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Abstract
For practical applications, the long time behaviour of the error of numerical solutions to time-
dependent partial differential equations is very important. Here, we investigate this topic in
the context of hyperbolic conservation laws and flux reconstruction schemes, focusing on the
schemes in the discontinuous Galerkin spectral element framework. For linear problems with
constant coefficients, it is well-known in the literature that the choice of the numerical flux
(e.g. central or upwind) and the selection of the polynomial basis (e.g. Gauß–Legendre or
Gauß–Lobatto–Legendre) affects both the growth rate and the asymptotic value of the error.
Here, we extend these investigations of the long time error to variable coefficients using both
Gauß–Lobatto–Legendre and Gauß–Legendre nodes as well as several numerical fluxes.
We derive conditions guaranteeing that the errors are still bounded in time. Furthermore, we
analyse the error behaviour under these conditions and demonstrate in several numerical tests
similarities to the case of constant coefficients. However, if these conditions are violated,
the error shows a completely different behaviour. Indeed, by applying central numerical
fluxes, the error increases without upper bound while upwind numerical fluxes can still
result in uniformly bounded numerical errors. An explanation for this phenomenon is given,
confirming our analytical investigations.
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1 Introduction

The investigation of the error of numerical solutions to hyperbolic conservation laws has
received much interest in the literature [1,7,16,18,20,27,28,31,48]. In some of these papers, a
linear error growth (or nearly linear growth) in time is observed, while the numerical error is
bounded uniformly in time for others. In [27], the author explains under what conditions the
error is or is not bounded in time if a linear problem with constant coefficients is considered.
Using finite difference approximations with summation-by-parts (SBP) operators and simul-
taneous approximation terms (SATs), the error behaviour depends on the choice of boundary
procedure of the problem. If one catches the waves in cavities or with periodic boundary
conditions, linear growth is observed like in [16], whereas for inflow-outflow problems one
obtains uniform boundedness in time. In other words, if the boundary approach has sufficient
dissipation, the error is bounded. It does not depend on the internal discretisation.

This investigation is extended to the discontinuous Galerkin spectral element methods
(DGSEM) in [20] and to Flux Reconstruction (FR) schemes in [31]. Different from [27],
using DG or FR methods, the internal approximation has an influence on the behaviour of
the error, since there are additional parameters. The choices of numerical fluxes (upwind and
central) and polynomial bases (Gauß–Lobatto–Legendre or Gauß–Legendre) have an impact
on the magnitude of the error and the speed at which the asymptotic error is reached.

In all of these works [20,27,31], the model problem under consideration is a linear advec-
tion equation with constant coefficients. In this paper, we extend these investigations by
considering variable coefficients. The introduction of variable coefficients leads to stability
issues and problems in the discretisation of the numerical fluxes as described in [36]. Using
split forms in the spatial discretisation [10,26], we are able to construct an error equation in
the spirit of [20] for our new model problem.

Furthermore, using this error equation,we formulate conditions on the variable coefficients
to guarantee that the error is still bounded uniformly in time. Here, it will be essential that the
first derivative of the variable coefficient a(x) is positive. In numerical tests, we demonstrate
that if these conditions are fulfilled, the errors behave like in the case of constant coefficients.
If these conditions are not satisfied, we have a different behaviour. If central numerical fluxes
are applied, the errors tend to infinity,whereas the errors using upwindfluxes in the calculation
may still remain bounded uniformly in time. This matches our analysis and the conditions
which we derive in the analytical investigations in Sects. 4 and 5.

The paper is organised as follows: in the second section, we introduce the model problem
and repeat the stability analysis from the continuous point of view. In Sect. 3, the main idea
of SBP-FR methods and the concrete schemes are repeated. Then, we present the different
numerical fluxes under consideration and introduce themain focus of our study, the numerical
errors. We repeat some approximation results which we need in the following sections. For
our analysis, it is essential whether or not boundary points are included in the nodal bases. In
Sect. 4, we start by considering Gauß–Lobatto–Legendre nodes. These include the boundary
points and we demonstrate that the error is bounded uniformly in time under some conditions
on the variable coefficient a(x). Afterwards, in Sect. 5, we adapt the investigation from before
to Gauß–Legendre nodes which do not contain the boundary points. We get additional error
terms in our error equation and focus finally on the different discretisations of the numerical
fluxes. Similar conditions are derived like before on a(x) to guarantee that the error is
bounded in time. We confirm our investigation by numerical experiments in Sect. 6, which
includes also a physical interpretation of the test cases under consideration. Furthermore, a
first analytical study about the error inequalities is given if one of the conditions on a is not
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fulfilled. In Sect. 7, we generalize our investigation to systems (linearized Euler equations
and magnetic induction equation) and demonstrate problems which arise in these cases. We
give an outlook for further research. Finally, we summarise and discuss our results.

2 Model Problem and Continuous Setting

The problem under consideration is the following linear advection equation

∂t u(t, x) + ∂x (a(x)u(t, x)) = 0, t > 0, x ∈ (xL , xR),

u(t, xL) = gL(t), t ≥ 0,

u(0, x) = u0(x), x ∈ [xL , xR],
(1)

with variable speed a(x) > 0 and compatible initial and boundary conditions u0, gL . Fur-
thermore, the initial and boundary values are chosen in such away that u(t, x) ∈ Hm(xL , xR)

for m > 1 and that its norm ||u(t)||Hm is bounded uniformly in time. This condition is phys-
ically meaningful, e.g. for problems with sinusoidal boundary inputs. However, we will also
present in Sect. 6 an example where this condition is violated and our whole analysis will
break down.

The impact of the boundary condition and the variable coefficient a on the solution is
essential and will shortly be repeated from [29,36]. The energy of the solution u of the initial
boundary value problem (1) ismeasured by the classicalL2-norm ||u||2 = ∫ xR

xL
u2 d x . Focus-

ing on the weak formulation of the advection equation (1), a test function ϕ ∈ C1[xL , xR] is
multiplied and integrated over the domain

∫ xR

xL
(∂t u)ϕ d x +

∫ xR

xL
(∂x (au))ϕ d x = 0. (2)

Setting ϕ = u, application of the product rule and integration-by-parts yields

d

d t
||u||2 = 2

∫ xR

xL
u∂t u d x = −2

∫ xR

xL
u∂x (au) d x

= −
∫ xR

xL

(
u∂x (au) + au∂xu + u2∂xa

)
d x = −au2|xRxL −

∫ xR

xL
u2∂xa d x

= a(xL)g2L − a(xR)u(xR)2 −
∫ xR

xL
u2∂xa d x .

Integration in time over an interval [0, T ] leads to

||u(T )||2 − ||u0||2 = a(xL)

∫ T

0
g2L(t) d t − a(xR)

∫ T

0
u2(t, xR) d t

−
∫ xR

xL

(∫ T

0
u2(t, x) d t

)

∂xa(x) d x . (3)

Here, the change of energy at time T can be expressed by the energy added at the left side
through the boundary condition minus the energy lost through the right side, and an energy
term considering the variation of the coefficient a. If ∂xa is bounded, the energy is also
bounded for a fixed time interval. It can be found in [29, Section 2] that the energy fulfils
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||u(t)||2 ≤ exp (t ||∂xa||L∞) ·
(

||u0||2

+
∫ t

0
exp (−τ ||∂xa||L∞)

(
a(xL)gL(τ )2 − a(xR)u(τ, xR)2

)
d τ

)

.

The numerical scheme has to be constructed such that the approximation imitates this
behaviour. Special focus has to be given on an adequate discretisation of the flux function f ,
which depends on the space coordinate x via the variable coefficients a(x). The numerical
fluxes have to be adjusted. We will specify this in Sect. 3.2.

3 Flux Reconstruction with Summation-by-Parts Operators and
Numerical Fluxes

In the first part of this section, we shortly repeat the main ideas of Flux Reconstruction
(FR), also known as Correction Procedure via Reconstruction, using Summation-by-parts
Operators (SBP). A more detailed introduction to this topic can be found in the articles
[38,39] and references therein.

3.1 Flux Reconstruction Using Summation-by-Parts Operators

We consider a one-dimensional scalar conservation law

∂t u(t, x) + ∂x f (t, x, u(t, x)) = 0, t > 0, x ∈ (x0, xK ), (4)

equipped with appropriate initial and boundary conditions. The domain (x0, xK ) is split into
K non-overlapping elements [x0, xK ] = [x0, x1]⋃ · · ·⋃[xK−1, xK ]. The FR method is a
semidiscretisation applying a polynomial approximation using a nodal basis on each element.
Therefore, each interval [xi−1, xi ] is transferred onto a standard element, which is in our case
simply [−1, 1]. All calculations are conducted within this reference element. Let PN be the
space of polynomials of degree ≤ N , −1 ≤ ζi ≤ 1 (i ∈ 0, . . . , N ) the interpolation points
and I

N : L2(−1, 1) ∩ C(−1, 1) → P
N (−1, 1) be the interpolation operator and Pm

N−1 be
the orthogonal projection of u onto P

N−1 with respect to the inner product of the Sobolev
space Hm((−1, 1)). The solution is approximated by a polynomial U ∈ P

N and the basic
formulation of a nodal Lagrange basis1 is employed. Instead of working withU one may also
express the numerical solution as the vector u with coefficients ui = U (ζi ), i ∈ {0, . . . , N }.
All the relevant information are stored in these coefficients and one may write

u(ζ ) ≈ U (ζ ) =
N∑

i=0

ui li (ζ ), (5)

where li (ζ ) is the i th Lagrange interpolation polynomial that satisfies li (ζ j ) = δi j . In finite
difference (FD) methods, it is natural to work with the coefficients only and since we are
working with SBP operators with origins lying in the FD community [21], we utilise the coef-
ficients. Finally, the flux f (u) is also approximated by a polynomial, where the coefficients
are given by f

i
= f

(
ui
) = f (U (ζi )).

