

2Tm (xi, j)
∣∣∣ ≤

∣∣∣IΦ̃0
Tm

(
Φ̃0

Tm (xi, j)
)

− IΦ0
Tm

(
Φ̃0

Tm (xi, j)
)∣∣∣

+
∣∣∣IΦ0

Tm

(
Φ̃0

Tm (xi, j)
)

− Φ0
Tm

(
Φ̃0

Tm (xi, j)
)∣∣∣

+
∣∣∣Φ0

Tm

(
Φ̃0

Tm (xi, j)
)

− Φ0
Tm

(
Φ0

Tm (xi, j)
)∣∣∣

� I1 + I2 + I3.

Since Ψ (xi , y j , Tm) is supposed to have second order accuracy, there exists a constant C0

such that

|Ψ̃ (xi , y j , Tm) − Ψ (xi , y j , Tm)| =
∣∣∣Φ̃0

Tm (xi, j) − Φ0
Tm (xi, j)

∣∣∣ ≤ C0Δx2.

Suppose the interpolation operator has a Δx-independent norm NI . Then I1 is bounded by

I1 ≤ NI · max
xi, j

∣∣∣Φ̃0
Tm (xi, j) − Φ0

Tm (xi, j)
∣∣∣ ≤ C1Δx2.

123

J Sci Comput (2018) 76:1407–1435 1417

Since the interpolation scheme is at least second order accurate, then I2 is bounded by

I2 ≤ C ′
2Δx2 max|γ |=2

sup
xi, j

∣∣∂γ Φ0
Tm (xi, j)

∣∣ .

According to Lemma 4, there exists a constant C2 such that

max|γ |=2
sup
xi, j

∣∣∂γ Φ0
Tm (xi, j)

∣∣ ≤ C2 · e3LTm · Tm

which implies I2 ≤ C3Δx2 where C3 is a constant. Finally, by Lemma 3, I3 is bounded by

I3 ≤ eLTm
∣∣∣Φ̃0

Tm (xi, j) − Φ0
Tm (xi, j)

∣∣∣ ≤ C4Δx2

where C4 = C0eLTm is a constant. As a result, Ψ (xi , y j , 2Tm) = Φ0
2Tm

(xi, j) is second order
accurate.

Lemma 5 Assuming thatΨ (xi , y j , Tm) and J 0Tm (xi , y j) computed in step 1 ofAlgorithm 2
have second order accuracy and the interpolation scheme in step 2 is at least second order
accurate, then J 0Tm (Ψ (xi , y j , Tm)) obtained by interpolating on J 0Tm (xi , y j) is also second
order accurate.

Proof Since J 0Tm (Ψ (xi , y j , Tm)) �
(

φx (Ψ (xi , y j , Tm), Tm) ψx (Ψ (xi , y j , Tm), Tm)

φy(Ψ (xi , y j , Tm), Tm) ψy(Ψ (xi , y j , Tm), Tm)

)
,

we here only prove that φx (Ψ (xi , y j , Tm), Tm) is second order accurate and the accuracy
of the other three terms can be similarly proved.

In fact, φx (Ψ (xi , y j , Tm), Tm) is approximated by Iφ̃x (Ψ̃ (xi, j , Tm), Tm) with the error
∣∣∣Iφ̃x (Ψ̃ (xi, j , Tm), Tm) − φx (Ψ (xi, j , Tm), Tm)

∣∣∣
≤

∣∣∣Iφ̃x (Ψ̃ (xi, j , Tm), Tm) − Iφx (Ψ̃ (xi, j , Tm), Tm)

∣∣∣
+

∣∣∣Iφx (Ψ̃ (xi, j , Tm), Tm) − φx (Ψ̃ (xi, j , Tm), Tm)

∣∣∣
+

∣∣∣φx (Ψ̃ (xi, j , Tm), Tm) − φx (Ψ (xi, j , Tm), Tm)

∣∣∣
� I1 + I2 + I3.

Suppose the interpolation operator has a Δx-independent norm NI . Then I1 is bounded
by

I1 ≤ NI · max
xi, j

∣∣∣φ̃x (xi, j , Tm) − φx (xi, j , Tm)

∣∣∣ .

Since J 0Tm (xi , y j) is supposed to be second order accurate, we have |φ̃x (xi, j , Tm) −
φx (xi, j , Tm)| ≤ C0Δx2 and thus I1 ≤ C1Δx2 where C0, C1 are constants. Since the inter-
polation scheme is at least second order accurate, then there exist a constant C2 such that

I2 ≤ C2Δx2 max|γ |=2
sup
xi, j

|∂γ φx (xi, j , Tm)|

≤ C2Δx2 max|γ |=3
sup
xi, j

|∂γ φ(xi, j , Tm)|.

According to Lemma 4, there exists a constant C3 such that

max|γ |=3
sup
xi, j

|∂γ φ(xi, j , Tm)| ≤ C3 · e5LTm · Tm

123

1418 J Sci Comput (2018) 76:1407–1435

which implies I2 ≤ C4Δx2 where C4 = C2C3 · e5LTm · Tm is a constant. Finally, I3 is
bounded by

I3 ≤ sup
x∈M

|∇φx (x, Tm)||Ψ̃ (x, Tm) − Ψ (x, Tm)|

where M is the computational domain. Also from Lemma 4, we have

sup
x∈M

|∇φx (x, Tm)| ≤ C5

where C5 is a constant only depending on L , Tm . Furthermore, |Ψ̃ (x, Tm) − Ψ (x, Tm)| ≤
C6Δx2 due to the assumption that Ψ (x, Tm) is second order accurate. As a result, I3 ≤
C5C6Δx2 and thus φx (Ψ (xi , y j , Tm), Tm) is second order accurate.

Theorem 2 Assuming that Ψ (xi , y j , Tm) and J 0Tm (xi , y j) computed in step 1 of Algorithm
2 have second order accuracy and the interpolation scheme in step 2 is at least second order
accurate, J 02Tm (xi , y j) is also second order accurate.

