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Abstract A set of high-order compact finite difference methods is proposed for solving a
class of Caputo-type fractional sub-diffusion equations in conservative form. The diffusion
coefficient of the equation may be spatially variable, and the proposed methods have the
global convergence order O(τ r + h4), where r ≥ 2 is a positive integer and τ and h are
the temporal and spatial steps. Such new high-order compact difference methods greatly
improve the known methods in the literature. The local truncation error and the solvability
of the methods are discussed in detail. By applying a discrete energy technique to the matrix
form of the methods, a rigorous theoretical analysis of the stability and convergence of the
methods is carried out for the case of 2 ≤ r ≤ 6, and the optimal error estimates in the
weighted H1, L2 and L∞ norms are obtained for the general case of variable coefficient.
Applications are given to two model problems, and some numerical results are presented to
illustrate the various convergence orders of the methods.

Keywords Fractional sub-diffusion equation · Variable coefficient · Compact difference
method · High-order convergence · Energy method

Mathematics Subject Classification 65M06 · 65M12 · 65M15 · 35R11

1 Introduction

Fractional differential equations have been successfully used as a powerful tool in modelling
the phenomena related to nonlocality and spatial heterogeneity. As a class of basic fractional
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differential equations, the fractional sub-diffusion equations (FSDEs for short) that describe
a special type of anomalous diffusion phenomenon are becoming increasingly significant in
many fields of science and engineering (see, e.g., [1,2]). These equations were derived by
using continuous time random walks with a fractional derivative term in time to represent
the degree of memory in the diffusing material [3,4].

The analytical solutions ofmost generalized FSDEs are rather difficult to obtain. A number
of numericalmethods havebeendeveloped for the computation of their solutions; for instance,
the explicit and implicit finite difference methods in [5,6], the compact finite difference
methods in [7,8], the finite element methods in [9–11], the spectral methods in [12,13], the
alternating direction implicit methods in [14,15], the implicit meshless method in [16], etc.

Most of the aforementioned numerical methods are generally intended for the equations
with constant diffusion coefficients. However, in the inhomogeneous medium, the diffusion
coefficient may depend on the space variable (see, e.g., [17–22]). This dependence leads
to numerous physical applications which are described by the equations involving variable
diffusion coefficients (see, e.g., [17–22]). When solving these equations, the techniques used
for the equations with constant coefficients cannot be applied directly and extra efforts are
usually required, especially for obtaining the expected high-order accuracy. In this paper,
we seek a high-order compact finite difference method for solving a class of Caputo-type
variable coefficient FSDEs in conservative form. The class of equations under consideration
with its boundary and initial conditions is given by

⎧
⎪⎨

⎪⎩

C
0Dα

t u(x, t) = Lu(x, t) + f (x, t), (x, t) ∈ (0, L) × (0, T ],
u(0, t) = φ0(t), u(L , t) = φL(t), t ∈ (0, T ],
u(x, 0) = 0, x ∈ [0, L],

(1.1)

where the term C
0Dα

t u(x, t) represents the Caputo fractional derivative of order α in t , which
is defined by

C
0Dα

t u(x, t) = 0D−(1−α)
t [∂t u(x, t)] = 1

�(1 − α)

∫ t

0
∂su(x, s)(t − s)−αds, 0 < α < 1,

(1.2)

and the term Lu(x, t) is the diffusion term with the diffusion coefficient k(x), which is given
by

Lu(x, t) = ∂x (k(x)∂xu) (x, t). (1.3)

Without loss of generality, we have assumed the homogeneous initial condition u(x, 0) = 0
in the above problem. If u(x, 0) = ψ(x) for some sufficiently smooth functionψ(x) then the
problem can be reduced to the same form as the above problem for v(x, t) = u(x, t)−ψ(x).

Throughout the paper, we assume that the given functions f (x, t), φ0(t), φL(t) and k(x)
in (1.1) and (1.3) are smooth enough and there exist positive constants c0 and c1 such that

c0 ≤ k(x) ≤ c1, x ∈ [0, L]. (1.4)

In addition, we assume that the solution to the problem (1.1) has the necessary regularity.
It is important to develop high-order numerical methods for solving problem (1.1). A

compact finite difference method was proposed in [19], where the unconditional stability and
the global convergence of the method were proved by introducing a new norm regarding to
the variable coefficient k(x). The recent work [22] extends themethod in [19] to theNeumann
problem of (1.1). The stability and convergence of the proposed method were studied in that
paper by applying the energy method to the matrix form of the method. Another method was
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given in [20], where a compact exponential finite difference method was considered for a
time fractional convection-diffusion reaction equation with variable coefficient that contains
the present problem (1.1) as a special case. However, the related convergence analysis was
carried out only for the case of constant coefficient. Similarly, some combined compact finite
difference methods were proposed in [21] in a general setting but the obtained theoretical
results are only for the equation of integer order with constant coefficient. In the above
works, the L1 approximation formula was used for the discretization of the Caputo fractional
derivativeC0Dα

t u. Consequently, the temporal accuracy of the resultingmethod is only of order
2 − α, which is less than two. This motivated us to look for a more accurate approximation
to the Caputo fractional derivative C

0Dα
t u and then develop a high-order numerical method

for the problem (1.1), with a rigorous theoretical analysis for the general case of variable
coefficient k(x).

Usually, there are two types of approximation approaches for the Caputo fractional deriva-
tiveC0Dα

t y of the function y(t) defined on afinite interval. The idea of the first type is to replace
the integrand y(t) inside the integral by its piecewise interpolating polynomial. In general,
the obtained discretization method in this way has the convergence order r + 1− α, where r
is the degree of the interpolating polynomial. The very relevant works were given in [13,23–
29], where (2 − α)th-order (i.e., L1 approximation), (3 − α)th-order, (4 − α)th-order and
(r + 1− α)th-order (r ≥ 4) methods were investigated, respectively. When such high-order
methods are applied to fractional differential equations, a key issue is the stability analysis
of the corresponding scheme for all α in (0, 1). A full stability analysis was established in
[23] for a second-order scheme and in [13] for a (3−α)th-order scheme. The second type of
approximation approach is to utilize the called weighted and shifted Grüunwald difference
operators. Although this approach is often used to handle the Riemann–Liouville fractional
derivative, some numerical approximations for the Caputo fractional derivative can also be
constructed with the help of the equivalence of these two derivatives under some regularity
assumptions. We refer to [30–32] for such methods. Different from the first type of approach,
the method from this technique has the convergence order independent of the derivative order
α. However, on account of the weighted and shifted terms, it usually requires an additional
technique for the discretization on the first few time levels in order to obtain the expected
high-order accuracy (see, e.g., [30,31]).

Based on the Lubich operator, this paper derives a class of approximation formu-
lae for the Caputo fractional derivative C

0Dα
t y defined on a finite interval. The Lubich

operator was firstly introduced in [33] to obtain high-order approximations of the Riemann–
Liouville fractional integral. Its applications to fractional differential equations are mostly
for Riemann–Liouville-type equations (see, e.g., [34–38]). In a series of works [39–44],
some second-order schemes were proposed for the Caputo-type fractional sub-diffusion or
diffusion-wave equation with constant coefficient. The main idea in these works is to trans-
form the original equation into an equivalent integro-differential equation and then apply the
Lubich operator of second-order to the Riemann–Liouville fractional integral of the equiv-
alent equation. In this paper, we directly apply the Lubich operator to construct a set of
high-order approximation formulae for the Caputo fractional derivative C

0Dα
t y defined on

the finite interval [0, T ]. The convergence of the formulae is of order r , where r ≥ 2 is a
positive integer depending on the choice of the generating functions. On the basis of these
formulae, one can easily get high-order and unconditionally stable numerical methods to
solve Caputo-type problem (1.1). Another feature of the formulae is that they take the same
form and so the computations can be carried out by the same recurrence relation without
concern for the various generating functions. We remark that these high-order approxima-
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tion formulae can also be obtained from the high-order formulae for the Riemann–Liouville
fractional derivative; but some additional regularity assumptions are necessary.

In order to give a high-order discretization of the variable coefficient differential operator
Lu, we here consider the fourth-order compact difference discretization proposed in our
previous works [45,46], instead of that used in [19,22,47]. This discretization was designed
by means of the integro-interpolation method, thereby differing essentially from that in
[19,22,47]. One important difference is that it depends only on the diffusion coefficient k(x)
while the one in [19,22,47] depends not only on the coefficient k(x) itself but also on its first-
order and even second-order derivatives. The dependence of k(x) on x causes considerable
difficulty in the analysis of the proposed method; at least the analysis for the case of constant
coefficient does not work. Motivated by the recent study in [22], we overcome this difficulty
by carefully decomposing the coefficientmatrix and then applying the discrete energymethod
to a suitable matrix form of the method.

The outline of the paper is as follows. In Sect. 2, we construct a set of high-order approxi-
mation formulae for the Caputo fractional derivative C

0Dα
t y defined on [0, T ] by making use

of the Lubich operator. On the basis of the obtained Lubich approximation formulae, a set of
high-order compact finite difference methods for solving problem (1.1) is proposed in Sect.
3. Unconditional stability and convergence of the proposed methods are studied in Sect. 4
for the general case of variable coefficient k(x). Section 5 is devoted to further discussions.
In Sect. 6, we apply the proposed compact difference methods to two model problems and
present some numerical results to illustrate the theoretical results. The final section contains
a brief conclusion.

2 Approximation Formulae for the Caputo Fractional Derivative

In this section, we develop a general form of high-order Lubich difference approximation
formulae for the Caputo fractional derivative C

0Dα
t y(t) of the function y(t) defined on [0, T ].

2.1 Lubich Difference Operator

For any function y(t) defined on [0, T ], any real number α ∈ (0, 1) and any positive integer
r , the Lubich difference operator with the step τ is defined by

Lα
r,τ y(t) = τ−α

[ t
τ

]

∑

k=0

�
(α)
r,k y(t − kτ), t ∈ [0, T ], (2.1)

where �
(α)
r,k are the coefficients of the Taylor series expansion of the generating function

Wr,α(z) =
(

r∑

i=1

1

i
(1 − z)i

)α

, (2.2)

that is,

(
r∑

i=1

1

i
(1 − z)i

)α

=
∞∑

k=0

�
(α)
r,k z

k, |z| ≤ 1. (2.3)
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An easily implementableway of computing the coefficients�
(α)
r,k is by the following recursive

relation given in [48,49]:

�
(α)
r,0 = (ar,0)

α, �
(α)
r,k = 1

kar,0

min{k,r}∑

j=1

ar, j ( jα − k + j)�(α)
r,k− j (k ≥ 1), (2.4)

where

ar,0 =
r∑

i=1

1

i
, ar, j = (−1) j

j !
r∑

i= j

(i − 1)!
(i − j)! , j = 1, 2, . . . , r. (2.5)

The exact expression of the coefficients �
(α)
r,k for r = 2, 3, 4, 5, 6 can be found in [48,49]. It

was also shown in [48] that the coefficients �
(α)
r,k → 0 as k → ∞ for r = 2, 3, 4, 5, 6, while

the coefficients �
(α)
r,k for r = 7, 8, 9, 10 are oscillatory for sufficiently larger k and so may

be unsuitable for numerical computations.
The following lemma gives a property of the generating functionWr,α(z), which is useful

for our next discussions.

Lemma 2.1 Let Vr (z) = (
Wr,α(e−z)

) 1
α . Then

Vr (0) = 0, V (1)
r (0) = 1, V (k)

r (0) = 0 (2 ≤ k ≤ r), V (r+1)
r (0) = −r !. (2.6)

Proof It is clear that Vr (0) = 0. Since Vr (z) = ∑r
i=1

1
i (1 − e−z)i , we have

V (1)
r (z) = e−zGr (z),

V (k)
r (z) = e−z

k−1∑

l=0

(
k − 1

l

)

(−1)k−1−lG(l)
r (z), k = 2, 3, . . . , (2.7)

where Gr (z) = ∑r−1
i=0 (1 − e−z)i . In view of Gr (z) = ez

(
1 − (1 − e−z)r

)
, we obtain

G(1)
r (z) = Gr (z) − r(1 − e−z)r−1,

G(l)
r (z) = G(l−1)

r (z) −
l−1∑

j=1

al, j (1 − e−z)r−1− je− j z, l = 2, 3, . . . , r, (2.8)

where al, j are some constants independent of z and, in particular, al,l−1 = r !
(r−l)! . This

implies G(l)
r (0) = 1 (0 ≤ l ≤ r − 1) and G(r)

r (0) = 1 − r !. Therefore by (2.7),

V (1)
r (0) = 1, V (k)

r (0) =
k−1∑

l=0

(
k − 1

l

)

(−1)k−1−l = 0, k = 2, 3, . . . , r,

V (r+1)
r (0) =

r−1∑

l=0

(
r

l

)

(−1)r−l + 1 − r ! = −r !.