Now, with respect to the chosen basis (interpolation points), (an approximation of) the
derivative is represented by the matrix D. Moreover, a discrete scalar product is represented

1 Modal bases are also possible [39], but we won’t consider these in this paper.
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by the symmetric and positive definite mass/norm2 matrix M , approximating the usual L2

scalar product, i.e.

Du ≈ ∂xu and (u, v)N := uT Mv ≈
∫ xi+1

xi
uv d x . (6)

Using Lagrange polynomials, we get Dkj = l ′j (ζk) and M = diag (ω0, . . . , ωN ), where
ω j are the quadrature weights associated with the nodes ζ j . For Gauß–Legendre nodes,

ω j = ∫ 1
−1 l j (x)

2 d x . For other quadrature nodes such as Gauß–Lobatto–Legendre nodes,
the mass matrix is in general not exact.

SBP operators are constructed in such way that they mimic integration-by-parts on a
discrete level, as described in the review articles [8,44] and references cited therein. Until
now, we have expressions/approximations for the derivative as well as for the integration.
Hence, only the evaluation on the boundary is missing. Here, we have to introduce two
different operators. First, the restriction operator, which is represented by the matrix R,
approximates the interpolation of a function to the boundary points {xi−1, xi }. Second, the
diagonal boundary matrix B = diag (−1, 1) gives the difference of boundary values. It is

Ru ≈
(
u(xi−1)

u(xi )

)

and (uL , uR) · B ·
(

vL
vR

)

= uRvR − uLvL .

Finally, all operators are introduced and they have to fulfil the SBP property

MD + DT M = RT BR, (7)

in order to mimic integration-by-parts on a discrete level

uT MDv + uT DT Mv ≈
∫ xi

xi−1

u (∂xv) +
∫ xi

xi−1

(∂xu) v = u v
∣
∣xi
xi−1

≈ uT RT BRv. (8)

Here, we investigate the long time error behaviour of linear problems with variable coeffi-
cients. To represent these coefficients in our semidiscretisation, multiplication operators are
necessary. If the function U is represented by u, the discrete operator approximating the
linear operator v 
−→ vU is represented by the matrix u, mapping v to uv. In a nodal basis,3

the standard multiplication operators consider pointwise multiplication. This means that u is

diagonal with u = diag
(
u
)
and (uv)i = uivi .

One central point in our investigation in Sects. 4 and 5 will be whether the boundary points
are included in the set of interpolation nodes (Sect. 4) or not (Sect. 5). This is an essential
point in this paper and also in others [22,29,34,36,38,39]. If the boundary points {xi−1, xi }
are included, the restriction operators are simply

R =
(
1 0 · · · 0 0
0 0 · · · 0 1

)

, RT BR = diag (−1, 0, . . . , 0, 1) .

Thus, restriction to the boundary and multiplication commute, i.e.
(
u0 v0
uN vN

)

=
(
Ru
)

·
(
Rv
)

= Ruv = Rvu. (9)

2 Both names are used. In the DG community [12], the matrix is called mass matrix, whereas the name norm
matrix is common for FD methods.
3 For a modal basis see [39].
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At the continuous level this property is fulfilled and so we want this property also in our
semidiscretisation. However, if the boundary nodes are excluded, restriction and multi-
plication will not commute in general. Therefore, some corrections have to be applied

[33,34,38,39]. It is common to use some linear combination/splitting of the terms
(
Ru
)
·
(
Rv
)

and Rvu to mimic (9) at a discrete level. We have to mention that the construction of these
correction terms can be very difficult (e.g. [34] and [35, Section 4.5]) and for some equations
like Euler for example, it is still an open problem if such correction terms exist [33].

Now, the general aspects of SBP operators are introduced and we can focus on our FR
approach. Contrary to DG methods, we do not apply a variational formulation (i.e. weak
form) of (4). Instead, the differential form is used, corresponding to a strong form DG
method. To describe the semidiscretisation all operators are introduced.We apply the discrete
derivative matrix D to f . The divergence is D f . Since the solutions will probably have
discontinuities across elements, we will have this in the discrete flux, too. In order to avoid
this problem, a numerical flux f num is introduced which computes a common flux at the
boundary using values from both neighbouring elements. The main idea of the FR schemes
is that the numerical flux at the boundaries will be corrected by functions in such manner
that information of two neighbouring elements interact and basic properties like conservation
hold also in the semidiscretisation. Therefore, we add a correction term using a correction
matrix C at the boundary nodes. This gives Flux Reconstruction its name. Hence, a simple
FR (or correction procedure via reconstruction, CPR) method for (4) with boundary nodes
included reads

∂t u = −D f − C
(
f num − R f

)
. (10)

A general choice of the correction matrix C recovers the linearly stable flux reconstruction
methods of [46,47], as described by [38]. The canonical choice for the correction matrix is

C := M−1RT B. (11)

It is a generalisation of simultaneous approximation terms (SATs) used in finite difference
methods [6] and corresponds to a strong form of the discontinuous Galerkin method [19]. In
this paper we concentrate on the correction term using (11). However, a generalisation to the
schemes of Vincent et al. [46] is possible and can be done as in [31,38]. However, further
problems emerge concerning the interchangeability of coefficients in the broken norms and
one has to be careful.

3.2 Numerical Fluxes

Special focus has to be given on an adequate discretisation of the flux function f , which
depends on the space coordinate x via the variable coefficients a(x). The numerical fluxes
have to be adjusted. The numerical fluxes under consideration will be

Edge based central flux f num(u−, u+) = a(x)
u− + u+

2
, (12)

Split central flux f num(u−, u+) = a−u− + a+u+
2

, (13)

Unsplit central flux f num(u−, u+) = (au)− + (au)+
2

, (14)

Edge based upwind flux f num(u−, u+) = a(x)u−, (15)
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Split upwind flux f num(u−, u+) = a−u−, (16)

Unsplit upwind flux f num(u−, u+) = (au)−. (17)

If boundary nodes are included and the coefficients a of the discrete version of the function a
are obtained by evaluating a at these nodes, (12), (13), (14) and (15), (16), (17) are identical
like in the next Sect. 4. From the stability analysis in [36], we know that using the unsplit
fluxes (14), (17) may result in stability issues. Furthermore, applying the other fluxes and to
guarantee stability, we need that the interpolation speeds have to be exact. In this cases, the
edge based (12), (15) and the split numerical fluxes (15), (16) are equivalent. This exactness
can be achieved by evaluating the speed a(x) at N + 1 Gauss–Lobatto points4 and then the
unique interpolating polynomial can be evaluated at the nodes used in the basis not including
the boundary. We will consider this later in detail in Sect. 5.

As it was described in Sect. 3.1, all calculations are done in a standard element [−1, 1].
Therefore, a transformation of every element ek = [xk, xk−1] to this standard element is
necessary. Equation (2) is transformed to

Δxk
2

〈
∂t u, ϕk

〉
+
〈
∂ξ (a

ku), ϕk
〉
= 0, (18)

where 〈·, ·〉 is the L2-scalar product, ϕk is a test function in the kth element and the factor
Δxk
2 = xk−xk−1

2 comes from the transformation. Applying the product rule and integration-
by-parts to (18) yields

Δxk
2

〈
∂t u, ϕk

〉
+ 1

2

(〈
∂ξ (a

ku), ϕk
〉
+
〈
ak∂ξu, ϕk

〉
+
〈
u∂ξa

k, ϕk
〉)

= 0, (19)

Δxk
2

〈
∂t u, ϕk

〉
+ 1

2

(

akuϕk |1−1 −
〈
aku, ∂ξϕ

k
〉

+
〈
ak∂ξu, ϕk

〉
+
〈
u∂ξa

k, ϕk
〉 )

= 0. (20)

Formulation (20) will be used to construct the error equations.

3.3 Numerical Errors and Approximation Results

The error in every element is given by Ek := uk(t, x(ξ)) − Uk(t, ξ), where u represents
the solution in the kth element and U is the spatial approximation. Using the interpolation
operator and adding zero to the error, Ek can be split in two parts:

Ek = (IN (uk) −Uk)
︸ ︷︷ ︸

=:εk1∈PN

+ (uk − I
N (uk))

︸ ︷︷ ︸
=:εkp

. (21)

With the triangle inequality, one may bound this by

||Ek ||N ≤ ||εk1 ||N + ||εkp||N , (22)

where || · ||N is the discrete norm induced by the discrete scalar product (6). εkp is the
interpolation error, which is the sum of the series truncation error and the aliasing error. As
it was already described in [5,11,15,30,32], its continuous norm converges spectrally fast for
the different bases under consideration. It is

4 We assume here a nodal basis using N + 1 points to represent polynomials of degree ≤ N .
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|u|Hm;N (−1,1) :=
⎛

⎝
m∑

j=min(m,N+1)

||u( j)||2L2(−1,1)

⎞

⎠

1
2

the seminorm of the Sobolev space Hm(−1, 1). For Gauß–Lobatto–Legendre/Gauß–
Legendre points,

||u − I(u)||L2(−1,1) ≤ CN−m |u|Hm;N (−1,1), (23)

where C depends on m. In view of our investigation, one needs to consider the interpolation
error not only in the standard interval [−1, 1], but in each element ek . Therefore, the estimation
(23) will be transform to every element.5 With a combination of [11, Theorem 6.6.1] and [5,
Section 5.4.4], for Gauß–Legendre nodes

||εkp||Hn(ek ) ≤ C (Δxk)
n−min{m,N }+ 1

2 Nn−m+ 1
2 |u|Hm;N (ek ) (24)

for n = 0, 1. For Gauss–Lobatto–Legendre nodes, delete 1
2 on the right side of (24). A

finite dimensional normed vector space is considered and all norms are equivalent there.
This allows to bound the discrete norm in terms of the continuous ones and implies that
||εkp||N in (22) decays spectrally fast in all cases of consideration. In other words, εk1 has to
be investigated in detail. This error describes the difference of the interpolation of u and the
spatial approximation U .