Proof J 0Tm (xi , y j) is supposed to be second order accurate and from Lemma 5 we know that

J 0Tm (Ψ (xi , y j , Tm)) is also second order accurate. As a result, the numerical solution of

J 02Tm (xi , y j) = J 0Tm (xi , y j) J
0
Tm (Ψ (xi , y j , Tm))

is still second order accurate.

With similar derivation, we have the following corollary:

Theorem 3 Suppose that Ψ (xi , y j , Tm) and J 0Tm (xi , y j) computed in step 1 of Algorithm
2 have second order accuracy and the interpolation scheme in step 2 is at least second
order accurate, then Ψ (xi , y j , 2kTm) and J 0

2k Tm
(xi , y j) are also second order accurate for

any positive integer k.

3.3 A Simple Analysis on the Linear Advection Equation

In this subsection, we use a slightly easier 1-dimensional case to show the idea of our new
Eulerian approach proposed in Sect. 3.1 and demonstrate its effectiveness. Suppose that
φ(x, t) is the smooth solution satisfying the linear advection equation in one-dimension

φt + aφx = 0 (11)

with the initial condition φ(x, 0) = φ0(x) where a is a constant. We consider two different
numerical strategies to compute φx (x, t) which is the spatial derivative of φ(x, t).

In the original approach, we first use certain numerical scheme to solve PDE (11) to
approximate φ(x, t) and then use a finite difference method to obtain the numerical approx-
imation to φx (x, t). Using the idea of our new approach as proposed in Sect. 3.1, we first
take the partial derivatives of both sides of Eq. (11) with respect to x and let p = φx , then
we obtain

pt + apx = 0 . (12)

After that, we also use certain numerical scheme to solve PDE (12) and obtain the numerical
approximation to p(x, t), i.e. φx (x, t).

In this subsection, we will give detailed discussion about the accuracies of these two
different strategies for computing φx (x, t). For the original approach, in particular, we will

123

J Sci Comput (2018) 76:1407–1435 1419

use the central difference scheme to obtain φx (x, t) based on φ(x, t). And we will use the
Lax–Wendroff scheme and the TVDRK2-WENO5 scheme, respectively in Sects. 3.3.1 and
3.3.2, to solve both PDEs (11) and (12).

3.3.1 The Lax–Wendroff Discretization

Theorem 4 Let φn
j be the numerical solution to Eq. (11) discretized by the Lax–Wendroff

scheme, i.e.

φn+1
j = φn

j − aΔt

2Δx

(
φn
j+1 − φn

j−1

)
+ a2Δt2

2Δx2

(
φn
j+1 − 2φn

j + φn
j−1

)
, (13)

then (φx)
n
j is a second-order accurate approximation to φx (x, t) where (φx)

n
j is obtained by

using the central difference based on φn
j .

Proof According to the Taylor’s expansion we have

φ(x j , t
n+1) = φ(x j , t

n) + Δtφt (x j , t
n) + Δt2

2
φt t (x j , t

n) + Δt3

6
φt t t (x j , t

n)

+Δt4

24
φt t t t (x j , t

n) + O(Δt5). (14)

On the other hand, Eq. (11) gives

φt = −aφx , φt t = a2φxx , φt t t = −a3φxxx , φt t t t = a4φxxxx . (15)

Plugging (15) into (14) gives

φ(x j , t
n+1) = φ(x j , t

n) − aΔtφx (x j , t
n) + a2Δt2

2
φxx (x j , t

n) − a3Δt3

6
φxxx (x j , t

n)

+a4Δt4

24
φxxxx (x j , t

n) + O(Δt5) . (16)

Also from the Taylor’s expansion, we can obtain

φx (x j , t
n) = φ(x j+1, tn) − φ(x j−1, tn)

2Δx
− Δx2

6
φxxx (x j , t

n) + O(Δx4) (17)

and

φxx (x j , t
n) = φ(x j+1, tn) − 2φ(x j , tn) + φ(x j−1, tn)

Δx2
− Δx2

12
φxxxx (x j , t

n) + O(Δx4).

(18)
Substituting (17–18) into (16) and letting λ = aΔt

Δx be the CFL number which should be less
than 1, we have

φ(x j , t
n+1) = φ(x j , t

n) − λ

2
[φ(x j+1, t

n) − φ(x j−1, t
n)]

+λ2

2
[φ(x j+1, t

n) − 2φ(x j , t
n) + φ(x j−1, t

n)]

+λ(1 − λ2)Δx3

6
φxxx (x j , t

n)

+λ2(λ2 − 1)Δx4

24
φxxxx (x j , t

n) + O(Δx5). (19)

123

1420 J Sci Comput (2018) 76:1407–1435

Denoting enj = φn
j − φ(x j , tn), then (13)-(19) implies

en+1
j =

(
λ2

2
+ λ

2

)
enj−1 + (1 − λ2)enj +

(
λ2

2
− λ

2

)
enj+1

−λ(1 − λ2)Δx3

6
φxxx (x j , t

n)

−λ2(λ2 − 1)Δx4

24
φxxxx (x j , t

n) + O(Δx5) (20)

and thus

enj+1 − enj−1 =
(

λ2

2
+ λ

2

)
(en−1

j − en−1
j−2) + (1 − λ2)

(
en−1
j+1 − en−1

j−1

)

+
(

λ2

2
− λ

2

) (
en−1
j+2 − en−1

j

)

+λ(λ2 − 1)

3
Δx4φxxxx (x j , t

n−1) + O(Δx5). (21)

Let K = λ(λ2−1)
3 . Using the mathematical induction, we can prove that

enj+1 − enj−1 = KΔx4
n−1∑
i=0

φxxxx (x j , t
i) + O(Δx5) (22)

is true for arbitrary n ∈ N+.
Now suppose that |φxxx (x, t)| ≤ Mxxx , |φxxxx (x, t)| ≤ Mxxxx uniformly in the whole

computational domain, then from (22) we can know

|enj+1 − enj−1| ≤ |K |nMxxxxΔx4 + O(Δx5).