This completes the proof. ��
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2.2 Approximation Formulae

Assume y(t) ∈ Cr [0, T ] with y(r+1)(t) ∈ L1[0, T ] for a nonnegative integer r . We define
its extension yex(t) to the entire real line R as follows:

yex(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t ∈ (−∞, 0),
y(t), t ∈ [0, T ],
ȳ(t), t ∈ (T, 2T ),

0, t ∈ [2T,∞),

(2.9)

where ȳ(t) is a Hermite interpolation polynomial satisfying ȳ(k)(T ) = y(k)(T ) and
ȳ(k)(2T ) = 0 for k = 0, 1, . . . , r .

For any nonnegative integer m and any real number α ∈ (0, 1), we define

Cm+α(R) =
{

f : f (t) ∈ L1(R),

∫ ∞

−∞
|ω|m+α

∣
∣
∣ f̂ (ω)

∣
∣
∣ dω < ∞

}

, (2.10)

where the function f̂ (ω) = F[ f ](ω) is the Fourier transformation of f (t), i.e., f̂ (ω) =
F[ f ](ω) = ∫∞

−∞ eiωt f (t)dt for all ω ∈ R (see [50]).

Definition 2.1 Let y(t) be a function defined on [0, T ]. We say that y(t) ∈ Cm+α[0, T ] for
a nonnegative integer m and a real number α ∈ (0, 1) if its extension yex(t) ∈ Cm+α(R).

Recall that for any real number α ∈ (0, 1), the αth-order Caputo fractional derivative of
the function f (t) defined on the entire real line R is defined by

C−∞Dα
t f (t) = −∞D−(1−α)

t [ f (1)(t)] = 1

�(1 − α)

∫ t

−∞
f (1)(s)(t − s)−αds.

We have the following lemma.

Lemma 2.2 Assume y(t) ∈ Cr [0, T ] ∩ C r0+α[0, T ] with y(r+1)(t) ∈ L1[0, T ] for a real
number α ∈ (0, 1) and two nonnegative integers r and r0 satisfying r ≤ r0. Then

(1) y(k)(0) = 0 for k = 0, 1, . . . , r ,

(2) F
[
y(k)
ex

]
(ω) = (−iω)k ŷex(ω) for k = 0, 1, . . . , r + 1,

(3) F
[

C−∞Dα
t y

(k)
ex

]
(ω) = (−iω)k+α ŷex(ω) for k = 0, 1, . . . , r ,

where yex(t) is the extension of y(t) to the entire real line R.

Proof (a) Since y(t) ∈ Cr [0, T ] with y(r+1)(t) ∈ L1[0, T ], we have that for each k =
0, 1, . . . , r + 1, y(k)

ex (t) is absolutely integrable on R and thus its Fourier transformation

F
[
y(k)
ex

]
(ω) is defined.

Assume, by contradiction, that there exists some r ′ satisfying 0 ≤ r ′ ≤ r such that
y(k)(0) = 0 for k = 0, 1, . . . , r ′ − 1 but y(r ′)(0) �= 0. By integrating by parts,

F
[
y(r ′+1)
ex

]
(ω) =

∫ ∞

0
eiωt y(r ′+1)

ex (t)dt = −y(r ′)(0) − iωF
[
y(r ′)
ex

]
(ω)

= −y(r ′)(0) + (−iω)2F
[
y(r ′−1)
ex

]
(ω) = · · · = −y(r ′)(0) + (−iω)r

′+1 ŷex(ω).

(2.11)
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By the Riemann–Lebesgue lemma (see [51]), lim|ω|→∞ F
[
y(r ′+1)
ex

]
(ω) = 0. We therefore

obtain from (2.11) that lim|ω|→∞(−iω)r
′+1 ŷex(ω) = y(r ′)(0) �= 0. This implies

lim|ω|→∞ |ω|r ′+1−r0−α |ω|r0+α
∣
∣ŷex(ω)

∣
∣ = lim|ω|→∞ |ω|r ′+1

∣
∣ŷex(ω)

∣
∣ =

∣
∣
∣y(r ′)(0)

∣
∣
∣ �= 0.

Since r ′ + 1 − r0 − α < 1, we get that the function |ω|r0+α|ŷex(ω)| is not integrable on R.
This contradicts yex(t) ∈ C r0+α(R). This proves y(k)(0) = 0 for k = 0, 1, . . . , r .

(b) The result (2) follows from the result (1) and (2.11).

(c) Let k = 0, 1, . . . , r . Since C−∞Dα
t y

(k)
ex (t) = −∞D−(1−α)

t

[
y(k+1)
ex (t)

]
and y(k+1)

ex (t) ∈
L1(R), we have from Theorem 7.1 of [50] that

F
[

C−∞Dα
t y

(k)
ex

]
(ω) = (−iω)−(1−α)F

[
y(k+1)
ex

]
(ω). (2.12)

By the result (2), F
[
y(k+1)
ex

]
(ω) = (−iω)k+1 ŷex(ω) which together with (2.12) yields the

result (3). ��
Theorem 2.1 Assume y(t) ∈ C[0, T ] ∩ C r+α[0, T ] with y(1)(t) ∈ L1[0, T ] for a real
number α ∈ (0, 1) and a positive integer r . Then

C
0Dα

t y(t) = Lα
r,τ y(t) + O(τ r ) (2.13)

holds uniformly for all t ∈ [0, T ] as τ → 0.

Proof Let yex(t) be the extension of y(t) to the entire real line R and define


α
r,τ yex(t) = τ−α

∞∑

k=0

�
(α)
r,k yex(t − kτ), t ∈ R. (2.14)

We have that for all t ∈ [0, T ],
C
0Dα

t y(t) = C−∞Dα
t yex(t), Lα

r,τ y(t) = 
α
r,τ yex(t). (2.15)

It suffices to prove

C−∞Dα
t yex(t) = 
α

r,τ yex(t) + O(τ r ) (2.16)

holds uniformly for all t ∈ R as τ → 0.
Taking the Fourier transformation on both sides of (2.14) yields

F [

α

r,τ yex
]
(ω) = τ−α

∞∑

k=0

�
(α)
r,k e

iωkτ ŷex(ω) = W̃r,α(−iωτ)(−iω)α ŷex(ω), (2.17)

where

W̃r,α(z) =
{
z−αWr,α(e−z), z �= 0,
1, z = 0.

(2.18)

By Lemma 2.2, F [
C−∞Dα

t yex
]
(ω) = (−iω)α ŷex(ω). So we have from (2.17) that

F [

α

r,τ yex
]
(ω) = F

[
C−∞Dα

t yex
]
(ω) + (

W̃r,α(−iωτ) − 1
)
(−iω)α ŷex(ω). (2.19)

Let Vr (z) = (
Wr,α(e−z)

) 1
α . We have from Lemma 2.1 that the power series expansion of

the function Vr (z) has the form Vr (z) = z +∑∞
l=r+1 al z

l which converges absolutely for all
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|z| ≤ R with some R > 0. Let C1 = ∑∞
l=r+1 |al |Rl < ∞ and C2 = min

{

R,
(
Rr+1

2C1

) 1
r
}

.

Then, for all |z| ≤ C2,
∣
∣
∣
∣
∣

∞∑

l=r+1

al z
l−1

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
zr

∞∑

l=r+1

al z
l−r−1

∣
∣
∣
∣
∣
≤ |z|r R−r−1C1 ≤ 1

2
,

and so

∣
∣W̃r,α(z) − 1

∣
∣ =

∣
∣
∣
∣
∣

(

1 +
∞∑

l=r+1

al z
l−1

)α

− 1

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∞∑

n=1

(
α

n

)( ∞∑

l=r+1

al z
l−1

)n∣∣
∣
∣
∣
≤ C3|z|r ,

(2.20)

where C3 = R−r−1C1
∑∞

n=1

( 1
2

)n−1
< ∞. This proves that for all |ωτ | ≤ C2,

∣
∣W̃r,α(−iωτ) − 1

∣
∣ ≤ C3|ωτ |r . (2.21)

When |ωτ | > C2, we have

∣
∣W̃r,α(−iωτ) − 1

∣
∣ =

∣
∣
∣
∣
∣
(−iωτ)−α

(
r∑

i=1

1

i

(
1 − eiωτ

)i
)α

− 1

∣
∣
∣
∣
∣

<
1

Cr
2

(

1 + max

{

1,
1

C2

} r∑

i=1

2i

i

)

|ωτ |r . (2.22)

Therefore, there exists a positive constant C4 independent of ωτ such that
∣
∣W̃r,α(−iωτ) − 1

∣
∣ ≤ C4|ωτ |r (2.23)

uniformly for ωτ ∈ R.
Performing the inverse Fourier transformation on both sides of (2.19) leads to


α
r,τ yex(t) = C−∞Dα

t yex(t) + φ(t, τ ), (2.24)

where

|φ(t, τ )| = 1

2π

∣
∣
∣
∣

∫ ∞

−∞
e−iωt (W̃r,α(−iωτ) − 1

)
(−iω)α ŷex(ω)dω

∣
∣
∣
∣

≤ C4

2π

(∫ ∞

−∞
|ω|r+α|ŷex(ω)|dω

)

τ r . (2.25)

The condition requiring that y(t) ∈ C r+α[0, T ] implies
∫∞
−∞ |ω|r+α|ŷex(ω)|dω < ∞, and

thus, (2.16) holds uniformly for all t ∈ R as τ → 0. ��
Remark 2.1 We see fromLemma 2.2 that a necessary condition for the condition of Theorem
2.1 to be satisfied is given by y(0) = 0. For this reason, we have assumed the homogeneous
initial condition u(x, 0) = 0 in the problem (1.1). If the problem (1.1) is given with the
nonhomogeneous initial condition u(x, 0) = ψ(x), as mentioned in Sect. 1, the substitution
v(x, t) = u(x, t) − ψ(x) will transform the problem (1.1) to the problem which has the
same form and the homogeneous initial condition (also see the further discussions in Sect.
5). Hence, Theorem 2.1 is directly applicable to the above nonhomogeneous initial condition
without any complication. For a detailed study on approximation methods for the Caputo
fractional derivative defined on a finite interval with the nonhomogeneous initial condition,
we refer to the recent work in [52].
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2.3 Two Test Examples

In this subsection, we use two examples to demonstrate the numerical accuracy of the approx-
imation formula (2.13). We only consider the formula for r = 3, 4, 5, 6. Let τ = 1/N be
the step, where N is a positive integer. Denote tn = nτ (0 ≤ n ≤ N ). We compute the error
Er (τ ) and the convergence order Or (τ ) by

Er (τ ) = max
0≤n≤N

∣
∣
∣
C
0Dα

t y(tn) − Lα
r,τ y(tn)

∣
∣
∣ , Or (τ ) = log2

(
Er (2τ)

Er (τ )

)

. (2.26)

Example 2.1 Let y(t) = tr+α , where r is a positive integer. The αth-order Caputo fractional
derivative of y(t) is given by

C
0Dα

t y(t) = �(r + α + 1)

�(r + 1)
tr , 0 < α < 1.

We use the approximation formula (2.13) to compute C
0Dα

t y(tn) (0 ≤ n ≤ N ) numerically.
Let r = 3, 4, 5, 6. The error Er (τ ) and the convergence order Or (τ ) for α = 1/4, 1/2, 3/4
and different step τ are listed in Table 1. It is seen that the approximation formula (2.13) has
the convergence order described in Theorem 2.1.

Example 2.2 In this example, we consider the function y(t) = e
t
3 − ∑r

k=0
1
k!
( t
3

)k + tr+α ,
where r is a positive integer. Its αth-order Caputo fractional derivative is given by

C
0Dα

t y(t) = t1−α

3

∞∑

k=r

1

�(k + 2 − α)

(
t

3

)k

+ �(r + α + 1)

�(r + 1)
tr , 0 < α < 1.

In our calculation, the series in the above equation is approximated by its finite sum for k = r
to 50. The error Er (τ ) and the convergence order Or (τ ) of the approximation formula (2.13)
for α = 1/4, 1/2, 3/4 and different step τ are listed in Table 2. We see that the numerical
results coincide with the theoretical analysis results given in Theorem 2.1.

