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Abstract
Parabolic partial differential equations (PDEs) and backward stochastic differential equations
(BSDEs) are key ingredients in a number of models in physics and financial engineering.
In particular, parabolic PDEs and BSDEs are fundamental tools in pricing and hedging
models for financial derivatives. The PDEs and BSDEs appearing in such applications
are often high-dimensional and nonlinear. Since explicit solutions of such PDEs and
BSDEs are typically not available, it is a very active topic of research to solve such
PDEs and BSDEs approximately. In the recent article (E et al., Multilevel Picard iter-
ations for solving smooth semilinear parabolic heat equations, arXiv:1607.03295) we
proposed a family of approximation methods based on Picard approximations and mul-
tilevel Monte Carlo methods and showed under suitable regularity assumptions on the
exact solution of a semilinear heat equation that the computational complexity is bounded
by O(d ε−(4+δ)) for any δ ∈ (0,∞) where d is the dimensionality of the problem and
ε ∈ (0,∞) is the prescribed accuracy. In this paper, we test the applicability of this algo-
rithm on a variety of 100-dimensional nonlinear PDEs that arise in physics and finance
by means of numerical simulations presenting approximation accuracy against runtime.
The simulation results for many of these 100-dimensional example PDEs are very sat-
isfactory in terms of both accuracy and speed. Moreover, we also provide a review of
other approximation methods for nonlinear PDEs and BSDEs from the scientific litera-
ture.
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1 Introduction

Parabolic partial differential equations (PDEs) and backward stochastic differential equations
(BSDEs) have a wide range of applications. To give specific examples we focus now on a
number of applications in finance. There are several fundamental assumptions incorporated
in the Black–Scholes model that are not met in the real-life trading of financial derivatives.
A number of derivative pricing models have been developed in about the last four decades
to relax these assumptions; see, e.g., [8,9,18,28,41,61,64] for models taking into account the
fact that the “risk-free” bank account has higher interest rates for borrowing than for lending,
particularly, due to the default risk of the trader, see, e.g., [18,53] for models incorporating the
default risk of the issuer of the financial derivative, see, e.g., [5,6,85] formodels for the pricing
of financial derivatives on underlyings which are not tradeable such as financial derivatives
on the temperature or mortality-dependent financial derivatives, see, e.g., [1] for models
incorporating that the hedging strategy influences the price processes through demand and
supply (so-called large investor effects), see, e.g., [32,47,63] formodels taking the transaction
costs in the hedging portfolio into account, and see, e.g., [2,47] for models incorporating
uncertainties in the model parameters for the underlying. In each of the above references
the value function u, describing the price of the financial derivative, solves a nonlinear
parabolic PDE. Moreover, the PDEs for the value functions emerging from the above models
are often high-dimensional as the financial derivative depends in several cases on a whole
basket of underlyings and as a portfolio containing several financial derivatives must often
be treated as a whole in the case where the above nonlinear effects are taken into account
(cf., e.g., [8,18,32]). These high-dimensional nonlinear PDEs can typically not be solved
explicitly and, in particular, there is a strong demand from the financial engineering industry
to approximately compute the solutions of such high-dimensional nonlinear parabolic PDEs.

The numerical analysis literature contains a number of deterministic approximation meth-
ods for nonlinear parabolic PDEs such as finite element methods, finite difference methods,
spectral Galerkin approximation methods, or sparse grid methods (cf., e.g., [83, Chapter 14],
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[82, Sect. 3], [81], and [76]). Some of these approximationmethods achieve high convergence
rates with respect to the computational effort and, in particular, provide efficient approxi-
mations in low or moderate dimensions. However, these approximation methods can not be
used in high dimensions as the computational effort grows exponentially in the dimension
d ∈ N = {1, 2, . . . } of the considered nonlinear parabolic PDE and then the approximation
method fails to terminate within years even for low accuracies.

In the case of linear parabolic PDEs the Feynman–Kac formula establishes an explicit
representation of the solution of the PDE as the expectation of the solution of an appropri-
ate stochastic differential equation (SDE). (Multilevel) Monte Carlo methods together with
suitable discretizations of the SDE (see, e.g., [56,58,60,71]) then result in a numerical approx-
imation method with a computational effort that grows under suitable hypotheses at most
polynomially in the dimension d ∈ N of the PDE and that grows up to an arbitrarily small
order quadratically in the reciprocal of the approximation precision (cf., e.g., [38,45,49,50]).
These multilevel Monte Carlo approximations are, however, limited to linear PDEs as the
classical Feynman–Kac formula provides only in the case of a linear PDE an explicit rep-
resentation of the solution of the PDE. For lower error bounds in the literature on random
and deterministic numerical approximation methods for high-dimensional linear PDEs the
reader is, e.g., referred to Heinrich [51, Theorem 1].

In the seminal papers [73–75], Pardoux and Peng developed the theory of nonlinear
backward stochastic differential equations and, in particular, established a considerably gener-
alized nonlinear Feynman–Kac formula to obtain an explicit representation of the solution of
a nonlinear parabolic PDE bymeans of the solution of an appropriate BSDE; see also Cherid-
ito et al. [17] for second-order BSDEs. Discretizations of BSDEs, however, require suitable
discretizations of nested conditional expectations (see, e.g., [10,17,31,46,86]). Discretiza-
tion methods for these nested conditional expectations proposed in the literature include the
‘straight forward’Monte Carlo method, the quantization tree method (see [4]), the regression
method based on Malliavin calculus or based on kernel estimation (see [10]), the projection
on function spaces method (see [41]), the cubature on Wiener space method (see [22]), and
the Wiener chaos decomposition method (see [12]). None of these discretization methods
has the property that the computational effort of the method grows at most polynomially
both in the dimension and in the reciprocal of the prescribed accuracy (see Sects. 4.1–4.6
below for a detailed discussion). We note that solving high-dimensional semilinear parabolic
PDEs at single space-time points and solving high-dimensional nonlinear BSDEs at single
time points is essentially equivalent due to the generalized nonlinear Feynman–Kac formula
established by Pardoux and Peng. In recent years the concept of fractional smoothness in
the sense of function spaces has been used for studying variational properties of BSDEs.
This concept of fractional smoothness quantifies the propagation of singularities in time and
shows that certain non-uniform time grids are more suitable in the presence of singularities;
see, e.g., Geiss and Geiss [35], Gobet and Makhlouf [42] or Geiss et al. [34] for details. Also
these temporal discretization methods require suitable discretizations of nested conditional
expectations resulting in the same problems as in the case of uniform time grids.

Another probabilistic representation for solutions of some nonlinear parabolic PDEs with
polynomial nonlinearities has been established in Skorohod [80] by means of branching
diffusion processes. Recently, this classical representation has been extended under suitable
assumptions in Henry-Labordère [53] to more general analytic nonlinearities and in Henry-
Labordère et al. [54] to polynomial nonlinearities in the pair (u(t, x), (∇x u)(t, x)) ∈ R1+d ,
t ∈ [0, T ], x ∈ Rd , where u is the solution of the PDE, d ∈ N is the dimension, and
T ∈ (0,∞) is the time horizon. This probabilistic representation has been successfully used
in Henry-Labordère [53] (see also Henry-Labordère et al. [55]) and in Henry-Labordère et
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al. [54] to obtain a Monte Carlo approximation method for semilinear parabolic PDEs with
a computational complexity which is bounded by O(d ε−2) where d is the dimensionality of
the problem and ε ∈ (0,∞) is the prescribed accuracy. The major drawback of the branching
diffusion method is its insufficient applicability, namely it requires the terminal/initial con-
dition of the parabolic PDE to be quite small (see Sect. 4.7 below for a detailed discussion).

In the recent article [27] we proposed a family of approximation methods which we
denote as multilevel Picard approximations (see (9) for their definitions and Sect. 2 for their
derivations). Corollary 3.18 in [27] shows under suitable regularity assumptions (including
smoothness and Lipschitz continuity) on the exact solution that the computational complexity
of this algorithm is bounded by O(d ε−(4+δ)) for any δ ∈ (0,∞), where d is the dimension-
ality of the problem and ε ∈ (0,∞) is the prescribed accuracy. In this paper we complement
the theoretical complexity analysis of [27] with a simulation study. Our simulations in Sect. 3
indicate that the computational complexity grows at most linearly in the dimension and quar-
tically in the reciprocal of the prescribed accuracy also for several 100-dimensional nonlinear
PDEs from physics and finance with non-smooth and/or non-Lipschitz nonlinearities and ter-
minal condition functions. The simulation results formany of these 100-dimensional example
PDEs are very satisfactory in terms of accuracy and speed.

1.1 Notation

Throughout this article we frequently use the following notation.We denote by 〈·, ·〉 : (∪n∈N
(Rn × Rn)) → [0,∞) the function that satisfies for all n ∈ N, v = (v1, . . . , vn), w =
(w1, . . . , wn) ∈ Rn that 〈v,w〉 = ∑n

i=1 viwi . For every topological space (E, E) we denote
by B(E) the Borel-sigma-algebra on (E, E). For all measurable spaces (A,A) and (B,B)we
denote byM(A,B) the set ofA/B-measurable functions from A to B. For every probability
space (�,A,P)we denote by ‖·‖L2(P;R) : M(A,B(R)) → [0,∞] the function that satisfies
for all X ∈ M(A,B(R)) that ‖X‖L2(P;R) =

√
E
[|X |2]. For all metric spaces (E, dE )

and (F, dF ) we denote by Lip(E, F) the set of all globally Lipschitz continuous functions
from E to F . For every d ∈ N we denote by IRd×d the identity matrix in Rd×d and we
denote by Rd×d

Inv the set of invertible matrices in Rd×d . For every d ∈ N and every A ∈
Rd×d we denote by A∗ ∈ Rd×d the transpose of A. For every d ∈ N and every x =
(x1, . . . , xd) ∈ Rd we denote by diag(x) ∈ Rd×d the diagonal matrix with diagonal entries
x1, . . . , xd . For every T ∈ (0,∞) we denote by QT the set given by QT = {w : [0, T ] →
R : w−1(R\{0}) is a finite set}. For every set A and every function f : [0, T ] → [0,∞] we
write We denote by �·� : R → Z and [·]+ : R → [0,∞) the functions that satisfy for all
x ∈ R that �x� = max(Z ∩ (−∞, x]) and [x]+ = max{x, 0}.

2 Multilevel Picard Approximations for High-Dimensional Semilinear
PDEs

For this article to be self-contained, we recall the derivation of multilevel Picard approxi-
mations from [27]. In Sect. 2.3 below we define multilevel Picard approximations (see (9)
below) in the case of semilinear PDEs (cf. (6) in Sect. 2.2 below). In Sect. 2.1 we explain the
ideas behind these approximations in the special case of gradient-independent nonlinearities
and in the case of Brownian motion as forward diffusion. The case of general semilinear
PDEs will then be explained in Sect. 2.2.
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2.1 Derivation of theMultilevel Picard Algorithm for Gradient-Independent
Nonlinearities

Multilevel Picard approximations are based on the Picard approximation method of the
solution of a fixed-point equation in order to avoid unfavorable error propagation in time of
an explicit or implicit Euler-type method; cf. the discussion in Sect. 4 below. For this we
first derive a fixed-point equation for the solution of a semilinear PDE. Then we discretize
the fixed-point operator in a suitable way. To simplify the presentation, we only consider in
this subsection the special case of gradient-independent nonlinearities and the case of the
Brownian motion as the forward diffusion. We refer to Sect. 2.2 below for the more general
case.

For the rest of this subsection let T ∈ (0,∞), d ∈ N, let g : Rd → R, f : [0, T ] ×
Rd × R → R, and u : [0, T ] × Rd → R be sufficiently regular functions, assume for all
t ∈ [0, T ), x ∈ Rd that u(T , x) = g(x) and

( ∂
∂t u)(t, x) + f

(
t, x, u(t, x)

) + 1
2 (�x u)(t, x) = 0, (1)

let (�,F,P, (Ft )t∈[0,T ]) be a stochastic basis (cf., e.g., [77, Appendix E]), let W : [0, T ] ×
� → Rd be a standard (Ft )t∈[0,T ]-Brownian motion, and let � : Lip([0, T ] × Rd ,R) →
Lip([0, T ] × Rd ,R) satisfy for all v ∈ Lip([0, T ] × Rd ,R), s ∈ [0, T ), x ∈ Rd that

(
�(v)

)
(s, x) = E

[
g(x + WT − Ws)

]

+
∫ T

s
E

[
f
(

t, x + Wt − Ws, v
(
t, x + Wt − Ws

))]
dt . (2)

Our approximation scheme in (9) below is based on a suitable fixed-point formulation of the
solution u of the PDE (1). More precisely, the Feynman–Kac formula implies that u = �(u).

