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Abstract This paper is concerned with unconditionally optimal error estimates of linearized
Galerkin finite element methods to numerically solve some multi-dimensional fractional
reaction–subdiffusion equations, while the classical analysis for numerical approximation
of multi-dimensional nonlinear parabolic problems usually require a restriction on the time-
step, which is dependent on the spatial grid size. To obtain the unconditionally optimal error
estimates, the key point is to obtain the boundedness of numerical solutions in the L∞-norm.
For this, we introduce a time-discrete elliptic equation, construct an energy function for the
nonlocal problem, and handle the error summation properly. Compared with integer-order
nonlinear problems, the nonlocal convolution in the time fractional derivative causes much
difficulties in developing and analyzing numerical schemes. Numerical examples are given
to validate our theoretical results.
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1 Introduction

We design stable numerical schemes and prove unconditionally optimal error estimates for
multi-dimensional nonlinear fractional reaction–subdiffusion equations given by

ut = RL
0 D1−γ1

t �u − μ2 RL
0 D1−γ2

t u + f (u), (x, t) ∈ � × [0, T ] (1.1)

with the boundary condition

u = 0, on ∂�, (1.2)

and the initial condition

u(x, 0) = u0(x), for x ∈ �. (1.3)

Here f ∈ C2(R) represents the nonlinear source, the computational domain � ⊂ R
d (d = 2

or 3) is a bounded, smooth and convex polygon/polyhedron, the given constant parameters
satisfy 0 < γ1, γ2 < 1 andμ > 0, and RL

0 D1−γ
t u stands for the Riemann-Liouville fractional

derivative of order 1 − γ defined by

RL
0 D1−γ

t u(x, t) = 1

�(γ )

∂

∂t

∫ t

0

u(x, s)

(t − s)1−γ
ds.

Fractional reaction–subdiffusion equation (1.1) is believed to provide a powerful tool for
modeling plenty of nature phenomena in physics [2,4], biology [11,32,33] and chemistry
[34,40,41]. Due to potential applications, the numerical simulation and analysis of fractional
differential equations have received much attentions. For example, Lin et al. [26] presented a
finite difference/Legendre spectral scheme for solving the linear time fractional cable equa-
tion. Yu and Jiang [39] studied stability and convergence of a fourth-order compact finite
difference scheme. Langlands andHenry [18] considered accuracy and stability of an implicit
solution method for the fractional diffusion equation. Jin et al. [14] presented error analysis
of a Galerkin method for fractional diffusion equations. For more development of numerical
methods and analysis for the fractional reaction–subdiffusion equations, we refer the readers
to [6,10,15,16,23–25,30,31,44]. Theworks in above are interesting and instructive, but most
of them focus on the analysis of numerical schemes for linear problems or one-dimensional
problems.

The error estimate for high-dimensional nonlinear problems generally requires to prove
the boundedness of numerical solutions in L∞-norm. For this, the usual analysis may lead
to certain stepsize restriction condition τ = O(hc), where τ is the temporal stepsize, h is
the spacial stepsize and c is a constant. One important reason is the application of induction
methods with the following inverse inequality to bound the numerical solution, namely,

‖U n
h ‖L∞ ≤ ‖Rhun‖L∞ + ‖Rhun − U n

h ‖L∞

≤ ‖Rhun‖L∞ + Ch−d/2‖Rhun − U n
h ‖L2

≤ ‖Rhun‖L∞ + Ch−d/2 (
τ p + hr+1) . (1.4)

Here and below, Rh represents the projection operator, d is the dimension, p and r + 1 are
the convergence orders in the temporal and spacial directions, respectively, un and U n

h are
the exact and numerical solution, respectively. The above inequality results in the stepsize

restriction condition τ = o(h
d
2p ). For more error estimates of high-dimensional nonlinear

problems, various stepsize restriction conditions often appear in literatures, see [1,5,7,28,
29,42]. The time step restrictions (i.e., τ = o(hc)) may lead to the use of an unnecessarily
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small time step and make the computations much more time-consuming. The issue could
become more serious when numerical methods are applied to simulate the nonlinear time
fractional problems.

On the other hand, many works on error estimates of high-dimensional nonlinear time
fractional differential equations [27,43,45,46] based on the assumption that the nonlinear
term satisfies the lipschitz condition, i.e.,

‖ f (un) − f (U n
h )‖ ≤ L‖un − U n

h ‖.

The above assumption is equivalent to

‖ f (un) − f (U n
h )‖ = ‖ f ′(ξ)(un − U n

h )‖ ≤ ‖ f ′(ξ)‖‖un − U n
h ‖,

where the mean value theorem is used and ξ depends on exact solutions un and numerical
solutions U n

h in L∞-norm. It implies that the stepsize restriction τ = O(hc) is also required
while the boundedness of ‖U n

h ‖L∞ is obtained by the inequality (1.4).
The goal of this paper is to advance the numerical analysis of a linearized Galkerin method

for the multi-dimensional nonlinear fractional reaction–subdiffusion equation (1.1) to the
same level as that obtaining for linear problems. Our analysis will show that the convergence
order of the fully discrete numerical method is of O(τ + hr+1), and the error estimate holds
without any time-step restriction τ = O(hc). In order to estimate optimal error estimates, we
adopt the idea for the integer order parabolic equations by first introducing a time-discrete
fractional system, and prove suitable regularities of the solution U n to the time discrete
fractional system, with which, the boundedness of the finite element approximation U n

h in
L∞-norm is obtained via

‖U n
h ‖L∞ ≤ ‖RhU n‖L∞ + ‖RhU n − U n

h ‖L∞

≤ ‖RhU n‖L∞ + Ch−d/2‖RhU n − U n
h ‖L2

≤ ‖RhU n‖L∞ + Ch−d/2h2

≤ C,

when τ and h are sufficiently small, respectively. After that, the unconditional optimal error
estimates are obtained by using temporal-spatial error splitting argument proposed in [19]
for the convergence analysis of the nonlinear integer-order parabolic problem.