3 The Compact Finite Difference Scheme

Let h = L/M be the spatial step, where M is a positive integer. We partition [0, L] into a
mesh by the mesh points xi = ih (0 ≤ i ≤ M). Let

Ji = 1

h

(∫ xi

xi−1

1

k(s)
ds

)−1

, g1,i (x) = Ji

∫ x

xi−1

1

k(s)
ds,

g2,i (x) = Ji

∫ xi

x

1

k(s)
ds, φ1,i (x) = − x − xi

2h
+ (x − xi )2

2h2
,

φ2,i (x) = 1 − (x − xi )2

h2
, φ3,i (x) = x − xi

2h
+ (x − xi )2

2h2
, (3.1)

and

E (l)
i =

∫ xi

xi−1

φ2+l,i (x)g1,i (x)dx +
∫ xi+1

xi
φ2+l,i (x)g2,i+1(x)dx, l = − 1, 0, 1.
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Table 1 The errors and the convergence orders of the approximation formula (2.13) for Example 2.1

τ α = 1/4 α = 1/2 α = 3/4

Er (τ ) Or (τ ) Er (τ ) Or (τ ) Er (τ ) Or (τ )

r = 3

1/10 5.249e−04 1.468e−03 3.126e−03

1/20 6.561e−05 3.000 1.835e−04 3.000 3.908e−04 3.000

1/40 8.202e−06 3.000 2.294e−05 3.000 4.884e−05 3.000

1/80 1.025e−06 3.000 2.867e−06 3.000 6.105e−06 3.000

1/160 1.282e−07 3.000 3.584e−07 3.000 7.632e−07 3.000

r = 4

1/10 1.815e−04 5.352e−04 1.196e−03

1/20 1.134e−05 4.000 3.345e−05 4.000 7.478e−05 4.000

1/40 7.090e−07 4.000 2.091e−06 4.000 4.674e−06 4.000

1/80 4.432e−08 4.000 1.307e−07 4.000 2.921e−07 4.000

1/160 2.770e−09 4.000 8.166e−09 4.000 1.826e−08 4.000

r = 5

1/10 8.011e−05 2.469e−04 5.751e−04

1/20 2.503e−06 5.000 7.716e−06 5.000 1.797e−05 5.000

1/40 7.823e−08 5.000 2.411e−07 5.000 5.616e−07 5.000

1/80 2.445e−09 5.000 7.535e−09 5.000 1.755e−08 5.000

1/160 7.639e−11 5.000 2.355e−10 5.000 5.485e−10 5.000

r = 6

1/10 4.250e−05 1.363e−04 3.307e−04

1/20 6.641e−07 6.000 2.129e−06 6.000 5.167e−06 6.000

1/40 1.038e−08 6.000 3.327e−08 6.000 8.074e−08 6.000

1/80 1.621e−10 6.000 5.198e−10 6.000 1.262e−09 6.000

1/160 2.533e−12 6.000 8.123e−12 6.000 1.973e−11 5.998

For any grid function w = {wi | 0 ≤ i ≤ M}, we define operators
Qwi = Jiwi−1 − (Ji + Ji+1) wi + Ji+1wi+1,

Hwi = E (−1)
i wi−1 + E (0)

i wi + E (1)
i wi+1, 1 ≤ i ≤ M − 1. (3.2)

Then we have the following lemmas from [45,46].

Lemma 3.1 Assume that Lw(x) ∈ C4[0, L], where Lw is defined by (1.3). Then it holds
that

H(Lw)i = Qwi + O(h4), 1 ≤ i ≤ M − 1. (3.3)

Lemma 3.2 It holds that

E (l)
i = 1

12
+ O(h) (l = −1, 1), E (0)

i = 5

6
+ O(h), 1 ≤ i ≤ M − 1. (3.4)

Lemma 3.3 There exists a positive constant h∗
1, independent of h, such that for all h ≤ h∗

1,

E (l)
i ≥ 0 (l = −1, 0, 1), E (−1)

i + E (1)
i ≤ E (0)

i , 1 ≤ i ≤ M − 1. (3.5)
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Table 2 The errors and the convergence orders of the approximation formula (2.13) for Example 2.2

τ α = 1/4 α = 1/2 α = 3/4

Er (τ ) Or (τ ) Er (τ ) Or (τ ) Er (τ ) Or (τ )

r = 3

1/10 5.253e−04 1.469e−03 3.128e−03

1/20 6.564e−05 3.000 1.836e−04 3.000 3.910e−04 3.000

1/40 8.204e−06 3.000 2.294e−05 3.000 4.886e−05 3.000

1/80 1.025e−06 3.000 2.868e−06 3.000 6.108e−06 3.000

1/160 1.282e−07 3.000 3.585e−07 3.000 7.634e−07 3.000

r = 4

1/10 1.815e−04 5.352e−04 1.196e−03

1/20 1.134e−05 4.000 3.345e−05 4.000 7.478e−05 4.000

1/40 7.091e−07 4.000 2.091e−06 4.000 4.674e−06 4.000

1/80 4.432e−08 4.000 1.307e−07 4.000 2.921e−07 4.000

1/160 2.770e−09 4.000 8.166e−09 4.000 1.826e−08 4.000

r = 5

1/10 8.011e−05 2.469e−04 5.751e−04

1/20 2.503e−06 5.000 7.716e−06 5.000 1.797e−05 5.000

1/40 7.823e−08 5.000 2.411e−07 5.000 5.616e−07 5.000

1/80 2.445e−09 5.000 7.535e−09 5.000 1.755e−08 5.000

1/160 7.639e−11 5.000 2.355e−10 5.000 5.485e−10 5.000

r = 6

1/10 4.250e−05 1.363e−04 3.307e−04

1/20 6.641e−07 6.000 2.129e−06 6.000 5.167e−06 6.000

1/40 1.038e−08 6.000 3.327e−08 6.000 8.074e−08 6.000

1/80 1.621e−10 6.000 5.198e−10 6.000 1.262e−09 6.000

1/160 2.533e−12 6.000 8.123e−12 6.000 1.977e−11 5.996

For a positive integer N , we let τ = T/N be the time step. Denote tn = nτ (0 ≤ n ≤ N ).
Let u(x, t) be the solution of the problem (1.1). Define the grid functions

Un
i = u(xi , tn), V n

i = Lu(xi , tn), f ni = f (xi , tn),
φn
0 = φ0(tn), φn

L = φL(tn).

An application of the approximation formulae (2.13) and (3.3) yields

C
0Dα

t U
n
i = τ−α

n∑

k=0

�
(α)
r,k U

n−k
i + (Rt )

n
i , 0 ≤ i ≤ M, 1 ≤ n ≤ N , (3.6)

HV n
i = QUn

i + (Rx )
n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (3.7)

where (Rt )
n
i and (Rx )

n
i are the corresponding local truncation errors. Substituting (3.6) into

the governing equation of (1.1), we obtain

τ−α
n∑

k=0

�
(α)
r,k U

n−k
i = V n

i + f ni − (Rt )
n
i , 0 ≤ i ≤ M, 1 ≤ n ≤ N . (3.8)
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Applying H to both sides of (3.8) and using (3.7) lead to

τ−α
n∑

k=0

�
(α)
r,k HUn−k

i = QUn
i + H f ni + (Rxt )

n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

(3.9)

where

(Rxt )
n
i = −H(Rt )

n
i + (Rx )

n
i . (3.10)

Omitting the small term (Rxt )
n
i in (3.9), we obtain the following compact finite difference

scheme:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ−α

n∑

k=0

�
(α)
r,k Hun−k

i = Quni + H f ni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

un0 = φn
0 , unM = φn

L , 1 ≤ n ≤ N ,

u0i = 0, 0 ≤ i ≤ M,

(3.11)

where uni denotes the finite difference approximation to Un
i .

Theorem 3.1 Let u(x, t) be the solution of problem (1.1). Assume that Lu(x, ·) ∈ C4[0, L]
and u(·, t) ∈ C[0, T ] ∩ C r+α[0, T ] with ∂t u(·, t) ∈ L1[0, T ] for a positive integer r . Then
the truncation error (Rxt )

n
i of the compact difference scheme (3.11) satisfies

∣
∣(Rxt )

n
i

∣
∣ ≤ C∗ (τ r + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (3.12)

where C∗ is a positive constant independent of τ , h and n.

Proof We have from Theorem 2.1 and Lemma 3.1 that the truncation errors (Rt )
n
i and (Rx )

n
i

in (3.6) and (3.7) have the form

(Rt )
n
i = O(τ r ), (Rx )

n
i = O(h4), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (3.13)

Since by Lemma 3.2,Hwi = 1
12 (wi−1 + 10wi + wi+1) + (wi−1 + wi + wi+1)O(h) for any

grid function w = {wi | 0 ≤ i ≤ M}, we apply the estimates in (3.13) into (3.10) to get the
desired estimate (3.12) immediately. ��

Theorem 3.2 The compact difference scheme (3.11) is uniquely solvable for all sufficiently
small h ≤ h∗

1, where h
∗
1 is the constant defined in Lemma 3.3.

Proof It is sufficient to prove that the coefficient matrix Q∗ of the system from the compact
difference scheme (3.11) is nonsingular if h ≤ h∗

1. In fact, Q∗ = tridiag(p∗
i−1, q

∗
i , r∗

i+1),
where p∗

0 = r∗
M = 0 and

p∗
i = τ−α�

(α)
r,0 E (−1)

i+1 − Ji+1, 1 ≤ i ≤ M − 2,

q∗
i = τ−α�

(α)
r,0 E (0)

i + Ji + Ji+1, 1 ≤ i ≤ M − 1,

r∗
i = τ−α�

(α)
r,0 E (1)

i−1 − Ji , 2 ≤ i ≤ M − 1.

It is clear that q∗
i > 0 for each 1 ≤ i ≤ M − 1.
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Case 1 Assume that p∗
i �= 0 for all 1 ≤ i ≤ M − 2. In this case, the matrix Q∗ is

irreducible. By Lemma 3.3, we have that for 2 ≤ i ≤ M − 2,

|p∗
i−1| + |r∗

i+1| ≤ τ−α�
(α)
r,0

(
E (−1)
i + E (1)

i

)
+ Ji + Ji+1

≤ τ−α�
(α)
r,0 E (0)

i + Ji + Ji+1 = |q∗
i |.

Similarly,

|r∗
2 | ≤ τ−α�

(α)
r,0 E (1)

1 + J2 < |q∗
1 |, |p∗

M−2| ≤ τ−α�
(α)
r,0 E (−1)

M−1 + JM−1 < |q∗
M−1|.

This proves that Q∗ is irreducibly diagonally dominant and thus nonsingular (see [53]).
Case 2 Assume that p∗

i0
= 0 for some 1 ≤ i0 ≤ M − 2. In this case, we complete the

proof by partitioning Q∗ and then considering its submatrices. ��

4 Stability and Convergence

In this section, we carry out the stability and convergence analysis of the compact difference
scheme (3.11) using a technique of discrete energy analysis. Since the coefficient matrix of
the scheme (3.11) is not symmetric due to the dependence of the coefficient k(x) on x , a
direct analysis using the discrete energy method is much more difficult. Motivated by the
recent study in [22], we here use an indirect approach by decomposing the coefficient matrix
and then applying the discrete energy method to a suitable matrix form of the scheme (3.11).

4.1 A Suitable Matrix Form of the Scheme (3.11)

Wenowwrite the compact difference scheme (3.11) in a suitablematrix form for our analysis.
Let Sh = {w | w = (w0, w1, . . . , wM ), w0 = wM = 0} be the space of the grid functions
defined on the spatial mesh and vanishing on two boundary points. For any w ∈ Sh , we let
w = (w1, w2, . . . , wM−1)

T ∈ R
M−1. Define

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
− 1 1

− 1 1
. . .

. . .

− 1 1
− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M×(M−1)

, � = diag (J1, J2, . . . , JM ) .

Then we have that for any w ∈ Sh ,

(Qw1,Qw2, . . . ,QwM−1)
T = −ST�Sw. (4.1)
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Let

S−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 1
− 1 1

− 1 1
. . .

. . .

− 1 1
− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(M−1)2

,

S1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
− 1 1

− 1 1
. . .

. . .

− 1 1
− 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(M−1)2

,

�l = diag

(

E (−l)
1 − 1

12
, E (−l)

2 − 1

12
, . . . , E (−l)

M−1 − 1

12

)

, l = −1, 1,

Q = tridiag

(
1

12
, Pi − 1

6
,
1

12

)

, H = Q + �−1S−1 − �1S1,

where Pi = E (−1)
i + E (0)

i + E (1)
i . Since for i = 1, 2, . . . , M − 1,

Hwi = E (−1)
i wi−1 + E (0)

i wi + E (1)
i wi+1,

= 1

12
wi−1 +

(

Pi − 1

6

)

wi + 1

12
wi+1

+
(

E (−1)
i − 1

12

)

wi−1 +
(
1

6
− E (−1)

i − E (1)
i

)

wi +
(

E (1)
i − 1

12

)

wi+1,

we have that for any w ∈ Sh ,

(Hw1,Hw2, . . . ,HwM−1)
T = Hw. (4.2)

An application of (4.1) and (4.2) shows that the compact difference scheme (3.11) can be
expressed in the matrix form as

τ−α
n∑

k=0

�
(α)
r,k Hun−k = −ST�Sun + gn, 1 ≤ n ≤ N , (4.3)

where

un = (
un1, u

n
2, . . . , u

n
M−1

)T
, gn = (H f n1 ,H f n2 , . . . ,H f nM−1

)T + rn, (4.4)

and rn absorbs the boundary values of the solution vector. Noticing that rn = 0 when
un0 = unM = 0 for all 0 ≤ n ≤ N .