Now the expectation and the time integral in (2) are non-discrete and, in general, cannot
be simulated on a computer. For this reason we approximate the non-discrete quantities in (2)
(expectation and time integral) by discrete quantities (Monte Carlo averages and quadrature
formulas). For this let (qn,ρ

s )n,ρ∈N0,s∈[0,T ) ⊆ QT be quadrature rules which are just functions
on [0, T ] which have non-zero values only on a finite subset of [0, T ]. In addition, let
(mn,ρ)n,ρ∈N0 ⊆ N0 be natural numbers which will be the numbers of Monte Carlo averages.
For the rest of this paragraph we assume for all s ∈ [0, T ], n, ρ ∈ N that mn,ρ = ρ2n and that
qn,ρ

s is the left-rectangle rule on the interval [s, T ]with ρn rectangles so that for all t ∈ [s, T ]
it holds that qn,ρ

s (t) = (T −s)
ρn 1{s+i (T −s)

ρn : i∈N0}(t). Moreover, let W i,n : [0, T ] × � → Rd ,

i, n ∈ N0, be independent standard (Ft )t∈[0,T ]-Brownian motions. Furthermore, for every
n, ρ ∈ N0 and every function V : [0, T ] × Rd × � → R let (V i )i∈N be independent and
identically distributed versions of V and let	n,ρ(V ) : [0, T ]×Rd ×� → R be the function
which satisfies for all s ∈ [0, T ], x ∈ Rd that

(	n,ρ(V ))(s, x) = 1
mn,ρ

mn,ρ∑

i=1

⎡

⎣g(x + W i,n
T − W i,n

s )

+
∑

t∈[s,T ]
qn,ρ

s (t) f
(

t, x + W i,n
t − W i,n

s , V i (t, x + W i,n
t − W i,n

s )
)
⎤

⎦ .

(3)

With this we recursively define (Vn,ρ)n,ρ∈N such that for all n, ρ ∈ N, t ∈ [0, T ], x ∈ Rd

it holds that V1,ρ(t, x) = (	1,ρ(0))(t, x) and Vn+1,ρ(t, x) = (
	n,ρ(Vn,ρ)

)
(t, x). We note
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that Bender and Denk [7] studied a non-implementable version hereof where expectations
are not discretized. For every n, ρ ∈ N let en,ρ be the number of function evaluations of
g and f required to compute one realization of Vn,ρ(0, 0). Then this computational effort
satisfies for all n, ρ ∈ N the recursive equation en+1,ρ = ρ2n(1+ ρn(1+ en,ρ)). Hence, we

obtain for all n, ρ ∈ N that en,ρ ∈ [ρ3n2 , ρ3n23n]. Moreover, we observe in the special case
where f ≡ 0 and g is bounded that the approximation error satisfies supn,ρ∈N ‖u∞(0, 0) −
Vn,ρ(0, 0)‖L2(P;R)ρ

−n < ∞. This suggests that the numerical approximations (Vn,ρ)n,ρ∈N
do not converge with a strictly positive polynomial rate of convergence. For this reason we
modify the above approximation method in a subtle way so that the computational effort is
drastically reduced. We also mention that the approximations (Vn,ρ)n,ρ∈N can be improved
by an approach with control variates which reduce the variance; see Gobet and Labart [39]
for details.

The central new idea in our multilevel Picard approximations is to adapt in a suitable
manner the multilevel Monte Carlo approach of Heinrich [49,50] and Giles [38] to the Picard
approximation method. More precisely, let (un)n∈N0 ⊆ Lip([0, T ] × Rd ,R) be the Picard
approximations satisfying for alln ∈ N0 thatun+1 = �(un). TheBanachfixed-point theorem
then ensures that the sequence (un)n∈N0 converges at least exponentially fast to u. In the next
step, we note that the fact that limn→∞ un = u, a telescope sum argument, and the fact that
for all n ∈ N it holds that un = �(un−1) ensure for all sufficiently large n ∈ N that

u ≈ un = u1 +
n−1∑

l=1

[
ul+1 − ul

] = �(u0) +
n−1∑

l=1

[
�(ul) − �(ul−1)

]

≈ 	n,ρ(u0) +
n−1∑

l=1

[
	n−l,ρ(ul) − 	n−l,ρ(ul−1)

]
. (4)

Display (4) suggests to introduce numerical approximations as follows. Let (Un,ρ)n,ρ∈N0 ⊆
Lip([0, T ] × Rd ,R) satisfy for all n, ρ ∈ N that U0,ρ = u0 and that

Un,ρ = 	n,ρ(U0,ρ) +
n−1∑

l=1

[
	n−l,ρ

(
Ul,ρ

) − 	n−l,ρ
(
Ul−1,ρ

)]
. (5)

A key feature of the approximations in (5) is that the approximations (5) keep the computa-
tional cost moderate compared to the desired approximation precision. More precisely, for
every n, ρ ∈ N let en,ρ be the number of function evaluations of f and g required to compute
one realization ofUn,ρ(0, 0). Note that this computational effort satisfies for all n, ρ ∈ N the
recursive equation en,ρ = ρ2n(1 + ρn) +∑n−1

l=1

(
ρ2(n−l)(1 + ρn−l(el,ρ + el−1,ρ))

)
. Hence,

we obtain for all n, ρ ∈ N that en,ρ ≤ 2 · 3nρ3n . Let us mention that the numerical approx-
imations specified in (9) in Sect. 2.3 below differ from (5) in the way that essentially all
Brownian motions appearing in (9) are assumed to be independent and this difference con-
siderably simplifies their implementation.

We would like to point out that the approximations in (5) are full history recursive in the
sense that for every k, ρ ∈ N the “full history” U0,ρ , U1,ρ , . . . , Uk−1,ρ needs to be computed
recursively in order to computeUk,ρ .Moreover, we note that the approximations in (5) exploit
multilevel/multigrid ideas (cf., e.g., [38,49,50,52]). Typically multilevel ideas appear where
the different levels correspond to approximations with different time or space step sizes while
here different levels correspond to different stages of the fixed-point iteration. This, in turn,
results in numerical approximations which require the full history of the approximations.
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2.2 A Fixed-Point Equation for General Semilinear PDEs

The derivation of the approximation method in (9) in the case of a gradient-dependent
nonlinearity and a more general forward diffusion is analogous to the special case of a
gradient-independent nonlinearity and of a Brownian motion as the forward diffusion as
considered in Sect. 2.1. Only the derivation of an appropriate fixed-point equation is nontriv-
ial. For the derivation of this fixed-point equation we impose for simplicity of presentation
appropriate additional hypotheses that are not needed for the definition of the scheme in (9)
(cf. (6)–(8) in this subsection with Sect. 2.3).

Let T ∈ (0,∞), d ∈ N, let g : Rd → R, f : [0, T ] × Rd × R × Rd → R, u : [0, T ] ×
Rd → R, η : Rd → Rd , μ : [0, T ] × Rd → Rd , and σ = (σ1, . . . , σd) : [0, T ] × Rd →
Rd×d

Inv be sufficiently regular functions, assume for all t ∈ [0, T ), x ∈ Rd that u(T , x) = g(x)

and

( ∂
∂t u)(t, x) + f

(
t, x, u(t, η(x)), [σ(t, η(x))]∗(∇x u)(t, η(x))

) + 〈μ(t, x), (∇x u)(t, x)〉
+ 1

2 Trace
(
σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)

) = 0, (6)

let (�,F,P, (Ft )t∈[0,T ]) be a stochastic basis, let W = (W 1, . . . , W d) : [0, T ]×� → Rd be
a standard (Ft )t∈[0,T ]-Brownian motion, and for every s ∈ [0, T ], x ∈ Rd let Xs,x : [s, T ]×
� → Rd and Ds,x : [s, T ] × � → Rd×d be (Ft )t∈[s,T ]-adapted stochastic processes with
continuous sample paths which satisfy that for all t ∈ [s, T ] it holds P-a.s. that

Xs,x
t = x +

∫ t

s
μ(r , Xs,x

r ) dr +
d∑

j=1

∫ t

s
σ j (r , Xs,x

r ) dW j
r ,

Ds,x
t = IRd×d +

∫ t

s
( ∂
∂x μ)(r , Xs,x

r ) Ds,x
r dr +

d∑

j=1

∫ t

s
( ∂
∂x σ j )(r , Xs,x

r ) Ds,x
r dW j

r .

(7)

Note that for every s ∈ [0, T ]we have that the processes Ds,x , x ∈ Rd , are in a suitable sense
the derivative processes of the processes Xs,x , x ∈ Rd , with respect to x ∈ Rd . The function
η in (6) allows to include a possible space shift in the PDE. Typically we are interested in the
case where η is the identity, that is, for all x ∈ Rd it holds that η(x) = x . Our approximation
scheme in (9) below is based on a suitable fixed-point formulation of the solution of the
PDE (6). To obtain such a fixed-point formulation, we apply the Feynman–Kac formula
and the Bismut–Elworthy–Li formula (see, e.g., Elworthy and Li [29, Theorem 2.1] or Da
Prato and Zabczyk [25, Theorem 2.1]). More precisely, let u∞ ∈ Lip([0, T ] × Rd ,R1+d)

satisfy for all t ∈ [0, T ), x ∈ Rd that u∞(t, x) = (
u(t, x), [σ(t, x)]∗(∇x u)(t, x)

)
and let

� : Lip([0, T ] × Rd ,R1+d) → Lip([0, T ] × Rd ,R1+d) satisfy for all v ∈ Lip([0, T ] ×
Rd ,R1+d), s ∈ [0, T ), x ∈ Rd that

(
�(v)

)
(s, x) = E

[(
g(Xs,x

T ) − g(x)
) (

1, [σ(s,x)]∗
T −s ∫T

s

[
σ(r , Xs,x

r )−1Ds,x
r

]∗
dWr

)]
+ (g(x), 0)

+
∫ T

s
E

[
f
(

t, Xs,x
t , v

(
t, η(Xs,x

t )
)) (

1, [σ(s,x)]∗
t−s ∫t

s

[
σ(r , Xs,x

r )−1Ds,x
r

]∗
dWr

)]
dt

(8)

Combining (8) with the Feynman–Kac formula and the Bismut–Elworthy–Li formula ensures
that u∞ = �(u∞). This fixed-point equation is well-known in the literature; cf., e.g., The-
orem 4.2 in Ma and Zhang [70]. Note that we have incorporated a zero expectation term
in (8). The purpose of this term is to slightly reduce the variance when approximating the
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right-hand side of (8) byMonte Carlo approximations. Nowwe approximate the non-discrete
quantities in (8) (expectation and time integral) by discrete quantities (Monte Carlo averages
and quadrature formulas) with different degrees of discretization on different levels (cf. the
remarks in Sect. 2.4 below). This yields a family of approximations of�. With these approx-
imations of � we finally define multilevel Picard approximations of u∞ through (5) above.
These multilevel Picard approximations are specified in (9) in Sect. 2.3 below.

2.3 The Approximation Scheme

In this subsectionwe specifymultilevel Picard approximations in the case of semilinear PDEs
with gradient-dependent nonlinearities and general diffusion processes as forward diffusions
(see (9) below). To this end we consider the following setting.