Therefore, we have to consider the numerical schemes under consideration. The semidis-
cretisation of (1) is given by the following form:

∂t u = −1

2
Dau − 1

2
aDu − 1

2
uDa

− M−1RT B

(

f num − 1

2
Rau − 1

2

(
Ra
)

·
(
Ru
))

, (25)

where analogously to the continuous setting a split formulation has been applied. The last term
is due to the fact that for Gauss–Legendre nodes the restriction operators R do not commute
with the multiplication operators. Therefore, corrections have to be used. If boundary nodes
are included, multiplication and restriction commute and we can simplify (25) to

∂t u + 1

2

(
Dau + aDu + uDa

)
+ M−1RT B

(
f num − Rau

)
= 0. (26)

In (25) and (26), the terms 2–4 approximate the split form 1
2 (∂x (au) + a(∂xu) + u(∂xa) of

the flux derivative ∂x (au) of (1). Since the semidiscretisation is used in every element ek ,
one obtains for every element the following form:

Δxk
2

∂t u + 1

2

(
Dau + aDu + uDa

)

+ M−1RT B

(

f num − 1

2
Rau − 1

2

(
Ra
)

·
(
Ru
))

= 0. (27)

Using a Galerkin approach, ϕk,T M is multiplied to (27), resulting due to the SBP property
(7) in

5 A more detailed analysis can be found in [2,3].
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Δxk
2

ϕk,T M∂t u + 1

2
ϕk,T M

(
Dau + aDu + uDa

)

+ ϕk,T RT B

(

f num − 1

2
Rau − 1

2

(
Ra
)

·
(
Ru
))

= 0,

Δxk
2

ϕk,T M∂t u + 1

2
ϕk,T

(
RT BR − DT M

)
au + 1

2
ϕk,T MaDu

+ 1

2
ϕk,T MuDa + ϕk,T RT B

(

f num − 1

2
Rau − 1

2

(
Ra
)

·
(
Ru
))

= 0. (28)

The diagonal multiplication operators are self-adjoint with respect to M , i.e. Ma = aM , and
Mu = uM . Thus, (28) is

Δxk
2

ϕk,T M∂t u − 1

2
ϕk,T DT Mau + 1

2
ϕk,T aMDu + 1

2
ϕk,T uMDa

+ϕk,T RT B

(

f num − 1

2

(
Ra
)

·
(
Ru
))

= 0, (29)

or with boundary nodes included

Δxk
2

ϕk,T M∂t u − 1

2
ϕk,T DT Mau + 1

2
ϕk,T aMDu

+ 1

2
ϕk,T uMDa + ϕk,T RT B

(

f num − 1

2
Rau

)

= 0. (30)

The error equations will be derived using both semidiscretisations. Before starting with the
Gauß–Lobatto–Legendre case in the next Sect. 4, we shortly repeat for clarification again the
notation which will be used in this paper in Table 1.

4 Error Behaviour Using Gauß–Lobatto Nodes

In this section, Gauß–Lobatto–Legendre nodes will be used in the discretisation, resulting
in diagonal norm SBP operators including the boundary nodes. In this case, multiplication
and restriction to the boundary commute and the interpolated speed a(x) is automatically
continuous. Before starting our investigation in this section, we will briefly summarize our
final results for both cases (Gauß–Lobatto–Legendre and Gauß–Legendre).

Result 4.1 η(t) is a factor which depends on ε1, the values of a and a′. If there exits a positive
constant δ, such that the mean value of η(t) can be bounded from below, then there exists a
constant C such that the errors εk1(t) of (21) satisfy the inequality

||ε1(t)||N ≤ 1 − exp(−δt)

δ
C,

in the discrete norm || · ||N . The total error is bounded in time.

In the following, we will derive the exact conditions when the above inequality is fulfilled
and specify in detail what factors play a key role in the definition of η and δ. We outline
the steps of our analysis. All steps of the investigation in Sects. 4 and 5 are almost analo-
gous except that in step 5 we have to consider the different flux functions (12)–(17) in our
investigation.6 The main stepts are the following:

6 We have an additional error term in Sect. 5, but this does not change the major steps of the study.
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Table 1 Summary of the notations used in this article

Notation Interpretation

u is the solution of (1)

U is the spatial approximation of u given by (5)

u are the coefficients of U , evaluated at the
interpolation/quadrature nodes

D is the discrete derivative matrix

R is the restriction operator performing interpolation to
the boundary

M is the mass/norm matrix

〈·, ·〉 is the usual L2 scalar product

|| · || is the norm induced by the L2 scalar product

(·, ·)N is the discrete scalar product given by (6)

|| · ||N is the norm induced by the discrete scalar product from
above

I
N is the interpolation operator

Pm
N−1(u) is the orthogonal projection of u onto PN−1(−1, 1)

using the inner product of Hm (−1, 1) (See also
“Appendix”)

Ek = uk −Uk is the total error in the kth element

εk1 := I
N (uk ) −Uk is the difference between interpolation and spatial

approximation in the kth element

εkp = uk − I
N (uk ) is the interpolation error which decays spectrally fast

1. We derive an error equation for εk1 of (21) by inserting the error Ek into the continuous
equation (20) for every element.

2. By adding zero in a suitable way, we are able to split the equations into a continuous and
a discrete part.

3. We add both parts for every element and get the error behaviour for the total domain.
4. We estimate the continuous terms and get an inequality for the error ε1 in the discrete

norms.
5. We split the terms with the numerical fluxes. In the Gauss–Legendre case (Sect. 5), we

have to be careful with respect to the used implementation of the numerical fluxes.
6. We estimate the long time error behaviour under some assumptions.

In the following, the error equation for εk1 = I
N (uk) − Uk will be derived. Starting

by considering Gauß–Lobatto–Legendre nodes in our semidiscretisation and putting u =
I
N (uk) + εkp into (20) yields

Δxk
2

〈
∂t I

N (uk), ϕk
〉
+ 1

2

(

akIN (uk)ϕk |1−1 −
〈
akIN (uk), ∂ξϕ

k
〉

+
〈
ak∂ξ I

N (uk), ϕk
〉
+
〈
I
N (uk)∂ξa

k, ϕk
〉 )

= −Δxk
2

〈
∂tε

k
p, ϕ

k
〉
+ 1

2

〈
akεkp, ∂ξϕ

k
〉
− 1

2

〈
ak∂ξ ε

k
p, ϕ

k
〉
− 1

2

〈
εkp∂ξa

k, ϕk
〉
,
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where ϕk ∈ P
N is a polynomial test function. For Gauß–Lobatto–Legendre nodes, akεkp = 0

at the endpoints, since the interpolant is equal to the solution there. Thus, akεkpϕ
k
∣
∣
∣
1

−1
= 0.

Using integration-by-parts for
〈
akεkp, ∂ξϕ

k
〉
yields

Δxk
2

〈
∂t I

N (uk), ϕk
〉
+ 1

2

(

akIN (uk)ϕk |1−1 −
〈
akIN (uk), ∂ξϕ

k
〉

+
〈
ak∂ξ I

N (uk), ϕk
〉
+
〈
I
N (uk)∂ξa

k, ϕk
〉 )

= −Δxk
2

〈
∂tε

k
p, ϕ

k
〉
− 1

2

〈
∂ξ (a

kεkp), ϕ
k
〉
− 1

2

〈
ak∂ξ ε

k
p, ϕ

k
〉
− 1

2

〈
εkp∂ξa

k, ϕk
〉
. (31)

We have to transfer the continuous scalar product from (31) to the discrete ones. Therefore,
we are following the ideas from [31], add zero to the above equation and rearrange these
terms. We will explain this for the first term on the left side of (31) in detail. The third to fifth
terms on the left side are handled analogously and details can be found in the “Appendix”.
Applying the interpolation operator together with discrete norms results in

〈
∂t I

N (uk), ϕk
〉
=
(
∂t I

N (uk), ϕk
)

N

+
{〈

∂t I
N (uk), ϕk

〉
−
(
∂t I

N (uk), ϕk
)

N

}
, (32)

Now, we are introducing in the factor Q in the above equation which measures the projection
error of a polynomial of degree N to a polynomial of degree N − 1. We can rewrite (32) as

〈
∂t I

N (uk), ϕk
〉
=
(
I
N (uk), ϕk

)

N
+
{〈
Q(uk), ϕk

〉
−
(
Q(uk), ϕk

)

N

}

where Q(uk) := ∂t
(
I
N (uk) − Pm

N−1

(
I
N (uk)

))
and Pm

N−1 is the orthogonal projection
7 of u

onto PN−1 using the inner product of Hm(ek). We get similar factors (Q1−Q3) for the other
three terms. Since u and a are bounded, also all of theses values have to be bounded. Finally,
the values of the interpolation polynomial at the boundaries of the element (−1 and 1) can
be approximated by a limitation process from the left side IN (uk)− and right side IN (uk)+.
To simplify the notation, let

f num,k
(
I
N (uk)−, IN (uk)+

)

:=
(
f num

(
I
N
R (uk−1), INL (uk)

)
, f num

(
I
N
R (uk), INL (uk+1)

))T
. (33)

For boundary points included, the interpolation is continuous (because the exact solution u
is continuous) and all numerical fluxes are exactly the products of the interpolation and the
coefficient values. One obtains

1

2
akIN (uk)ϕk

∣
∣
∣
∣

1

−1
= ϕk,T RT B

(

f num,k
(
I
N (uk)−, IN (uk)+

)
− 1

2
Raku

)

. (34)

Using the above investigation and putting (32)–(34) in (31) results in

Δxk
2

(
∂t I

N (uk), ϕk
)

N
+ ϕk,T RT B

(

f num,k
(
I
N (uk)−, IN (uk)+

)
− 1

2
Raku

)

− 1

2

(
akIN (uk), ∂ξϕ

k
)

N
+ 1

2

(
ak∂ξ I

N (uk), ϕk
)