Lemma 4.1 There exists a positive constant h∗
2, independent of h, such that for all h ≤ h∗

2,
the matrix Q is symmetric and positive definite. Moreover, λmin(Q) ≥ 1

3 and λmax(Q) ≤ 4
3 ,

where λmin(Q) and λmax(Q) denote the smallest and largest eigenvalues of Q.
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Proof We write

Q = tridiag

(
1

12
,
5

6
,
1

12

)

+ diag (P1 − 1, P2 − 1, . . . , PM−1 − 1) .

We have from Lemma 3.2 that Pi = 1 + O(h) which implies Pi − 1 = O(h) for all

1 ≤ i ≤ M − 1. Since the eigenvalues of the matrix tridiag
(

1
12 ,

5
6 ,

1
12

)
are given by

λi = 5
6 + 1

6 cos
iπ
M for all 1 ≤ i ≤ M − 1, there exists a positive constant h∗

2, independent of
h, such that for all h ≤ h∗

2,

λmin(Q) ≥ 5

6
− 1

6
− 1

3
= 1

3
, λmax(Q) ≤ 5

6
+ 1

6
+ 1

3
= 4

3
.

The proof is completed. ��
Let B = Q−1 when h ≤ h∗

2. Then the matrix form (4.3) is equivalent to

τ−α
n∑

k=0

�
(α)
r,k BHun−k = −BST�Sun + Bgn, 1 ≤ n ≤ N . (4.5)

The abovematrix form and the following lemmaswill be used in our stability and convergence
analysis of the compact difference scheme (3.11).

Lemma 4.2 There exists a positive constant c2, independent of h, such that

λmax(�
2
l ) ≤ c2h

2, l = −1, 1. (4.6)

Proof Lemma 3.2 implies �2
l = diag

(
(O(h))2, (O(h))2, . . . , (O(h))2

)
for l = −1, 1. This

proves the result (4.6). ��
Lemma 4.3 It holds that

(1) c0
h2

≤ λmin(�) ≤ λmax(�) ≤ c1
h2
, where c0 and c1 are the constants in (1.4),

(2) λmax(SST ) ≤ 4,
(3) (Slw)T Slw ≤ (Sw)T Sw for any w ∈ R

M−1 and l = −1, 1.

Proof (a) The result (1) follows from (1.4).
(b) Since SST = tridiag(− 1, 2,− 1) + diag(− 1, 0, . . . , 0,− 1), the result (2) follows

from the theorem of Gerschgorin (see [53]).
(c) For any w = (w1, w2, . . . , wM−1)

T ∈ R
M−1,

(S−1w)T S−1w =
M−1∑

i=2

(wi − wi−1)
2 + (wM−1)

2,

(S1w)T S1w =
M−1∑

i=2

(wi − wi−1)
2 + (w1)

2,

(Sw)T Sw =
M−1∑

i=2

(wi − wi−1)
2 + (w1)

2 + (wM−1)
2. (4.7)

This proves the result (3). ��
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Lemma 4.4 There exists a positive constant h∗
3, independent of h, such that for all h ≤ h∗

3,

(Hw)T Hw ≤ 27

8
wTw, w ∈ R

M−1.

Proof We have from Lemma 3.2 that there exists a positive constant h∗
3, independent of h,

such that for all h ≤ h∗
3,

(E (−1)
i )2 ≤ 1

16
, (E (0)

i )2 ≤ 1, (E (1)
i )2 ≤ 1

16
, 1 ≤ i ≤ M − 1.

Let wi (1 ≤ i ≤ M − 1) denote the i th-component of w and let w0 = wM = 0. Then we
have

(Hw)T Hw =
M−1∑

i=1

(
E (−1)
i wi−1 + E (0)

i wi + E (1)
i wi+1

)2

≤ 3
M−1∑

i=1

(
(E (−1)

i )2(wi−1)
2 + (E (0)

i )2(wi )
2 + (E (1)

i )2(wi+1)
2
)

≤ 27

8

M−1∑

i=1

(wi )
2 = 27

8
wTw.

This completes the proof. ��
4.2 Analysis of Stability and Convergence

Now we turn to the analysis of stability and convergence for the scheme (3.11), based on its
matrix form (4.5). We first introduce the following lemma.

Lemma 4.5 Let �
(α)
r,k be defined by (2.4), where 0 < α < 1 and 2 ≤ r ≤ 6. If r = 4, we

assume 0 < α ≤ α∗, where

α∗ = π

π − arccos
( 1
5

) + 2 arctan
(
191

√
6

317

) ≈ 0.8439.

Then for any nonnegative integer n and wm ∈ Sh (0 ≤ m ≤ n), it holds that

n∑

m=0

m∑

k=0

�
(α)
r,k

(
wm)T wm−k ≥ 0, 2 ≤ r ≤ 6. (4.8)

Proof Denote by wm
i the i th-component ofwm . It is sufficient to prove that for each 1 ≤ i ≤

M − 1,
n∑

m=0

(
m∑

k=0

�
(α)
r,k wm−k

i

)

wm
i ≥ 0, 2 ≤ r ≤ 6. (4.9)

Let

�(α)
r = 1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2�(α)
r,0 �

(α)
r,1 �

(α)
r,2 · · · · · · �

(α)
r,n−1 �

(α)
r,n

�
(α)
r,1 2�(α)

r,0 �
(α)
r,1 · · · · · · �

(α)
r,n−2 �

(α)
r,n−1

· · · · · ·
�

(α)
r,n−1 �

(α)
r,n−2 �

(α)
r,n−3 · · · · · · 2�(α)

r,0 �
(α)
r,1

�
(α)
r,n �

(α)
r,n−1 �

(α)
r,n−2 · · · · · · �

(α)
r,1 2�(α)

r,0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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One can easily check that the validity of (4.9) is equivalent to that the above symmetric
Toeplitz matrix �

(α)
r is positive semi-definite. By the Grenander-Szegö theorem (see [54]),

the matrix �
(α)
r is positive semi-definite if its generating function fr (α, θ) is nonnegative

for all θ ∈ [−π, π], where

fr (α, θ) = �
(α)
r,0 + 1

2

∞∑

k=1

�
(α)
r,k

(
eikθ + e−ikθ

)
=

∞∑

k=0

�
(α)
r,k cos(kθ).

However, the latter follows from Theorems 2.1 and 2.2 in [38]. The proof is completed. ��
For any w ∈ Sh , we define its L2 norm ‖w‖, L∞ norm ‖w‖∞ and H1 norm ‖w‖1 by

‖w‖ =
(

h
M−1∑

i=1

(wi )
2

) 1
2

, ‖w‖∞ = max
0≤i≤M

|wi |, ‖w‖1 = (‖w‖2 + |w|21
) 1
2 ,

where |w|21 = 1
h

∑M
i=1(wi − wi−1)

2. It is known from [55] (pages 111 and 112) that for any
w ∈ Sh ,

‖w‖2 ≤ L2

8
|w|21, ‖w‖2∞ ≤ L

4
|w|21. (4.10)

Also we have that for all w ∈ Sh , ‖w‖2 = hwTw and h|w|21 = (Sw)T Sw (see (4.7)), where
w = (w1, w2, . . . , wM−1)

T . The following theorem gives an a prior estimate of the compact
difference scheme (3.11).

Theorem 4.1 Assume that the condition in Lemma 4.5 is satisfied and let h∗
4 be a positive

constant such that ( c2c0
(1 + h3) + 36c1)h < 3

4 for all h ≤ h∗
4, where c0, c1 and c2 are the

constants in (1.4)) and (4.6). Also let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

difference scheme (3.11) with the initial value u0i and u
n
0 = unM = 0 for all 0 ≤ n ≤ N. Then

when h ≤ min{h∗
1, h

∗
2, h

∗
3, h

∗
4}, where h∗

i (i = 1, 2, 3) are the constants defined in Lemmas
3.3, 4.1 and 4.4, it holds that for 2 ≤ r ≤ 6,

τ

n∑

m=1

|um |21 ≤ 81�(α)
r,0

8c0c3
τ 1−α‖u0‖2 + L2 + 72c0

8c20c3
τ

n∑

m=1

‖H f m‖2, 1 ≤ n ≤ N ,

(4.11)

where c3 = 3
4 − ( c2c0

(1 + h3) + 36c1)h > 0.

Proof Multiplying (4.5) with h(un)T HT to get

τ−α
n∑

k=0

�
(α)
r,k h(un)T HT BHun−k = −h(un)T HT BST�Sun + h(un)T HT Bgn .

(4.12)

Since H = Q + �−1S−1 − �1S1 and B = Q−1, we have

− h(un)T HT BST�Sun = −h
(
Sun

)T
�Sun + h(�1S1un)T BST�Sun

−h(�−1S−1un)T BST�Sun, (4.13)

and

h(un)T HT Bgn = h(un)T gn + h(�−1S−1un)T Bgn − h(�1S1un)T Bgn . (4.14)
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We first estimate −h(un)T HT BST�Sun . By the Cauchy–Schwarz inequality,

h(�1S1un)T BST�Sun = (
h−1�1S1un

)T
(
h2BST�Sun

)

≤ h−2

2

(
�1S1un

)T (
�1S1un

) + h4

2

(
BST�Sun

)T (
BST�Sun

)

= h−2

2
(S1un)T�2

1S1u
n + h2

2

(
�

1
2 Sun

)T
h2�

1
2 SB2ST�

1
2

(
�

1
2 Sun

)
. (4.15)

We have from Lemmas 4.2 and 4.3 that

h−2(S1un)T�2
1S1u

n ≤ c2(S1un)T S1un ≤ c2(Sun)T Sun ≤ c2
c0

h2(Sun)T�Sun .

(4.16)

Using Lemmas 4.1 and 4.3, we obtain

λmax

(
h2�

1
2 SB2ST�

1
2

)
≤ λmax

(
SST

)
λmax

(
h2�

)
λmax

(
B2) ≤ 36c1. (4.17)

This implies
(
�

1
2 Sun

)T
h2�

1
2 SB2ST�

1
2

(
�

1
2 Sun

)
≤ 36c1(Sun)T�Sun . (4.18)

Substituting (4.16) and (4.18) into (4.15), we get

h(�1S1un)T BST�Sun ≤
(

c2
2c0

+ 18c1

)

h2(Sun)T�Sun . (4.19)

A similar argument gives

− h(�−1S−1un)T BST�Sun ≤
(

c2
2c0

+ 18c1

)

h2(Sun)T�Sun . (4.20)

Hence we have from (4.19), (4.20) and (4.13) that

− h(un)T HT BST�Sun ≤ −
(

1 −
(
c2
c0

+ 36c1

)

h

)

h
(
Sun

)T
�Sun . (4.21)

We next estimate h(un)T HT Bgn . It follows from the Cauchy–Schwarz inequality, (4.10)
and Lemma 4.3 that

h(un)T gn ≤ 2c0h

L2 (un)T un + L2h

8c0
(gn)T gn ≤ c0

4h

(
Sun

)T (
Sun

) + L2h

8c0
(gn)T gn

≤ h

4

(
Sun

)T
�
(
Sun

) + L2h

8c0
(gn)T gn . (4.22)

Also by the Cauchy–Schwarz inequality and Lemmas 4.1–4.3,

− h(�1S1un)T Bgn ≤ h

2
(S1un)T�2

1S1u
n + h

2
(gn)T B2gn

≤ c2h5

2c0

(
Sun

)T
�
(
Sun

) + 9h

2
(gn)T gn . (4.23)

Similarly,

h(�−1S−1un)T Bgn ≤ c2h5

2c0

(
Sun

)T
�
(
Sun

) + 9h

2
(gn)T gn . (4.24)
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Therefore, it follows from (4.14) and (4.22)–(4.24) that

h(un)T HT Bgn ≤
(
1

4
+ c2h4

c0

)

h
(
Sun

)T
�
(
Sun

) + (L2 + 72c0)h

8c0
(gn)T gn . (4.25)

Applying (4.21) and (4.25) into (4.12), we obtain

τ−α
n∑

k=0

�
(α)
r,k h(un)T HT BHun−k ≤ −c3h

(
Sun

)T
�Sun + (L2 + 72c0)h

8c0
(gn)T gn,

(4.26)

where c3 = 3
4 − ( c2c0

(1 + h3) + 36c1)h > 0 for all h ≤ h∗
4. Moreover, by Lemma 4.3,

τ−α
n∑

k=0

�
(α)
r,k h(un)T HT BHun−k ≤ −c0c3

h

(
Sun

)T
Sun + (L2 + 72c0)h

8c0
(gn)T gn .