Together with (17), the error of numerical approximation to φx (x j , tn) can be expressed as

|En
j | �

∣∣∣∣∣
φn
j+1 − φn

j−1

2Δx
− φx (x j , t

n)

∣∣∣∣∣

≤ |K |
2

nMxxxxΔx3 + Δx2

6
Mxxx + O(Δx4).

Since nΔx = n aΔt
λ

≤ | a
λ
T | where |T | is the final time level, we finally have

|En
j | ≤ |1 − λ2|

6
Mxxxx |aT |Δx2 + 1

6
MxxxΔx2 + O(Δx4). (23)

��
Nowwe use the idea of our new approach as proposed in Sect. 3.1 to approximate φx (x, t),

i.e. we need to solve Eq. (12). Similar derivation as in the proof of Theorem 4 will give us a
formula similar to (20):

En+1
j =

(
λ2

2
+ λ

2

)
En

j−1 + (1 − λ2)En
j +

(
λ2

2
− λ

2

)
En

j+1

−λ(1 − λ2)Δx3

6
pxxx (x j , t

n) + O(Δx4). (24)

123

J Sci Comput (2018) 76:1407–1435 1421

We can also use the mathematical induction to prove that

En
j = K

2
Δx3

n−1∑
i=0

pxxx (x j , t
i) + O(Δx4).

Since pxxx (x j , t i) = φxxxx (x j , t i), then

|En
j | ≤ |1 − λ2|

6
Mxxxx |aT |Δx2 + O(Δx4). (25)

Using the idea of our proposed approach, we first derive a PDE regarding φx itself and
then solve it to directly obtain its numerical approximation avoiding an extra finite difference
step. As we can see from formula (23) and (25), both these two numerical schemes for
approximating φx (x, t) are second order accurate in Δx . However, the proposed approach
might be more accurate than the original approach under the same Δx . |En

j | is bounded
by I1 + I2 in the original approach and only by I1 using the proposed approach where

I1 � |1−λ2|
6 Mxxxx |aT |Δx2 and I2 � 1

6MxxxΔx2. As a result, the larger the ratio of I2 over
I1, the more accurate our proposed approach than the original approach. In summary, our
new Eulerian approach seems to be an improved version of the original Eulerian approach
when PDEs are solved using the Lax–Wendroff scheme.

3.3.2 The TVDRK2-WENO5 Discretization

We then discuss the accuracies of those two strategies for computing φx (x, t) assuming that
both PDEs (11) and (12) are solved with the TVDRK2-WENO5 scheme. We first review the
fifth orderWENO scheme for approximating the derivatives of given functions. In particular,
to approximate the derivative fx (xi) of the function f (x) at a grid point xi , the WENO
scheme proposes to first compute three possible approximations

(
f 1x

)
i = v1

3
− 7v2

6
+ 11v3

6
,

(
f 2x

)
i = −v2

6
+ 5v3

6
+ v4

3

and
(
f 3x

)
i = v3

3
+ 5v4

6
− v5

6

where v1 = D− fi−2, v2 = D− fi−1, v3 = D− fi , v4 = D− fi+1, v5 = D− fi+2 for (fx)
−
i

and v1 = D+ fi+2, v2 = D+ fi+1, v3 = D+ fi , v4 = D+ fi−1, v5 = D+ fi−2 for (fx)
+
i . Here

(fx)
−
i and (fx)

+
i are appropriately chosen depending on the direction of the characteristic

line when solving a Hamiltonian-Jacobian equation. For simplicity, we only consider (fx)
−
i

here.
After that, one approximates fx (xi) by

(fx)i = ω1
(
f 1x

)
i + ω2

(
f 2x

)
i + ω3

(
f 3x

)
i

where the 0 ≤ ωk ≤ 1 are the weights with ω1 + ω2 + ω3 = 1 and (fx)i denotes the
approximation to the exact value of fx (xi). In smooth regions, settingω1 = 0.1,ω2 = 0.6 and
ω3 = 0.3 will give the optimal fifth-order accurate approximation to fx . When the variation
in the underlying function is not smooth enough, we might have other sets of parameters
which leads to WENO5. However, for the region where the solution is not smooth enough,
the analysis is too complicated and we would not be able to draw any conclusion in the
current work. As a result, we have to emphasize that the analysis here is only for the case

123

1422 J Sci Comput (2018) 76:1407–1435

when the solution is smooth enough and always use ω1 = 0.1, ω2 = 0.6 and ω3 = 0.3. With
all terms written explicitly in one single formula, we then have

(fx)
−
i = −0.2 fi−3 + 1.5 fi−2 − 6 fi−1 + 2 fi + 3 fi+1 − 0.3 fi+2

6Δx
.

This is a fifth-order accurate approximation because

−0.2 fi−3 + 1.5 fi−2 − 6 fi−1 + 2 fi + 3 fi+1 − 0.3 fi+2

6Δx

= fx (xi) − 1

60
fxxxxxx (xi)Δx5 + O(Δx6)

(26)

with the use of Taylor’s expansion. Actually, formula (26) is true for arbitrary smooth enough
function f (x) and we will make use of it multiple times later.

Now we are able to show the accuracies of those two strategies for computing φx (x, t).
In the original approach, one first uses the TVDRK2-WENO5 scheme to solve Eq. (11) to
approximate φ(x, t) and then use certain finite difference scheme, e.g. central difference
scheme, to obtain the approximation of φx (x, t). Let φ(xi , tn) and φn

i respectively be the
exact value and the numerical approximation of the function φ(x, t) at the spatial mesh point
xi and time level t = tn . Then φ1

i is approximated by first solving

φ̂1
i − φ0

i

Δt
= −a(φx)

0
i

and

φ̂2
i − φ̂1

i

Δt
= −a(φx)

1
i

and then assigning

φ1
i = φ0

i − aΔt · (φx)
0
i + (φx)

1
i

2
.