N
+ 1

2

(
I
N (uk)∂ξa

k, ϕk
)

N

7 More details can be found in the “Appendix”.
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= +Δxk
2

〈
T k(u), ϕk

〉
+ Δxk

4

(

(Q(uk), ϕk)N − (Q1(u
k), ∂xϕ

k)N

+ (akQ2(u
k), ϕk)N + (Q3(u

k)∂xa
k, ϕk)N

)

+ Δxk
4

〈
Q1(u

k), ∂xϕ
k
〉
, (35)

with

T k(u) := −
{

∂tε
k
p + 1

2

(
∂x (a

kεkp) + εkp∂xa
k + ak∂xε

k
p

)

+ 1

2

(
Q(uk) + akQ2(u

k) + (Q3(u
k)∂xa

k)
)}

. (36)

Here, in definition (36)we have again the derivatives in x sincewemake the term independent
from the transformation. Therefore, we have in (35) a Δxk

2 in the T k terms.
By (24), the interpolation error εkp converges in N to zero, ifm > 1 and the Sobolev norm

of the solution is uniformly bounded in time.8 Equation (30) is subtracted form (35) and with
εk1 = I

N (uk) −Uk one obtains

Δxk
2

(
∂tε

k
1, ϕ

k
)

N
+ ϕk,T RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2
Rakεk1

)

− 1

2

(
akεk1, ∂ξϕ

k
)

N
+ 1

2

(
ak∂ξ ε

k
1, ϕ

k
)

N
+ 1

2

(
εk
1
∂ξa

k, ϕk
)

N

= +Δxk
2

〈
T k(u), ϕk

〉
+ Δxk

4

〈
Q1(u

k), ∂xϕ
k
〉
+ Δxk

4

(

(Q(uk), ϕk)N

− (Q1(u
k), ∂xϕ

k)N + (akQ2(u
k), ϕk)N +

(
Q3(u

k)∂xa
k, ϕk

)

N

)

.

Putting ϕk = εk1 results in the energy equation

Δxk
4

d

d t
||εk1 ||2N + ε

k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2
Rakεk1

)

− 1

2

(
akεk1, ∂ξ ε

k
1

)

N
+ 1

2

(
ak∂ξ ε

k
1, ε

k
1

)

N
+ 1

2

(
εk
1
∂xa

k, εk1

)

N

= +Δxk
2

〈
T k(u), εk1

〉
+ Δxk

4

〈
Q1(u

k), ∂xε
k
1

〉

+ Δxk
4

(

(Q(uk), εk1)N − (Q1(u
k), ∂xε

k
1)N + (akQ2(u

k), εk1)N

+
(
Q3(u

k)∂xa
k, εk1

)

N

)

. (37)

Since MT = M , we get

1

2

(
akεk1, ∂ξ ε

k
1

)

N
= 1

2
ε
k,T
1 ak

T
MDεk1,

1

2

(
∂ξ ε

k
1, a

kεk1

)

N
= 1

2
ε
k,T
1 DT Makεk1 = 1

2
ε
k,T
1 ak,T MDεk1, (38)

8 Therefore, we need the initial and boundary conditions in the model problem (1).
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and one obtains in (37)
Δxk
4

d

d t
||εk1||2N + ε

k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2
Rakεk1

)

+ Δxk
4

(
εk
1
εk1, ∂xa

k
)

N
= Δxk

2

〈
T k(u), εk1

〉
+ Δxk

4

〈
Q1(u

k), ∂xε
k
1

〉

+ Δxk
4

(

(Q(uk), εk1)N − (Q1(u
k), ∂xε

k
1)N + (akQ2(u

k), εk1)N

+
(
Q3(u

k)∂xa
k, εk1

)

N

)

. (39)

Summing this up over all elements and by defining the numerical flux of the error as ε
num,k
1 :=

f num,k
((

εk1

)−
,
(
εk1

)+)
, the global energy of the error is

1

2

d

d t

K∑

k=1

Δxk
2

||εk1 ||2N +
K∑

k=1

ε
k,T
1 RT B

(

ε
num,k
1 − 1

2
Rakεk1

)

+ 1

2

K∑

k=1

Δxk
2

(
εk
1
εk1, ∂xa

k
)

N

=
K∑

k=1

Δxk
2

〈
T k(u), εk1

〉
+

K∑

k=1

Δxk
4

〈
Q1(u

k), ∂xε
k
1

〉
−

K∑

k=1

Δxk
4

(Q1(u
k), ∂xε

k
1)N

+
K∑

k=1

Δxk
4

(
(Q(uk), εk1)N + (ak Q2(u

k), εk1)N +
(
Q3(u

k)∂xa
k , εk1

)

N

)
. (40)

The right-hand side of (40) will be estimated using the Cauchy–Schwarz inequality. For
example (the others terms are handled similarly),

K∑

k=1

Δxk
2

〈
T k(u), εk1

〉
≤
√√
√
√

K∑

k=1

Δxk
2

||T k(u)||2
√√
√
√

K∑

k=1

Δxk
2

||εk1||2, (41)

K∑

k=1

Δxk
4

(
Q1(u

k), ∂xε
k
1

)

N
≤ 1

2

√√
√
√

K∑

k=1

Δxk
2

||Q1(uk)||2N

√√
√
√

K∑

k=1

Δxk
2

||∂xεk1||2N , (42)

Using an estimation for the differential operator ∂x and the fact that ε1 ∈ P
N , it is ||∂xεk1||2N ≤

c1N 2||εk1||2N with a positive constant c1. This is due to the fact that all norms are equivalent
andwe can estimatewith aMarkov–Bernstein type inequality, see [13]. The estimation is used
for example in (42). An alternative approach would have been to use the summation-by-parts
property (7) and estimate analogously.

With the global norm over all elements and the equivalence between the continuous and
discrete norms, we obtain

1

2

d

d t

K∑

k=1

Δxk
2

||εk1 ||2N +
K∑

k=1

ε
k,T
1 RT B

(

ε
num,k
1 − 1

2
Rakεk1

)

+ 1

2

K∑

k=1

Δxk
2

(
εk
1
εk1, ∂xa

k
)

N
≤
{

c||T || + cN

2
||Q1|| + 1

2

(

||Q||N + Nc̃1||Q1||N

+ ||aQ2||N + ||Q3∂xa||N
)}

||ε1||N ≡ Ê(t, N )||ε1||N (43)
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Applying the same approach like in [20] and splitting the sum into three parts (one for the left
physical boundary, one for the right physical boundary and a sum over the internal element
endpoints), it is

K∑

k=1

ε
k,T
1 RT B

(

ε
num,k
1 − 1

2
Rakε1

k
)

=
K∑

k=1

ε
k,T
1 RT B

(

f num,k
((

εk1

)−
,
(
εk1

)+)− 1

2
Rakεk1

)

= −E1
L

(

f num,1
L − 1

2
a1LE

1
L

)

+
K∑

k=2

(

f num,k
L − 1

2
ak−1
R

(
Ek−1
R + Ek

L

))

(
Ek−1
R − Ek

L

)
+ EK

R

(

f num,K
R − 1

2
aKR E

K
R

)

.

Here,Ek
i (i = L, R; k = 1, . . . , K ) represents the error εk1 at the the position in the elements,

and (to shorten the notation) f num,k
L := f num,k

(
Ek−1
R ,Ek

L

)
, f num,1

L := f num,1
(
0,E1

L

)
and

f num,K
R := f num,1

(
EK
R , 0

)
. The external states for the physical boundary contributions are

zero, because IN (u1) = g at the left boundary and the external state forU 1 is set to g. At the
right boundary, where the upwind numerical flux is used, it doesn’t matter what the external
state is, since its coefficient in the numerical flux is zero. One gets for the inner element with�
Ek

�
= Ek−1

R − Ek
L

K∑

k=2

(

f num,k
L − 1

2
ak−1
R

(
Ek−1
R + Ek

L

))(
Ek−1
R − Ek

L

)
=

K∑

k=2

σak−1
R

2

(�
Ek

�)2 ≥ 0,

with

{
σ = 0 central flux,

σ = 1 upwind flux.

For the left and right boundaries, it is finally

left: − E1
L

(

f num,1
L − 1

2
a1LE

1
L

)

= σa1L
2

(
E1
L

)2
,

right: EK
R

(

f num,K
R − 1

2
aKR E

K
R

)

= σaKR
2

(
EK
R

)2
.

Therefore, the energy growth rate is bounded by

1

2

d

d t
||ε1||2N + σ

2

(

aKR

(
EK
R

)2 + a1L
(
E1
L

)2
)

+ σ

2

K∑

k=2

ak−1
R

(�
Ek

�)2

︸ ︷︷ ︸
BT s

+ 1

2

K∑

k=1

Δxk
2

(
εk
1
εk1, ∂xa

k
)

N

︸ ︷︷ ︸
I ntd

≤ E(t, N )||ε1||N . (44)

It is BT s ≥ 0. If I ntd ≥ 0, then (44) has the same form as in in [27] and one may
estimate/bound analogously to [20,27] the error in time. The E term depends also on N , but
this has no influence in the estimation here. We rewrite (44) as
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d

d t
||ε1||N + BT s + I ntd

||ε1||2N︸ ︷︷ ︸
η(t)

||ε1||N ≤ E(t). (45)

Like it was described in [27], it is assumed that the mean value of η(t) over any finite time
interval is bounded by a positive constant δ0 from below. This means that η ≥ δ0 > 0.
Under the assumption for u, the right hand side E(t, N ) is also bounded in time and one can
put max

s∈[0,∞)
E(s, N ) ≤ C1 < ∞. Applying these facts in (45) and integrating over time, the

following inequality for the error is obtained

||ε1(t)||N ≤ 1 − exp(−δ0t)

δ0
C1, (46)

see [27, Lemma 2.3] for details.