While the temporal-spatial error splitting argument has very recently and successfully been
applied to the integer-order PDEs, see [8,19–22,36,37], to avoid certain stepsize restriction
condition τ = O(hc), the extension of the spirit of thismethodology to the numerical analysis
for fractional nonlinear problems has so far received little attention. Themain difficulty is due
to the weakly singular kernel in the fractional derivative and the non-locality of the problems.
The error estimates for fractional equations rely heavily on the some special constructed
energy functions and rigorous study of error summation. The derivation is sharp contrast to
that of the integer-order PDEs.

The outline of the paper is organized as follows. InSect. 2,wepresent the linearized scheme
and the main convergence result. In Sect. 3, we introduce the temporal discrete system and
proved a priori estimate of the temporal and spatial errors. In Sect. 4, we present a detailed
proof of the main result. In Sect. 5, numerical tests are given to verify the theoretical results
of our method. Finally, conclusions and discussions are summarized in Sect. 6.
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2 Fully Discrete Methods and Main Results

In this section, we present a fully discrete linearized Galerkin method for the fractional
nonlinear equation (1.1) and, report the error estimate of the proposed scheme.

Let � be a bounded and convex domain with the smooth boundary ∂� in C2. We denote
�h by a quasi-uniform partition of � into triangles K j , j = 1, . . . , M in R2 or tetrahedrons
in R

3, and let h = max1≤ j≤M {diamK j } be the mesh size. For a triangle K j with two nodes
(or a tetrahedron with three nodes) on the boundary, we denote by K̃ j the triangle with one
curved edge (or a tetrahedronwith one curved face) with the same nodes asK j . For an interior
element, K̃ j = K j . Let �h = ∪M

1 K j and x = G(x̂) be a map from �h to � such that for
each triangleK j , G mapsK j one-to-one onto K̃ j [47]. For a given partition of �, we denote
by

V̂ r
h = {

vh ∈ H1
0 (�h) ∩ C0(�h); vh |K j ∈ Pr (K j )

}
,

the standard finite element space on �h , where Pr (K j ) is the space of polynomials of degree
r (r ≥ 1) on K j . Moreover, we define an operator G on V̂ r

h by Gvh(x) := vh(G−1(x)) for
x ∈ �. Then, the finite element space is defined by

Vh = {Gvh : vh ∈ V̂ r
h

}
.

For the time discretization, we divide the interval [0, T ] into N equally subintervals with
a time step size τ = T/N . Denote by tn = nτ and un = u(x, tn), 0 ≤ n ≤ N . The numerical
approximation of the Riemann–Liouville fractional derivative is given by

1

�(γ )

∂

∂t

∫ tn

0

u(x, s)

(t − s)1−γ
ds

= τ−1

�(γ )

n∑
j=1

∫ t j

t j−1

u j

(tn − s)1−γ
ds − τ−1

�(γ )

n−1∑
j=1

∫ t j

t j−1

u j

(tn−1 − s)1−γ
ds + Qn

= τγ−1

�(γ + 1)

⎛
⎝un +

n−1∑
j=1

(
b(γ )

j − b(γ )

j−1

)
un− j

⎞
⎠ + Qn, (2.1)

where b(γ )

j = ( j + 1)γ − jγ , j = 1, . . . , n − 1, and the local truncation error Qn satisfies
[46]

‖Qn‖L2 ≤ Cb(γ )
n−1τ

γ , (2.2)

where C is a constant depends on u and t .
For a sequence of functions {ωn}N

n=0, define

Dτω
n = 1

τ

(
ωn − ωn−1) , Dγ

τ ωn = τγ−1

�(γ + 1)

⎛
⎝ωn +

n−1∑
j=1

(
b(γ )

j − b(γ )

j−1

)
ωn− j

⎞
⎠ .

With these notations, the fully discrete linearized Galerkin method for the nonlinear prob-
lem (1.1) is to find U n

h ∈ Vh , n = 1, 2, . . . , N , such that

(
Dτ U n

h , v
) + (

Dγ1
τ ∇U n

h ,∇v
) + μ2 (

Dγ2
τ U n

h , v
) =

(
f (U n−1

h ), v
)

, n = 1, . . . , N ,

(2.3)

123



852 J Sci Comput (2018) 76:848–866

for any v ∈ Vh . The initial value is calculated by U 0
h = 
hu0, where 
h denotes the

interpolation operator.
In this paper, we assume that the solution of problem (1.1) satisfies

‖u0‖Hr+1 + ‖u‖L∞((0,T );Hr+1) + ‖ut‖L∞((0,T );Hr+1) + ‖utt‖L∞((0,T );H1) ≤ K , (2.4)

where K is a constant.

Remark The goal of this work is to prove the optimal error bound for our linearized scheme
without the time step-restriction (unconditional) in terms of spatial steps. For simplify, we
only make the assumption (2.4), which does not involve the regularity of the solution at the
initial value at t = 0. It will be more complicate if the singularity at t = 0 is analyzed for
the nonuniform mesh, such as graded mesh.

The main results are addressed as follows.

Theorem 1 Suppose that the problem (1.1)–(1.3) has a unique solution u satisfying (2.4)
and 1

2 ≤ γ2 < 1. Then, there exist positive constants τ0, h0 such that when τ ≤ τ0 and
h ≤ h0, the finite element system (2.3) admits a unique solution U n

h , such that

max
0≤n≤N

‖un − U n
h ‖L2 ≤ C0

(
τ + hr+1) . (2.5)

We point out that the error estimate (2.5) holds without time-step restrictions dependent
on the spatial mesh size, i.e., τ = O(hc), and the detailed proof is presented in two sections
below. In what follows, we denote by C a generic constant, independent of n, h, τ and C0,
and could be different in different places.

3 Boundedness of FEM Approximations

Wenow introduce a time-discrete system for (1.1) and prove the boundedness of its numerical
solution in L∞-norm.