Here φ̂1
i and φ̂2

i represent the intermediate solutions at t = t1 and t = t2 respectively and
(φx)

0
i and (φx)

1
i denote the approximation of φx (xi , t0) and φx (xi , t1), respectively, using

the WENO5 discretization. It is obvious that (φx)
0
i = φx (xi , t0) − 1

60φxxxxxx (xi , t0)Δx5 +
O(Δx6). The error analysis of (φx)

1
i is a little more complex since it is computed using the

WENO5 scheme based on the values of φ̂1
j for different j’s, rather than the exact values of

φ(x j , t1). In particular,

(φx)
1
i = −0.2φ̂1

i−3 + 1.5φ̂1
i−2 − 6φ̂1

i−1 + 2φ̂1
i + 3φ̂1

i+1 − 0.3φ̂1
i+2

6Δx
.

Plugging

φ̂1
j = φ0

j − aΔt (φx)
0
j

= φ0
j − aΔt

[
φx (x j , t

0) − 1

60
φxxxxxx (x j , t

0)Δx5 + O(Δx6)

]

into the above formula gives

(φx)
1
i = −0.2φ0

i−3 + 1.5φ0
i−2 − 6φ0

i−1 + 2φ0
i + 3φ0

i+1 − 0.3φ0
i+2

6Δx

123

J Sci Comput (2018) 76:1407–1435 1423

−aΔt
−0.2φx (xi−3, t0)+1.5φx (xi−2, t0)−6φx (xi−1, t0)+2φx (xi , t0)+3φx (xi+1, t0)−0.3φx (xi+2, t0)

6Δx

+O(ΔtΔx6)

= (φx)
0
i − aΔt

[
φxx (xi , t

0) − 1

60
φxxxxxxx (xi , t

0)Δx5 + O(Δx6)

]
+ O(ΔtΔx5)

= (φx)
0
i − aφxx (xi , t

0)Δt + O(ΔtΔx5).

As a result,

φ1
i = φ0

i − aΔt
2(φx)

0
i − aΔtφxx (xi , t0) + O(ΔtΔx5)

2

= φ0
i − aΔt

[
φx (xi , t

0) − 1

60
φx6(xi , t

0)Δx5 + O(Δx6)

]

+a2φxx (xi , t0)

2
Δt2 + O(Δt2Δx5)

= φ0
i − aφx (xi , t

0)Δt + a2φxx (xi , t0)

2
Δt2 + O(ΔtΔx5) . (27)

Taking n = 0 in (16) and then subtracting it from (27) gives

φ1
i = φ(xi , t

1) + a3φxxx (xi , t0)

6
Δt3 − a4φxxxx (xi , t0)

24
Δt4 + O(ΔtΔx5) + O(Δt5)

= φ(xi , t
1) + a3φxxx (xi , t0)

6
Δt3 − a4φxxxx (xi , t0)

24
Δt4 + O(Δt5)

where the last equality is due to the CFL condition Δt = O(Δx).
With the mathematical induction we can easily prove that

φn
i = φ(xi , t

n) + na3φxxx (xi , tn−1)

6
Δt3 − na4φxxxx (xi , tn−1)

24
Δt4 + O(Δt5)

= φ(xi , t
n) + aλ2Tφxxx (xi , tn−1)

6
Δx2

−aλ3Tφxxxx (xi , tn−1)

24
Δx3 + O(Δx5) (28)

where T = nΔt and λ = aΔt
Δx . To approximate φx (x, t), in the original approach, we then

use the central difference method and have

(φx)
n
i = φn

i+1 − φn
i−1

2Δx
= φ(xi+1, tn) − φ(xi−1, tn)

2Δx

+aλ2TΔx2

6

φxxx (xi+1, tn−1) − φxxx (xi−1, tn−1)

2Δx
+ O(Δx3)

= φx (xi , t
n) + φxxx (xi , tn)

6
Δx2 + aλ2Tφxxxx (xi , tn−1)

6
Δx2 + O(Δx3). (29)

However, if we use the idea of the new approach proposed in Sect. 3.1 to approximate
φx (x, t), then we just solve Eq. (12) with the TVDRK2-WENO5 scheme and consider the
error of p(x, t). From (28), we can immediately have

pni = p(xi , t
n) + aλ2T pxxx (xi , tn−1)

6
Δx2 − aλ3T pxxxx (xi , tn−1)

24
Δx3 + O(Δx5).

123

1424 J Sci Comput (2018) 76:1407–1435

Noticing that p = φx , the above formula can be rewritten as

(φx)
n
i = φx (xi , t

n) + aλ2Tφxxxx (xi , tn−1)

6
Δx2 + O(Δx3). (30)

From formula (29) and (30), we can see that both these two strategies for approximating
φx (x, t) are second order accurate in Δx when the corresponding PDEs are solved with
the TVDRK2-WENO5 scheme. However, the proposed approach might be more accurate
than the original approach under the same Δx . In particular, |(φx)

n
i − φx (xi , tn)| is bounded

by I3 + I4 in the original approach and only by I3 using the proposed approach where

I3 � aλ2T Mxxxx
6 Δx2 and I4 � Mxxx

6 Δx2. As a result, the larger the ratio of I4 over I3, the
more accurate our proposed approach than the original approach. This observation is quite
similar to that in Sect. 3.3.1 where corresponding PDEs are solved with the Lax–Wendroff
scheme. To end this subsection, we want to point out that we still use the WENO5 scheme
in the spatial direction in most of our implementations, although the overall accuracy is
only second order. It is because that in the region where the solution is not smooth, the
WENO5 scheme will lead to a third order discretization rather than giving a fifth order linear
discretization and it would better match with the RK2 or RK3 scheme used for the temporal
discretization.

3.4 Computational Complexity

We consider the computational complexity of our new Eulerian approach in this section. Let
N and M be the discretization size of one spatial dimension and time dimension respectively.
In the original Eulerian approach, only the hyperbolic PDE system (4) needs to be solved.
Supposing that the computational effort is h ·N 2 at each time step tn and summing up the effort
in all time steps, the overall computational complexity is h · M · N 2. For our new Eulerian
approach, however, two hyperbolic PDE systems (7) and (8) need to be solved together.
In this case, 2h · N 2 operations are required at each time step and the total computational
complexity would be 2h · M · N 2. That is, although the proposed approach needs to solve
more PDEs, the computational complexity has the same order as that of the original Eulerian
approach and both of them have kept the optimal complexity.