(4.27)

Replacing n by m and then summing up for m from 1 to n on both sides of (4.27), we have

τ−α
n∑

m=1

m∑

k=0

�
(α)
r,k h(um)T HT BHum−k

≤ −c0c3
h

n∑

m=1

(
Sum

)T
Sum + (L2 + 72c0)h

8c0

n∑

m=1

(gm)T gm

or equivalently,

τ−α
n∑

m=0

m∑

k=0

�
(α)
r,k h(um)T HT BHum−k ≤ −c0c3

h

n∑

m=1

(
Sum

)T
Sum

+τ−α�
(α)
r,0 h(u0)T HT BHu0 + (L2 + 72c0)h

8c0

n∑

m=1

(gm)T gm . (4.28)

Since the matrix B is symmetric and positive definite, there exists a symmetric and positive
definite matrix B1 such that B = BT

1 B1. Let wn = B1Hun . Then by Lemma 4.5,

τ−α
n∑

m=0

m∑

k=0

�
(α)
r,k h(um)T HT BHum−k = τ−α

n∑

m=0

m∑

k=0

�
(α)
r,k h(wm)Twm−k ≥ 0.

(4.29)

This together with (4.28) implies

1

h

n∑

m=1

(
Sum

)T
Sum ≤ τ−α

�
(α)
r,0

c0c3
h(u0)T HT BHu0 + (L2 + 72c0)h

8c20c3

n∑

m=1

(gm)T gm .

(4.30)

By Lemmas 4.1 and 4.4, h(u0)T HT BHu0 ≤ 3h(u0)T HT Hu0 ≤ 81
8 h(u0)T u0. It is clear

that

h(u0)T u0 = ‖u0‖2, 1

h

(
Sum

)T
Sum = |um |21, h(gm)T gm = ‖H f m‖2.

Then the estimate (4.11) follows immediately from (4.30). ��
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A similar argument as that for proving Lemma 4.4 shows that when h ≤ h∗
3,

‖H f n‖2 ≤ 27

8
‖ f n‖2 + 3

16
h
(
( f n0 )2 + ( f nM )2

)
.

This observation and Theorem 4.1 imply that the compact difference scheme (3.11) is uncon-
ditionally stable to the initial value u0 and the source term f , or more precisely, it is stable
without any restriction on the time step τ in terms of the spatial step h.

We now consider the convergence of the compact difference scheme (3.11). Let eni =
Un
i − uni . From (3.9) and (3.11), we get the following error equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ−α

n∑

k=0

�
(α)
r,k Hen−k

i = Qeni + (Rxt )
n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

en0 = enM = 0, 1 ≤ n ≤ N ,

e0i = 0, 0 ≤ i ≤ M.

(4.31)

Based on this error equation, we have the following convergence result.

Theorem 4.2 Let Un
i denote the value of the solution u(x, t) of the problem (1.1) at the

mesh point (xi , tn) and let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact difference

scheme (3.11). Assume that the conditions in Theorems 3.1 and 4.1 are satisfied. Then we
have that for 2 ≤ r ≤ 6,

(

τ

n∑

m=1

∥
∥Um − um

∥
∥2
1

) 1
2

≤ C1
(
L2 + 72c0

) 1
2
(
τ r + h4

)
, 1 ≤ n ≤ N , (4.32)

(

τ

n∑

m=1

∥
∥Um − um

∥
∥2

) 1
2

≤ C2
(
L2 + 72c0

) 1
2
(
τ r + h4

)
, 1 ≤ n ≤ N , (4.33)

(

τ

n∑

m=1

∥
∥Um − um

∥
∥2∞

) 1
2

≤ C3
(
L2 + 72c0

) 1
2
(
τ r + h4

)
, 1 ≤ n ≤ N , (4.34)

where

C1 = C∗

8c0

(
(L2 + 8)LT

c3

) 1
2

, C2 = C∗

8c0

(
L3T

c3

) 1
2

, C3 = C∗L
4c0

(
T

2c3

) 1
2

.

Proof It follows from (4.31) and Theorem 4.1 that

τ

n∑

m=1

∣
∣em

∣
∣2
1 ≤ L2 + 72c0

8c20c3
τ

n∑

m=1

‖(Rxt )
m‖2.

Applying Theorem 3.1, we get the estimate

τ

n∑

m=1

∣
∣em

∣
∣2
1 ≤ LTC∗2

8c20c3

(
L2 + 72c0

) (
τ r + h4

)2
. (4.35)

Finally, the estimates in (4.32)–(4.34) follow from (4.35) and (4.10). ��
Theorem 4.2 shows that the compact difference scheme (3.11) converges with the con-

vergence order O(τ r + h4), regardless of the order α of the fractional derivative.
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5 Further Discussions

5.1 On Zero-Derivatives Condition

Here we give a discussion about the condition used in Theorems 3.1, 4.1 and 4.2, i.e., that
u(·, t) ∈ C[0, T ] ∩ C r+α[0, T ] with ∂t u(·, t) ∈ L1[0, T ]. To do this, we first introduce the
following proposition, the proof of which will be given in “Appendix”.

Proposition 5.1 Assume y(t) ∈ Cr+1[0, T ] with y(r+2)(t) ∈ L1[0, T ] for a nonnegative
integer r . Then for α ∈ (0, 1),

y(t) ∈ C r+α[0, T ] ⇐⇒ y(k)(0) = 0 for k = 0, 1, . . . , r. (5.1)

In Theorems 3.1, 4.1 and 4.2, we have assumed that u(·, t) ∈ C[0, T ] ∩ C r+α[0, T ]
with ∂t u(·, t) ∈ L1[0, T ]. As in the known treatments of the Grünwald or Lubich difference
approximations and their modifications ([30–32,34,36,37]), this assumption ensures that
the approximation (2.13) (with y(t) replaced by u(·, t)) holds uniformly for all t ∈ [0, T ]
as τ → 0 and thus the r th-order temporal accuracy of the compact difference scheme
(3.11). With the help of Proposition 5.1, one see that u(·, t) ∈ C r+α[0, T ] is equivalent to
that ∂t u(·, 0) = 0 (k = 0, 1, . . . , r) if u(·, t) is smooth enough. Generally, the condition
requiring that the analytical solution of (1.1) and its several derivatives with respect to t must
be zero at t = 0 is essential for the high-order accuracy of the scheme (3.11). We refer to
it as “zero-derivatives condition”. In order to preserve high-order accuracy of the scheme
(3.11) for the problem (1.1) without the above zero-derivatives condition, we provide two
basic techniques as follows:

(1) Using a suitable transformation. The main idea of this technique is to consider the
problem (1.1) for

v(x, t) = u(x, t) −
r∑

p=0

∂
p
t u(x, 0)

p! t p (5.2)

instead, where the coefficients ∂
p
t u(x, 0) (p = 1, 2, . . . , r) are specified later. This technique

transforms the problem (1.1) into an equivalent problemwhich has the same form and satisfies
the zero-derivatives condition (see, e.g., [56]). Hence, the compact difference scheme (3.11)
preserves its high-order accuracy. Moreover, the stability and convergence analysis under the
zero-derivatives condition remains valid. In the next section,we shall use a numerical example
to show the effectiveness of this technique. The coefficients ∂

p
t u(x, 0) (p = 1, 2, . . . , r) in

(5.2) can be computed from the known function f (x, t) as given in the following propositions,
the proofs of which are left in “Appendix”.

Proposition 5.2 Let u(x, t) be the solution of the problem (1.1). Assume that both u(x, t)
and Lu(x, t) are in C0,1([0, L] × [0, T ]). Then

∂t u(x, 0) = C
0D1−α

t f (x, 0), x ∈ [0, L]. (5.3)

Proposition 5.3 Let u(x, t) be the solution of the problem (1.1). Assume that both u(x, t)
and Lu(x, t) are in C0,r ([0, L] × [0, T ]) for a positive integer r ≥ 2. Define

Fp(x, t) =
p∑

l=1

tl−α−p

�(l − α − p + 1)
∂lt u(x, 0) − ∂

p
t f (x, t) (t �= 0), p = 1, 2, . . . , r − 1,

Gp(x, t) =
p−1∑

l=1

tl+α−p

�(l + α − p + 1)
∂lt (Lu)(x, 0) + ∂

p−1
t (C0D1−α

t f )(x, t) (t �= 0), p = 2, 3, . . . , r.
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Then for x ∈ [0, L], the limits limt→0 Fp(x, t) and limt→0 Gp(x, t) exist and

∂
p
t (Lu)(x, 0) = lim

t→0
Fp(x, t), p = 1, 2, . . . , r − 1, (5.4)

∂
p
t u(x, 0) = lim

t→0
Gp(x, t), p = 2, 3, . . . , r. (5.5)

(2) Adding suitable correction terms. For the Caputo fractional derivative C
0Dα

t u(x, t), we
can rewrite it as

C
0Dα

t u(x, t) = C
0Dα

t v(x, t) +
r∑

p=1

∂
p
t u(x, 0)

�(p + 1 − α)
t p−α,

where v(x, t) is defined by (5.2). Obviously, we have made sure that v(x, t) satisfies the
zero-derivatives condition, and so by Theorem 2.1,

C
0Dα

t U
n
i = τ−α

n∑

k=0

�
(α)
r,k

⎛

⎝Un−k
i −

r∑

p=0

∂
p
t u(xi , 0)

p! t pn−k

⎞

⎠

+
r∑

p=1

∂
p
t u(xi , 0)

�(p + 1 − α)
t p−α
n + O(τ r ).

(5.6)

For preserving the r th-order accuracy, we approximate ∂
p
t u(xi , 0) by the following r th-order

difference formula (see [57], page 83):

∂
p
t u(xi , 0) = 1

τ p

p+r−1∑

q=0

b(r)
p,qu(xi , tq) + O(τ r ), (5.7)

where the coefficients b(r)
p,q for p = 1, 2, 3, 4 and r = 3, 4 are given in Table 3. Thus, the

resulting discretization of (1.1) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ−α

n∑

k=0

�
(α)
r,k

⎛

⎝Hun−k
i − Hu0i −

r∑

p=1

t pn−k

p!

⎛

⎝
1

τ p

p+r−1∑

q=0

b(r)
p,qHuqi

⎞

⎠

⎞

⎠

+
r∑

p=1

t p−α
n

�(p + 1 − α)

⎛

⎝
1

τ p

p+r−1∑

q=0

b(r)
p,qHuqi

⎞

⎠ = Quni + H f ni ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

un0 = φn
0 , unM = φn

L , 1 ≤ n ≤ N ,

u0i = 0, 0 ≤ i ≤ M.

(5.8)

This is a modification to the scheme (3.11) by adding some correction terms related to the
starting values uni for n = 0, 1, . . . , 2r − 1 (and so it is required that τ ≤ T/(2r − 1)).
Note that the starting values uni for n = 1, 2, . . . , 2r − 1 are coupled and have to be solved
simultaneously. The numerical results in the next section will show that the above scheme
truly has high-order accuracy for the problem (1.1) without the zero-derivatives condition.