3.1 Preliminaries

Define Ritz projection operator Rh : H1
0 (�) → Vh by

(∇(v − Rhv),∇ω) = 0, for all ω ∈ Vh . (3.1)

According to the classical FEM theory [35], we have

‖v − Rhv‖L2 + h‖∇(v − Rhv)‖L2 ≤ Chs‖v‖Hs , ∀v ∈ Vh, 1 ≤ s ≤ r + 1, (3.2)

and the inverse inequality

‖vh‖L∞ ≤ Ch− d
2 ‖vh‖L2 , ∀vh ∈ Vh, d = 2, 3, (3.3)

as well as the classical interpolation theory

‖
hv − v‖L2 + h‖∇(
hv − v)‖L2 ≤ Chr+1‖v‖Hr+1 . (3.4)

The following lemmas will play an important role in proving our main results.
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Lemma 1 ([9]) Let b(γ )
n = (1 + n)γ − nγ with 0 < γ < 1. Then

(1) 1 = b(γ )
0 > b(γ )

1 > · · · > b(γ )
n → 0,

(2) there exist a positive constant C such that τ ≤ Cb(γ )

k τγ , k = 1, 2, . . . .

Lemma 2 ([12]) Let τ , B and ak, bk , ck , γk , for integers k > 0, be nonnegative numbers
such that

an + τ

n∑
k=0

bk ≤ τ

n∑
k=0

γkak + τ

n∑
k=0

ck + B, for n ≥ 0.

Suppose that τγk < 1, for all k, and set σk = (1 − τγk)
−1. Then,

an + τ

n∑
k=0

bk ≤
(
τ

n∑
k=0

ck + B
)
exp

(
τ

n∑
k=0

γkσk

)
.

Lemma 3 (Friedrichs’ inequality) Let � be a bounded subset of Euclidean space R
d with

diameter �. Suppose that v : � → R lies in the sobolev space W k,p
0 (�), and the trace of v

on the boundary ∂� is zero. Then

‖v‖L p ≤ �k
( ∑

|a|=k

‖Dαv‖p
L p

)1/p
,

where Dα is the mixed partial derivative Dαv = ∂ |α|v
∂

α1
x1 ···∂αn

xn
.

In order to obtain the unconditionally optimal error estimates of linearized fully discrete
schemes (2.3), we now introduce a time-discrete system

Dτ U n = Dγ1
τ �U n − μ2Dγ2

τ U n + f (U n−1), n = 1, . . . , N , (3.5)

with the boundary and initial conditions given by

U n(x) = 0, for x ∈ ∂�, n = 1, 2, . . . , N , (3.6)

U 0(x) = u0(x), for x ∈ �. (3.7)

Applying solutions of the time discrete system, we split the errors into two parts

‖un − U n
h ‖ ≤ ‖un − U n‖ + ‖U n − U n

h ‖. (3.8)

In the next two subsections, we shall respectively show the estimates ‖un − U n‖H2 and
‖U n − U n

h ‖L2 .

3.2 A Primary Error Estimate of Time Discrete System

The exact solution of problem (1.1) satisfies

Dτ un = Dγ1
τ �un − μ2Dγ2

τ un + f (un−1) + Rn
1 , n = 1, . . . , N , (3.9)

where the truncation error is given by

Rn
1 = Dτ un − un

t + Dγ1
τ �un − RL

0 D1−γ1
tn �u

−μ2
(

Dγ2
τ un − RL

0 D1−γ2
tn u

)
+ f (un) − f (un−1).
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By applying (2.2) and Taylor expansion, we have

‖Rn
1‖L2 ≤ CRτ + CRb(γ1)

n−1τ
γ1 + CRb(γ2)

n−1τ
γ2 , (3.10)

where CR is a constant.
Let en = un − U n . Subtracting (3.5) from (3.9) gives

Dτ en = Dγ1
τ �en − μ2Dγ2

τ en + f (un−1) − f (U n−1) + Rn
1 , n = 1, . . . , N . (3.11)

Define

K1 := max
1≤n≤N

‖un‖L∞ + 1.

We now present error estimates of un − U n in different norms.

Theorem 2 Suppose that the problem (1.1)–(1.3) has a unique solution u satisfying (2.4) and
1
2 ≤ γ2 < 1. Then the time-discrete system (3.5)–(3.7) has a unique solution U n. Moreover,
there exists τ ∗

1 > 0 such that when τ ≤ τ ∗
1 ,

‖en‖H1 + τ
1
2 ‖en‖H2 ≤ C∗

1τ, (3.12)

‖U n‖H2 +
n∑

i=1

τ‖Dτ Ui‖2H2 + ‖Dγ2
τ U n‖H2 ≤ C, (3.13)

where C∗
1 is a positive constant independent of τ , h and C0 (appeared in Theorem 1).

Proof The existence and uniqueness of the solution U n can be easily obtained since (3.5)–
(3.7) is a linear elliptic problem. We begin to prove (3.12) by using mathematical induction.
First, (3.12) holds obviously forn = 0.Then,we assume that (3.12) hold forn = 0, 1, . . . , k−
1. Therefore, for n = 0, 1, . . . , k − 1, we have

‖U n‖L∞ ≤ ‖un‖L∞ + C‖en‖H2 ≤ ‖un‖L∞ + CC∗
1τ

1
2 ≤ K1,

when τ ≤ τ1 = 1
(CC∗

1 )2
.

Therefore, by mean value theorem,

‖ f (un−1) − f (U n−1)‖L2 = ‖( f ′(ξ1)en−1‖L2 ≤ CK1‖en−1‖L2 , (3.14)

where ξ1 is determined by un−1 and ‖U n−1‖L∞ and CK1 is a constant independent of n and
τ .