Let T ∈ (0,∞), d ∈ N, � = ∪n∈NRn , let g : Rd → R, f : [0, T ] × Rd × Rd+1 → R,
η : Rd → Rd , μ : [0, T ] × Rd → Rd , σ : [0, T ] × Rd → Rd×d

Inv be measurable functions,

let (qk,l,ρ
s )k,l∈N0,ρ∈(0,∞),s∈[0,T ) ⊆ QT , (m

g
k,l,ρ)k,l∈N0,ρ∈(0,∞), (m

f
k,l,ρ)k,l∈N0,ρ∈(0,∞) ⊆ N,

let (�,F,P, (Ft )t∈[0,T ]) be a stochastic basis, let W θ : [0, T ] × � → Rd , θ ∈ �, be
independent standard (Ft )t∈[0,T ]-Brownian motions with continuous sample paths, for every
l ∈ Z, ρ ∈ (0,∞), θ ∈ �, x ∈ Rd , s ∈ [0, T ), t ∈ [s, T ] let X l,ρ,θ

x,s,t : � → Rd ,

Dl,ρ,θ
x,s,t : � → Rd×d , and Il,ρ,θ

x,s,t : � → R1+d be functions, and for every θ ∈ �, ρ ∈ (0,∞)

let Uθ
k,ρ : [0, T ] × Rd × � → Rd+1, k ∈ N0, be functions which satisfy for all k ∈ N,

s ∈ [0, T ), x ∈ Rd that

Uθ
k,ρ(s, x) =

k−1∑

l=0

mg
k,l,ρ∑

i=1

1

mg
k,l,ρ

[
g(X l,ρ,(θ,l,−i)

x,s,T ) − 1N(l) g(X l−1,ρ,(θ,l,−i)
x,s,T )

−1{0}(l) g(x)
]
Il,ρ,(θ,l,−i)

x,s,T

+ (
g(x), 0

) +
k−1∑

l=0

m f
k,l,ρ∑

i=1

∑

t∈[s,T ]

qk,l,ρ
s (t)

m f
k,l,ρ

×
[

f
(

t,X k−l,ρ,(θ,l,i)
x,s,t ,U(θ,l,i,t)

l,ρ

(
t, η(X k−l,ρ,(θ,l,i)

x,s,t )
))

−1N(l) f
(

t,X k−l,ρ,(θ,l,i)
x,s,t ,U(θ,−l,i,t)

[l−1]+,ρ

(
t, η(X k−l,ρ,(θ,l,i)

x,s,t )
))] Ik−l,ρ,(θ,l,i)

x,s,t .

(9)

2.4 Remarks on the Approximation Scheme

In this subsection we add a few comments on the numerical approximations in (9). For
this we assume the setting in Sect. 2.3. The set � allows to index families of independent
random variables which we need for Monte Carlo approximations. The natural numbers
(mg

k,l,ρ)k,l∈N,ρ∈(0,∞), (m
f
k,l,ρ)k,l∈N0,ρ∈(0,∞) ⊆ N specify the number of Monte Carlo sam-

ples in the corresponding levels for approximating the expectations involving g and f
appearing on the right-hand side of (8). The family (qk,l,ρ

s )k,l∈N0,ρ∈(0,∞),s∈[0,T ) ⊆ QT pro-

vides the quadrature formulas that we employ to approximate the time integrals
∫ T

s . . . dt ,
s ∈ [0, T ], appearing on the right-hand side of (8). In Sects. 3.1, 3.2 these parameters satisfy
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that for every k, l ∈ N0, ρ ∈ N it holds that mg
k,l,ρ = ρk−l , m f

k,l,ρ = round(
√

ρk−l) and

that for every k, l ∈ N0, ρ ∈ N it holds that qk,l,ρ is a Gauß–Legendre quadrature rule with
round(�−1(ρ(k−l)/2)) quadrature nodes. In Sect. 3.3 these parameters satisfy that for every
k, l ∈ N0, ρ ∈ N it holds that mg

k,l,ρ = m f
k,l,ρ = ρk−l and that for every k, l ∈ N0, ρ ∈ N it

holds that qk,l,ρ is a Gauß–Legendre quadrature rule with round(�−1(ρ(k−l)/2)) quadrature
nodes. For every l ∈ N, ρ ∈ (0,∞), θ ∈ �, s ∈ [0, T ], x ∈ Rd , v ∈ (s, T ] we think
of the processes (X l,ρ,θ

x,s,t )t∈[s,T ] and (Dl,ρ,θ
x,s,t )t∈[s,T ] as (Ft )t∈[s,T ]-optional measurable com-

putable approximations with P
( ∫ T

s

∥
∥σ(r ,X l,ρ,θ

x,s,r )−1 Dl,ρ,θ)
x,s,r

∥
∥2

L(Rd ,Rd )
dr < ∞) = 1 (e.g.,

piecewise constant càdlàg Euler-Maruyama approximations) of the processes (Xs,x
t )t∈[s,T ]

and (Ds,x
t )t∈[s,T ] in (7) and we think of Il,ρ,θ

x,s,v as a random variable that satisfies P-a.s. that

Il,ρ,θ
x,s,v =

(
1, [σ(s,x)]∗

v−s ∫v
s

[
σ(r ,X l,ρ,θ

x,s,r )−1 Dl,ρ,θ
x,s,r

]∗
dW θ

r

)
. (10)

Note that ifX k,ρ,θ
x,s,· andDk,ρ,θ

x,s,· are piecewise constant then the stochastic integral on the right-
hand side of (10) reduces to a stochastic Riemann-type sumwhich is not difficult to compute.
Observe that our approximation scheme (9) employs Picard fixed-point approximations (cf.,
e.g., [7]),multilevel/multigrid techniques (see, e.g., [19,38,49,50]), discretizations of the SDE
system (7), as well as quadrature approximations for the time integrals. Roughly speaking,
the numerical approximations in (9) are full history recursive in the sense that for every
(k, ρ) ∈ N×(0,∞) the full historyU(·)

0,ρ ,U
(·)
1,ρ , . . . ,U

(·)
k−1,ρ needs to be computed recursively

in order to compute U(·)
k,ρ . In this sense the numerical approximations in (9) are full history

recursive multilevel Picard approximations.

2.5 Special Case: Semilinear Heat Equations

In this subsection we specialize the numerical scheme in (9) to the case of semilinear heat
equations.

Proposition 2.1 Assume the setting in Sect. 2.3, assume for all k ∈ N0, ρ ∈ (0,∞), θ ∈ �,
x ∈ Rd , s ∈ [0, T ), t ∈ [s, T ], u ∈ (s, T ] that η(x) = x, X k,ρ,θ

x,s,t = x + W θ
t − W θ

s ,

Dk,ρ,θ
x,s,t = σ(s, x) = IRd×d , Ik,ρ,θ

x,s,s = 0, Ik,ρ,θ
x,s,u = (1, W θ

u −W θ
s

u−s ), and for every θ ∈ �,

a ∈ [0, T ], b ∈ [a, T ] let �W θ
a,b : � → Rd be the function given by �W θ

a,b = W θ
b − W θ

a .

Then it holds for all θ ∈ �, k ∈ N, ρ ∈ (0,∞), s ∈ [0, T ), x ∈ Rd that

Uθ
k,ρ(s, x) = (

g(x), 0
) +

mg
k,0,ρ∑

i=1

1

mg
k,0,ρ

[
g
(
x + �W (θ,0,−i)

s,T

) − g(x)
](

1, 1
T −s �W (θ,0,−i)

s,T

)

+
k−1∑

l=0

m f
k,l,ρ∑

i=1

∑

t∈(s,T ]

qk,l,ρ
s (t)

m f
k,l,ρ

[
f
(
t, x + �W (θ,l,i)

s,t ,U(θ,l,i,t)
l,ρ (t, x + �W (θ,l,i)

s,t )
)

−1N(l) f
(
t, x + �W (θ,l,i)

s,t ,U(θ,−l,i,t)
[l−1]+,ρ

(t, x + �W (θ,l,i)
s,t )

)](
1, 1

t−s �W (θ,l,i)
s,t

)
.

(11)

The proof of Proposition 2.1 is clear and therefore omitted.
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2.6 Special Case: Geometric BrownianMotion

In this subsection we specialize the numerical scheme in (9) to the special case where the
forward diffusion is a geometric Brownian motion. Such PDEs often appear in the financial
engineering literature.

Proposition 2.2 Assume the setting in Sect. 2.3, let μ̄ ∈ R, σ̄ ∈ (0,∞), for every θ ∈ �,
a ∈ [0, T ], b ∈ [a, T ] let �W θ

a,b : � → Rd be the function given by �W θ
a,b = W θ

b −W θ
a , and

assume for all k ∈ N0, ρ ∈ (0,∞), θ ∈ �, x ∈ (0,∞)d , s ∈ [0, T ), t ∈ [s, T ], u ∈ (s, T ]
that η(x) = x, Dk,ρ,θ

x,s,t = exp((μ̄ − σ̄ 2

2 )(t − s)) exp(σ̄ diag(�W θ
s,t )), X k,ρ,θ

x,s,t = Dk,ρ,θ
x,s,t x ,

σ(s, x) = σ̄ diag(x), Ik,ρ,θ
x,s,s = 0, Ik,ρ,θ

x,s,u = (1, 1
u−s �W θ

s,u). Then it holds for all θ ∈ �,

k ∈ N , ρ ∈ (0,∞), s ∈ [0, T ), x ∈ (0,∞)d that

Uθ
k,ρ(s, x) = (

g(x), 0
) +

mg
k,0,ρ∑

i=1

1

mg
k,0,ρ

[
g
(X 0,ρ,(θ,0,−i)

x,s,T

) − g(x)
](

1, 1
T −s �W (θ,0,−i)

s,T

)

+
k−1∑

l=0

m f
k,l,ρ∑

i=1

∑

t∈(s,T ]

qk,l,ρ
s (t)

m f
k,l,ρ

[
f
(
t,X k−l,ρ,(θ,l,i)

x,s,t ,U(θ,l,i,t)
l,ρ (t,X k−l,ρ,(θ,l,i)

x,s,t )
)

−1N(l) f
(
t,X k−l,ρ,(θ,l,i)

x,s,t ,U(θ,−l,i,t)
[l−1]+,ρ

(t,X k−l,ρ,(θ,l,i)
x,s,t )

)](
1, 1

t−s �W (θ,l,i)
s,t

)
.

(12)

The proof of Proposition 2.2 is clear and therefore omitted. In the setting of Proposition 2.2
we note that for all k ∈ N, ρ ∈ (0,∞), θ ∈ �, x ∈ (0,∞)d , s ∈ [0, T ), t ∈ (s, T ] it holds
P-a.s. that

X k,ρ,θ
x,s,t = x +

∫ t

s
μ̄X k,ρ,θ

x,s,r dr +
∫ t

s
σ̄ diag(X k,ρ,θ

x,s,r ) dW θ
r ,

Dk,ρ,θ
x,s,t = IRd×d +

∫ t

s
μ̄Dk,ρ,θ

x,s,r dr +
∫ t

s
σ̄ diag(Dk,ρ,θ

x,s,r ) dW θ
r ,

Ik,ρ,θ
x,s,t =

(

1, [σ(s,x)]∗
t−s

∫ t

s

[
σ(r ,X k,ρ,θ

x,s,r )−1 Dk,ρ,θ
x,s,r

]∗
dW θ

r

)

.

(13)

3 Numerical Simulations of High-Dimensional Nonlinear PDEs

In this section we apply the algorithm in (9) to approximate the solutions of several nonlinear
PDEs; see Sects. 3.1–3.3 below. The solutions of the PDEs in Sects. 3.1–3.3 are not known
explicitly. In Sects. 3.1–3.3 the algorithm is tested for a one-dimensional and a one hundred-
dimensional version of a PDE. In the one-dimensional cases in Sects. 3.1–3.3 we present the
error of our algorithm relative to a high-precision approximation of the exact solution of the
PDE provided by a finite difference approximation scheme (see the left-hand sides of Figs. 1,
2, 3, and 4 and Tables 2, 4, and 6 below). In the one hundred-dimensional cases in Sects. 3.1–
3.3we present the approximation increments of our scheme to analyze the performance of our
scheme in the case of high-dimensional PDEs (see the right-hand sides of Figs. 1, 2, 3, and 4
and Tables 3, 5, and 7 below). Moreover, for each of the PDEs in Sects. 3.1–3.3 we illustrate
the growth of the computational effort with respect to the dimension by running the algorithm
for each PDE for every dimension d ∈ {5, 6, . . . , 100} and recording the associated runtimes
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(see Fig. 5). All simulations are performed with Matlab on a 2.8 GHz Intel i7 processor
with 16 GB RAM. All Matlab codes are provided in the “Appendix”.