Remark 4.1 The term I ntd is a crucial factor. If ∂xak > 0, one may estimate the left side of
(45) using the minimum of the discrete values of a. Then, I ntd ≥ 1

2 min{∂xak}||ε1||2N > 0
and the above assumption on η is inevitably fulfilled.
Simultaneously, the term I ntd can also destroy the error boundedness if the derivatives of a
are negative. It depends then on the sum of BT s and I ntd . The upwind fluxes can therefore
rescue the error boundedness (46) whereas applying the central flux (σ = 0) will contribute
to an unlimited growth of the error. We demonstrate this in some examples in Sect. 6 and
make a first analytical estimation in Sect. 6.5.

5 Error Behaviour Using Gauß–Legendre Nodes

Here, Gauß–Legendre nodes are used, yielding diagonal norm SBP operators not including
the boundary nodes, contrary to Gauß–Lobatto–Legendre nodes discussed in the previous
Sect. 4. Thus, care has to be taken of several potential problems. Firstly, the restriction to
the boundary and multiplication do not commute. Secondly, the numerical flux functions
(12)–(16) are now different from each other and have to be considered separately.
However, even if there are more problems, there are also some reasons to consider Gauß–
Legendre nodes. Indeed, Gauß–Legendre nodes have a higher order of accuracy in the
quadrature and as investigated in [31], for the linear advection equation with constant coef-
ficients using Gauß–Legendre nodes, the error reaches always faster its asymptotic value.
Moreover, this asymptotic value is lower than the corresponding one using Gauß–Lobatto–
Legendre nodes. Furthermore, the influence of the numerical fluxes is not that essential.
Using u = I

N (uk) + εkp in (20), where the terms are rearranged similar to Sect. 4, we get
analogously an equation similar to (35) except an additional error term due to the fact that
boundary terms are not included. We obtain

Δxk
2

(
∂t I

N (uk), ϕk
)

N
+ ϕk,T RT B

(

f num,k
(
I
N (uk)−, IN (uk)+

)
− 1

2

(
Rak

)
·
(
Ru
))

+
(
1

2
akIN (uk)ϕk

∣
∣
∣
∣

1

−1

− ϕk,T RT B

(

f num,k
(
I
N (uk)−, IN (uk)+

)
− 1

2

(
Rak

)
·
(
Ru
))
)

︸ ︷︷ ︸
=:εk2(ak )

− 1

2

(
akIN (uk), ∂ξ ϕ

k
)

N
+ 1

2

(
∂ξ I

N (uk), akϕk
)

N
+ 1

2

(
∂ξa

k , IN (uk)ϕk
)

N
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= Δxk
2

〈
T̂ k(uk), ϕk

〉
+ Δxk

4

〈
Q1(u

k), ∂xϕ
k
〉

+ Δxk
4

{ (
Q(uk), ϕk

)

N
−
(
Q1(u

k), ∂xϕ
k
)

N
+
(
Q2(u

k), akϕk
)

N

+
(
∂xa

k , Q3(u
k)ϕk

)

N

}
(47)

with

T̂ k(uk) := −
{

∂tε
k
p + 1

2

(
∂x

(
akεkp

)
+ εkp∂xa

k∂xε
k
p

)

+ 1

2

(
Q(uk) + akQ2(u

k) + Q3(u
k)∂xa

k
)}

.

Following the approach from Sect. 4 we get the estimate9

1

2

d

d t

K∑

k=1

Δxk
2

||εk1 ||2N +
K∑

k=1

ε
k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2

(
Rak

)
·
(
Rεk1

))

+ 1

2

K∑

k=1

Δxk
2

(
∂xa

k, εk
1
εk1

)

N

︸ ︷︷ ︸
I ntd

≤ − 1

2

K∑

k=1

Δxk
2

εk2(a
k)

︸ ︷︷ ︸
:=Θ2

+
{

c1||T || + cN

2
||Q1|| + 1

2
(||Q||N + N ||Q1||N + ||aQ2||N + ||Q3∂xa||N )

}

︸ ︷︷ ︸
:=ÊG (t,N )

||ε1||N .

(48)

Remark 5.1 The sum of the terms εk2 depends on a and the interpolation of the flux functions.
It is given by the formula

εk2(a
k) :=

(
1

2
akεk1I

N (uk)

∣
∣
∣
∣

1

−1

− ε
k,T
1 RT B

(
f num,k

(
I
N (uk)−, IN (uk)+

)

− 1

2

(
Rak

) (
Ru
) ))

.

Using Gauß-Lobatto nodes and an upwind flux, these terms are zero, see Sect. 4. If the sum
over all elements is positive, i.e. Θ2 ≥ 0, then this term decreases the upper bound of the
error ε1.

If Θ2 < 0, then it increases the total error. The error depends on u, a and the jumps
between interfaces. Under the assumption that u is continuous, Θ2 will be bounded from
below, resulting in an upper bound on the right side. Nevertheless, this makes it hard to study
the behaviour of the total error analytically.

We consider the first line of (48), especially the term

K∑

k=1

ε
k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2

(
Rak

)
·
(
Rεk1

))

9 Details of main steps can also be found in the “Appendix”.
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with different flux functions (12)–(16). In [36], different assumptions on a have already been
formulated for stability and conservation of the numerical schemes. First, we consider the
general case.Onemay recognise theproblemswhich arise by consideringvariable coefficients
in the model problem (1). Following this, we will formulate analogues assumptions to [36,
Theorem 3.4] and proceed with our analysis.

We split the sum in three terms (one for the left physical boundary, one for the right
physical boundary and a sum over the internal element endpoints), and we get

K∑

k=1

ε
k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2

(
Rak

)
·
(
Rεk1

))

= −E1
L

(

f num,1
L − 1

2
a1LE

1
L

)

+
K∑

k=2

(

f num,k
L

(
Ek−1
R − Ek

L

)

− 1

2

(

ak−1
R

(
Ek−1
R

)2 − akL

(
Ek
L

)2))+ EK
R

(

f num,K
R − 1

2
aKR E

K
R

)

.

We describe with Ei (i = L, R) the approximation error ε1, the indices give the position

in the elements, f num,k
L := f num,k

(
Ek−1
R ,Ek

L

)
, f num,1

L := f num,1
(
0,E1

L

)
and f num,K

R :=
f num,1

(
EK
R , 0

)
. The external states for the physical boundary contributions are zero, because

I
N (u)1 = g at the left boundary and the external state for U 1 is set to g. The selection of
the numerical flux functions (12)–(16) has an influence on the behaviours of the errors and
we have to be careful in our study. If the interpolation of a is exact and a is continuous over
the inter-element boundaries, then the influence of the numerical fluxes can be simplified
essentially and we are able to analyse the long time error behaviours. We will formulate this
in detail for the first flux under consideration, the edge based central flux (12).

– Edge based central flux f num(u−, u+) = a(x) u−+u+
2 : We get for the terms in the sum

1

2
ak(xL)

(
Ek−1
R + Ek

L

) (
Ek−1
R − Ek

L

)
− 1

2

(

ak−1
R

(
Ek−1
R

)2 − akL

(
Ek
L

)2)

= 1

2
ak(xL)

((
Ek−1
R

)2 −
(
Ek
L

)2)− 1

2

(

ak−1
R

(
Ek−1
R

)2 − akL

(
Ek
L

)2)

= 1

2

(
Ek−1
R

)2 (
ak(xL) − ak−1

R

)
+ 1

2

(
Ek
L

)2 (
akL − a(xL)

)
= 0.

If the interpolation of a is exact and a is continuous, the brackets of a will be zero,
because ak(xL) = akL = ak−1(xR) = ak−1

R . If this is not the case, we get additional
terms that can be positive or negative depending on brackets. On the boundaries, one
obtains

left: − E1
L

(

f num,1
L − 1

2
a1LE

1
L

)

= −E1
L

(
a1(xL)

2
E1
L − a1L

2
E1
L

)

= 1

2

(
E1
L

)2 (
a1L − a1(xL)

) = 0,

right: EK
R

(

f num,K
R − 1

2
aKR E

K
R

)

= 1

2

(
EK
R

)2 (
aK (xR) − aKR

)
= 0.

– Using this approach, we get the following results where the details of the calculation can
be found in the “Appendix”:

123



Journal of Scientific Computing (2019) 79:1572–1607 1589

Table 2 Error terms of the numerical fluxes

Fluxes Interiour Left Right

Split central 0 0 0

Edge bases upwind 1
2 a

k−1
R

�
Ek−1
R

�2 1
2

(
E1
L

)
a1L

(
Ek
R

)2
(
aKR
2

)

Split upwind 1
2 a

k−1
R

�
Ek−1
R

�2 1
2

(
E1
L

)
a1L

(
Ek
R

)2
(
aKR
2

)

For the calculation of the split upwind flux, we apply the assumptions of the exactness of
the interpolation and the continuity of a.

– Unsplit upwind flux f num(u−, u−) = (au)−.
Unfortunately, for the unsplit numerical fluxes (14), (17) we are not able to find such a
simplification as above, since the restriction of the product can not be compared to the
product of the restriction. This issue triggers also stability problems, see [36] for details.
We formulate this now for the unsplit upwind flux as an example. It is:

(aE)k−1
R

(
Ek−1
R − Ek

L

)
− 1

2

(

ak−1
R

(
Ek−1
R

)2 − akL

(
Ek
L

)2)

= 1

2

((

2(aE)k−1
R Ek−1

R − ak−1
R

(
Ek−1
R

)2)− 2ak−1
R Ek

LE
k−1
R + akL

(
Ek
L

)2)

.

Because of (aE)k−1
R �= ak−1

R Ek−1
R in general, a further simplification is in this case not

possible anymore. The following error bounds are only valid for the split numerical
fluxes. Nevertheless, we test also the unsplit fluxes in the next section.