Now, let n = k in (3.11). Multiplying both sides of (3.11) by ek and integrating the result
over � yields

‖ek‖2L2 =
(

ek−1, ek
)

− τ
(

Dγ1
τ ∇ek,∇ek

)
− τμ2

(
Dγ2

τ ek, ek
)

+ τ
(

f
(

uk−1
)

− f
(

U k−1
)

, ek
)

+ τ
(

Rk
1, ek

)

≤ ‖ek−1‖2
L2 + ‖ek‖2

L2

2
+ τγ1

�(γ1 + 1)

k−1∑
j=1

(
b(γ1)

j−1 − b(γ1)

j

) ‖∇ek− j‖2
L2 + ‖∇ek‖2

L2

2

− τγ1

�(γ1 + 1)
‖∇ek‖2L2 + μ2τγ2

�(γ2 + 1)

k−1∑
j=1

(
b(γ2)

j−1 − b(γ2)

j

) ‖ek− j‖2
L2 + ‖ek‖2

L2

2
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− μ2τγ2

�(γ2 + 1)
‖ek‖2L2 + CK1τ

2

(
‖ek−1‖2L2 + ‖ek‖2L2

)
+ τ

(
Rk
1, ek

)

= ‖ek−1‖2
L2 + ‖ek‖2

L2

2
+ τγ1

2�(γ1 + 1)

k−1∑
j=1

(
b(γ1)

j−1 − b(γ1)

j

)
‖∇ek− j‖2L2

− τγ1

2�(γ1 + 1)

(
1 + b(γ1)

k−1

)
‖∇ek‖2L2 + μ2τγ2

2�(γ2 + 1)

k−1∑
j=1

(
b(γ2)

j−1 − b(γ2)

j

)
‖ek− j‖2L2

− μ2τγ2

2�(γ2 + 1)

(
1 + b(γ2)

k−1

)
‖ek‖2L2 + CK1τ

2
‖ek‖2L2

+ CK1τ

2
‖ek−1‖2L2 + τ

(
Rk
1, ek

)
(3.15)

where we have used the fact b(γ )

j−1 > b(γ )

j , γ = γ1 or γ2, j = 1, 2, . . . , k.
Let

Ek = ‖ek‖2L2 + τγ1

�(γ1 + 1)

k−1∑
j=0

b(γ1)

j ‖∇ek− j‖2L2 + μ2τγ2

�(γ2 + 1)

k−1∑
j=0

b(γ2)

j ‖ek− j‖2L2 .(3.16)

Then, (3.15) can be rewritten as

Ek ≤ Ek−1 − τγ1

�(γ1 + 1)
b(γ1)

k−1‖∇ek‖2L2 − μ2τγ2

�(γ2 + 1)
b(γ2)

k−1‖ek‖2L2 + CK1τ‖ek‖2L2

+ CK1τ‖ek−1‖2L2 + CRτ
(
τ + b(γ1)

k−1τ
γ1 + b(γ2)

k−1τ
γ2 , ek

)

≤ Ek−1 − τγ1

2�(γ1 + 1)
b(γ1)

k−1‖∇ek‖2L2 − C1τ
γ1

2�(γ1 + 1)
b(γ1)

k−1‖ek‖2L2

− μ2τγ2

�(γ2 + 1)
b(γ2)

k−1‖ek‖2L2 + CK1τ Ek

+ CK1τ Ek−1 + CR

(
τ 2 + b(γ1)

k−1τ
1+γ1 + b(γ2)

k−1τ
1+γ2 , ek

)
, (3.17)

where we have used Lemma 3 in the second inequality (i.e., there exists a constant C1 such
that −‖∇ek‖2

L2 ≤ −C1‖ek‖2
L2 ).

Noting that

(
CR b(γ1)

n−1τ
1+γ1 , ek

)
≤ C1τ

γ1

2�(γ1 + 1)
b(γ1)

k−1‖ek‖2L2 + C2
R�(γ1 + 1)

2C1
b(γ1)

k−1τ
γ1+2, (3.18)

(
CR b(γ2)

n−1τ
1+γ2 , ek

)
≤ μ2τγ2

�(γ2 + 1)
b(γ2)

k−1‖ek‖2L2 + C2
R�(γ2 + 1)

4μ2 b(γ2)

k−1τ
γ2+2, (3.19)

and by Lemma 1, there exists a constant C2 such that

τγ1

2�(γ1 + 1)
b(γ1)

k−1 ≥ C2τ. (3.20)

From (3.17), (3.18), (3.19) and (3.20), we arrive at

Ek + C2τ‖∇ek‖2L2 ≤ Ek−1 + CK1τ Ek + CK1τ Ek−1 + C2
R�(γ1 + 1)

2C1
b(γ1)

k−1τ
γ1+2
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+ C2
R�(γ2 + 1)

4μ2 b(γ2)

k−1τ
γ2+2 + C2

Rτ 3. (3.21)

Summing over the above formula from 1 to k and using Lemma 2, we have that there exists
a τ2 such that when τ ≤ τ2,

Ek +
k∑

j=1

C2τ‖∇e j‖2L2 ≤ C3 exp(2CK1T )

⎛
⎝ k∑

j=1

b(γ1)

j−1τ
γ1+2 +

k∑
j=1

b(γ2)

j−1τ
γ2+2 + T τ 2

⎞
⎠

= C3 exp(2CK1T )((kτ)γ1τ 2 + (kτ)γ2τ 2 + T τ 2)

≤ C3 exp(2CK1T )(T γ1 + T γ2 + T )τ 2

≤ 3T C3 exp(2CK1T )τ 2, (3.22)

where

C3 = max

{
C2

R�(γ1 + 1)

2C1
,

C2
R�(γ2 + 1)

4μ2 , C2
R

}
.

Therefore, we obtain

‖ek‖L2 ≤ √
3T C3 exp(2CK1T ) τ. (3.23)

Next, let n = k in (3.11). Multiplying both sides of (3.11) by −�ek and integrating the
result over � yields

‖∇ek‖2L2 =
(
∇ek−1,∇ek

)
− τ

(
Dγ1

τ �ek,�ek
)

−τ
(

Dγ2
τ ∇ek,∇ek

)

− τ
(

f
(

uk−1
)

− f
(

U k−1
)

,�ek
)

− τ
(
∇ Rk

1,∇ek
)

.