Throughout this section assume the setting in Sect. 2.3, let x0 ∈ Rd , let u ∈ C1,2([0, T ]×
Rd ,R) be a function which satisfies for all t ∈ [0, T ), x ∈ Rd that u(T , x) = g(x) and

( ∂
∂t u)(t, x) + f

(
t, x, u(t, η(x)), [σ(t, η(x))]∗(∇x u)(t, η(x))

) + 〈μ(t, x), (∇x u)(t, x)〉
+ 1

2 Trace
(
σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)

) = 0, (14)

and assume for all θ ∈ �, ρ ∈ (0,∞), s ∈ [0, T ), x ∈ Rd that

Uθ
0,ρ(s, x) = (

g(x), 0
) +

mg
0,0,ρ∑

i=1

1

mg
0,0,ρ

[
g(X 0,ρ,(θ,0,−i)

x,s,T ) − g(x)
] I0,ρ,(θ,0,−i)

x,s,T . (15)

To obtain smoother results we average over 10 independent simulation runs. More precisely,
for the numerical results in Sects. 3.1–3.3, for every d ∈ {1, 100} we produce one realization
of

{1, 2, . . . , ρmax} × {1, 2, . . . , 10} � (ρ, i) �→ Ui
ρ,ρ(0, x0)

= (Ui,[1]
ρ,ρ (0, x0),Ui,[2]

ρ,ρ (0, x0), . . . ,Ui,[d+1]
ρ,ρ (0, x0)) ∈ Rd+1, (16)

where ρmax = 7 in Sects. 3.1, 3.2 and where ρmax = 5 in Sect. 3.3.
Figures 1–3 illustrate the empirical convergence of our scheme. In Figs. 1–3 the left-

hand side depicts for the settings of Sects. 3.1–3.3 in the one-dimensional case the relative
approximation errors

1
10

∑10
i=1 |Ui,[1]

ρ,ρ (0, x0) − v|
|v| (17)

against the average runtime needed to compute the realizations (Ui,[1]
ρ,ρ (0, x0))i∈{1,2,...,10}

for ρ ∈ {1, 2, . . . , ρmax}, where v ∈ R is the approximation obtained through the finite
difference approximation scheme. The right-hand side of the Figs. 1–3 depicts for the settings
of Sects. 3.1–3.3 in the one hundred-dimensional case the relative approximation increments

1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0, x0) − Ui,[1]
ρ,ρ (0, x0)|

1
10 |

∑10
i=1 U

i,[1]
ρmax,ρmax(0, x0)|

(18)

against the average runtime needed to compute the realizations (Ui,[1]
ρ,ρ (0, x0))i∈{1,2,...,10} for

ρ ∈ {1, 2, . . . , ρmax − 1}.
Tables 2–7 present several statistics for the simulations.

Figure 5 shows the growth of the runtime of our algorithm with respect to the dimension
for each of the example PDEs. More precisely, the panels on the left and in the middle of
Fig. 5 show for the settings in Sects. 3.1, 3.2 the runtime needed to compute one realization
of U1

6,6(0, x0) against the dimension d ∈ {5, 6, . . . , 100}. The panel on the right of Fig. 5
shows for the setting in Sect. 3.3 the average runtime needed to compute 20 realizations
of U1

4,4(0, x0) against the dimension d ∈ {5, 6, . . . , 100}. We average over 20 runs here to
obtain smoother results.

We remark that the theoretical results in [27] do not apply to the example PDEs of
Sects. 3.1–3.3 since these PDEs, besides other constraints, do not have both a globally Lips-
chitz continuous nonlinearity and a terminal conditionwith a bounded derivative. Under these
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and further regularity assumptions, [27, Corollary 3.14] proves that there exists a constant
C ∈ (0,∞) such that for all ρ ∈ N it holds that

sup
t∈[0,T ],x∈Rd

‖U0,[1]
ρ,ρ (t, x) − u(t, x)‖L2(P;R) ≤ C

[
(1 + 2L)eT

√
ρ

]ρ

, (19)

where L ∈ [0,∞) denotes the Lipschitz constant of the nonlinearity f .

3.1 Pricing with Counterparty Credit Risk

In this subsection we present a numerical simulation of a semilinear PDE that arises in the
valuation of derivative contracts with counterparty credit risk. The PDE is a special case of
the PDEs that are, e.g., derived in Henry-Labordère [53] and Burgard and Kjaer [13].

Throughout this subsection assume the setting in the beginning of Sect. 3, let σ̄ = 0.2,β =
0.03, K1 ∈ R, K2 ∈ (K1,∞), and assume for all s ∈ [0, T ], t ∈ [s, T ], x = (x1, . . . , xd) ∈
Rd , y ∈ R, z ∈ Rd , k ∈ N0, ρ ∈ N, θ ∈ � that η(x) = x ,μ(s, x) = 0, σ(s, x) = σ̄ diag(x),

x0 = (100, 100, . . . , 100) ∈ Rd , Dk,ρ,θ
x,s,t = exp(− σ̄ 2

2 (t − s)) exp
(
σ̄ diag(�W θ

s,t )
)
, X k,ρ,θ

x,s,t =
Dk,ρ,θ

x,s,t x , f (s, x, y, z) = β([y]+ − y), and

g(x) =
[

min
j∈{1,2,...,d} x j − K1

]+
−
[

min
j∈{1,2,...,d} x j − K2

]+
− K2 − K1

2
. (20)

Note that the solution u of the PDE (14) satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ Rd

that u(T , x) = min{max{min j∈{1,2,...,d} x j , K1}, K2} − K1+K2
2 and

( ∂
∂t u)(t, x) − β min{u(t, x), 0} + σ̄ 2

2

d∑

i=1

|xi |2
(

∂2

∂x2i
u
)
(t, x) = 0. (21)

We note that (21) is not the standard PDE associated with counterparty credit risk but a
transformed version hereof; cf., e.g., (3) and (5) in [53]. In (21) the function u models the
price of an European financial derivative with possibly negative payoff g at maturity T
whose buyer may default. The real number − er(T −t)u(t, x) ∈ R describes the value of the
financial derivative at time t ∈ [0, T ] in dependence on the prices x = (x1, . . . , xd) ∈ Rd

of the d ∈ N underlyings of the model given that no default has occurred before time t
where r is the interest rate. In the model the option payoff depends in the case of default
on the price of the derivative itself. The choice of the parameters is based on the choice of
the parameters in Henry-Labordère [53, Sect. 5.3]. As in [53, Sect. 5.3] we approximate the
solution of (21) for different time horizons T ∈ {2, 4, 6, 8, 10}. We choose the parameters
K1 ∈ R and K2 ∈ (K1,∞) in dependence on T and d as follows. For d = 1 and T = 2 we
choose K1 = 90 and K2 = 110 as in [53]. In this case it holds for all k ∈ N0, ρ ∈ N that

E

[

min
j∈{1,...,d}X

k,ρ,0
x0,0,T

( j)

]

= K1 + K2

2
and

P

(

min
j∈{1,...,d}X

k,ρ,0
x0,0,T

( j) ∈ [K1, K2]
)

≈ 0.27. (22)

In particular, these properties ensure that for all k ∈ N0, ρ ∈ N the random vari-
able g(X k,ρ,0

x0,0,T
) is not a linear function of X k,ρ,0

x0,0,T
. In all other cases d ∈ {1, 100} and

T ∈ {2, 4, 6, 8, 10} we choose K1 ∈ R and K2 ∈ (K1,∞) in a way so that (22) holds. The
values of K1 ∈ R and K2 ∈ (K1,∞) are presented in Table 1.
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The simulation results for the case d = 1 are presented in Table 2 and on the left-hand
side of Fig. 1. The simulation results for the case d = 100 are presented in Table 3 and on
the right-hand side of Fig. 1.

Figure 1 suggests for every d ∈ {1, 100} and every T ∈ {2, 4, 6, 8, 10} an empirical
convergence rate close to 1/3. Moreover, Fig. 1 indicates that the relative approximation
errors (in the case d = 1) and the relative approximation increments (in the case d = 100)
increase as the time horizon T increases. We presume that this effect can be explained by a
higher variance of the random variablesUθ

k,ρ(s, x) for θ ∈ �, k ∈ N, ρ ∈ (0,∞), s ∈ [0, T ),

x ∈ Rd as the time horizon T increases.

3.2 Pricing with Different Interest Rates for Borrowing and Lending

We consider a pricing problem of an European option in a financial market with different
interest rates for borrowing and lending. The model goes back to Bergman [9] and serves as a
standard example in the literature on numericalmethods forBSDEs (see, e.g., [7,8,12,22,41]).

Throughout this subsection assume the setting in the beginning of Sect. 3, let μ̄ = 0.06,
σ̄ = 0.2, Rl = 0.04, Rb ∈ (Rl ,∞), and assume for all s ∈ [0, T ], t ∈ [s, T ], x =
(x1, . . . , xd) ∈ Rd , y ∈ R, z = (z1, . . . , zd) ∈ Rd , k ∈ N0, ρ ∈ N, θ ∈ � that T = 0.5,
η(x) = x , μ(s, x) = μ̄x , σ(s, x) = σ̄ diag(x), x0 = (100, 100, . . . , 100) ∈ Rd , Dk,ρ,θ

x,s,t =
exp((μ̄ − σ̄ 2

2 )(t − s)) exp
(
σ̄ diag(�W θ

s,t )
)
, X k,ρ,θ

x,s,t = Dk,ρ,θ
x,s,t x , and

f (s, x, y, z) = −Rl y − (μ̄ − Rl)

σ̄

(
d∑

i=1

zi

)

+ (Rb − Rl)

[
1

σ̄

(
d∑

i=1

zi

)

− y

]+
. (23)

Note that the solution u of the PDE (14) satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ Rd

that u(T , x) = g(x) and

( ∂
∂t u)(t, x) + σ̄ 2

2

d∑

i=1

|xi |2
(

∂2

∂x2i
u
)
(t, x)

−min

{

Rb
(

u(t, x) −
d∑

i=1

xi
(

∂
∂xi

u
)
(t, x)

)

, Rl
(

u(t, x) −
d∑

i=1

xi
(

∂
∂xi

u
)
(t, x)

)}

= 0.

(24)

In (24) the function u models the price of an European financial derivative with payoff g at
maturity T in a financial market with a higher interest rate for borrowing than for lending.
The number u(t, x) ∈ R describes the price of the financial derivative at time t ∈ [0, T ] in
dependence on the prices x = (x1, . . . , xd) ∈ Rd of the d underlyings of the model.

In the case d = 1 we assume that for all x ∈ R it holds that g(x) = [x − 100]+. This
setting agrees with the setting in Gobet et al. [41, Sect. 6.3.1], where it is also noted that the
PDE (24) is actually linear. More precisely, in this case we have that u also satisfies (14) with
f : [0, T ] × R × R × R → R being replaced by f̄ : [0, T ] × R × R × R → R satisfying

for all t ∈ [0, T ], x, y, z ∈ R that f̄ (t, x, y, z) = −Rb y − (μ̄−Rb)
σ̄

z.
In the case d = 100 we assume that for all x = (x1, . . . , xd) ∈ Rd it holds that g(x) =

[maxi∈{1,...,100} xi − 120]+ − 2[maxi∈{1,...,100} xi − 150]+. This choice of g is based on the
choice of g in Bender et al. [8, Sect. 4.2]. We note that with this choice of g the solution u of
the PDE (24) does not solve the PDE (14) with f : [0, T ] × Rd × R × Rd → R replaced
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Fig. 1 Empirical convergence of the scheme in (12) for the pricing with counterparty credit risk exam-
ple in Sect. 3.1. Left: Relative approximation errors 1

10|v|
∑10

i=1 |Ui,[1]
ρ,ρ (0,x0)−v| against the average runtime

for ρ ∈ {1, 2, . . . , 7} and T ∈ {2, 4, 6, 8, 10} in the case d = 1. Right: Relative approximation incre-
ments

(
1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)/(
1
10 |∑10

i=1 U
i,[1]
7,7 (0,x0)|

)
against the average runtime for ρ ∈

{1, 2, . . . , 6} and T ∈ {2, 4, 6, 8, 10} in the case d = 100

by f̄ : [0, T ] × Rd × R × Rd → R satisfying for all t ∈ [0, T ], y ∈ R, x, z ∈ Rd that

f̄ (t, x, y, z) = −Rb y − (μ̄−Rb)
σ̄

∑d
i=1 zi .

For d ∈ {1, 100} and Rb ∈ {0.06, 0.07, 0.09, 0.1, 0.12, 0.15}we approximate the solution
of (24). The case d = 1, Rb = 0.06 agrees with the choice in Gobet et al. [41, Sect. 6.3.1].

The simulation results for the case d = 1 are presented in Table 4 and on the left-hand
side of Fig. 2. The left-hand side of Fig. 2 suggests in the case d = 1 for every Rb ∈
{0.06, 0.07, 0.09, 0.1, 0.12, 0.15} an empirical convergence rate close to 1/4. Moreover,
the left-hand side of Fig. 2 indicates that as Rb increases the relative approximation errors
increase. This observation is in accordancewith the theoretical results. Indeed, note that as Rb

increases the Lipschitz constant L of the nonlinearity f increases (see (23)). Moreover, the
theoretical results from [27] - although not applicable here - indicate that the approximation
error of our scheme grows as L increases (see (19)).