4 Numerical Examples

4.1 Linear Advection Equation

In this example, we consider numerical solutions to the linear advection equationwith various
parameters and situations to demonstrate the performance of the proposedmethod. The details
of this example have been given in Sect. 3.3. For simplicity, we fix the parameters except
Mxxx and Mxxxx which bound the third and the fourth derivative of the solution with respect
to x . In particular, we set λ = 0.7, a = 0.4 and T = 5 and let Mxxx and Mxxxx vary by
giving different initial conditions φ0(x).

4.1.1 Mxxx/Mxxxx = O(104)

In this first case, we consider the initial condition φ0(x) = 300x2(x − 1) + 0.001x4 whose
graph is plotted in Fig. 2a. We then compare φx (x j , 5) numerically solved by the original
approach and the proposed approach, respectively.

123

J Sci Comput (2018) 76:1407–1435 1425

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−120

−100

−80

−60

−40

−20

0

20

40

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Fig. 2 (Example 4.1.1) The graphs of the function φ0(x) = cx2(x − 1) + 0.001x4 with a c = 300, b 0.3

(a)

10−4 10−3 10−2 10−1
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 (b)

10−4 10−3 10−2 10−1
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fig. 3 (Example 4.1.1) L2 error of φx (x j , 5) computed using the original approach (in blue lines) and the
proposed approach (in red lines) with a c = 300, b 0.3. In plotting this figure, all corresponding PDEs are
solved using the Lax–Wendroff scheme (Color figure online)

In the first implementation, we use the Lax–Wendroff scheme to solve corresponding
PDEs as discussed in Sect. 3.3.1. Here we have Mxxx ≈ 1800 and Mxxxx = 0.024 and thus

I2
I1

=
1
6Mxxx

1−λ2

6 MxxxxaT
≈ 7.35 × 104.

Figure 3a shows the variation of the L2 error of φx (x j , 5) using various Δx’s. The blue
line corresponds to the solution computed by the original approach and the red line shows
the result of the proposed approach. We vary Δx from 1/64 to 1/1024 and find that both
slopes of the two lines are approximately equal to 2 which indicates that both methods are
second-order accurate as expected. As we can see, however, the proposed approach is much
more accurate than the original approach under the same mesh size Δx .

We then use the TVDRK2-WENO5 scheme to solve PDEs wherever required as demon-
strated in Sect. 3.3.2. Since we have Mxxx ≈ 1800 and Mxxxx = 0.024, then

I4
I3

=
1
6Mxxx

λ2

6 MxxxxaT
≈ 7.65 × 104.

123

1426 J Sci Comput (2018) 76:1407–1435

(a)

10−4 10−3 10−2 10−1
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
(b)

10−4 10−3 10−2 10−1
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fig. 4 (Example 4.1.1) L2 error of φx (x j , 5) computed using the original approach (in blue lines) and the
proposed approach (in red lines) with a c = 300, b 0.3. In plotting this figure, all corresponding PDEs are
solved using the TVDRK2-WENO5 scheme (Color figure online)

Figure 4a shows the variation of the L2 error of φx (x j , 5) using various Δx’s. The blue line
corresponds to the solution computed by the original approach and the red line shows the
result of the proposed approach. With Δx varying from 1/64 to 1/1024, we find that both
methods are second-order accurate. And as expected, the proposed approach is much more
accurate than the original approach under the same mesh size Δx .

4.1.2 Mxxx/Mxxxx = O(102)

In this case, we consider φ0(x) = 0.3x2(x − 1) + 0.001x4 and the corresponding graph is
shown in Fig. 2b. Then we have Mxxx ≈ 18.0192, Mxxxx = 0.024.

In the first implementation, we use the Lax–Wendroff scheme to solve corresponding
PDEs as discussed in Sect. 3.3.1. In this case,

I2
I1

=
1
6Mxxx

1−λ2

6 Mxxxx |aT |
≈ 7.36 × 102,

where the ratio of I2 over I1 has greatly decreased compared to the previous example. The
variation of the L2 error of φx (x j , 5) with respect to Δx is given in Fig. 3b. The red line and
the blue line get much closer to each other compared to the previous example as expected.

Also we have used the TVDRK2-WENO5 scheme to solve PDEs in another implemen-
tation. Since we have Mxxx ≈ 18.0192 and Mxxxx = 0.024, then

I4
I3

=
1
6Mxxx

λ2

6 MxxxxaT
≈ 7.66 × 102.

Figure 4b shows the variation of the L2 error of φx (x j , 5) using various Δx’s. The blue line
corresponds to the solution computed by the original approach and the red line shows the
result of the proposed approach. With Δx varying from 1/64 to 1/1024, we find that both
methods are second-order accurate. And as expected, the red line and the blue line get much
closer compared to the previous example in Sect. 4.1.1.

123

J Sci Comput (2018) 76:1407–1435 1427

4.2 Spiral Focus Ridge

This example is taken from [14] which introduces a general benchmark for FTLE com-
putation. In particular, several velocity fields with closed-form formulations of FTLE are
given as a ground truth for measuring different numerical approaches for computing FTLE.
Here we consider the spiral focus ridge to compare our proposed new Eulerian method and
the original Eulerian method. Beginning from this example, all PDEs are solved using the
TVDRK2-WENO5 scheme in our implementation.

The example starts with a trivial field v(x, t) = (0, x)T and its flow map is given by
(Φv)

τ
0(x) = (x, y + τ x)T . Let

α(x, t) =
(
x cos γ − y sin γ

x sin γ + y cos γ

)
and β(x, t) =

(
x cos(−γ) − y sin(−γ)

x sin(−γ) + y cos(−γ)

)

with γ = p0/(1 + ∣∣x2 + y2
∣∣). Then the velocity field w of the spiral focus ridge flow is

constructed as:

w(x, t) = (∇β)−1(x, t) ·
(
v(β(x, t), t) − ∂β

∂t
(x, t)

)

and the corresponding flow map is given by

(Φw)t+τ
t (x) = α((Φv)

t+τ
t (β(x, t)), t + τ) .