5.2 Further Spatial Approximations

In general, the integrals involved in the compact difference scheme (3.11) cannot be evaluated
exactly. One way of overcoming this difficulty is to replace them by suitable numerical
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Table 3 The coefficients b(r)
p,q for the approximation (5.7)

r b(r)
p,0 b(r)

p,1 b(r)
p,2 b(r)

p,3 b(r)
p,4 b(r)

p,5 b(r)
p,6 b(r)

p,7

p = 1

3 − 11
6 3 − 3

2
1
3

4 − 25
12 4 −3 4

3 − 1
4

p = 2

3 35
12 − 26

3
19
2 − 14

3
11
12

4 15
4 − 77

6
107
6 − 13 61

12 − 5
6

p = 3

3 − 17
4

71
4 − 59

2
49
2 − 41

4
7
4

4 − 49
8 29 − 461

8 62 − 307
8 13 − 15

8
p = 4

3 35
6 −31 137

2 − 242
3

107
2 −19 17

6

4 28
3 − 111

2 142 − 1219
6 176 − 185

2
82
3 − 7

2

integrations. Let ϕ(x) = 1/k(x) and assume ϕ(x) ∈ C6[0, L]. By the closed Newton-Cotes
formula of degree 4 (see [58]),

∫ xi

xi−1

1

k(s)
ds = h

90

(
7ϕ(xi−1) + 32ϕ(xi− 3

4
)

+12ϕ(xi− 1
2
) + 32ϕ(xi− 1

4
) + 7ϕ(xi )

)
+ O(h7),

(5.9)

where xi = ih even if i is not a integer. This implies

Ji = J̃i + O(h4), 1 ≤ i ≤ M, (5.10)

where

J̃i = 1

h2
90

7ϕ(xi−1) + 32ϕ(xi− 3
4
) + 12ϕ(xi− 1

2
) + 32ϕ(xi− 1

4
) + 7ϕ(xi )

. (5.11)

Exchanging the order of integration, we have

E (−1)
i =

∫ xi

xi−1

φ1,i (x)g1,i (x)dx +
∫ xi+1

xi
φ1,i (x)g2,i+1(x)dx

= Ji
h2

∫ xi

xi−1

ϕ̃1,i (s)ds − Ji+1

h2

∫ xi+1

xi
ϕ̃1,i (s)ds, (5.12)

where ϕ̃1,i (s) = ϕ(s)
( h
4 (s − xi )2 − 1

6 (s − xi )3
)
. Then by the closed Newton-Cotes formula

of degree 4,
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Table 4 The errors and the temporal convergence orders of the computed solution uni by the scheme (3.11)
for Example 6.1 with α = 1/4 (h = 1/3500)

τ Er,1(τ, h) Ot
r,1(τ, h) Er,2(τ, h) Ot

r,2(τ, h) Er,∞(τ, h) Ot
r,∞(τ, h)

r = 3

1/5 3.158e−02 9.425e−03 1.306e−02

1/10 4.196e−03 2.912 1.252e−03 2.912 1.735e−03 2.912

1/20 5.391e−04 2.960 1.609e−04 2.960 2.230e−04 2.960

1/40 6.828e−05 2.981 2.038e−05 2.981 2.824e−05 2.981

1/80 8.588e−06 2.991 2.563e−06 2.991 3.552e−06 2.991

r = 4

1/5 2.015e−02 6.014e−03 8.334e−03

1/10 1.386e−03 3.862 4.136e−04 3.862 5.732e−04 3.862

1/20 9.042e−05 3.938 2.699e−05 3.938 3.740e−05 3.938

1/40 5.765e−06 3.971 1.721e−06 3.971 2.384e−06 3.971

1/80 3.638e−07 3.986 1.086e−07 3.986 1.504e−07 3.986

r = 5

1/5 1.637e−02 4.884e−03 6.767e−03

1/10 5.880e−04 4.799 1.755e−04 4.799 2.432e−04 4.799

1/20 1.950e−05 4.914 5.821e−06 4.914 8.066e−06 4.914

1/40 6.264e−07 4.961 1.869e−07 4.961 2.590e−07 4.961

1/80 1.991e−08 4.976 5.928e−09 4.979 8.201e−09 4.981

r = 6

1/5 1.602e−02 4.781e−03 6.624e−03

1/10 3.047e−04 5.716 9.094e−05 5.716 1.260e−04 5.716

1/20 5.147e−06 5.887 1.536e−06 5.887 2.129e−06 5.887

1/40 8.335e−08 5.948 2.487e−08 5.949 3.444e−08 5.950

1/80 1.460e−09 5.835 3.771e−10 6.043 5.410e−10 5.992

E (−1)
i = Ji h2

90

(
35

12
ϕ(xi−1) + 27

4
ϕ(xi− 3

4
) + ϕ(xi− 1

2
) + 7

12
ϕ(xi− 1

4
)

)

− Ji+1h2

90

(
5

12
ϕ(xi+ 1

4
) + 1

2
ϕ(xi+ 1

2
) + 9

4
ϕ(xi+ 3

4
) + 7

12
ϕ(xi+1)

)

+ h5

1935360

(
Ji+1ϕ̃

(6)
1,i (ηi ) − Ji ϕ̃

(6)
1,i (ξi )

)
, (5.13)

where ξi ∈ (xi−1, xi ) and ηi ∈ (xi , xi+1). A simple calculation shows

h5
(
Ji+1ϕ̃

(6)
1,i (ηi ) − Ji ϕ̃

(6)
1,i (ξi )

)
= h5

(
Ji+1

(
ϕ̃

(6)
1,i (ηi ) − ϕ̃

(6)
1,i (ξi )

)
+ (Ji+1 − Ji )ϕ̃

(6)
1,i (ξi )

)

= Ji+1h
5
(
O(h) + 20

(
ϕ(3)(ξi ) − ϕ(3)(ηi )

))
+ O(h4) = O(h4). (5.14)

Applying (5.10) and (5.14) into (5.13) leads to

E (−1)
i = Ẽ (−1)

i + O(h4), 1 ≤ i ≤ M − 1, (5.15)
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Table 5 The errors and the temporal convergence orders of the computed solution uni by the scheme (3.11)
for Example 6.1 with α = 1/2 (h = 1/3500)

τ Er,1(τ, h) Ot
r,1(τ, h) Er,2(τ, h) Ot

r,2(τ, h) Er,∞(τ, h) Ot
r,∞(τ, h)

r = 3

1/5 8.862e−02 2.645e−02 3.665e−02

1/10 1.177e−02 2.912 3.514e−03 2.912 4.870e−03 2.912

1/20 1.513e−03 2.961 4.514e−04 2.961 6.255e−04 2.961

1/40 1.915e−04 2.982 5.715e−05 2.982 7.919e−05 2.982

1/80 2.408e−05 2.991 7.186e−06 2.991 9.958e−06 2.991

r = 4

1/5 5.972e−02 1.782e−02 2.469e−02

1/10 4.115e−03 3.859 1.228e−03 3.859 1.702e−03 3.859

1/20 2.685e−04 3.938 8.014e−05 3.938 1.111e−04 3.938

1/40 1.712e−05 3.971 5.109e−06 3.971 7.080e−06 3.971

1/80 1.080e−06 3.986 3.223e−07 3.986 4.466e−07 3.987

r = 5

1/5 5.059e−02 1.510e−02 2.091e−02

1/10 1.827e−03 4.791 5.451e−04 4.791 7.553e−04 4.791

1/20 6.065e−05 4.913 1.810e−05 4.913 2.508e−05 4.912

1/40 1.948e−06 4.960 5.814e−07 4.960 8.056e−07 4.960

1/80 6.165e−08 4.982 1.839e−08 4.983 2.546e−08 4.984

r = 6

1/5 5.125e−02 1.529e−02 2.118e−02

1/10 9.828e−04 5.705 2.933e−04 5.704 4.064e−04 5.704

1/20 1.664e−05 5.884 4.966e−06 5.884 6.881e−06 5.884

1/40 2.694e−07 5.949 8.038e−08 5.949 1.114e−07 5.949

1/80 4.090e−09 6.041 1.193e−09 6.074 1.669e−09 6.060

where

Ẽ (−1)
i = J̃i h2

1080

(
35ϕ(xi−1) + 81ϕ(xi− 3

4
) + 12ϕ(xi− 1

2
) + 7ϕ(xi− 1

4
)
)

− J̃i+1h2

1080

(
5ϕ(xi+ 1

4
) + 6ϕ(xi+ 1

2
) + 27ϕ(xi+ 3

4
) + 7ϕ(xi+1)

)
. (5.16)

Similarly, we get

E (0)
i = Ẽ (0)

i + O(h4), E (1)
i = Ẽ (1)

i + O(h4), 1 ≤ i ≤ M − 1, (5.17)

where

Ẽ (0)
i = J̃i h2

540

(
28ϕ(xi−1) + 117ϕ(xi− 3

4
) + 33ϕ(xi− 1

2
) + 47ϕ(xi− 1

4
)
)

+ J̃i+1h2

540

(
47ϕ(xi+ 1

4
) + 33ϕ(xi+ 1

2
) + 117ϕ(xi+ 3

4
) + 28ϕ(xi+1)

)
, (5.18)
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Table 6 The errors and the temporal convergence orders of the computed solution uni by the scheme (3.11)
for Example 6.1 with α = 3/4 (h = 1/3500)

τ Er,1(τ, h) Ot
r,1(τ, h) Er,2(τ, h) Ot

r,2(τ, h) Er,∞(τ, h) Ot
r,∞(τ, h)

r = 3

1/5 1.910e−01 5.699e−02 7.899e−02

1/10 2.535e−02 2.913 7.567e−03 2.913 1.049e−02 2.913

1/20 3.255e−03 2.961 9.716e−04 2.961 1.347e−03 2.961

1/40 4.119e−04 2.982 1.229e−04 2.982 1.704e−04 2.982

1/80 5.179e−05 2.992 1.546e−05 2.992 2.142e−05 2.992

r = 4

1/5 1.355e−01 4.043e−02 5.603e−02

1/10 9.348e−03 3.857 2.790e−03 3.857 3.867e−03 3.857

1/20 6.099e−04 3.938 1.820e−04 3.938 2.523e−04 3.938

1/40 3.887e−05 3.972 1.160e−05 3.972 1.608e−05 3.972

1/80 2.452e−06 3.987 7.317e−07 3.987 1.014e−06 3.987

r = 5

1/5 1.195e−01 3.567e−02 4.943e−02

1/10 4.333e−03 4.786 1.293e−03 4.786 1.792e−03 4.785

1/20 1.440e−04 4.912 4.296e−05 4.912 5.955e−05 4.911

1/40 4.624e−06 4.961 1.380e−06 4.961 1.913e−06 4.961

1/80 1.464e−07 4.981 4.367e−08 4.982 6.051e−08 4.982

r = 6

1/5 1.252e−01 3.737e−02 5.177e−02

1/10 2.416e−03 5.696 7.212e−04 5.695 9.994e−04 5.695

1/20 4.100e−05 5.881 1.224e−05 5.881 1.696e−05 5.881

1/40 6.639e−07 5.948 1.981e−07 5.948 2.746e−07 5.949

1/80 1.056e−08 5.974 3.139e−09 5.980 4.351e−09 5.980

Ẽ (1)
i = J̃i+1h2

1080

(
7ϕ(xi+ 1

4
) + 12ϕ(xi+ 1

2
) + 81ϕ(xi+ 3

4
) + 35ϕ(xi+1)

)

− J̃i h2

1080

(
7ϕ(xi−1) + 27ϕ(xi− 3

4
) + 6ϕ(xi− 1

2
) + 5ϕ(xi− 1

4
)
)

. (5.19)

For any grid function w = {wi | 0 ≤ i ≤ M}, we define operators

Q̃wi = J̃iwi−1 − (
J̃i + J̃i+1

)
wi + J̃i+1wi+1,

H̃wi = Ẽ (−1)
i wi−1 + Ẽ (0)

i wi + Ẽ (1)
i wi+1, 1 ≤ i ≤ M − 1. (5.20)

Then the corresponding compact finite difference method is to find uni such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ−α

n∑

k=0

�
(α)
r,k H̃un−k

i = Q̃uni + H̃ f ni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

un0 = φn
0 , unM = φn

L , 1 ≤ n ≤ N ,

u0i = 0, 0 ≤ i ≤ M.

(5.21)
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Table 7 The errors and the spatial convergence orders of the computed solution uni by the scheme (3.11) for
Example 6.1 with α = 1/4

h Er,1(τ, h) Os
r,1(τ, h) Er,2(τ, h) Os

r,2(τ, h) Er,∞(τ, h) Os
r,∞(τ, h)

r = 3

1/8 1.615e−06 4.920e−07 6.927e−07

1/16 1.012e−07 3.996 3.070e−08 4.002 4.323e−08 4.002

1/32 6.329e−09 3.999 1.918e−09 4.001 2.705e−09 3.998

1/64 3.947e−10 4.003 1.196e−10 4.004 1.687e−10 4.003

1/128 2.359e−11 4.065 7.139e−12 4.066 1.001e−11 4.076

r = 4

1/8 1.428e−06 4.352e−07 6.126e−07

1/16 8.951e−08 3.996 2.715e−08 4.002 3.823e−08 4.002

1/32 5.598e−09 3.999 1.696e−09 4.001 2.392e−09 3.998

1/64 3.500e−10 4.000 1.060e−10 4.000 1.495e−10 4.000

1/128 2.075e−11 4.076 6.275e−12 4.079 8.847e−12 4.079

r = 5

1/8 1.296e−06 3.948e−07 5.558e−07

1/16 8.121e−08 3.996 2.464e−08 4.002 3.468e−08 4.002

1/32 5.079e−09 3.999 1.539e−09 4.001 2.170e−09 3.998

1/64 3.175e−10 4.000 9.618e−11 4.000 1.357e−10 4.000

1/128 2.016e−11 3.977 6.097e−12 3.980 8.592e−12 3.981

r = 6

1/8 1.192e−06 3.632e−07 5.112e−07

1/16 7.470e−08 3.996 2.266e−08 4.002 3.190e−08 4.002

1/32 4.672e−09 3.999 1.416e−09 4.001 1.996e−09 3.998

1/64 2.927e−10 3.996 8.869e−11 3.997 1.251e−10 3.996

1/128 1.875e−11 3.965 5.681e−12 3.965 7.973e−12 3.972

Based on the formulae (5.10), (5.11) and (5.15)–(5.19), we can establish the results similar
to those in Lemmas 3.1–3.3 and in Theorems 3.1 and 3.2 for the above scheme (5.21).
Consequently, for the solution uni of the above scheme (5.21), we have the numerical stability
given in Theorem 4.1 and the error estimates (4.32)–(4.34) under the condition of Theorem
4.2. It should be pointed out that since the scheme (5.21) is a further approximation to the
scheme (3.11), it is recommended to use only when the integrals involved in the scheme
(3.11) cannot be evaluated exactly.