The simulation results for the case d = 100 are presented in Table 5 and on the right-
hand side of Fig. 2. The right-hand side of Fig. 2 suggests in the case d = 100 for every
Rb ∈ {0.06, 0.07} an empirical convergence rate close to 1/4. However, in the case d = 100
for every Rb ∈ {0.09, 0.1, 0.12, 0.15} the right-hand side of Fig. 2 does not indicate whether
the scheme converges. Although the theoretical results of [27] are not applicable in the case
of the PDE (24), we suspect that an error estimate similar to (19) also holds in the case of
the PDE (24). Larger values of Rb lead to a larger Lipschitz constant L of the nonlinearity
f . For every Rb ∈ {0.09, 0.1, 0.12, 0.15} we suspect that the Lipschitz constant L is so
large so that convergence of the scheme only becomes apparent for values of ρ larger than
7 (observe, e.g., that

( 0.5√
7

)7
< 10−5 whereas

( 4√
7

)7
> 18). We believe that this effect only

shows up in the case d = 100 since the nonlinearity f is gradient-dependent. Indeed, (23)
shows that the Lipschitz constant L of f depends on the dimension d . In particular, observe
that for every d ∈ N it holds that L = √

d is the minimal Lipschitz constant for the function
Rd � (z1, . . . , zd) �→ (

∑d
i=1 zi ) ∈ R with respect to the Euclidean norm on Rd and the

absolute value onR. In the case d = 1 the minimal Lipschitz constant L might thus even in
the case Rb ∈ {0.09, 0.1, 0.12, 0.15} be small enough so that convergence already becomes
apparent for ρ ∈ {1, 2, . . . , 7}, whereas the minimal Lipschitz constant L might be too large
to see convergence in the case d = 100.
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Fig. 2 Empirical convergence of the scheme (12) for the pricing with different interest rates example in
Sect. 3.2. Left: Relative approximation errors 1

10|v|
∑10

i=1 |Ui,[1]
ρ,ρ (0,x0)−v| against the average runtime for ρ ∈

{1, 2, . . . , 7} and Rb ∈ {0.06, 0.07, 0.09, 0.1, 0.12, 0.15} in the case d = 1. Right: Relative approximation
increments

(
1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)/(
1
10 |∑10

i=1 U
i,[1]
7,7 (0,x0)|

)
against the average runtime for

ρ ∈ {1, 2, . . . , 6} and Rb ∈ {0.06, 0.07, 0.09, 0.1, 0.12, 0.15} in the case d = 100

3.3 Allen–Cahn Equation

In this subsection we consider the Allen–Cahn equation with a double well potential.
Throughout this subsection assume the setting in the beginning of Sect. 3 and assume

for all s ∈ [0, T ], t ∈ [s, T ], x = (x1, . . . , xd) ∈ Rd , y ∈ R, z ∈ Rd , k ∈ N0, ρ ∈ N,
θ ∈ � that T = 1, η(x) = x , μ(s, x) = 0, σ(s, x) = IRd×d , x0 = (0, 0, . . . , 0) ∈ Rd ,
X k,ρ,θ

x,s,t = x + W θ
t − W θ

s , Dk,ρ,θ
x,s,t = IRd×d , f (s, x, y, z) = y − y3, C ∈ R, and g(x) =

C
1+max{|x1|2,...,|xd |2} . Note that the solution u of the PDE (14) satisfies for all t ∈ [0, T ),

x ∈ Rd that u(T , x) = C
1+max{|x1|2,...,|xd |2} and

( ∂
∂t u)(t, x) + u(t, x) − [

u(t, x)
]3 + 1

2

(
�x u

)
(t, x) = 0. (25)

We approximate the solution of (25) for different values of the constant C in the terminal
condition. In the case d = 1we chooseC ∈ {0.018, 0.18, 1, 1.8, 2.7} and in the case d = 100
we choose C ∈ {0.1, 1, 5.5, 10, 15}. Note that for every 100-dimensional standard Brownian
motion W = (W1, . . . ,W100) : [0, T ] × � → R100 it holds that

E

[
1

1 + max j∈{1,...,100}(W j
T )2

]

≈ 0.18 · E
[

1

1 + (W1
T )2

]

. (26)

To ensure that the expected terminal values E[g(WT )] are approximately of the same size in
the cases d = 1 and d = 100, we choose C ∈ {0.018, 0.18, 1, 1.8, 2.7} in the case d = 1
and C ∈ {0.1, 1, 5.5, 10, 15} in the case d = 100.

The simulation results in the case d = 1 are presented in Table 6 and on the left-hand sides
of Figs. 3 and 4. The simulation results for the case d = 100 are presented in Table 7 and on
the right-hand sides of Figs. 3 and 4. Figure 3 suggests in the case d = 1,C ∈ {0.018, 0.18, 1}
and in the case d = 100, C ∈ {0.1, 1, 5.5, 10} an empirical convergence rate of 1/4. In the
case d = 1, C = 1.8 there seems to be convergence but an empirical convergence rate
remains unclear. Figure 4 suggests that the algorithm diverges in the case d = 1, C = 2.7
and in the case d = 100, C = 15. Our explanation for this is a numerical instability due
to the time discretization and due to the superlinearly growing nonlinearity. More precisely,
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Table 6 Average runtime, empirical mean, empirical standard deviation, and relative approximation error in
the case d = 1 and C = 1 for the Allen–Cahn equation in Sect. 3.3

ρ 1 2 3 4 5

Average runtime in seconds 0.005 0.035 0.237 7.402 345.124

U
[1]
ρ,ρ(0, x0) = 1

10
∑10

i=1 U
i,[1]
ρ,ρ (0, x0) 1.027 0.866 0.918 0.894 0.897

√
1
9
∑10

i=1 |Ui,[1]
ρ,ρ (0, x0) − U

[1]
ρ,ρ(0, x0)|2 0.219 0.131 0.078 0.037 0.013

1
10

∑10
i=1

|Ui,[1]
ρ,ρ (0,x0)−v|

|v| 0.2462 0.1197 0.0691 0.0302 0.0124

The approximation by the finite difference approximation scheme in Matlab code 8 yields
v=approximateUfinitediffgbm(0,x0,2∧11) ≈ 0.905
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Fig. 3 Empirical convergence of the scheme (11) for the Allen–Cahn equation in Sect. 3.3. Left: Rel-
ative approximation errors 1

10|v|
∑10

i=1 |Ui,[1]
ρ,ρ (0,x0)−v| against the average runtime for ρ ∈ {1, 2, . . . , 5}

and C ∈ {0.018, 0.18, 1, 1.8} in the case d = 1. Right: Relative approximation increments(
1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)/(
1
10 |∑10

i=1 U
i,[1]
5,5 (0,x0)|

)
against the average runtime for ρ ∈

{1, 2, 3, 4} and C ∈ {0.1, 1, 5.5, 10} in the case d = 100

Theorem 2.1 in Hutzenthaler et al. [57] shows that absolute moments of the stochastic Euler
approximations of SDEs with superlinearly growing coefficients at a fixed time point diverge
to infinity. In addition, it has been conjectured in Conjecture 5.1 in Hutzenthaler et al. [59]
that the absolute value of non-adaptive multilevel Monte Carlo Euler approximations of
SDEs with superlinearly growing coefficients at a fixed time point diverge to infinity almost
surely. We cannot exclude that an analogous almost sure divergence holds for multilevel
Picard approximations of the Allen–Cahn equation (25) which has a super-linearly growing
nonlinearity. An indication that a super-linearly growing nonlinearity in combination with
time discretization might cause almost sure divergence is Lemma 1.1 in Lionnet et al. [65]
which shows that the L2-norms of explicit backward Euler discretizations of an Allen–Cahn-
type PDE at time point 1 diverge.

4 Discussion of ApproximationMethods from the Literature

In this section we aim to provide a rough overview on approximation methods for second-
order parabolic PDEs from the scientific literature. Deterministic approximation methods
for second-order parabolic PDEs are known to have exponentially growing computational
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Fig. 4 Empirical divergence of the scheme (11) for the Allen–Cahn equation in Sect. 3.3.
Left: Relative approximation errors 1

10|v|
∑10

i=1 |Ui,[1]
ρ,ρ (0,x0)−v| against the average runtime for ρ ∈

{1, 2, . . . , 5} and C = 2.7 in the case d = 1. Right: Relative approximation increments(
1
10

∑10
i=1 |Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)|

)/(
1
10 |∑10

i=1 U
i,[1]
5,5 (0,x0)|

)
against the average runtime for ρ ∈

{1, 2, 3, 4} and C = 15 in the case d = 100

Table 7 Average runtime, empirical mean, empirical standard deviation, and relative approximation incre-
ments in the case d = 100 and C = 5.5 for the Allen–Cahn equation in Sect. 3.3

ρ 1 2 3 4 5

Average runtime in seconds 0.003 0.028 0.259 8.686 407.143

U
[1]
ρ,ρ(0, x0) = 1

10
∑10

i=1 U
i,[1]
ρ,ρ (0, x0) 0.978 0.916 0.901 0.920 0.924

√
1
9
∑10

i=1 |Ui,[1]
ρ,ρ (0, x0) − U

[1]
ρ,ρ(0, x0)|2 0.225 0.111 0.063 0.027 0.008

1
10

∑10
i=1

∣
∣
∣Ui,[1]

ρ+1,ρ+1(0,x0)−Ui,[1]
ρ,ρ (0,x0)

∣
∣
∣

∣
∣
∣U

[1]
5,5(0,x0)

∣
∣
∣

0.1862 0.1203 0.0473 0.0260

effort in the PDE dimension. Since a program with 1080, say, floating point operations
will never terminate (on a non-quantum computer), deterministic approximation methods
such as finite elements methods, finite difference methods, spectral Galerkin approxi-
mation methods, or sparse grid methods are not suitable for solving high-dimensional
nonlinear second-order parabolic PDEs no matter what the convergence rate of the approx-
imation method is. For this reason we discuss only stochastic approximation methods for
nonlinear second-order parabolic PDEs. In the literature there exist many articles (see,
e.g., [3,4,7,10–12,14–16,21–24,26,36,39–41,43,44,53–55,62,64,65,69,78,79,84,86]), which
propose (possibly non-implementable) stochastic approximation methods for nonlinear
second-order parabolic PDEs. Some of these approximation methods (see, e.g., [4,10,69])
aim at approximating the solution at a single space-time point and some approximationmeth-
ods (see, e.g., [26,41,64]) approximate the solution at all space-time points which is, even in
the linear case, computationally expensive; cf., e.g., Theorem 3.2 in Györfi et al. [48]. Except
for [14,53–55,62] all of these approximation methods exploit a stochastic representation
with BSDEs due to Pardoux and Peng [73]. Moreover, except for [12,14,36,39,53–55,62]
all of these approximation methods can be described in two steps. In the first step, time in
the corresponding BSDE is discretized backwards in time via an explicit or implicit Euler-
type method which was investigated in detail, e.g., in Bouchard and Touzi [10] and Zhang
[86]. The resulting approximations involve nested conditional expectations and are, there-
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fore, not implementable. In the second step, these conditional expectations are approximated
by ‘straight-forward’ Monte Carlo simulations, by the quantization tree method (proposed
in [4]), by a regression method based on kernel-estimation or Malliavin calculus (proposed
in [10]), by projections on function spaces (proposed in [41]), or by the cubature method
on Wiener space (developed in [68] and proposed in [22]). The first step does not cause
problems in high dimensions in the sense that the backward (explicit or implicit) Euler-type
approximations converge under suitable assumptions with rate at least 1/2 (see Theorem 5.3
in Zhang [86] and Theorem 3.1 in Bouchard and Touzi [10] for the backward implicit Euler-
type method) and the computational effort (assuming the conditional expectations are known
exactly) grows at most linearly in the dimension for fixed accuracy. For this reason, we dis-
cuss below in detail only the different approximation methods for discretizing conditional
expectations. In addition, we discuss the Wiener chaos decomposition method proposed in
[12,36], the branching diffusion method proposed in [53–55], and approximation methods
based on density estimation proposed in [14,62].

A difficulty in our discussion below is that the discussed algorithms (except for the
branching diffusion method) depend on different parameters and the optimal choice of these
parameters is typically unknown since no lower estimates for the approximation errors are
known. For this reason we will choose parameters which are optimal with respect to the best
known upper error bound. For these parameter choices we will show below for the discussed
algorithms (except for the branching diffusion method) that the computational effort fails to
grow at most polynomially both in the dimension and in the reciprocal of the best known
upper error bound.

Throughout this section assume the setting in Sect. 2.3, let u∞ ∈ C1,2([0, T ]×Rd ,R) be
a function which satisfies (14) and let Y : [0, T ] × � → R be the stochastic process which
satisfies for all t ∈ [0, T ] that Yt = u∞(t, W 0

t ).