In our numerical implementation, we set p0 = 12, t = 0, τ = 5 and the computational
domain by [−1, 1] × [−1, 1]. The exact FTLE field is plotted in Fig. 5a. The FTLE field
computed using the original Eulerian approach and our new Eulerian approach are shown in
Fig. 5b, c, respectively. The computational domain is discretized by 257 × 257 grid points
and thus gives a mesh size Δx = Δy = 1/128. To better compare the solutions, we plot the
y = 0 cross-sections of Fig. 5b, c in Fig. 6a, b, respectively. The corresponding cross-sections
along y = − 0.5 of Fig. 5b, c are plotted in red lines in Fig. 6c, d, respectively. The exact
solutions are plotted in blue lines in each subfigure of Fig. 6. We can see from Fig. 6 that the
original Eulerian approach and our new approach both match well with the exact solution at
locations with relatively small FTLE values. However, the proposed approach is much more
accurate than the original approach at locations with relatively big FTLE values, e.g. near
the FTLE ridge.

4.3 Double-Gyre Flow

This example is taken from [27] to describe a periodically varying double-gyre. The flow is
modeled by the following stream-function ψ(x, y, t) = A sin[π f (x, t)] sin(πy) where

f (x, t) = a(t)x2 + b(t)x,

a(t) = ε sin(ωt),

b(t) = 1 − 2ε sin(ωt).

In this example, we use A = 0.1, ω = 2π/10, ε = 0.1 and the computational domain Ω is
[0, 2] × [0, 1]. As a result, this flow is a periodic flow with the period Tm = 10. We use the
new Eulerian approach proposed in Sect. 3.2 to compute the backward FTLE σ 0

T (x) from
t = T to t = 0 where T = 24Tm = 160.

We first solve PDE systems (4), (7) and (8) together from t = 0 to t = Tm = 10 with
initial conditions Ψ (x, 0) = x, (φx (x, 0), φy(x, 0)) = (1, 0) and (ψx (x, 0), ψy(x, 0)) =

123

1428 J Sci Comput (2018) 76:1407–1435

(a)

−1 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(b)

−1 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(c)

−1 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 5 (Example 4.2) The FTLE σ 5
0 (x). a The exact solution, b the numerical solution computed by the

original approach and c the proposed approach

(0, 1), respectively. Then Ψ (x, 10) and J 010(x) are obtained and iterate 4 times as stated in
step 2 of Algorithm 2 to obtain J 0160(x). The backward FTLE σ 0

160(x) is then computed as

σ 0
160(x) = 1

160 ln
√

λmax [Δ0
160(x)] where Δ0

160(x) = [J 0160(x)]∗ J 0160(x).
In Fig. 7a, bweplot the backwardFTLEσ 0

160 computedwith the original Eulerian approach
andour newEulerian approach respectively.Aswecan see in those four connected subregions,
the FTLE values are relatively small and numerical solutions from the two approaches are
very close. However, the FTLE values computed with the two approaches differ a lot outside
the four subregions where the FTLE values are relatively large. Take a cross-section y =
0.4688 as shown in Fig. 8a, then two line segments [0.4, 0.65] and [1.32, 1.65] lie within the
connected subregions. Figure 8b, c respectively show the FTLE σ 0

160 on this cross-section
computed with the original Eulerian approach and our newEulerian approach. In Fig. 8b, red,
green and blue lines represent the numerical solutions computed using the original Eulerian
approach with the mesh size Δx = Δy = 1/128, Δx = Δy = 1/256 and Δx = Δy =
1/512, respectively. Figure 8c shows the solutions of our proposed approach. In particular,
the blue line corresponds to the solution with the finest mesh size Δx = Δy = 1/512. The
red and green lines represent the difference of the solutions with Δx = Δy = 1/128 and
Δx = Δy = 1/256, respectively, from the solution of the finest mesh size. As can be seen

123

J Sci Comput (2018) 76:1407–1435 1429

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(d)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 6 (Example 4.2) a The solution computed by the original approach along y = 0.bThe solution computed
by the proposed approach along y = 0. c The solution computed by the original approach along y = − 0.5.
d The solution computed by the proposed approach along y = − 0.5. The exact solution is plotted in blue
(Color figure online)

from these figures, the FTLE values on the segments [0.4, 0.65] and [1.32, 1.65], which are
within the connected subregions, are always approximated well with both the two approaches
and all mesh sizes. However, except on the two segments the computed FTLE values differ
a lot between the two approaches. From Fig. 8b we can see that as the underlying mesh size
becomes smaller and smaller, the FTLE values outside the two segments grow larger and
larger and surely get closer and closer to the exact solution. In Fig. 8c, however, as the mesh
size changes, the FTLE values do not have obvious trend to which direction and we conclude
that they are already near the exact solution. From this point of view, our new approach is
much more accurate than the original Eulerian approach especially at locations with large
FTLE values.

4.4 Velocity Field at Discrete Locations

In our new Eulerian approach to compute the FTLE, we need not only velocity data defined
on mesh points, but also the Jacobian of the velocity field as inferred in the PDE systems
(7) and (8). However, the Jacobian of the velocity field at each mesh point is not always
available. As an alternative, we propose to use the central difference method to compute the
Jacobian of the velocity field. The following numerical results will show the effectiveness.