By comparison, one may recognise that the split upwind flux is equal the edge upwind flux
and analogously for the central fluxes under assumptions. Using central fluxes leads to no
additional terms in the inequality (48), whereas using upwind fluxes does. If the restrictions
aL/R to the boundary are positive,10 all of these terms are positive.We reformulate the energy
inequality (48) as

1

2

d

d t
||ε1||2N + σ

2

(

aKR

(
EK
R

)2 + a1L
(
E1
L

)2
)

+ σ

2

K∑

k=2

ak−1
R

(�
Ek

�)2

︸ ︷︷ ︸
BT s

+I ntd

≤ ÊG(t, N )||ε1||N − Θ2, (49)

where σ is zero (central flux) or one (upwind flux). The energy growth energy inequality
(49) is similar to (48). The only difference is the term Θ2, which will yield a smaller upper
bound under the condition Θ2 ≥ 0. We follow the steps of Sect. 4 and get

d

d t
||ε1||N + BT s + I ntd + Θ2

||ε1||2N︸ ︷︷ ︸
ηG (t)

||ε1||N ≤ ÊG(t, N ). (50)

10 This assumption is already formulated in [36, Theorem 3.4] to guarantee stability and conservation of the
numerical schemes.
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We have to assume that we can bound the mean value of ηG(t) by a positive constant δG
from below. If already I ntd + Θ2 > 0, this is actually met without restrictions. So, using
the central fluxes (σ = 0) does not yield to problems. Simultaneously, if BT s + I ntd + Θ2

overall is positive, the requirement on every akL,R to be non-negative can be weaken to make

the estimations, but one should have in mind that the positivity of akL,R is a condition to prove

stability. This means11 ηG(t) ≥ δG > δ0 > 0. Under the assumption of u, the right hand side
ÊG(t, N ) is also bounded in time and one can put max

s∈[0,∞)
ÊG(t, N ) ≤ C2 < ∞. Applying

this in (45) and integrating over time, the inequality for the error follows as

||ε1(t)||N ≤ 1 − exp(−δGt)

δG
C2. (51)

Since δG > δ0, the error using Gauß–Legendre nodes will reach its asymptotic value faster
than the error using a Gauß–Lobatto–Legendre basis. We see this behaviour in our numerical
simulations in the next section.

6 Numerical Examples

In this section, we present some numerical experiments using the constructed schemes. We
focus on the influence of the different numerical fluxes on the long time behaviour of the error.
From [20,31], we know that in case of constant coefficients the choice of the numerical flux
has an essential influence on the error behaviour, especially in the Gauß–Lobatto–Legendre
case.

We consider our model problem, the linear advection equation

∂t u(t, x) + ∂x (a(x)u(t, x)) = 0, t > 0, x ∈ (xL , xR),

u(t, xL) = gL(t), t ≥ 0,

u(0, x) = u0(x), x ∈ (xL , xR),

(1)

with smooth speed a(x) > 0, initial condition u0 and boundary condition gL . The solution
u of the corresponding Cauchy problem can be calculated by the method of characteristics,
see e.g. [4, Chapter 3]. As time integrator, we use the fourth order, ten stage, strong stability
preserving Runge–Kutta method of [17] and the time step is chosen such that the time
integration error is negligible. Although the term “strong-stability preserving” means the
preservation of stability properties of the explicit Euler method and the explicit Euler method
is not stable for our numerical experiments, this fourth order Runge–Kutta method is strongly
stable for linear equations [37]. All elements are of uniform size.

6.1 Coefficient a(x) = x

In our first experiment, we choose a(x) = x with initial condition u0(x) = sin(12(x −0.1)).
The interval is [xL , xR] = [0, 2π ] and we choose the inflow boundary condition such that
we get the solution

u(t, x) = exp(−t)u0
(
x exp(−t)

)
.

For the coefficient a(x) = x , the first derivative of a is strictly positive, implying I ntd > 0.

11 δ0 from Sect. 4, inequality (46).
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(b) N = 4, K = 40, t = 20.
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(c) N = 3, K = 40, t = 20.
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(d) N = 4, K = 40, t = 20.

Fig. 1 Errors of numerical solutions using split and unsplit discretisations, a(x) = x

In our first simulation, we use K = 40 elements and calculate the solutions up to t = 20
with 200,000 time steps. In Fig. 1, we plot the long time error behaviour using polynomial
degrees three and four. One recognizes that in all cases the error remains bounded in time.

In the first row of Fig. 1, all terms (surface, flux and volume) are split whereas in the
second row they are not. We see that the error for the split version behaves like in the case
of constant coefficients [20,31]. We mean that the errors using the upwind fluxes are always
lower than the ones using central fluxes and one may recognize that we have some noisy
behaviour using the central fluxes. Using upwind fluxes, the error reaches its asymptotic
value faster than for the central fluxes.

In the second row, the unsplit discretisation is used. We recognize that we lose the predic-
tions from [20,31] that applying the upwind flux yields amore accurate solution. The absolute
value is also bigger applying the unsplit versions and we have again the noisy behaviour by
applying the central fluxes.

Comparing all four plots, we recognize that the best results are obtained by using Gauß–
Legendre nodes and the split discretisation. Therefore, we have a closer look on this. In Fig. 2,
we consider onlyGauß nodes and compare the split numerical fluxes and the unsplit numerical
fluxes (with split surface and volume terms). True in the legend indicates the split numerical
fluxes and false the unsplit ones. The experiment on the left-hand side demonstrates clearly
that the noisy behavior for the central flux transfers also to the application of Gauß–Legendre
nodes if all terms are split. Furthermore, we can hardly indicate some difference between the
usage of split and unsplit upwind fluxes here, whereas we have a slight different behaviour in
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(a) N = 3, K = 40, t = 20.
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(b) N = 4, K = 40, t = 20.

Fig. 2 Errors of numerical solutions using the split form and both split (true) and unsplit (false) numerical
fluxes
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(a)N = 3, K = 40, final time t = 50.
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(b)N = 3, K = 40, final time t = 200.

Fig. 3 Errors of discretisations for a(x) = x2, [xL , xR ] = [0.1, 1], and u0(x) = cos
(
πx
2
)

the usage of the central fluxes. The test indicates that the split discretisation (volume/surface
and numerical fluxes) should be preferred, matching our stability analysis.

6.2 Coefficient a(x) = x2

In our second experiment, we choose a(x) = x2 with initial condition u0(x) = cos
(

πx
2

)
.

The interval is [xL , xR] = [0.1, 1] and we choose the inflow boundary condition according
to the solution

u(t, x) = u0
(
x/(1 + t x)

)

(1 + t x)2
. (52)

In our simulation shown in Fig. 3, we apply different numbers of time steps up to t = 200.
First, we recognize that all errors are bounded in time, but different from the first case we
do not have any noisy behavior of the central fluxes, at least we can not identify some.
Simultaneously, the unsplit central flux error with Lobatto nodes increases at first rapidly
before it finally tends to its asymptotic value. In all cases, the errors are small but we get
always the best results by applying Gauß–Legendre nodes. Nevertheless, it takes a lot of time
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Fig. 4 Error behaviour on a
logarithmic scale for a(x) = x2,
t = 800
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(a) N = 3, K = 40, t = 5.
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(b) N = 3, K = 40, t = 9.

0 2 4 6 8 10

Time

0

100

200

300

400

500

||u
nu

m
−

u
in
t

an
a||

M

Longtime error behaviour splitted version

Gauss, upwind
Gauss, central
Lobatto, upwind
Lobatto, central

(c) N = 3, K = 40, t = 9.9.

Fig. 5 Errors of discretisations for a(x) = x2, [xL , xR ] = [− 0.1, 1], and u0(x) = cos
(
πx
2
)

for the errors to reach the asymptotic values. Even at time t = 800, the asymptotic is still not
reached, cf. Fig. 4.

In the first simulation, the interval has been chosen as [xL , xR] = [0.1, 1] to guarantee
the positivity of the derivative of a and also of its interpolation. Now, we change the interval
to [xL , xR] = [−0.1, 1], resulting in two major issues. First, the first derivative of a is not
strictly positive anymore and the solution develops a pole at time t = 10. Here, the solution
is also not uniformly bounded in its Sobolev norm and our error bounds (46) and (51) do not
hold. Nevertheless, the error behaviour can be investigated. Using only the split discretisation
for different times, we see in Fig. 5 that the errors increase and will increase further. They are
unbounded. Simultaneously, we also recognize that the errors using Gauß–Legendre nodes
still increase slower due to the fact that the methods using these nodes are more accurate.

Furthermore, by changing the initial condition to u0(x) = exp(−x4) instead of u0(x) =
cos

(
πx
2

)
, we are able to avoid the pole in the solution (52) since the exponential function will

tend fast enough to zero compared to (1+ t x)2 and we can extend the solution. Nevertheless
we get further problems here. If we have a look on the error behaviour in Fig. 6, we see that
we get a similar increase of the errors like in Fig. 5, but they are much smaller. Nevertheless
they are still unbounded, but why do we have this behaviour? The analytical solution is for
fixed times bounded, nevertheless we demand as one assumption right at the beginning at
equation (1) the solution to be uniformly bounded in time. However, this is not the case
anymore. This demonstrates again how essential this assumption is.

The same issue arises if we are investigate a(x) = cosh(x) + 1 as in [36]. Therefore, we
skip this case here.
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(b) N = 3, K = 40, t = 9.
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(c) N = 3, K = 40, t = 9.9.

Fig. 6 Errors of discretisations for a(x) = x2, [xL , xR ] = [− 0.1, 1], and u0(x) = exp(−x4)

Fig. 7 Error behaviour for
a(x) = 1 − x2, t = 20
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6.3 Coefficient a(x) = 1− x2

Here, we choose the coefficient a(x) = 1 − x2. The solution of the Cauchy problem is

u(t, x) = u0
(
(−x cosh(t) + sinh(t))/(x sinh(t) − cosh(t))

)

(cosh(t) − x sinh(t))2
. (53)

Using the domain [xL , xR] = [−1, 0.9] and the initial condition u0(x) = sin(πx), the
solution remains bounded but a′(x) < 0 for x > 0.