6 Applications and Numerical Results

In this section, we apply the proposed compact finite difference methods to two model
problems in the form (1.1). The exact analytical solution u(x, t) of each problem is explicitly
known and ismainly used to comparewith the computed solutionuni of the compact difference
scheme (3.11) or its modified schemes (5.8) and (5.21).

To demonstrate the accuracy of the computed solution uni , we compute its weighted H1,
L∞ and L2 norms errors:

123



1034 J Sci Comput (2018) 76:1007–1043

Table 8 The errors and the spatial convergence orders of the computed solution uni by the scheme (3.11) for
Example 6.1 with α = 1/2

h Er,1(τ, h) Os
r,1(τ, h) Er,2(τ, h) Os

r,2(τ, h) Er,∞(τ, h) Os
r,∞(τ, h)

r = 3

1/8 1.496e−06 4.561e−07 6.419e−07

1/16 9.379e−08 3.996 2.846e−08 4.002 4.005e−08 4.002

1/32 5.863e−09 4.000 1.777e−09 4.001 2.504e−09 4.000

1/64 3.638e−10 4.011 1.102e−10 4.011 1.555e−10 4.010

1/128 1.918e−11 4.245 5.812e−12 4.245 8.115e−12 4.260

r = 4

1/8 1.320e−06 4.022e−07 5.661e−07

1/16 8.272e−08 3.996 2.510e−08 4.002 3.532e−08 4.002

1/32 5.173e−09 3.999 1.568e−09 4.001 2.209e−09 3.999

1/64 3.228e−10 4.002 9.780e−11 4.003 1.379e−10 4.002

1/128 1.892e−11 4.092 5.730e−12 4.093 8.101e−12 4.089

r = 5

1/8 1.192e−06 3.634e−07 5.114e−07

1/16 7.474e−08 3.996 2.268e−08 4.002 3.191e−08 4.002

1/32 4.674e−09 3.999 1.417e−09 4.001 1.995e−09 3.999

1/64 2.920e−10 4.001 8.847e−11 4.001 1.247e−10 4.000

1/128 1.867e−11 3.967 5.655e−12 3.968 7.976e−12 3.967

r = 6

1/8 1.091e−06 3.326e−07 4.680e−07

1/16 6.840e−08 3.996 2.076e−08 4.002 2.920e−08 4.002

1/32 4.278e−09 3.999 1.297e−09 4.001 1.826e−09 3.999

1/64 2.678e−10 3.998 8.116e−11 3.998 1.144e−10 3.997

1/128 1.603e−11 4.063 4.855e−12 4.063 6.840e−12 4.064

Er,ν(τ, h) =
(

τ

N∑

n=1

∥
∥Un − un

∥
∥2

ν

) 1
2

(ν = 1,∞), Er,2(τ, h) =
(

τ

N∑

n=1

∥
∥Un − un

∥
∥2

) 1
2

,

where Un
i = u(xi , tn). The temporal and spatial convergence orders are computed, respec-

tively, by the formulae

Ot
r,ν(τ, h) = log2

(
Er,ν(2τ, h)

Er,ν(τ, h)

)

, Os
r,ν(τ, h) = log2

(
Er,ν(τ, 2h)

Er,ν(τ, h)

)

, ν = 1, 2,∞.

All computations are carried out by using a MATLAB routine on a computer with Xeon
X5650 CPU and 96GB memory.

Example 6.1 Consider the problem (1.1) in the domain [0, 1] × [0, 1] with k(x) = 1 + x2.
The source term f (x, t) and the boundary functions φ0(t) and φL(t) are properly taken such
that the problem has the solution u(x, t) = tr+α(2e3 + sin x) for any positive integer r .

Let r = 3, 4, 5, 6. We use the compact difference scheme (3.11) with r = 3, 4, 5, 6 to
solve the above problem.The errors Er,ν(τ, h) and the temporal convergence ordersOt

r,ν(τ, h)

(ν = 1, 2,∞) of the computed solution uni for h = 1/3500 and different time step τ are
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Table 9 The errors and the spatial convergence orders of the computed solution uni by the scheme (3.11) for
Example 6.1 with α = 3/4

h Er,1(τ, h) Os
r,1(τ, h) Er,2(τ, h) Os

r,2(τ, h) Er,∞(τ, h) Os
r,∞(τ, h)

r = 3

1/8 1.360e−06 4.147e−07 5.834e−07

1/16 8.526e−08 3.996 2.587e−08 4.002 3.640e−08 4.002

1/32 5.329e−09 4.000 1.615e−09 4.002 2.274e−09 4.001

1/64 3.299e−10 4.014 9.998e−11 4.014 1.409e−10 4.013

1/128 1.889e−11 4.126 5.699e−12 4.133 7.894e−12 4.157

r = 4

1/8 1.188e−06 3.621e−07 5.093e−07

1/16 7.445e−08 3.996 2.260e−08 4.002 3.178e−08 4.002

1/32 4.655e−09 3.999 1.411e−09 4.001 1.985e−09 4.001

1/64 2.901e−10 4.004 8.793e−11 4.005 1.239e−10 4.003

1/128 1.657e−11 4.130 5.020e−12 4.131 7.052e−12 4.135

r = 5

1/8 1.062e−06 3.236e−07 4.551e−07

1/16 6.654e−08 3.996 2.020e−08 4.002 2.840e−08 4.002

1/32 4.161e−09 3.999 1.262e−09 4.001 1.774e−09 4.001

1/64 2.598e−10 4.002 7.874e−11 4.002 1.108e−10 4.000

1/128 1.539e−11 4.077 4.663e−12 4.078 6.595e−12 4.071

r = 6

1/8 9.604e−07 2.928e−07 4.117e−07

1/16 6.019e−08 3.996 1.827e−08 4.002 2.569e−08 4.002

1/32 3.763e−09 4.000 1.141e−09 4.001 1.604e−09 4.001

1/64 2.334e−10 4.011 7.074e−11 4.012 9.957e−11 4.010

1/128 1.326e−11 4.138 4.017e−12 4.138 5.646e−12 4.140

listed in Table 4 (α = 1/4), Table 5 (α = 1/2) and Table 6 (α = 3/4). As expected from our
theoretical analysis, the computed solution uni has the r th-order temporal accuracy.

We next compute the spatial convergence order of the compact difference scheme (3.11).
The errors Er,ν(τ, h) and the spatial convergence orders Os

r,ν(τ, h) (ν = 1, 2,∞) of the
computed solution uni for different spatial step h are presented in Table 7 (α = 1/4), Table 8
(α = 1/2) and Table 9 (α = 3/4), where the time step τ = 1/15000 for r = 3, τ = 1/3000
for r = 4 and τ = 1/800 for r = 5, 6. The data in these tables demonstrate that the
computed solution uni is of the fourth-order spatial accuracy. This coincides well with the
analysis.

Example 6.2 This example is mainly used to demonstrate the effectiveness of the technique
using the substitution (5.2) and the high-order accuracy of the modified scheme (5.21).
Consider the problem (1.1) in the domain [0, 1] × [0, 1] with k(x) = ex

2
. For this k(x), the

integrals involved in the compact difference scheme (3.11) cannot be evaluated exactly; so
we use the modified scheme (5.21) instead. Taking the exact analytical solution as
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Table 10 The errors and the temporal convergence orders of the computed solution uni by the scheme (5.21)
with r = 3 for Example 6.2 (h = 1/4000)

τ E3,1(τ, h) Ot
3,1(τ, h) E3,2(τ, h) Ot

3,2(τ, h) E3,∞(τ, h) Ot
3,∞(τ, h)

α = 1/4

1/5 4.517e−03 1.343e−03 1.902e−03

1/10 1.088e−03 2.053 3.237e−04 2.053 4.577e−04 2.055

1/20 4.668e−04 1.221 1.389e−04 1.221 1.963e−04 1.222

1/40 2.007e−04 1.218 5.971e−05 1.218 8.435e−05 1.218

1/80 8.369e−05 1.262 2.490e−05 1.262 3.514e−05 1.263

α = 1/2

1/5 1.416e−02 4.213e−03 5.956e−03

1/10 5.070e−03 1.482 1.509e−03 1.482 2.127e−03 1.486

1/20 2.449e−03 1.050 7.286e−04 1.050 1.025e−03 1.053

1/40 1.140e−03 1.103 3.392e−04 1.103 4.760e−04 1.107

1/80 5.117e−04 1.156 1.522e−04 1.156 2.129e−04 1.161

α = 3/4

1/5 3.595e−02 1.069e−02 1.508e−02

1/10 1.591e−02 1.176 4.730e−03 1.176 6.641e−03 1.183

1/20 8.136e−03 0.967 2.417e−03 0.969 3.381e−03 0.974

1/40 3.939e−03 1.046 1.168e−03 1.049 1.626e−03 1.056

1/80 1.825e−03 1.110 5.390e−04 1.115 7.470e−04 1.123

u(x, t) =
⎛

⎝4tr+α +
r∑

p=1

t p

⎞

⎠ (1 + 2x − x2 − x3), r ≥ 1,

it is easy to analytically get the source function

f (x, t) =
⎛

⎝
4�(r + α + 1)

�(r + 1)
tr +

r∑

p=1

�(p + 1)

�(p + 1 − α)
t p−α

⎞

⎠ (1 + 2x − x2 − x3)

+
⎛

⎝4tr+α +
r∑

p=1

t p

⎞

⎠ ex
2
(6x3 + 4x2 + 2x + 2).

Let r = 3. Table 10 lists the errors E3,ν(τ, h) and the temporal convergence orders Ot
3,ν(τ, h)

(ν = 1, 2,∞) of the computed solution uni by the compact difference scheme (5.21) with
r = 3 for α = 1/4, 1/2, 3/4 and different time step τ . It is seen that the third-order temporal
accuracy of the computed solution uni cannot be achieved.

To preserve the desired high-order accuracy, we transform the present problem by using
the substitution (5.2), where according to Propositions 5.2 and 5.3, the coefficients ∂

p
t u(x, 0)

are given by

u(x, 0) = 0, ∂
p
t u(x, 0) = p!(1 + 2x − x2 − x3), p = 1, 2, . . . , r.

Let r = 3, 4, 5, 6. We use the compact difference scheme (5.21) with r = 3, 4, 5, 6 to solve
the above transformed problem. As in the first example, the basic feature of the r th-order
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Table 11 The errors and the temporal convergence orders of the computed solution uni by the scheme (5.21)
for the transformed problem of Example 6.2 with α = 1/2 (h = 1/4000)

τ Er,1(τ, h) Ot
r,1(τ, h) Er,2(τ, h) Ot

r,2(τ, h) Er,∞(τ, h) Ot
r,∞(τ, h)

r = 3

1/5 1.204e−02 3.580e−03 5.069e−03

1/10 1.599e−03 2.912 4.756e−04 2.912 6.735e−04 2.912

1/20 2.054e−04 2.961 6.109e−05 2.961 8.652e−05 2.961

1/40 2.601e−05 2.982 7.734e−06 2.982 1.095e−05 2.982

1/80 3.271e−06 2.991 9.727e−07 2.991 1.377e−06 2.991

r = 4

1/5 8.114e−03 2.413e−03 3.417e−03

1/10 5.591e−04 3.859 1.663e−04 3.859 2.354e−04 3.859

1/20 3.648e−05 3.938 1.085e−05 3.938 1.536e−05 3.938

1/40 2.325e−06 3.972 6.914e−07 3.972 9.792e−07 3.972

1/80 1.466e−07 3.988 4.358e−08 3.988 6.170e−08 3.988

r = 5

1/5 6.875e−03 2.045e−03 2.895e−03

1/10 2.482e−04 4.792 7.380e−05 4.792 1.045e−04 4.792

1/20 8.239e−06 4.913 2.450e−06 4.913 3.469e−06 4.913

1/40 2.646e−07 4.961 7.867e−08 4.961 1.114e−07 4.961

1/80 8.347e−09 4.986 2.481e−09 4.987 3.504e−09 4.991

r = 6

1/5 6.968e−03 2.072e−03 2.934e−03

1/10 1.335e−04 5.705 3.971e−05 5.705 5.623e−05 5.705

1/20 2.260e−06 5.885 6.722e−07 5.885 9.518e−07 5.884

1/40 3.673e−08 5.944 1.092e−08 5.944 1.548e−08 5.943

1/80 5.927e−10 5.953 1.684e−10 6.019 2.464e−10 5.973

temporal convergence and the fourth-order spatial convergence of the computed solution uni
was observed in the numerical computations for each r = 3, 4, 5, 6 and different α. Without
loss of generality, we only present the results for α = 1/2 in Tables 11 and 12. In Table
12, we take the time step τ = 1/20000 for r = 3, τ = 1/4000 for r = 4, τ = 1/1000
for r = 5, 6. Clearly, these results are in accord with our theoretical analysis results. This
demonstrates the effectiveness of the technique using the substitution (5.2) for preserving
high-order accuracy. It also shows that the modified scheme (5.21) indeed maintains the
desired high-order accuracy of the compact difference scheme (3.11).