Let

Ek
1 = ‖∇ek‖L2 + τγ1

�(γ1 + 1)

k−1∑
j=0

b(γ1)

j ‖�ek− j‖2L2

+ μ2τγ2

�(γ2 + 1)

k−1∑
j=0

b(γ2)

j ‖∇ek− j‖2L2 . (3.24)

Similar to the derivation of (3.21), there exists a τ3 such that when τ ≤ τ3,

Ek
1 + C2τ‖�ek‖2L2 ≤ Ek−1

1 + C K1τ Ek
1 + C K1τ Ek−1

1 + C
2
R�(γ1 + 1)

2C1
b(γ1)

k−1τ
γ1+2

+ C
2
R�(γ2 + 1)

4μ2 b(γ2)

k−1τ
γ2+2 + C

2
Rτ 3, (3.25)

where C K1 and C R are constants independent of τ and the induction variable k.
Summing over the above formula from 1 to k and using Lemma 2, we have that there

exists a τ3 such that when τ ≤ τ3,

Ek
1 +

k∑
j=1

C2τ‖�e j‖2L2 ≤ 3T C3 exp(2C K1T )τ 2,

where
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C3 = max

{
C
2
R�(γ1 + 1)

2C1
,

C
2
R�(γ2 + 1)

4μ2 , C
2
R

}
.

Hence, we arrive at

‖∇ek‖L2 ≤
√
3T C3 exp(2C K1T ) τ, (3.26)

k∑
j=1

‖�e j‖2L2 ≤ 3T C3 exp(2C K1T )

C2
τ, (3.27)

and

‖�ek‖L2 ≤
√√√√ k∑

j=1

‖�e j‖2
L2 ≤

√
3T C3 exp(2C K1T )

C2
τ

1
2 . (3.28)

Together with (3.23), (3.26) and (3.28), we have

‖ek‖H1 ≤
√
3T C3 exp(2CK1T ) + 3T C3 exp(2C K1T ) τ, (3.29)

and

‖ek‖H2 ≤
√
3T C3 exp(2CK1T ) + 3T C3 exp(2C K1T ) + 3T C3 exp(2C K1T )

C2
τ

1
2 .

(3.30)

Now, taking C∗
1 =

√
3T C3 exp(2CK1T ) + 3T C3 exp(2C K1T ) + 3T C3 exp(2C K1 T )

C2
, we

conclude that (3.12) holds for n = k. This completes the mathematical induction.
Further, we have

‖U n‖L∞ ≤ ‖un‖L∞ + C‖en‖H2 ≤ ‖un‖L∞ + CC∗
1τ

1
2 ≤ C, (3.31)

and

‖Dγ2
τ U n‖H2 ≤ ‖Dγ2

τ un‖H2 + ‖Dγ2
τ en‖H2

≤ ‖Dγ2
τ un‖H2 + τγ2−1

�(γ2 + 1)

(
‖en‖H2 +

n−1∑
j=1

(b(γ2)

j−1 − b(γ2)

j )‖en− j‖H2

)

≤ ‖Dγ2
τ un‖H2 + τγ2−1

�(γ2 + 1)

(
2 − b(γ2)

n−1

)
C∗
1τ

1
2

≤ C. (3.32)

Moreover, it follows from (3.27) that

n∑
i=1

τ‖�Dτ ei‖2L2 ≤ 4τ−2
n∑

i=1

τ‖�ei‖2L2 ≤ 12T C3 exp(2C K1T )

C2
.

By the theory of elliptic equation, ‖Dτ en‖H2 ≤ C‖�Dτ en‖L2 for n = 1, 2, . . . , N , we have

n∑
i=1

τ‖Dτ ei‖2H2 ≤ C,
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which further implies

n∑
i=1

τ‖Dτ Ui‖2H2 ≤ 4
n∑

i=1

τ‖Dτ ui‖2H2 + 4
n∑

i=1

τ‖Dτ ei‖2H2 ≤ C.

This completes the proof. ��
3.3 A Primary Error Estimate of Fully Discrete System

The weak form of time-discrete system (3.5) satisfies(
Dτ U n, v

) + (
Dγ1

τ ∇U n,∇v
) + μ2 (

Dγ2
τ U n, v

) = (
f (U n−1), v

)
(3.33)

for any v ∈ Vh , n = 1, 2, . . . , N .
Let

θn
h = RhU n − U n

h , n = 0, 1, . . . , N .

Subtracting (2.3) from (3.33), we have the error equation for θn
h ,(

Dτ θ
n
h , v

) + (
Dγ1

τ ∇θn
h ,∇v

) + μ2 (
Dγ2

τ θn
h , v

)
=

(
f (U n−1) − f (U n−1

h ), v
)

− (
Rn
2 , v

)
, (3.34)

where

Rn
2 = Dτ (U

n − RhU n) + μ2Dγ2
τ (U n − RhU n).

Moreover, by (3.2), (3.12) and (3.13), we obtain

n∑
i=1

τ‖Ri
2‖2L2 ≤ C

(
n∑

i=1

τ‖Dτ U n‖2H2 +
n∑

i=1

τ‖Dγ2
τ U n‖H2

)
h4 ≤ Ch4. (3.35)

By Theorem 2, we have
‖RhU n‖L∞ ≤ C‖U n‖H2 ≤ C‖un‖H2 + C‖en‖H2 ≤ C, n = 1, 2, . . . , N .

Then, we can define
K2 = max

1≤n≤N
‖RhU n‖L∞ + 1.

Now, we are ready to present a primary error estimate of U n − U n
h in L2-norm.

Theorem 3 Suppose that the problem (1.1)–(1.3) has a unique solution u satisfying (2.4).
Then the finite element system (2.3) has a unique solution U n

h , n = 1, . . . , N, and there exist
τ ∗
2 > 0, h∗

1 > 0 such that when τ ≤ τ ∗
2 , h ≤ h∗

1,

‖U n − U n
h ‖L2 ≤ h

7
4 , (3.36)

‖U n
h ‖L∞ ≤ K2. (3.37)

Proof The existence and uniqueness of the FEM solution U n
h hold because the coefficient

matrices of system (2.3) are diagonally dominant. Next, we prove (3.36) by using mathemat-
ical induction. It is clear that (3.36) holds for n = 0. Next, we assume that (3.36) holds for
n ≤ k − 1. Therefore, for n = 1, 2, . . . , k − 1,

‖U n
h ‖L∞ ≤ ‖RhU n‖L∞ + ‖RhU n − U n

h ‖L∞

≤ ‖RhU n‖L∞ + Ch− d
2 ‖RhU n − U n

h ‖L2
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≤ ‖RhU n‖L∞ + Ch− d
2 h

7
4

≤ K2,

for d = 2, 3, and h ≤ h1 = C− 4
7−2d . Thanks to the boundedness of ‖U k−1‖L∞ and

‖U k−1
h ‖L∞ , we have∥∥∥ f

(
U k−1

)
− f

(
U k−1

h

)∥∥∥
L2

≤ C‖
(

U k−1 − U k−1
h

)
‖L2 ≤ C‖θk−1

h ‖L2 +Ch2, (3.38)

where we have used the mean value theorem and (3.4).