If we investigate now the long time error behaviour, we get a huge increase of the errors
if we apply the central fluxes, cf. Fig. 7. This matches perfectly our theoretical investigations
in Sects. 4 and 5, cf. Remark 4.1. We explain the reasons again in detail in the next test case
and a physical interpretation and illustration is given afterwards.

6.4 Coefficient a(x) = cos(x)

Here, we choose a(x) = cos(x) and u0(x) = sin(5x). The solution of the Cauchy problem
is

u(t, x) = u0
(
x0(t, x)

)cos
(
x0(t, x)

)

cos(x)
,

x0(t, x) = −2 arctan
(
tanh

(
t/2 − artanh(tan(x/2))

))
. (54)

We can find an interval for our solution (54) so that a′(x) ≤ 0 and u(t, x) does not blow up,
e.g. [xL , xR] = [0.1, π/3]. The solution remains bounded but a′(x) < 0.
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(a) N = 3, K = 30, t = 5.
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(b) N = 3, K = 30, t = 40.
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(c) N = 3, K = 30, t = 100.

Fig. 8 For a(x) = cos(x), the slope of a is negative. The errors of numerical solutions using the central flux
increase, whereas the upwind flux results in bounded errors

0 10 20 30 40

Time

10−21

10−17

10−13

10−9

10−5

||u
nu

m
−
u
in
t

an
a||

M

Longtime error behaviour
 splitted version log-scale

Gauss, upwind
Gauss, central
Lobatto, upwind
Lobatto, central

(a) N = 3, K = 30, t = 40.
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(b) N = 3, K = 30, t = 100.

Fig. 9 Error of numerical solutions for a(x) = cos(x) in logarithmic scale

In Fig. 8, we see the behaviour of the error for different times. First, one may suppose that
the error remains bounded in time, but this is not the case as can be seen stepping further in
time. Using the central fluxes (σ = 0), the BT s terms are zero and we do not find an η which
is bounded with a positive constant from below away from zero. One may recognize also
that for Gauß–Legendre nodes, the error increases much slower (second picture). Surely, one
reason for this is the smaller error in the Gauß–Legendre case. Furthermore, also the term Θ

may have a positive impact of the error behaviour.
However, this example demonstrates well that the condition a′(x) > 0 is essential for the

boundedness of the error, also in the test case of Sect. 6.3. One can rescue (46) and (51) by
applying the upwind flux like it can be seen in this test case and especially in Fig. 9.

By applying an SBP-SAT finite difference scheme with one block, the internal terms
BT s do not exist. Using the SBP difference operator of [23] with interior order of accuracy
eight, the split form, and 100 nodes for this problem, the error is unbounded, as can be
seen in Fig. 10. However, if the high-order artificial dissipation operator of [24] is applied
additionally, the error remains bounded.

Comparing Figs. 9 and 10 demonstrates that stabilisation induced by upwind fluxes or arti-
ficial dissipation operators is crucial and comparable. Furthermore, Gauss–Legendre nodes
not including boundary points provide some stabilisation.
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Fig. 10 Errors of numerical solutions using SBP finite difference schemes

6.5 A First Analytical Study

As can be seen in Figs. 9 and 10, if a′(x) is not positive the long time errors show different
behaviours depending on the dissipation which is added to the scheme by numerical fluxes
or artificial dissipation terms. Here, we give a short rough analysis on this topic under what
conditions we can guarantee boundedness. A more detail analysis should follow in future
research with more validations.

We are starting considering ηG(t) from (50). It is

η(t) := BT s + I ntd + Θ2

||ε1||2N
(55)

with I ntd := 1
2

∑K
k=1

Δxk
2

(
∂xak, εk1ε

k
1

)

N
. A sufficient condition for the mean of η(t) to be

positive is that every value of η(t) is positive. Therefore, we require

BT s + I ntd + Θ2

||ε1||2N
> 0.

If the derivative of a is negative, we can reformulate the inequality above as

(BT s + Θ2)
1

||ε1||2N
>

1

2||ε1||2N

(
K∑

k=1

Δxk
2

(∣∣
∣∂xa

k
∣
∣
∣ , εk

1
εk1

)

N

)

,

and even strengthen our assumptions by requiring

(BT s + Θ2)
1

||ε1||2N
>

maxx∈(x0,xK )

∣
∣∂xa

∣
∣

2||ε1||2N

(
K∑

k=1

Δxk
2

(
1, εk

1
εk1

)

N

)

or (BT s + Θ2)
1

||ε1||2N
>

maxx∈(x0,xK )

∣
∣a′(x)

∣
∣

2
. (56)

From (56) we realize the BT s-terms are responsible to guarantee that this sufficient condition
is fulfilled. In case of a central numerical flux, BT s ≡ 0 and we have to add additional
dissipation to the scheme as it is done in the SBP-SAT schemes in Fig. 10. However, also
the dependence of the error is important and we may also realize that in case of using Gauß–
Legendre we rather get the condition (56) fulfilled. However, this estimation is rough and
should be improved in further research.
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6.6 Physical Interpretation and Illustration

In order to understand some results better, a physical interpretation of the advection equation
can be used. This serves also as illustration and explains the rational behind some of the
choices regarding for example the numerical experiments.

The advection equation ∂t u+∂x (au) = 0with non-negative velocitya(x) is a conservation
law with varying coefficients. Thus, the total mass

∫
u is conserved and u is transported from

left to right due to a(x) ≥ 0. In order to compute analytical solutions of the Cauchy problem,
the method of characteristics can be used, cf. [4, Chapter 3].

– Solve the ODE x ′(t) = a
(
x(t)

)
, x(0) = x0, for x(t) = x(t; x0). Compute also the

inverse function x0 = x0(t; x).
– Solve the ODE z′(t) = −a′(x(t; x0)

)
z(t), z(0) = z0, for z(t) = z(t; z0, x0).

– Set z0 = z0(x0) = u0(x0) = u0
(
x0(t; x)

)
and obtain the analytical solution u(t, x) =

z(t; z0, x0) = z(t; z0
(
x0(t; x)), x0(t; x)

)
.

In the second step, if a′ > 0, the absolute value of z(t) decreases. Contrary, if a′ < 0, the
absolute value of z(t) increases. This corresponds directly to the physical interpretation as
transport problem. Since u is conserved and transported with velocity a(x), there is a loss
of u if a′ > 0, since there is less new mass coming from the left than going to the right.
Similarly, a′ < 0 yields an increase of u, since more mass is coming from the left than
transported to the right. This explains also the critical role of a′(x). If a′ < 0, there can be
blow-up phenomena in the solution u, resulting in possibly finite life spans and increasing
energies and errors of numerical solutions. If a′ > 0, this cannot happen.

If one wants to investigate a situation with a′(x) > 0 in some parts and a′(x) < 0 in
other parts of the domain, there are basically two possibilities. Firstly, there can be a local
minimum of a(x), e.g. for a(x) = x2. In this case, there can be a blow-up of the solution
u, since more mass is coming from the left than transported to the right at this minimum.
However, this blow-up phenomenon caused by the varying transport velocity a(x) can be
balanced by the initial condition u0. If there is simply not enough mass on the left, than the
higher transport speed there can not cause a blow-up of the solution u. This explains our
choice of the intervals and the initial conditions for these cases.

Secondly, there can be a local maximum of a(x), e.g. for a(x) = 1− x2 or a(x) = cos(x).
Now, there is no blow-up at the critical point, since more mass is transported to the right.
However, both examples have stagnation points with a(x) = 0. At such points, there will
be a blow-up of the solution, since mass is coming from the left but not transported to the
right. In order to avoid this phenomenon of the Cauchy problem, the interval can be chosen
adequately, i.e. bounded away at the right from the point with a(x) = 0. Then, the blow-up
of the solution of the Cauchy problem does not cause any problems for the corresponding
solution of the initial value problem. This explains our choices of the domains for these cases.

7 Possible Generalisation and Examples

As has been demonstrated hitherto, the error of numerical solutions of scalar hyperbolic
conservation laws with varying coefficients does not necessarily remain bounded in finite
domains, contrary to the expectation for linear systems with constant coefficients. Here,
some further remarks concerning generalisations of this result are given.
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7.1 Linearized Euler Equations

We start by considering the theory for the linearized Euler Equations which are one of
the most—if not the most—investigated system in computational fluid dynamics. The one-
dimensional compressible Euler equations in conservation form are

∂tU + ∂xF(U) = 0, (57)

where U is the state vector of the conserved quantities and F is the flux. Thus,

U =
⎛

⎝
ρ

m
E

⎞

⎠ , F(U) =
⎛

⎝
m

ρu2 + p
u(E + p)

⎞

⎠ , (58)

where ρ is the mass density,m = ρu is the momentum, E is the total energy, u is the velocity

and p is the pressure related to U by the equation of state p = (γ − 1)(E − ρ u2
2 ) using γ

for the specific heat capacities. We can rewrite (57) as

∂tU + A(U)∂xU = 0,

where A = ∂UF is the Jacobian matrix which has only real eigenvalues and can be diagonal-
ized by the matrix R of eigenvectors. Indeed, A = RΛR−1, where Λ = diag (λ1, λ2, λ3) =
diag (u + c, u, u − c). Here, c is the speed of sound which satisfies

c(ρ)2 = p′(ρ) > 0. (59)

As mentioned before, a lot of investigations of (57) can be found in the literature where also
different linearization techniques were used depending on the numerical schemes [9,42,43,
45]. Here, we will focus on this topic and the problems which can appear. This yields us to
some outlook for future research.