123

1430 J Sci Comput (2018) 76:1407–1435

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1. 6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

Fig. 7 (Example 4.3) The backward FTLE σ 0
160 computed with mesh size Δx = Δy = 1/256 using a the

original Eulerian approach, b our new Eulerian approach

Figure 9a shows the forward FTLE σ 5
0 (x) of the spiral focus ridge flow computed using

our new Eulerian approach where the Jacobian of the velocity field is obtained by the
central difference method. Here all the parameters are the same as those in Fig. 5. Fig-
ure 9a shows almost the same result with Fig. 5c where the Jacobian of the velocity field
is exactly given. The red lines in Fig. 9b, c are respectively the y = 0 and y = − 0.5
cross-sections of Fig. 9a while the blue lines in them are exact solutions. Compared with
Fig. 6, we can find that the FTLE computed with our new Eulerian approach, no matter
the Jacobian of the velocity field is given exactly or from central difference, is more closed
to the exact solution than that of the original Eulerian approach. However, the two solu-
tions of our new approach, although with different treatments of the Jacobian of the velocity
field, are very close to each other. Figure 9d compares the numerical errors of these two
solutions at the y = 0 cross-section and we can see that the one with exact Jacobian of
velocity field (plotted in blue) is only a little more accurate than the other one (plotted in
red).

123

J Sci Comput (2018) 76:1407–1435 1431

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 8 (Example 4.3) a The horizontal black line is y = 0.4688 and the two line segments between vertical
black lines are within the circular connected components; the FTLE σ 0

160 on the y = 0.4688 cross-section
computed with b the original Eulerian approach, c our new approach (Color figure online)

Also in Fig. 10a we plot the backward FTLE σ 0
160 of the double gyre flow computed

using our new Eulerian approach where the Jacobian of the velocity field is obtained by
the central difference method and all the parameters are set the same as in Fig. 7. We can
see that Fig. 10a is almost the same as Fig. 7b which is also the solution of our new Eule-
rian approach yet with the Jacobian of the velocity field exactly given at mesh points. As
a result, these two solutions of our new Eulerian approach with different treatments of the
Jacobian of the velocity field are both more accurate than the solution of the original Eule-
rian approach. To better demonstrate this, we plot the y = 0.4688 cross-sections of these
altogether three different solutions in Fig. 10b where the red line corresponds to the original
Eulerian approach, the blue line corresponds to our new Eulerian approach with exact Jaco-
bian of the velocity field and the black line corresponds to the remaining solution. It’s easy
to see that the blue line and the black line almost coincide with each other which implies
that the two solutions of our new Eulerian approach, although the Jacobian of the velocity
field are treated differently, are almost the same accurate. The difference of them is plotted
in Fig. 10c.

From these two examples, we can find that the solution of our new Eulerian approach,
even when the Jacobian of the velocity field is obtained from the central difference method,
is more accurate (especially at ridge locations) than that of the original Eulerian approach in
which the finite difference step is used to obtain the Jacobian of the flow map.

123

1432 J Sci Comput (2018) 76:1407–1435

(a)

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(d)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 9 (Example 4.4 for the spiral flow) a The FTLE σ 5
0 (x) computed with our new Eulerian approach where

the Jacobian of the velocity field is from central difference; b, c plot respectively the y = 0 and y = − 0.5
cross-sections of (a) in red lines while exact solutions are plotted in blue lines; d numerical errors of the two
solutions using the new Eulerian approach at the y = 0 cross-section where the blue line corresponds to the
one with exact Jacobian of the velocity field while the red line corresponds to the one with the Jacobian from
central difference (Color figure online)

4.5 Application to the Variation of the Integral Over Area of Level Surfaces
(VIALS)

In [31]we have proposed a novel Eulerian tool to study complicated dynamical systems based
on the average growth in the surface area of a family of level surfaces represented implicitly
by a level set function. Since this proposed quantity determines the temporal variation of
the averaged surface area of all level surfaces, we named the quantity the Variation of the
Integral over Area of Level Surfaces (VIALS). We have shown in [31] that the VIALS is a
nice candidate for quantifying the level of short-time mixing of given dynamical systems. In
particular, the VIALS is defined as

L(t; f) =

∫ +∞

−∞

∫

C(t,k; f)
dsdk

∫ +∞

−∞

∫

C(0,k; f)
dsdk

. (31)

123

J Sci Comput (2018) 76:1407–1435 1433

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5 x 10−3

Fig. 10 (Example 4.4 for the double gyre flow) a The backward FTLE σ 0
160 computed using our new Eulerian

approach where the Jacobian of the velocity field is from central difference. b The y = 0.4688 cross-sections
of σ 0

160 computed using the original Eulerian approach (red) and the new Eulerian approach with different
treatments of the Jacobian of the velocity field (blue and black). c The difference between the solutions from
the original approach and the proposed approach (Color figure online)

where

C(t, k; f) = {x : f (x, t) = k}
and f is a level set function satisfying also the Liouville equations (4). With the use of the
coarea formula, we can rewrite (31) as

L(t; f) =

∫

Ω

|∇ f (x, t)|dx
∫

Ω

|∇ f (x, 0)|dx
(32)

which is much easier to numerically compute in practice.
Since mesh refinement will reduce the numerical dissipation in the solution to the level

set equation (4), the length of each individual level contour will increase in the number of
mesh points in each spatial direction. Now, because the VIALS takes an average of all level
surfaces of f (x, t), we do observe that the quality does increase in the number of mesh points
in the computational domain, as shown in Fig. 11a. It shows the VIALS from t = 0 to t = 10
of the double gyre flow with ε = 1.2 computed on various mesh sizes for the initial level set

123

1434 J Sci Comput (2018) 76:1407–1435

(a)

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10
(b)

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 11 (Example 4.5) The VIALS of the double-gyre flow with t ∈ [0, 10] and ε = 1.2 computed using a
the original approach from [31] and b our proposed approach on various mesh sizes Δx = Δy = 1/128 (red
color), Δx = Δy = 1/256 (green color), Δx = Δy = 1/512 (blue color) and Δx = Δy = 1/1024 (black
color), respectively (Color figure online)

function f (x, 0) = x . However, as can be seen from formula (32), the computation of the
VIALS L(t; f) actually only depends on the partial derivatives of f , rather than f itself. As
a result, we can use our new approach proposed in Sect. 3 to recompute L(t; f). Figure 11b
shows the corresponding results computed using our proposed method. We can see that the
VIALS computed with our new approach using even the coarsest mesh Δx = Δy = 1/128
has already achieved similar accuracy like the one computed by the original approach using
the finest mesh Δx = Δy = 1/1024.