4.1 The ‘Straight-Forward’Monte Carlo Method

The ‘straight-forward’ Monte Carlo method approximates the conditional expectations
involved in backward Euler-type approximations by Monte Carlo simulations. The resulting
nesting of Monte Carlo averages is computational expensive in the following sense. If for a
finite and non-empty set π ⊆ [0, T ]with |π | ∈ Nmany elements and for M ∈ N the random
variable Yπ,M : π × � → R is the ‘straight-forward’ Monte Carlo approximation of Y with
time grid π and M Monte Carlo averages for each involved conditional expectation, then the
number of realizations of scalar standard normal random variables required to compute one
realization of Yπ,M is (Md)|π | and the L2(P;R)-error satisfies for a suitable constant c ∈ R

independent of π and N that

max
t∈π

‖Yt − Yπ,M
t ‖L2(P;R) ≤ c

(
|π |− 1

2 + |π |M−1/2
)

(27)

(see, e.g., Crisan and Manolarakis [21, Theorem 4.3 and (4.14)]). Thus the computational

effort (Md)
( 1

|π |−1/2 )2 ≥ (Md)
( c

c|π |−1/2+c|π |M−1/2 )2

grows at least exponentially in the reciprocal
of the right-hand side of (27). This suggests an at most logarithmic convergence rate of the
‘straight-forward’ Monte Carlo method. We are not aware of a statement in the literature
claiming that the ‘straight-forward’ Monte Carlo method has a polynomial convergence rate.
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4.2 The Quantization TreeMethod

The quantization tree method has been introduced in Bally and Pagès [3,4]. In the proposed
algorithm, time is discretized by the explicit backward Euler-type method. Moreover, one
chooses a space-time grid and computes the transition probabilities for the underlying for-
ward diffusion projected to this grid by Monte Carlo simulation. With these discrete-space
transition probabilities one can then approximate all involved conditional expectations. If
for a finite and non-empty set π ⊆ [0, T ] with |π | ∈ N many elements and for N ∈ N the
random variable Yπ,N : π × � → R is the quantization tree approximation of Y with time
grid π , a specific space grid with a total number of N nodes and explicitly known transition
probabilities of the forward diffusion and if the coefficients are sufficiently regular, then the
number of realizations of scalar standard normal random variables required to compute one
realization of Yπ,N is at least Nd|π | and (6) in Bally and Pagès [3] shows for optimal grids
and a constant c ∈ R independent of π and N that

max
t∈π

‖Yt − Yπ,N
t ‖L2(P;R) ≤ c

(
1

|π | + |π |1+1/d

N 1/d

)

. (28)

To ensure that this upper bound does not explode as |π | → ∞ it is thus necessary to choose
a space-time grid with at least N = |π |d+1 many nodes when there are |π | ∈ N many time
steps. With this choice the computational effort of this algorithm grows exponentially fast
in the dimension. We have not found a statement in the literature on the quantization tree
method claiming that there exists a choice of parameters such that the computational effort
grows at most polynomially both in the dimension and in the reciprocal of the prescribed
accuracy.

4.3 TheMalliavin Calculus Based RegressionMethod

The Malliavin calculus based regression method has been introduced in Sect. 6 in Bouchard
and Touzi [10] and is based on the implicit backward Euler-type method. The algorithm
involves iterated Skorohod integrals which by (3.2) in Crisan et al. [24] can be numerically
computed with 2d many independent standard normally distributed random variables. In that
case the computational effort grows exponentially fast in the dimension. We are not aware of
an approximation method of the involved iterated Skorohod integrals whose computational
effort does not grow exponentially fast in the dimension. Example 4.1 in Bouchard and Touzi
[10] also mentions an approximation method for approximating all involved conditional
expectations using kernel estimation. For this approximation method we have not found an
upper error estimate in the literature so that we do not known how to choose the bandwidth
matrix of the kernel estimation given the number of time grid points.

4.4 The Projection on Function Spaces Method

The projection on function spaces method has been proposed in Gobet et al. [41]. The
algorithm is based on estimating the involved conditional expectations by considering the
projections of the random variables on a finite-dimensional function space and then esti-
mating these projections by Monte Carlo simulation. In general the projection error and the
computational effort depend on the choice of the basis functions. In the literature we have
found the following three choices of basis functions. In Gobet et al. [41] (see also Gobet
and Lemor [40] and Lemor et al. [64]) indicator functions of hypercubes are employed as
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basis functions. In this case there exists c ∈ R such that a projection error ε ∈ (0,∞)

can be achieved by simulating �cε−(3+2d)| log(ε)|� paths of the forward diffusion. With this
choice, the computational effort of the algorithm grows exponentially fast in the dimension
for fixed accuracy ε ∈ (0, 1). Gobet and Turkedjiev [44] use local polynomials on disjoint
hypercubes as basis functions in order to exploit regularity of solution. With this choice,
there exists c ∈ (0,∞) such that for fixed accuracy ε ∈ (0, 1) the computational effort of

the algorithm is at least cε−1− d
2κ+2η (log(1 + 1

ε
))d where κ ∈ N and η ∈ (0, 1] are such

that the true solution u∞ is uniformly bounded and κ + 1-continuously space-differentiable
with bounded derivatives and the κ + 1-th derivatives are uniformly η-Hölder continuous in
space; see Sect. 4.4 in [43] for details. Also Gobet and Turkedjiev [43] use local polynomials
on disjoint hypercubes and the same lower bound holds for the computational complexity.
Ruijter and Oosterlee [78] use certain cosine functions as basis functions and motivate this
with a Fourier cosine series expansion. The resulting approximation method has only been
specified in a one-dimensional setting so that the computational effort in a high-dimensional
setting remained unclear. We have not found a statement in the literature on the projection
on function spaces method claiming that there exists a choice of function spaces and other
algorithm parameters such that the computational effort of the approximation method grows
at most polynomially both in the dimension of the PDE and in the reciprocal of the prescribed
accuracy.

4.5 The Cubature onWiener Space Method

The cubature on Wiener space method for approximating solutions of PDEs has been intro-
duced in Crisan and Manolarakis [22]. This approximation method combines the implicit
backward Euler-type scheme with the cubature method developed in Lyons and Victoir [68]
for constructing finitely supported measures that approximate the distribution of the solution
of a stochastic differential equation. This approximation method has a parameter m ∈ N

and constructs for every finite time grid π ⊆ [0, T ] (with |π | ∈ N points) a sequence
w1, . . . , w(Nm,d )|π | ∈ C0([0, 1],Rd) of paths with bounded variation where Nm,d ∈ N is
the number of nodes needed for a cubature formula of degree m with respect to the d-
dimensional Gaussian measure. We note that this construction is independent of f and g and
can be computed once and then tabularized. Using these paths, Corollary 4.2 in Crisan and
Manolarakis [22] shows in the case m ≥ 3 that there exists a constant c ∈ [0,∞), a sequence
πn ⊆ [0, T ], n ∈ N, of finite time grids and there exist implementable approximations
Yπn : πn × � → R, n ∈ N, of the exact solution Y such that for all n ∈ N it holds that
0 ∈ πn , πn has n + 1 elements and

‖Y0 − Yπn
0 ‖L2(P;R) ≤ c

n . (29)

In this form of the algorithm, the computational effort for calculating Yπn , which is at
least the number (Nm,d)n of paths to be used, grows exponentially in the reciprocal of the
right-hand side of (29). To avoid this exponential growth of the computational effort in the
number of cubature paths, Crisan and Manolarakis [22] specify two methods (a tree based
branching algorithm of Crisan and Lyons [20] and the recombination method of Litterer and
Lyons [66]) which reduce the number of nodes and which result in approximations which
converge with polynomial rate; cf. Theorem 5.4 in [22]. The constant in the upper error
estimate in Theorem 5.4 in [22] may depend on the dimension (cf. also (5.16) and the proof
of Lemma 3.1 in [22]). Simulations in the literature on the cubature method were performed
in dimension 1 (see Figs. 1–4 in [22] and Fig. 1 in [23]) or dimension 5 (see Figs. 5–6 in
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[22]). To the best of our knowledge, there exist no statement in the literature on the cubature
method which asserts that the computational effort of the cubature method together with a
suitable complexity reduction method grows at most polynomially both in the dimension of
the PDE and in the reciprocal of the prescribed accuracy.

4.6 TheWiener Chaos DecompositionMethod

The Wiener chaos decomposition method has been introduced in Briand and Labart [12]
and has been extended to the case of BSDEs with jumps in Geiss and Labart [36]. The
algorithm is based on Picard iterations of the associated BSDE and evaluates the involved
nested conditional expectations usingWiener chaos decomposition formulas. This algorithm
does not need to discretize time sinceWiener integrals over integrands with explicitly known
antiderivative can be simulated exactly. The computational complexity of approximating the
solution of a BSDE of dimension d using a Wiener chaos decomposition of order p ∈ N,
K ∈ N Picard iterations, M ∈ NMonte Carlo samples for each conditional expectation, and
N ∈ Nmany time steps can be estimated by O(K × M × p × (N × d)p+1); see Sect. 3.2.2
in Briand and Labart [12]. To ensure that the approximation error converges to 0, the order p
of the chaos decomposition has to increase to ∞. This implies that the computational effort
fails to grow at most polynomially both in the dimension of the PDE and in the reciprocal
of the prescribed accuracy. We are not aware of a result in the literature that establishes
a polynomial rate of convergence for the Wiener chaos decomposition method (see, e.g.,
Remark 4.8 in Briand and Labart [12]).

4.7 The Branching DiffusionMethod

The branching diffusion method has been proposed in Henry-Labordère [53]; see also the
extensions to the non-Markovian case in Henry-Labordère et al. [55] and to nonlinearities
depending on derivatives in Henry-Labordère et al. [54]. This method approximates the
nonlinearity f by polynomials and then exploits that the solution of a semilinear PDE with
polynomial nonlinearity (KPP-type equations) can be represented as an expectation of a
functional of a branching diffusion process due to Skorohod [80]. This expectation can
then be numerically approximated with the standard Monte Carlo method and pathwise
approximations of the branching diffusion process. The branching diffusion method does
not suffer from the ‘curse of dimensionality by construction’ and works in all dimensions.
Its convergence rate is 0.5 if the forward diffusion can be simulated exactly and, in general,
its rate is 0.5− using a pathwise approximation of the forward diffusion and the multilevel
Monte Carlo method proposed in Giles [37].

The major drawback of the branching diffusion method is its insufficient applicability.
This approximation method replaces potentially ‘nice’ nonlinearities by potentially ‘non-
nice’ polynomials. Semilinear PDEs with certain polynomial nonlinearities, however, can
‘blow up’ in finite time; see, e.g., Fujita [33], Escobedo and Herrero [30] for analytical
proofs and see, e.g., Nagasawa and Sirao [72] and Lopez-Mimbela and Wakolbinger [67]
for probabilistic proofs. If the approximating polynomial nonlinearity, the time horizon, and
the terminal condition satisfy a certain condition, then the PDE does not ‘blow up’ until
time T and the branching diffusion method is known to work well. More specifically, if
there exist β ∈ (0,∞) and functions ak : [0, T ] × Rd → R, k ∈ N0, such that for all
t ∈ [0, T ], x ∈ Rd , y ∈ R, z ∈ Rd it holds that f (t, x, y, z) = β[∑∞

k=0 ak(t, x)yk]−β y, if
the functions μ and σ are bounded, continuous and Lipschitz in the second argument, and if

123



1560 Journal of Scientific Computing (2019) 79:1534–1571

∀ x ∈ Rd : η(x) = x , then Theorem 2.13 in Henry-Labordère et al. [55] (see also Proposition
4.2 in Henry-Labordère [53] or Theorem 3.12 in Henry-Labordère et al. [54]) shows that a
sufficient condition for a stochastic representation with a branching diffusion to hold is that

∫ ∞

supx∈R d |g(x)|
1

β max
{
0,(

∑∞
k=0[supt∈[0,T ],x∈R d |ak (t,x)|]yk )−y

} dy > T . (30)

For the branching diffusion method to converge with rate 0.5 the random variables in the
stochastic representation need to have finite secondmomentswhich leads to amore restrictive
condition than (30); see Remark 2.14 in [55]. However, condition (30) is also necessary for
the stochastic representation in [55] to hold if the functions g and ak , k ∈ N0, are constant
and strictly positive and if μ and σ are constant (then the PDE (14) reduces to an ODE for
which the ‘blow-up’-behavior is well-known); see, e.g., Lemma 2.5 in [55].