Now, let n = k and set v = θk
h in (4.2). Using (3.38), we have

‖θk
h‖2L2 =

(
θk−1

h , θk
h

)
− τ

(
Dγ1

τ ∇θk
h ,θk

h

)

− τμ2
(

Dγ2
τ θk

h , θk
h

)
+ τ

(
f
(

U k−1
)

− f
(

U k−1
h

)
, θk

h

)
+ τ

(
Rk
2, θ

k
h

)

≤ ‖θk−1
h ‖2

L2 + ‖θk
h ‖2

L2

2
+ τγ1

�(γ1 + 1)

k−1∑
j=1

(
b(γ1)

j−1 − b(γ1)

j

) ‖∇θ
k− j
h ‖2

L2 + ‖∇θk
h ‖2

L2

2

− τγ1

�(γ1 + 1)
‖∇θk

h ‖2L2 + μ2τγ2

�(γ2 + 1)

k−1∑
j=1

(
b(γ2)

j−1 − b(γ2)

j

) ‖θk− j
h ‖2

L2 + ‖θk
h ‖2

L2

2

− μ2τγ2

�(γ2 + 1)
‖θk

h ‖2L2 + Cτ‖θk−1
h ‖2L2 + Cτ‖θk

h ‖2L2 + Cτh4 + τ‖Rk
2‖2

= ‖θk−1
h ‖2

L2 + ‖θk
h ‖2

L2

2
+ τγ1

2�(γ1 + 1)

k−1∑
j=1

(
b(γ1)

j−1 − b(γ1)

j

)
‖∇θ

k− j
h ‖2L2

− τγ1

2� (γ1 + 1)

(
1 + b(γ1)

k−1

)
‖∇θk

h ‖2L2 + μ2τγ2

2�(γ2 + 1)

k−1∑
j=1

(
b(γ2)

j−1 − b(γ2)

j

)
‖θk− j

h ‖2L2

− μ2τγ2

2�(γ2 + 1)

(
1 + b(γ2)

k−1

)
‖ek‖2L2 + Cτ‖θk−1

h ‖2L2 + Cτ‖θk
h ‖2L2

+ Cτh4 + τ‖Rk
2‖2. (3.39)

Let

�k = ‖θk
h ‖2L2 + τγ1

�(γ1 + 1)

k−1∑
j=0

b(γ1)

j ‖∇θ
k− j
h ‖2L2 + μ2τγ2

�(γ2 + 1)

k−1∑
j=0

b(γ2)

j ‖θk− j
h ‖2L2 .(3.40)

Then, (3.39) can be rewritten as

�k ≤ �k−1 − τγ1

�(γ1 + 1)
b(γ1)

k−1‖∇θk‖2L2 − μ2τγ2

�(γ2 + 1)
b(γ2)

k−1‖θk‖2L2 + Cτ‖θk‖2L2

+ Cτ‖θk−1‖2L2 + Cτh4 + τ‖Rn
2‖2

≤ �k−1 + Cτ�k + Cτ�k−1 + Cτh4 + τ‖Rk
2‖2. (3.41)

��
Summing over (3.41) from 1 to k and then using (3.35) and Lemma 2, there exists a τ4 such
that when τ ≤ τ4,

�k ≤ Ch4,
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which further implies

‖θk‖L2 ≤ Ch2 ≤ h
7
4 ,

when h ≤ h2 = C−4.
Therefore, (3.36) holds for n = k by using the triangle inequality. Moreover, we have the

following estimate,

‖U n
h ‖L∞ ≤ ‖U n‖L∞ + ‖U n − U n

h ‖L∞

≤ ‖un‖L∞ + ‖un − U n‖L∞ + ‖U n − U n
h ‖L∞

≤ ‖un‖L∞ + C‖un − U n‖H2 + Ch− d
2 ‖U n − U n

h ‖L2

≤ ‖un‖L∞ + CC∗
1τ

1
2 + Ch

7
4− d

2

≤ K2, (3.42)

when τ ≤ τ5 = 1
(2CC∗

1 )2
and h ≤ h3 = (2C)−

4
7−2d . Taking τ ∗

2 = min{τ ∗
1 , τ4, τ5} and

h∗
1 = min{h1, h2, h3} we conclude that (3.36) and (3.37) hold. The proof is complete.

4 Proof of Theorem 1

We now prove the unconditionally optimal error estimate (2.5) in Theorem 1.

Proof The weak form of problem (1.1) satisfies: for any v ∈ Vh , n = 1, 2, . . . , N
(
un

t , v
) +

(
RL
0 D1−γ1

tn ∇u,∇v
)

+ μ2
(

RL
0 D1−γ2

tn u, v
)

= (
f (un), v

)
. (4.1)

Let

ηn
h = Rhun − U n

h , n = 0, 1, . . . , N .