Acknowledgements The work of You was supported by the National Natural Science Foundation of China
(No. 11701287) and the Natural Science Foundation of Jiangsu Province (No. BK20171071). The work of
Leung was supported in part by the Hong Kong RGC Grants 16303114 and 16309316.

References

1. Badas, M.G., Domenichini, F., Querzoli, G.: Quantification of the blood mixing in the left ventricle using
finite time Lyapunov exponents. Meccania 52, 529–544 (2017)

2. Candès, E.J., Ying, L.: Fast geodesics computation with the phase flow method. J. Comput. Phys. 220,
6–18 (2006)

3. Cardwell, B.M., Mohseni, K.: Vortex shedding over two-dimensional airfoil: where do the particles come
from? AIAA J. 46, 545–547 (2008)

4. Chavent, G., Cockburn, B.: The local projection p0 p1-discontinuous-Galerkin finite element method for
scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 23, 565–592 (1989)

5. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin finite element method for conser-
vation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

6. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkinmethods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

7. Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent
structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. 13, 1464–1471 (2007)

8. Garth, C., Li, G.S., Tricoche, X., Hansen, C.D., Hagen, H.: Visualization of Coherent Structures in
Transient 2D Flows. Springer, Berlin (2009)

9. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85
(1998)

10. Green, M.A., Rowley, C.W., Smiths, A.J.: Using hyperbolic Lagrangian coherent structures to investigate
vortices in biospired fluid flows. Chaos 20, 017510 (2010)

123

J Sci Comput (2018) 76:1407–1435 1435

11. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows.
Physica D 149, 248–277 (2001)

12. Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys.
Fluids A 13, 3368–3385 (2001)

13. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica
D 147, 352–370 (2000)

14. Kuhn, A., Rossl, C., Weinkauf, T., Theisel, H.: A benchmark for evaluating FTLE computations. In: IEEE
Pacific Visualization Symposium, pp. 121–128. IEEE Computer Society (2012)

15. Lekien, F., Leonard, N.: Dynamically consistent Lagrangian coherent structures. In: Experimental Chaos:
8-th Experimental Chaos Conference, pp. 132–139 (2004)

16. Lekien, F., Ross, S.D.: The computation of finite-time Lyapunov exponents on unstructured meshes and
for non-Euclidean manifolds. Chaos 20, 017505 (2010)

17. Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in n-dimensional systems. J.
Math. Phys. 48, 065404 (2007)

18. Leung, S.: An Eulerian approach for computing the finite time Lyapunov exponent. J. Comput. Phys. 230,
3500–3524 (2011)

19. Leung, S.: The backward phase flowmethod for the Eulerian finite timeLyapunov exponent computations.
Chaos 23, 043132 (2013)

20. Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J.
Comput. Phys. 228, 2951–2977 (2009)

21. Lipinski, D., Mohseni, K.: Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and
Aequorea victoria. J. Exp. Biol. 212, 2436–2447 (2009)

22. Liu, X.D., Osher, S.J., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115,
200–212 (1994)

23. Lukens, S., Yang, X., Fauci, L.: Using Lagrangian coherent structures to analyze fluid mixing by cillia.
Chaos 20, 017511 (2010)

24. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on
Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

25. Qian, J., Leung, S.: A local level set method for paraxial multivalued geometric optics. SIAM J. Sci.
Comput. 28, 206–223 (2006)

26. Sapsis, T., Haller, G.: Inertial particle dynamics in a hurricane. J. Atmos. Sci. 66, 2481–2492 (2009)
27. Shadden, S.C., Lekien, F.,Marsden, J.E.: Definition and properties of Lagrangian coherent structures from

finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)
28. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic

conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.) Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–
432. Springer, Berlin (1998)

29. Tang,W.,Chan, P.W.,Haller,G.:Accurate extraction ofLagrangian coherent structures over finite domains
with application to flight data analysis over Hong Kong international airport. Chaos 20, 017502 (2010)

30. Tang, W., Peacock, T.: Lagrangian coherent structures and internal wave attractors. Chaos 20, 017508
(2010)

31. You, G., Leung, S.: VIALS: an Eulerian tool based on total variation and the level set method for studying
dynamical systems. J. Comput. Phys. 266, 139–160 (2014)

32. You, G., Leung, S.: Eulerian based interpolation schemes for flow map construction and line integral
computation with applications to coherent structures extraction. J. Sci. Comput. 74, 70–96 (2018)

33. You, G., Wong, T., Leung, S.: Eulerian methods for visualizating continuous dynamical systems using
Lyapunov exponents. SIAM J. Sci. Comput. 39(2), A415–A437 (2017)

123

	An Improved Eulerian Approach for the Finite Time Lyapunov Exponent
	Abstract
	1 Introduction
	2 Background
	2.1 Finite Time Lyapunov Exponent (FTLE)
	2.2 The Original Eulerian Approach for Computing the FTLE
	2.3 The Doubling Technique to Compute the Longtime Flow Map

	3 An Improved Eulerian Approach to Compute the FTLE
	3.1 An Improved Eulerian Algorithm to Compute the FTLE
	3.2 An Improved Algorithm to Compute the Longtime FTLE for Periodic Dynamical Systems
	3.2.1 The Algorithm
	3.2.2 The Influence of the Interpolation Scheme on the Accuracy of Algorithm 2

	3.3 A Simple Analysis on the Linear Advection Equation
	3.3.1 The Lax–Wendroff Discretization
	3.3.2 The TVDRK2-WENO5 Discretization

	3.4 Computational Complexity

	4 Numerical Examples
	4.1 Linear Advection Equation
	4.1.1 Mxxx/ Mxxxx=O(104)
	4.1.2 Mxxx/Mxxxx=O(102)

	4.2 Spiral Focus Ridge
	4.3 Double-Gyre Flow
	4.4 Velocity Field at Discrete Locations
	4.5 Application to the Variation of the Integral Over Area of Level Surfaces (VIALS)

	Acknowledgements
	References