The branching diffusion method also seems to have difficulties with polynomial nonlin-
earities where the exact solution does not ‘blow up’ in finite time. Since no theoretical results
are available in this direction, we illustrate this with simulations for an Allen–Cahn equation
(a simplified version of the Ginzburg-Landau equation). More precisely, for the rest of this
subsection assume that T , μ, σ , f , and g satisfy for all t ∈ [0, T ], x ∈ Rd , y ∈ R, z ∈ Rd

that T = 1, μ(x) = μ(0), σ(x) = σ(0), f (t, x, y, z) = y − y3, and g(x) = g(0) ≥ 0.
Then (14) is an ODE and the solution u∞ satisfies for all t ∈ [0, T ], x ∈ Rd that

u∞(t, x) = 1
√
1 − (1 − (g(0))−2)e2t−2

. (31)

In this situation the sufficient condition (30) (choose for all t ∈ [0, T ], x ∈ Rd , k ∈ N0\{1, 3}
that β = 1, a1(t, x) = 2, a3(t, x) = −1, and ak(t, x) = 0) from Theorem 2.13 in [55] is
equivalent to

1 <

∫ ∞

|g(0)|
1

y+y3
dy = [

ln(y) − 1
2 ln(1 + y2)

]y=∞
y=|g(0)| = 1

2

[
ln
(
1 + 1

|g(0)|2
)]

(32)

which is equivalent to |g(0)| < (e2 − 1)− 1
2 = 0.395623 . . . We simulated the branch-

ing diffusion approximations of u∞(0, 0) for different values of g(0). Each approximation
is an average over M = 105 independent copies (	 i

0,0)i∈{1,2,...,105} of the random vari-
able 	0,0 defined in (2.12) in Henry-Labordère et al. [55] where we choose for all
k ∈ N0 that pk = 0.51{1,3}(k). We also report the estimated standard deviation
(
10−5∑105

i=1(	
i
0,0)

2 − [
10−5∑105

i=1 	 i
0,0

]2)
/
√
105 of the branching diffusion approximation

10−5∑105
i=1 	 i

0,0. Table 8 shows that the branching diffusion approximations of u∞(0, 0)
become poor as g(0) increases from 0.1 to 0.7. Thus the branching diffusion method fails to
produce good approximations for u∞(0, 0) in our example as soon as condition (30) is not
satisfied.

A further minor drawback of the branching diffusion method is that it requires a suitable
approximation of the nonlinearity with polynomials and this might not be available. In par-
ticular, certain functions (e.g., the function R � x �→ max{0, x} ∈ R) can only be well
approximated by polynomials on finite intervals so that choosing suitable approximating
polynomials might require appropriate a priori bounds on the exact solution of the PDE.
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Table 8 Approximation of the PDE ∂
∂t u + 1

2�x u + u − u3 = 0 with terminal condition u(1, ·) = g(0) for
t ∈ [0, 1], x ∈ R provided by the branching diffusion method from Theorem 2.13 in Henry-Labordère et
al. [55]

g(0) Exact value u∞(0, 0) Approximation Estimated standard deviation

0.1 0.263540 0.271007 0.0169791

0.2 0.485183 0.499103 0.0361975

0.3 0.649791 0.848879 0.2211004

0.4 0.764605 3.495457 2.8179089

0.5 0.843347 21.68436 20.978325

0.6 0.897811 136.6667 110.02696

0.7 0.936233 7321.326 5404.5849

4.8 Approximations Based on Density Representations

Recently two approximation methods were proposed in Chang et al. [14] and Le Cavil et
al. [62]. Both approximationmethods are based on a stochastic representationwith aMcKean-
Vlasov-type SDE where u∞ is the density of a certain measure. As a consequence both
approximation methods proposed in [14,62] encounter the difficulty of density estimation in
high dimensions. More precisely, if ūε,N ,n is the approximation of u∞ defined in (5.33) in
[62] with a uniform time grid with n ∈ N time points, N ∈ N Monte Carlo averages, and
bandwidth matrix ε IRd×d where ε ∈ (0, 1], then arguments in the proof of [62, Theorem
5.6] and arguments in the proof of [62, Corollary 5.4] imply under suitable assumptions the
existence of a function c : (0, 1] → (0,∞) and real numbers C, C̄ ∈ (0,∞) (which are
independent of n, N , and ε) such that

sup
t∈[0,T ]

E

[∫

Rd

∣
∣
∣ūε,N ,n(t, x) − u∞(t, x)

∣
∣
∣ dx +

∫

Rd

∣
∣
∣(∇x (ū

ε,N ,n − u∞))(t, x)

∣
∣
∣ dx

]

≤ cε +
[

C̄
εd+3√n

+ C√
εd+4N

]
exp

(
C

εd+1

)
. (33)

This upper bound becomes only small if we choose the bandwidth ε small and if n and N
grow exponentially in the dimension. The upper bounds established in [14] are less explicit
in the dimension. However, the estimates in the proofs in [14] suggest that the number of
initial particles in branching particle system approximations defined on pages 30 and 18 in
[14] need to grow exponentially in the dimension.

4.9 Summary

Finally, we summarize the discussion in this section. It seems that all approximation methods
from the scientific literature which discretize space or which approximate the full solution of
the considered PDE suffer from the curse of dimensionality in the case of a general PDE. The
straight-forwardMonte-Carlo method is also no solution to the approximation problem since
its computational effort grows exponentially in the reciprocal of the prescribed accuracy.
An approximation method which does not suffer from the curse of dimensionality is the
branching diffusion method in the case that the terminal condition, the nonlinearity, or the
time horizon is sufficiently small. In addition, the simulations in Sect. 3 indicate that the
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multilevel Picard approximations do not suffer from the curse of dimensionality if LT is not
large where L is the Lipschitz constant of the nonlinearity and where T is the time horizon.
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Appendix

Here we provide the Matlab codes needed to approximate the solutions of the example
PDEs from Sect. 3. Throughout this section assume the setting in Sect. 2.3.

Matlab code 1 below produces one realization of

{1, 2, . . . , 7} × {1, 2, . . . , 5} � (ρ, i) �→ Ui
ρ,ρ(0, x0)

= (Ui,[1]
ρ,ρ (0, x0),Ui,[2]

ρ,ρ (0, x0), . . . ,Ui,[d+1]
ρ,ρ (0, x0)) ∈ Rd+1. (34)

For the numerical results in Sects. 3.1, 3.2, for every d ∈ {1, 100} we run Matlab code 1
twice where, in the second run, line 2 ofMatlab code 1 is replaced by rng(2017) to initi-
ate the pseudorandom number generator with a different seed. This way we obtain in total 10
independent simulation runs. Moreover, for the numerical results in Sects. 3.3, we runMat-
lab code 1 once, where lines 4, 5, and 14 are replaced byaverage=10;,rhomax=5;, and
[a,b]=approximateUZabm(n(rho),rho,zeros(dim,1),0);, respectively.

1 global Mf Mg Q c w T dim f g mu sigma eta;
2 rng(2016)
3 format long
4 average=5;
5 rhomax=7;
6 rhomin=1;
7 [T,dim,f,g,eta,mu,sigma]=modelparameters();
8 [Mf,Mg,Q,c,w,n] = approxparameters(rhomax);
9 value=zeros(average,rhomax);
10 time=value;
11 for rho=rhomin:rhomax
12 for k=1:average
13 tic
14 [a, b]=approximateUZgbm(n(rho),rho,100∗ones(dim,1),0);
15 value(k,rho)=a;
16 time(k,rho)=toc;
17 end
18 end
19 name = [datestr(now, ’yymmddTHHMMSS’) ’.mat’];
20 save(name,’n’,’Q’,’Mf’,’Mg’,’value’,’time’);

Matlab code 1 A Matlab code to perform a testrun.

Matlab code 1 calls the Matlab functions approximateUZgbm (respectively
approximateUZabm), modelparameters, and approxparameters. The Mat-
lab functionsapproximateUZgbm andapproximateUZabm are presented inMatlab
codes 2 and 3 and implement the schemes (12) and (11), respectively. More precisely,
up to rounding errors and the fact that random numbers are replaced by pseudo ran-
dom numbers, it holds for all θ ∈ �, n ∈ N0, ρ ∈ N, x ∈ Rd , s ∈ [0, T ) that
approximateUZgbm(n, ρ, x, s) returns one realization of Uθ

n,ρ(s, x) satisfying (12).
Moreover, up to rounding errors and the fact that random numbers are replaced by pseudo
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random numbers, it holds for all θ ∈ �, n ∈ N0, ρ ∈ N, x ∈ Rd , s ∈ [0, T ) that
approximateUZabm(n, ρ, x, s) returns one realization of Uθ

n,ρ(s, x) satisfying (11).

1 function [u, z] = approximateUZgbm(n,rho,x,s)
2 global Mf Mg Q c w T dim f g mu sigma;
3 cloc=(T−s)∗c/T+s;
4 wloc=(T−s)∗w/T;
5 MC=Mg(rho,n+1);
6 W=sqrt(T−s)∗randn(dim,MC);
7 X=repmat(x,1,MC).∗exp((mu−sigma^2/2)∗(T−s)+sigma∗W);
8 xi=g(X);
9 u=sum(xi,2)/MC;
10 z=sum(repmat(xi−g(x)∗ones(1,MC),dim,1).∗W,2)./(MC∗(T−s));
11 for l=0:(n−1)
12 q=Q(rho,n−l);
13 d=cloc(1:q,q)−[s;cloc(1:(q−1),q)];
14 MC=Mf(rho,n−l);
15 X=repmat(x,1,MC);
16 W=zeros(dim,MC);
17 for k=1:q
18 dW=sqrt(d(k))∗randn(dim,MC);
19 W=W+dW;
20 X=X.∗exp((mu−sigma^2/2)∗d(k)+sigma∗dW);
21 [U, Z]=cellfun(@approximateUZgbm, num2cell(l∗ones(1,MC)), num2cell(rho∗ones(1,MC)),...
22 num2cell(X,1), num2cell(cloc(k,q)∗ones(1,MC)),’UniformOutput’,false);
23 y=f(cloc(k,q),X,cell2mat(U),cell2mat(Z));
24 u=u+wloc(k,q)∗sum(y)/MC;
25 z=z+wloc(k,q).∗sum(repmat(y,dim,1).∗W,2)./(MC∗(cloc(k,q)−s));
26 if l>0
27 [U, Z]=cellfun(@approximateUZgbm, num2cell((l−1)∗ones(1,MC)), num2cell(rho∗ones(1,MC)),...
28 num2cell(X,1), num2cell(cloc(k,q)∗ones(1,MC)),’UniformOutput’,false);
29 y=f(cloc(k,q),X,cell2mat(U),cell2mat(Z));
30 u=u−wloc(k,q)∗sum(y)/MC;
31 z=z−wloc(k,q).∗sum(repmat(y,dim,1).∗W,2)./(MC∗(cloc(k,q)−s));
32 end
33 end
34 end
35 end

Matlab code 2 A Matlab function with input θ ∈ �, n ∈ N0, ρ ∈ N, x ∈ R
d , t ∈ [0, T ) and output one

realization of Uθ
n,ρ (t, x) satisfying (12).

1 function [u, z] = approximateUZabm(n,rho,x,s)
2 global Mf Mg Q c w T dim f g mu sigma;
3 cloc=(T−s)∗c/T+s;
4 wloc=(T−s)∗w/T;
5 MC=Mg(rho,n+1);
6 W=sqrt(T−s)∗randn(dim,MC);
7 X=repmat(x,1,MC)+mu∗(T−s)+sigma∗W;
8 xi=g(X);
9 u=sum(xi,2)/MC;
10 z=sum(repmat(xi−g(x)∗ones(1,MC),dim,1).∗W,2)/(MC∗(T−s));
11 for l=0:(n−1)
12 q=Q(rho,n−l);
13 d=cloc(1:q,q)−[s;cloc(1:(q−1),q)];
14 MC=Mf(rho,n−l);
15 X=repmat(x,1,MC);
16 W=zeros(dim,MC);
17 for k=1:q
18 dW=sqrt(d(k))∗randn(dim,MC);
19 W=W+dW;
20 X=X+mu∗d(k)+sigma∗dW;
21 [U, Z]=cellfun(@approximateUZabm, num2cell(l∗ones(1,MC)), num2cell(rho∗ones(1,MC)),...
22 num2cell(X,1), num2cell(cloc(k,q)∗ones(1,MC)),’UniformOutput’,false);
23 y=f(cloc(k,q),X,cell2mat(U),cell2mat(Z));
24 u=u+wloc(k,q)∗sum(y)/MC;
25 z=z+wloc(k,q).∗sum(repmat(y,dim,1).∗W,2)./(MC∗(cloc(k,q)−s));
26 if l>0
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27 [U, Z]=cellfun(@approximateUZabm, num2cell((l−1)∗ones(1,MC)), num2cell(rho∗ones(1,MC)),...
28 num2cell(X,1), num2cell(cloc(k,q)∗ones(1,MC)),’UniformOutput’,false);
29 y=f(cloc(k,q),X,cell2mat(U),cell2mat(Z));
30 u=u−wloc(k,q)∗sum(y)/MC;
31 z=z−wloc(k,q).∗sum(repmat(y,dim,1).∗W,2)./(MC∗(cloc(k,q)−s));
32 end
33 end
34 end
35 end

Matlab code 3 A Matlab function with input θ ∈ �, n ∈ N0, ρ ∈ N, x ∈ R
d , t ∈ [0, T ) and output one

realization of Uθ
n,ρ (t, x) satisfying (11).