Subtracting (2.3) from (4.1), the error equation for ηn
h satisfies

(
Dτ η

n
h , v

) + (
Dγ1

τ ∇ηn
h ,∇v

) + μ2 (
Dγ2

τ ηn
h , v

) = (Rn
4 , v), (4.2)

where

Rn
4 =

(
f (un) − f

(
U n−1

h

))
+ (

Dτ Rhun − un
t

) −
(

Dγ1
τ �Rhun − RL

0 D1−γ1
tn �u

)

+ μ2
(

Dγ2
τ Rhun − RL

0 D1−γ2
tn u

)
. (4.3)

Now, setting v = ηn
h in (4.2), we have

‖ηn
h‖L2 =

(
ηn−1

h , ηn
h

)
− τ

(
Dγ1

τ ∇ηn
h ,∇ηn

h

) − τμ2 (
Dγ2

τ ηn
h , ηn

h

) + τ
(
Rn
4 , η

n
h

)

≤ ‖ηn−1
h ‖2

L2 + ‖ηn
h‖2

L2

2
+ τγ1

�(γ1 + 1)

n−1∑
j=1

(
b(γ1)

j−1 − b(γ1)

j

) ‖∇η
n− j
h ‖2

L2 + ‖∇ηn
h‖2

L2

2

− τγ1

�(γ1 + 1)
‖∇ηn

h‖2L2 + μ2τγ2

�(γ2 + 1)

n−1∑
j=1

(
b(γ2)

j−1 − b(γ2)

j

) ‖ηn− j
h ‖2

L2 + ‖ηn
h‖2

L2

2

− μ2τγ2

�(γ2 + 1)
‖ηn

h‖2L2 + τ
(
Rn
4 , η

n
h

)
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= ‖ηn−1
h ‖2

L2 + ‖ηn
h‖2L2

2
− τγ1

2�(γ1 + 1)

(
1 + b(γ1)

n−1

)
‖∇ηn

h‖2L2

+ τγ1

2�(γ1 + 1)

n−1∑
j=1

(
b(γ1)

j−1 − b(γ1)

j

)
‖∇η

n− j
h ‖2L2

− μ2τγ2

2�(γ2 +1)

(
1 + b(γ2)

n−1

)
‖ηn

h‖2L2

+ μ2τγ2

2�(γ2 + 1)

n−1∑
j=1

(
b(γ2)

j−1 − b(γ2)

j

)
‖ηn− j

h ‖2L2 + τ
(
Rn
4 , η

n
h

)
. (4.4)

Let

En
h = ‖ηn

h‖2L2 + τγ1

�(γ1 + 1)

n−1∑
j=0

b(γ1)

j ‖∇η
n− j
h ‖2L2 + μ2τγ2

�(γ2 + 1)

n−1∑
j=0

b(γ2)

j ‖ηn− j
h ‖2L2 .

Then, (4.4) can be rewritten as

En
h ≤ En−1

h − τγ1

�(γ1 + 1)
b(γ1)

n−1‖∇ηn
h‖2L2 − μ2τγ2

�(γ2 + 1)
b(γ2)

n−1‖ηn
h‖2L2 + 2τ

(
Rn
4 , η

n
h

)

≤ En−1
h − C4τ

γ1

�(γ1 + 1)
b(γ1)

n−1‖ηn
h‖2L2 − μ2τγ2

�(γ2 + 1)
b(γ2)

n−1‖ηn
h‖2L2 + 2τ

(
Rn
4 , η

n
h

)
, (4.5)

where, again, we used the result in Lemma 3 (i.e., there exists a constant C4 such that
−‖∇ηn

h‖2
L2 ≤ −C4‖ηn

h‖2
L2 ).

We now turn to estimate τ(Rn
4 , η

n
h), where Rn

4 is defined in (4.3).
By using the boundedness of ‖U n

h ‖L∞ in Theorem 3 and (3.2), we have

τ
(

f
(
un) − f

(
U n−1

h

)
, ηn

h

)

= τ
(

f
(
un) − f

(
un−1) , ηn

h

) + τ
(

f
(
un−1) − f

(
U n−1

h

)
, ηn

h

)

≤ τ‖ f
(
un) − f

(
un−1)‖L2‖ηn

h‖L2 + Cτ‖un−1 − Rhun−1 + ηn−1
h ‖L2‖ηn

h‖L2

≤ Cτ
(
τ 2 + h2r+2) + Cτ‖ηn

h‖2L2 + Cτ‖ηn−1
h ‖2L2 . (4.6)

By (2.2) and (3.2), we have

τ
(
Dτ Rhun − un

t , ηn
h

) = τ
(
Dτ Rhun − Rhun

t , ηn
h

) + τ
(
Rhun

t − un
t , ηn

h

)
≤ Cτ

(
τ 2 + h2r+2) + Cτ‖ηn

h‖2L2 , (4.7)

− τ
(
Dγ1

τ �Rhun − RL
0 D1−γ1

tn �u, ηn
h

)

= −τ
(

Dγ1
τ �Rhun − RL

0 D1−γ1
tn �Rhu, ηn

h

)
− τ

(
RL
0 D1−γ1

tn �Rhu − RL
0 D1−γ1

tn �u, ηn
h

)

= −τ
(

Dγ1
τ �Rhun − RL

0 D1−γ1
tn �Rhu, ηn

h

)

≤
(

Cb(γ1)
n−1τ

1+γ1 , |ηn
h |

)

≤ C4τ
γ1

�(γ1 + 1)
b(γ1)

n−1‖ηn
h‖2L2 + C2�(γ1 + 1)b(γ1)

n−1τ
γ1

4C4
τ 2, (4.8)

123



862 J Sci Comput (2018) 76:848–866

and

μ2τ
(

Dγ2
τ Rhun − RL

0 D1−γ2
tn u, ηn

h

)

= μ2τ
(

Dγ2
τ Rhun − RL

0 D1−γ2
tn Rhu, ηn

h

)
+ μ2τ

(
RL
0 D1−γ2

tn Rhu − RL
0 D1−γ2

tn u, ηn
h

)

≤ Cμ2
(

b(γ2)
n−1τ

1+γ2 , |ηn
h |

)
+μ2τ

(
Chr+1, |ηn

h |
)

≤ μ2τγ2

�(γ2 + 1)
b(γ2)

k−1‖ηn
h‖2L2 + C2�(γ2 + 1)

4μ2 b(γ2)

k−1τ
γ2+2 + Cτh2r+2 + Cτ‖ηn

h‖2L2 . (4.9)