Example 6.3 We present numerical results to show that the modified scheme (5.8) has high-
order accuracy for the problem (1.1) without the zero-derivatives condition. To this end, we
still consider the problem in Example 6.2 as our test problem, but we solve it directly by the
scheme (5.8) (with the operators Q and H being replaced by Q̃ and H̃, respectively). Let
r = 4. We list in Tables 13 and 14 the errors E4,ν(τ, h), the temporal convergence orders
Ot
4,ν(τ, h) and the spatial convergence orders Os

4,ν(τ, h) (ν = 1, 2,∞) of the computed
solution uni for α = 1/4, 1/2, 3/4. It is seen that the modified scheme (5.8) has the fourth-
order accuracy both in time and space as expected.
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Table 12 The errors and the spatial convergence orders of the computed solution uni by the scheme (5.21)
for the transformed problem of Example 6.2 with α = 1/2

h Er,1(τ, h) Os
r,1(τ, h) Er,2(τ, h) Os

r,2(τ, h) Er,∞(τ, h) Os
r,∞(τ, h)

r = 3

1/8 3.775e−04 1.143e−04 1.579e−04

1/16 2.374e−05 3.991 7.148e−06 3.999 9.944e−06 3.989

1/32 1.486e−06 3.998 4.469e−07 4.000 6.222e−07 3.999

1/64 9.291e−08 3.999 2.793e−08 4.000 3.892e−08 3.999

1/128 5.808e−09 4.000 1.746e−09 4.000 2.432e−09 4.000

r = 4

1/8 3.967e−04 1.200e−04 1.658e−04

1/16 2.495e−05 3.991 7.510e−06 3.999 1.045e−05 3.988

1/32 1.562e−06 3.998 4.695e−07 4.000 6.536e−07 3.999

1/64 9.764e−08 3.999 2.934e−08 4.000 4.089e−08 3.999

1/128 6.103e−09 4.000 1.834e−09 4.000 2.555e−09 4.000

r = 5

1/8 4.177e−04 1.264e−04 1.745e−04

1/16 2.627e−05 3.991 7.905e−06 3.999 1.100e−05 3.987

1/32 1.644e−06 3.998 4.942e−07 4.000 6.879e−07 3.999

1/64 1.028e−07 3.999 3.089e−08 4.000 4.304e−08 3.999

1/128 6.426e−09 4.000 1.931e−09 4.000 2.690e−09 4.000

r = 6

1/8 6.851e−03 2.114e−03 2.923e−03

1/16 4.384e−04 3.966 1.326e−04 3.995 1.830e−04 3.997

1/32 2.757e−05 3.991 8.295e−06 3.999 1.154e−05 3.987

1/64 1.726e−06 3.998 5.186e−07 4.000 7.218e−07 3.999

1/128 1.079e−07 3.999 3.241e−08 4.000 4.516e−08 3.998

7 Conclusion

In this paper, we have proposed a set of high-order compact finite difference methods. It can
be used to solve a class of Caputo-type fractional sub-diffusion equations in conservative
form, where the diffusion coefficient may be spatially variable. A class of Lubich approxi-
mation formulae have been derived for the Caputo fractional derivative defined on a finite
interval. The high-order compact difference discretization of the spatial variable coefficient
differential operator is different from that used in the known treatments of fractional differ-
ential equations. The proposed compact difference methods are unconditionally stable and
have the global convergence order O(τ r + h4), where r ≥ 2 is a positive integer and τ and
h are the temporal and spatial steps. We have also developed a discrete energy technique for
the analysis of the present variable coefficient problem. Using this technique, a theoretical
analysis of the stability and convergence of the methods has been rigorously carried out for
the case of 2 ≤ r ≤ 6, and the optimal error estimates in the weighted H1, L2 and L∞ norms
have been successfully obtained for the general case of variable coefficient. We have further
proposed two modified schemes for enlarging the applicability of the methods while preserv-
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Table 13 The errors and the temporal convergence orders of the computed solution uni by the scheme (5.8)
with r = 4 for Example 6.3 (h = 1/4000)

τ E4,1(τ, h) Ot
4,1(τ, h) E4,2(τ, h) Ot

4,2(τ, h) E4,∞(τ, h) Ot
4,∞(τ, h)

α = 1/4

1/10 9.011e−05 2.680e−05 3.792e−05

1/20 6.888e−06 3.710 2.049e−06 3.710 2.899e−06 3.709

1/40 4.922e−07 3.807 1.464e−07 3.807 2.072e−07 3.806

1/80 3.394e−08 3.858 1.009e−08 3.858 1.429e−08 3.858

1/160 2.098e−09 4.015 6.225e−10 4.019 8.687e−10 4.040

α = 1/2

1/10 3.944e−04 1.173e−04 1.656e−04

1/20 2.845e−05 3.793 8.464e−06 3.793 1.196e−05 3.791

1/40 1.943e−06 3.872 5.780e−07 3.872 8.172e−07 3.871

1/80 1.287e−07 3.916 3.829e−08 3.916 5.415e−08 3.916

1/160 8.379e−09 3.942 2.493e−09 3.941 3.513e−09 3.946

α = 3/4

1/10 1.003e−03 2.983e−04 4.211e−04

1/20 7.157e−05 3.809 2.128e−05 3.809 3.009e−05 3.807

1/40 4.823e−06 3.891 1.434e−06 3.891 2.030e−06 3.890

1/80 3.151e−07 3.936 9.369e−08 3.936 1.327e−07 3.935

1/160 2.020e−08 3.963 6.008e−09 3.963 8.511e−09 3.962

Table 14 The errors and the spatial convergence orders of the computed solution uni by the scheme (5.8) with
r = 4 for Example 6.3 (τ = 1/4000)

h E4,1(τ, h) Os
4,1(τ, h) E4,2(τ, h) Os

4,2(τ, h) E4,∞(τ, h) Os
4,∞(τ, h)

α = 1/4

1/8 4.153e−04 1.258e−04 1.740e−04

1/16 2.611e−05 3.991 7.870e−06 3.999 1.094e−05 3.991

1/32 1.634e−06 3.998 4.920e−07 4.000 6.853e−07 3.997

1/64 1.022e−07 3.999 3.075e−08 4.000 4.284e−08 3.999

1/128 6.388e−09 4.000 1.922e−09 4.000 2.678e−09 4.000

α = 1/2

1/8 3.967e−04 1.200e−04 1.658e−04

1/16 2.495e−05 3.991 7.510e−06 3.999 1.045e−05 3.988

1/32 1.562e−06 3.998 4.695e−07 4.000 6.536e−07 3.999

1/64 9.764e−08 3.999 2.934e−08 4.000 4.089e−08 3.999

1/128 6.103e−09 4.000 1.834e−09 4.000 2.555e−09 4.000

α = 3/4

1/8 3.747e−04 1.132e−04 1.559e−04

1/16 2.356e−05 3.991 7.080e−06 3.999 9.858e−06 3.984

1/32 1.475e−06 3.998 4.426e−07 4.000 6.163e−07 4.000

1/64 9.222e−08 3.999 2.766e−08 4.000 3.854e−08 3.999

1/128 5.765e−09 4.000 1.729e−09 4.000 2.409e−09 4.000
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ing high-order accuracy. Numerical results coincide with the theoretical analysis results and
illustrate the various convergence orders of the methods.
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which improved the presentation of the paper.

A Appendix

Proof of Proposition 5.1 “�⇒”: It follows from the result (1) of Lemma 2.2 with r0 = r .
“⇐�”: Let yex(t) be the extension defined by (2.9) (with r replaced by r + 1). Since

y(k)(0) = 0 for k = 0, 1, . . . , r , we have from the proof of the result (1) of Lemma 2.2 (with
r0 = r and r ′ = r + 1) that

lim|ω|→∞ |ω|2−α |ω|r+α
∣
∣ŷex(ω)

∣
∣ = lim|ω|→∞ |ω|r+2

∣
∣ŷex(ω)

∣
∣ =

∣
∣
∣y(r+1)(0)

∣
∣
∣ .

This implies that the function |ω|r+α
∣
∣ŷex(ω)

∣
∣ is integrable on R because of 2 − α > 1, and

so yex(t) ∈ C r+α(R), i.e., y(t) ∈ C r+α[0, T ]. ��
Proof of Proposition 5.2 Since u(x, t) ∈ C0,1([0, L]×[0, T ]) andLu(x, t) ∈ C0,1([0, L]×
[0, T ]), we apply the Caputo fractional derivative operator C0D1−α

t to the governing equation
of (1.1) and make use of Lemma 3.13 in [59] to obtain

∂t u(x, t) = C
0D1−α

t (Lu)(x, t) + C
0D1−α

t f (x, t), x ∈ [0, L]. (A.1)

By Lemma 3.11 in [59], C0D1−α
t (Lu)(x, 0) = 0. This proves (5.3). ��

Proof of Proposition 5.3 By integrating by parts, we have that for p = 1, 2, . . . , r − 1,

C
0Dα

t u(x, t) = 1

�(1 − α)

∫ t

0
∂su(x, s)(t − s)−αds

= t1−α

�(2 − α)
∂su(x, 0) + 1

�(2 − α)

∫ t

0
∂2s u(x, s)(t − s)1−αds

=
p∑

l=1

t l−α

�(l + 1 − α)
∂ lsu(x, 0) + 1

�(p + 1 − α)

∫ t

0
∂
p+1
s u(x, s)(t − s)p−αds.

(A.2)

This shows that for p = 1, 2, . . . , r − 1,

∂
p
t (C0Dα

t )u(x, t) =
p∑

l=1

t l−α−p

�(l − α − p + 1)
∂ lsu(x, 0) + C

0Dα
t (∂

p
t u)(x, t) (t �= 0).

(A.3)

Similarly, for p = 2, 3, . . . , r ,

∂
p−1
t (C0D1−α

t )(Lu)(x, t) =
p−1∑

l=1

t l+α−p

�(l + α − p + 1)
∂ ls(Lu)(x, 0)

+ C
0D1−α

t (∂
p−1
t (Lu))(x, t) (t �= 0). (A.4)
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Differentiating the governing equation of (1.1) p times with respect to t and then solving for
∂
p
t (Lu)(x, t), we obtain

∂
p
t (Lu)(x, t) = ∂

p
t (C0Dα

t )u(x, t) − ∂
p
t f (x, t) (t �= 0), p = 1, 2, . . . , r − 1.

(A.5)

This implies that for x ∈ [0, L],
∂
p
t (Lu)(x, 0) = lim

t→0

(
∂
p
t (C0Dα

t )u(x, t) − ∂
p
t f (x, t)

)
, p = 1, 2, . . . , r − 1.

(A.6)

Differentiating the Eq. (A.1) p − 1 times with respect to t yields

∂
p
t u(x, t) = ∂

p−1
t (C0D1−α

t )(Lu)(x, t) + ∂
p−1
t (C0D1−α

t f )(x, t) (t �= 0),

p = 2, 3, . . . , r, (A.7)

and so for x ∈ [0, L],
∂
p
t u(x, 0) = lim

t→0

(
∂
p−1
t (C0D1−α

t )(Lu)(x, t) + ∂
p−1
t (C0D1−α

t f )(x, t)
)

,

p = 2, 3, . . . , r. (A.8)

ByLemma3.11 in [59], C0Dα
t (∂

p
t u)(x, 0) = 0 for p = 1, 2, . . . , r−1 and C

0D1−α
t (∂

p−1
t (Lu))

(x, 0) = 0 for p = 2, 3, . . . , r . Then the result (5.4) follows by (A.3) and (A.6), and the
result (5.5) follows by (A.4) and (A.8). The proof is completed. ��
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