The Matlab function modelparameters called in line 7 of Matlab code 1 returns
the parameters T ∈ (0,∞), d ∈ N, f : [0, T ] × Rd × R × Rd → R, g : Rd → R,
η : Rd → R, μ̄ ∈ R, and σ̄ ∈ R for each example considered in Sects. 3.1–3.3. Matlab
code 4 presents the implementation for the setting in Sect. 3.1 in the case d = 100 and
T = 2.

1 function [T,dim,f,g,eta,mu,sigma] = modelparameters()
2 T=2;
3 dim=100;
4 sigma=0.2;
5 mu=0;
6 beta=0.03;
7 f = @(t,x,y,z) beta∗(subplus(y)−y);
8 K1=45.6789;
9 K2=49.5468;
10 L = (K2−K1)/2;
11 g = @(x) subplus(min(x,[],1)−K1)−subplus(min(x,[],1)−K2)−L;
12 eta=@(x) x;
13 end

Matlab code 4 AMatlab function that returns the parameter values for the pricing with counterparty credit
risk example of Sect. 3.1.

The Matlab function approxparameters called in line 8 of Matlab code 1 pro-
vides for every example considered in Sects. 3.1, 3.2 (respectively Sect. 3.3) and every
ρ ∈ {1, 2, . . . , 7} (respectively ρ ∈ {1, 2, . . . , 5}) the numbers of Monte-Carlo samples
(mg

k,l,ρ)k,l∈N0 and (m f
k,l,ρ)k,l∈N0 and the quadrature formulas (qk,l,ρ

s )k,l∈N0,s∈[0,T ). More

precisely, we assume for every s ∈ [0, T ], k, l ∈ N0, ρ ∈ N with k ≥ l that qk,l,ρ
s is

the Gauss–Legendre quadrature formula on (s, T ) with round(ϕ(ρ(k−l)/2)) nodes, where
ϕ : [1,∞) → [2,∞) is the approximation of the inverse gamma function provided by
Matlab code 6. To compute the Gauss–Legendre nodes and weights we use the Matlab
function lgwt that was written by Greg von Winckel and that can be downloaded from
www.mathworks.com. In addition, for every k, l ∈ N0, ρ ∈ N we choose in Sects. 3.1,
3.2 that m f

k,l,ρ = round(ρ(k−l)/2) and mg
k,l,ρ = ρk−l and in Sect. 3.3 that m f

k,l,ρ = ρk−l

and mg
k,l,ρ = ρk−l . For the numerical results in Sects. 3.1, 3.2 Matlab code 5 presents the

implementation of approxparameters. For the numerical results in Sect. 3.3 line 10 in
Matlab code 5 is replaced byMf(rho,k)=rho∧k;. The reason for choosing in Sects. 3.1,
3.2 fewerMonte-Carlo samples (m f

k,l,ρ)k,l∈N0,ρ∈N than in Sect. 3.3 is that in the former cases

for every s ∈ [0, T ) the variance Var( f (s, X0,x0
s ,E[g(Xs,x

T )(1, WT −Ws
T −s )]∣∣

x=X
0,x0
s

)) of the

nonlinearity is of smaller magnitude than the variance Var(g(X0,x0
T )) of the terminal condi-
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tion. Therefore, the nonlinearity requires fewerMonte-Carlo samples to obtain aMonte-Carlo
error of the same magnitude as the terminal condition. Averaging the nonlinearity less saves
computational effort and allows to employ a higher maximal number of Picard iterations (7
in Sects. 3.1, 3.2 compared to 5 in Sect. 3.3).

1 function [Mf,Mg,Q,c,w,n] = approxparameters(rhomax)
2 global T;
3 n=1:1:rhomax;
4 Q=zeros(rhomax);
5 Mf=Q;
6 Mg=zeros(rhomax,rhomax+1);
7 for rho=1:rhomax
8 for k=1:n(rho)
9 Q(rho,k)=round(inverse_gamma(rho^(k/2)));
10 Mf(rho,k)=round((rho)^((k)/2));
11 Mg(rho,k)=rho^(k−1);
12 end
13 Mg(rho,rho+1)=rho^rho;
14 end
15 qmax=max(max(Q));
16 c=zeros(qmax);
17 w=c;
18 for k=1:qmax
19 [ctemp,wtemp] = lgwt(k,0,T);
20 c(:,k)=[flip(ctemp);zeros(qmax−k,1)];
21 w(:,k)=[flip(wtemp);zeros(qmax−k,1)];
22 end
23 end

Matlab code 5 A Matlab function that returns the approximation parameters.

1 function y=inverse_gamma(x)
2 c=0.036534;
3 L= log((x+c)/sqrt(2∗pi));
4 y=L/lambertw(L/exp(1))+0.5;
5 end

Matlab code 6 A Matlab function to approximate the inverse Gamma function.

Solutions of one-dimensional PDEs can be efficiently approximated by finite difference
approximation schemes. Matlab code 7 implements such an approximation scheme in the
setting of Proposition 2.2 and Matlab code 8 implements such an approximation scheme
in the setting of Proposition 2.1.

1 function y=approximateUfinitediffgbm(t0,x0,N)
2 [T,dim,f,g,eta,mu,sigma]=modelparameters();
3 h=(T−t0)/N;
4 t=t0:h:T;
5 u=1+mu∗h+sigma∗sqrt(h);
6 d=1+mu∗h−sigma∗sqrt(h);
7 x=x0∗d^N∗(u/d).^(0:N);
8 M=(1/2∗[full(gallery(’tridiag’,ones(N−1,1),ones(N,1),zeros(N−1,1)));[zeros(1,N−1),1]]);
9 L=1/(2∗sqrt(h))∗([full(gallery(’tridiag’,ones(N−1,1),−ones(N,1),zeros(N−1,1)));[zeros(1,N−1),1]]);
10 y=g(x);
11 for i=N:−1:1
12 x=x(1:i)/d;
13 z=y∗L(1:i+1,1:i);
14 y=y∗M(1:i+1,1:i);
15 y=y+h∗f(t(i),x,y,z);
16 end
17 end

Matlab code 7 A Matlab code to approximate the solution u of (14) at t0 ∈ [0, T ), x0 ∈ R with a finite
difference approximation scheme in the setting of Proposition 2.2 with d = 1.
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1 function y=approximateUfinitediffabm(t0,x0,N)
2 [T,dim,f,g,eta,mu,sigma]=modelparameters();
3 h=(T−t0)/N;
4 t=t0:h:T;
5 u=mu∗h+sigma∗sqrt(h);
6 d=mu∗h−sigma∗sqrt(h);
7 x=x0+d∗N+(0:N)∗(u−d);
8 M=(1/2∗[full(gallery(’tridiag’,ones(N−1,1),ones(N,1),zeros(N−1,1)));[zeros(1,N−1),1]]);
9 L=1/(2∗sqrt(h))∗([full(gallery(’tridiag’,ones(N−1,1),−ones(N,1),zeros(N−1,1)));[zeros(1,N−1),1]]);
10 y=g(x);
11 for i=N:−1:1
12 x=x(1:i)−d;
13 z=y∗L(1:i+1,1:i);
14 y=y∗M(1:i+1,1:i);
15 y=y+h∗f(t(i),x,y,z);
16 end
17 end

Matlab code 8 A Matlab code to approximate the solution u of (14) at t0 ∈ [0, T ), x0 ∈ R with a finite
difference approximation scheme in the setting of Proposition 2.1 with d = 1.

The command ploterrorvsruntime(v,value,time) (the matrices value and
time are produced in Matlab code 1 and the value v by Matlab code 7 or 8) plots the
error (17) against the runtime (cf. the left-hand side of Figs. 1–3).

1 function ploterrorvsruntime(v,value,time)
2 merror=mean(abs(value−v))/abs(v);
3 mtime=mean(time);
4 loglog(mtime,merror,’black−o’);
5 hold on
6 loglog(mtime,1./(mtime).^(1/3)∗mtime(1)^(1/3)∗merror(1),’black’);
7 ylabel(’relative approximation error’);
8 xlabel(’runtime (seconds)’);
9 legend(’relative approximation error’,’slope −1/3’);
10 end

Matlab code 9 A Matlab function to plot relative approximation errors against runtime.

The command plotincrementsvsruntime(value,time) (thematricesvalue
and time are produced in Matlab code 1) plots the increments (18) against the runtime
(cf. the right-hand side of Figs. 1–3).

1 function plotincrementvsruntime(value,time)
2 [~,rhomax]=size(value);
3 merror=mean(abs(value(:,2:rhomax)−value(:,1:rhomax−1)))/abs(mean(value(:,rhomax)));
4 mtime=mean(time(:,1:rhomax−1));
5 loglog(mtime,merror,’black−o’);
6 hold on
7 loglog(mtime,1./(mtime).^(1/3)∗mtime(1)^(1/3)∗merror(1),’black’);
8 ylabel(’relative approximation increments’);
9 xlabel(’runtime (seconds)’);
10 legend(’relative approximation increments’,’slope −1/3’);
11 end

Matlab code 10 A Matlab function to plot relative approximation increments against runtime.

The three graphs of Fig. 5 are produced with the help ofMatlab codes 11 and 12. More
precisely, up to rounding errors and the fact that random numbers are replaced by pseudo
random numbers, Matlab code 11 generates for every d ∈ {5, 6, . . . , 100} one realization
ofU0

6,6(0, x0)with x0 = (100, . . . , 100) ∈ Rd and records the associated runtimes.Matlab
code 11 calls Matlab code 12 to plot the three graphs in Fig. 5 where, for the right-hand
side of Fig. 5, lines 4 and 11 in Matlab code 11 are replaced by average=20; and
rhomax=4;, respectively.
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Fig. 5 Left: Runtime needed to compute one realization ofU1
6,6(0, x0) against dimension d ∈ {5, 6, . . . , 100}

for the pricing with counterparty credit risk example in Sect. 3.1. Middle: Runtime needed to compute one
realization of U1

6,6(0, x0) against dimension d ∈ {5, 6, . . . , 100} for the pricing with different interest rates

example in Sect. 3.2. Right: Average runtime needed to compute 20 realizations ofU1
4,4(0, x0) against dimen-

sion d ∈ {5, 6, . . . , 100} for the Allen–Cahn equation in Sect. 3.3

1 global Mf Mg Q c w T dim f g mu sigma eta;
2 rng(2016)
3 format long
4 average=1;
5 rhomax=6;
6 dmax=100;
7 dmin=5;
8 [T,dim,f,g,eta,mu,sigma]=modelparameters();
9 [Mf,Mg,Q,c,w,n] = approxparameters(rhomax);
10 value=zeros(average,dmax−dmin+1);
11 time=value;
12 for d=dmin:dmax
13 for k=1:average
14 dim=d
15 tic
16 [a, b]=approximateUZgbm(n(rhomax),rhomax,100∗ones(d,1),0);
17 value(k,d−dmin+1)=a;
18 time(k,d−dmin+1)=toc;
19 end
20 end
21 name = [datestr(now, ’yymmddTHHMMSS’) ’.mat’];
22 save(name,’n’,’Q’,’Mf’,’Mg’,’value’,’time’)
23 plotruntimevsdim(dmin, dmax, time)

Matlab code 11 A Matlab code to compute one realization of U1
6,6(0, x0) for all d ∈ {5, 6, . . . , 100}.

1 function plotruntimevsdim(dmin, dmax, time)
2 mtime=mean(time,1);
3 plot((dmin:dmax),mtime,’black’)
4 hold on
5 ylabel(’runtime (seconds)’)
6 xlabel(’dimension’)
7 end

Matlab code 12 A Matlab code to plot the runtime against the dimension.
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