Substituting the estimates (4.6)–(4.9) into (4.5) yields

En
h ≤ En−1

h + Cτ‖ηn
h‖2L2 + Cτ‖ηn−1

h ‖2L2 + Cb(γ1)
n−1τ

γ1+2 + Cb(γ2)
n−1τ

γ2+2 + Cτ 3 + Cτh2r+2

≤ En−1
h + Cτ En

h + Cτ En−1
h + Cb(γ1)

n−1τ
γ1+2 + Cb(γ2)

n−1τ
γ2+2 + Cτ 3 + Cτh2r+2

(4.10)

Summing over the above formula from 1 to n and using Lemma 2, there exists a τ6 such that
when τ ≤ τ6,

En
h ≤ C

⎛
⎝ n∑

j=1

b(γ1)

j−1τ
γ1τ 2 +

n∑
j=1

b(γ2)

j−1τ
γ2+2 + nτ 3 + nτh2r+2

⎞
⎠

≤ C
(
(nτ)γ1τ 2 + (nτ)γ2τ 2 + nτ 3 + nτh2r+2)

≤ 3CT
(
τ 2 + h2r+2

)

≤ 3CT
(
τ + hr+1

)2
, (4.11)

which further implies

‖θn‖L2 ≤ C
(
τ + hr+1

)
.

Therefore, taking τ0 = min{τ ∗
2 , τ6} and h0 = h∗

1, the finite element system (2.3) admits a
unique solution U n

h , such that

‖un − U n
h ‖L2 ≤ C0

(
τ + hr+1

)
. (4.12)

This completes the proof. ��

5 Numerical Examples

In this section, several numerical experiments are carried out to illustrate the theoretical
results. All the computations are performed by using the software FreeFEM++.

Example 1 Consider two dimensional Michaelis–Menten reaction equation [40,45]

∂u

∂t
= RL

0 Dγ
t �u − RL

0 Dγ
t u + u − u2 + g, x ∈ [0, 1]2, 0 < t ≤ 1, (5.1)

where the function g, the initial and boundary conditions are determined by the exact solution

u = t3 sin(πx) sin(πy).
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Table 1 L2 errors and
convergence rates

M L-FEM Q-FEM

Error Orders Error Orders

2D

4 6.72E−2 – 3.39E−3 –

8 1.79E−2 1.91 4.63E−4 2.87

16 4.57E−3 1.97 5.96E−5 2.96

32 1.15E−3 1.99 7.48E−6 2.99

Fig. 1 2D problem: L2-errors with fixed τ by changing spatial mesh sizes

We present the accuracy tests by using a uniform triangular partition with M + 1 nodes in
each spatial direction here and below. In the simulations, we set γ = 0.6, let N = M2 and
N = M3 when the linear and quadratic element approximation are applied, respectively. The
L2-errors at time T = 1 and convergence rates for the two dimensional problem are shown
in Table1. These results imply that the numerical solutions converge to the exact solution in
the order of O(τ + hr+1) for the r -th degree finite element methods.

To verify unconditional convergence, we solve the problem by fixing τ and changing
spatial mesh size h. The L2-norm errors at time T = 1 for two and three dimensional
problems are shown in Figs. 1 and 2, respectively. One can learn from these two figures that
for a fixed τ , the errors in L2-norm asymptotically convergence to a constant, which implies
that the time step restriction τ = hc is unnecessary.

Example 2 Consider three dimensional nonlinear fractional cable equation [3,26,46], given
by

∂u

∂t
= RL

0 Dγ1
t �u − RL

0 Dγ2
t u + u − u3 + g, x ∈ [0, 1]3, 0 < t ≤ 1, (5.2)

where the function g, initial and boundary conditions are determined by

u = t2
(

x2 − x5
)(

y2 − y5
)(

z2 − z5
)
.

In this numerical experiment, we set the parameter γ1 = 0.2, γ2 = 0.8, N = M2 and
N = M3 when the linear and quadratic element approximation are applied, respectively. The
L2-errors at time T = 1 and convergence rates for the three dimensional problems are listed
in Table2. These results further illustrate convergence of the proposed methods
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Fig. 2 3D problem: L2-errors with fixed τ by changing spatial mesh sizes

Table 2 L2 errors and
convergence rates

M L-FEM Q-FEM

Error Orders Error Orders

3D

4 2.33E−3 – 2.64E−4 –

8 7.12E−4 1.71 3.26E−5 3.02

16 1.89E−4 1.91 4.03E−6 3.01

32 4.76E−5 1.98 5.03E−7 3.00

Again, to verify unconditional convergence, we solve the problems with fixed τ by chang-
ing spatial mesh sizes. The L2-norm errors at time T = 1 for three dimensional problems
are shown in Fig. 2. For a fixed τ , the errors in L2-norm asymptotically convergence to a
constant. It implies that the time step restriction is unnecessary.

6 Conclusions

In this paper, a fully discrete linearized Galerkin finite element method is proposed to
solve the multi-dimensional fractional reaction–subdiffusion equations. By introducing the
time-discrete elliptic equations and constructing the energy functions, we obtain the H2

boundedness of the solution of the time-discrete system and L∞ boundedness of the corre-
sponding finite element solution. Then, the optimal error estimates are proved without any
stepsize restriction, i.e., τ = O(hc). Numerical examples in both two and three dimensional
cases are presented to confirm our theoretical results.

Several issues are deserving further investigation. First, due to the non-locality of the
problem, it is difficult to get the boundedness of ‖Dγ2

τ U n‖H2 when 0 < γ2 < 1
2 . Therefore,

it is still an open problem to prove the unconditional error estimate under the assumption 0 <

γ2 < 1
2 . Second, in view of the regularity of the solution to the problem (1.1), it is interesting

to develop nonuniform time-step schemes to approximate the time-fractional derivative and
provide rigorous error analysis. Third, the computational storage and cost are huge for long
time simulations of high-dimensional problems, this motivates us to consider high-order
accuracy scheme with fast evaluation of the time-fractional derivative. The resulting fast
algorithm should not only keep the same accuracy as the direct evaluation of the fractional
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derivative, but also reduce significantly the computational storage and cost, see relative works
[13,17,38]. In addition, it is interesting to investigate the global existence of the solution for
the nonlinear problem (1.1).
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