Linerization Around a Smooth Solution: An Outlook

We are not considering the full system (58) for a smooth solution, but the trun-
cated/simplified/shortened version [14]

∂tρ + ∂x (ρu) = 0,

∂t u + u∂xu + 1

ρ
∂x p(ρ) = 0, (60)

to explain the problem. Using a Taylor series approach for the linearization around a smooth
solution (ρ̂, û) yields a linear system with variable coefficients of the form

∂t

(
ρ

u

)

+
(

û ρ̂
c(ρ̂)2

ρ̂
û

)

∂x

(
ρ

u

)

+ C

(
ρ

û

)

= 0,

where C depends on (ρ̂, û) and their derivatives such that C = 0 if ρ̂ and û are constant.
This system can be symmetrized using ρS := c(ρ̂)

ρ̂
ρ, resulting in

∂t

(
ρS

u

)

+
(

û c(ρ̂)

c(ρ̂) û

)

∂x

(
ρS

u

)

+ C̃

(
ρS

u

)

= 0, (61)
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where C̃ depends on (ρ̂, û) and their derivatives such that C̃ = 0 if ρ̂ and û are constant. If
we have constant coefficients, this investigation belongs to the case which was already stud-
ied in [20,27,31] and the error remains bounded under the conditions give there. Otherwise,
all entries of C̃ are non-trivial and the equations cannot be decoupled. Already for sym-
metric systems, we get further problems depending on the estimation of the energy growth,
as described in Sect. 7.2. The investigation of the error behaviour for this problem is not
straightforward and should be considered in more detail in future work.

Remark 7.1 As mentioned above, there are different techniques for linearizing the Euler
equations. They depend on the numerical schemes which are used/constructed for these
system. Here, we only mention the approach by Roe [42] about flux difference splitting or
the flux vector splitting in [43]. The linearization is used in the construction of the numerical
schemes in some sense. To follow their ideas together with our analysis about the long time
error behaviour is an alternative ansatz and will also be considered in future research.

7.2 Multidimensional Systems

We consider the linear magnetic induction equation

∂t B(t, x) = ∇ × (
u(t, x) × B(t, x)

)
, t ∈ (0, 50), x ∈ (0, 1)3,

B(0, x) = u(t, x) =
⎛

⎝
sin(πx) cos(π y) cos(π z)
cos(πx) sin(π y) cos(π z)

−2 cos(πx) cos(π y) sin(π z)

⎞

⎠ , x ∈ [0, 1]3, (62)

supplemented with the divergence constraint div B(t, x) = 0, cf. [18,25]. This specific
example is taken from [41]. Here, B is the magnetic field and u the particle velocity. Since
u vanishes at the boundary of the domain, no boundary condition is specified. In order to
get a symmetric hyperbolic system, the nonconservative source term −u div B is added to
the right hand side, resulting in an energy estimate if a splitting is used as described in the
references listed above. There are several discrete forms of the equation allowing an energy
estimate [41]. Using the terminology introduced there, the most obvious one uses the same
split form as applied at the continuous level and is called (product, central, split). Another
choice described there is (central, central, central). The implementations of [40] are used in
the following.

Applying both discretisations, SBP FD operators of interior order of accuracy 4, and 403

nodes to discretize the domain yields the results visualized in Fig. 11. As can be seen there,
the form (product, central, split) results in an exponential growth of both the energy and
the error while the other form yields a bounded error. Adding artificial dissipation does not
change the result significantly.

These results are in accordancewith the energy estimates (an exponential growth is allowed
as worst case estimate) and the investigations in this article. The main complications for
(product, central, split) are presumably a combination of

– The velocity u vanishes at the boundary and errors cannot be transported out of the
domain; instead, they accumulate.

– While the analytical solution has a bounded energy, the worst case estimate allows an
exponential growth.

– The analytical solution is a steady state which is not necessarily represented exactly by
the discretisation.
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Fig. 11 Errors and energies of numerical solutions of the induction equation

This shows that severe problems canbe expected for general symmetric hyperbolic systems
with varying coefficients in multiple space dimensions.

8 Summary and Discussion

In this article, we have conducted an analysis of the long-time behaviour of the error of numer-
ical solutions to the linear advection equation with variable coefficients in bounded domains.
Using flux reconstruction schemes/discontinuous Galerkin methods with summation-by-
parts operators, we provide a detailed analysis of the influence of both the choice of the
numerical flux and the polynomial basis. If boundary conditions are imposed in a provably
stable way using numerical fluxes, the error can be bounded uniformly in time, depending
on the variable coefficient a(x) and the numerical fluxes at the interior boundaries. However,
there can be also an unbounded growth of the error if certain conditions are not satisfied.

Firstly, if the varying coefficient a(x) behaves nicely, inducing a decay of the analytical
solution, the long time behaviour of the numerical error is comparable to the case of constant
coefficients. The application of upwind fluxes at interior boundaries results in a smaller
asymptotic value of the error and this value is also attained faster. Using Gauß–Legendre
nodes results in smaller errors compared to Gauß–Lobatto–Legendre nodes.

However, if the varying coefficient a(x) induces a possible growth or blow-up of the ana-
lytical solution, the situation is totally different. Of course, if the solutions blows up in finite
time, so does the error. This behaviour is not possible for constant coefficients. Moreover,
there can still be some problems, even if the solution does not blow up. Indeed, the variable
coefficients can trigger a growth of the error that has to be balanced by additional stabilisa-
tion such as upwind numerical fluxes compared to central ones or artificial dissipation, e.g.
in finite difference methods. We have explained this behaviour and have presented several
numerical examples, where upwind numerical fluxes or artificial dissipation result in uni-
formly bounded errors while the errors increase without bound if central numerical fluxes or
no additional dissipation operators are applied.

Finally, in the last section we have extended our analysis of the long time error behaviour
to systems. Here, several problems emerge and we have given an outlook for further research
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topics in this context focussing on coupled symmetric systems with variable coefficients
such as the linearized Euler or magnetic induction equations. As can be seen there, further
problems can arise for general symmetric hyperbolic systems in multiple space dimensions,
even if energy stable discretizations are used.
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pressible flow problems” and Hendrik Ranocha was supported by the German Research Foundation (DFG,
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Appendix

Technical Explanation of the Investiagtion in Sect. 4

We presented the ideas how to reach (35) from (31). Applying the interpolation operator
together with discrete norms results in12

〈
∂t I

N (uk), ϕk
〉
=
(
∂t I

N (uk), ϕk
)

N

+
{〈

∂t I
N (uk), ϕk

〉
−
(
∂t I

N (uk), ϕk
)

N

}
, (32)

1

2

〈
akIN (uk), ∂ξϕ

k
〉
= 1

2

(
akIN (uk), ∂ξϕ

k
)

N

+ 1

2

{〈
akIN (uk), ∂ξϕ

k
〉
−
(
akIN (uk), ∂ξϕ

k
)

N

}
, (63)

1

2

〈
ak∂ξ I

N (uk), ϕk
〉
= 1

2

(
ak∂ξ I

N (uk), ϕk
)

N

+ 1

2

{〈
ak∂ξ I

N (uk), ϕk
〉
−
(
ak∂ξ I

N (uk), ϕk
)

N

}
, (64)

1

2

〈
I
N (uk)∂ξa

k, ϕk
〉
= 1

2

(
I
N (uk)∂ξa

k, ϕk
)

N

+ 1

2

{〈
I
N (uk)∂ξa

k, ϕk
〉
−
(
I
N (uk)∂ξa

k, ϕk
)

N

}
. (65)

It is well known [5, Section 5.4.3] that the integration error arising from the use of Gauß
quadrature (Gauß–Legendre and Gauß–Lobatto–Legendre) decays spectrally fast. Indeed,
for all ϕ ∈ P

N and m ≥ 1,
∣
∣
∣〈u, ϕ〉 − (u, ϕ)N

∣
∣
∣ ≤ CN−m |u|Hm,N−1(−1,1)||ϕ||L2(−1,1),

where C is a constant independent of m and u. The curly brackets of (32), (63)–(65) have to
be reformulated. Using

12 Since ϕ ∈ P
N and if a ≡ 1, the volume term is

〈
I
N (uk ), ∂ξ ϕk

〉
=
(
I
N (uk ), ∂ξ ϕk,T

)

N
= ϕk DT MI

N (uk )

and also the terms (63)–(65) simplify and can be brought together, see inter alia [20] for details.
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〈
∂t I

N (uk), ϕk
〉
−
(
∂t I

N (uk), ϕk
)

N
=
〈

∂t

(
I
N (uk) − Pm

N−1

(
I
N (uk)

))

︸ ︷︷ ︸
=:Q(uk )

, ϕk

〉

−
(

∂t

(

I
N (uk) − Pm

N−1

(
I
N (uk)

))

, ϕk
)

N
, (66)

where Pm
N−1 is the orthogonal projection of u onto PN−1 using the inner product of Hm(ek),

gives a new formulation for (32). The projection operator is defined by the classical truncated
Fourier series PN−1u = ∑N−1

k=0 ûkΦk up to order N − 1 where Sobolev type orthogonal
polynomials {Φk} are used as basis functions in the Hilbert space Hm(ek). The coefficients
are calculated using the inner product of Hm(ek) given by

〈u, v〉m =
m∑

k=0

∫

ek

dk u

d xk
(x)

dk v

d xk
(x) d x .

For more details about the projection operator and about approximation results, we strongly
recommend [5, Section 5] and also [2,3]. An analogous approach as (66) leads to terms
with Q1 for (63), Q2 for (64) and Q3 for (65). The Q j measure the projection error of a
polynomial of degree N to a polynomial of degree N − 1. Since u and a are bounded, also
these values have to be bounded. This values can be introduced and finally one obtains (35).
Later, in this section the error of the fluxes hase to be calulated. We obtain for the left and
right boundary:

left: − E1
L

(

f num,1
L − 1

2
a1LE

1
L

)

= −E1
L

((

a1L
0 + E1

L

2
− σa1L

E1
L

2

)

− a1LE
1
L

2

)

= σa1L
2

(
E1
L

)2
,

right: EK
R

(

f num,K
R − 1

2
aKR E

K
R

)

= EK
R

((

aKR
0 + EK

R

2
+ 1

2
σaKR E

K
R

)

− EK
R a

K
R

2

)

= σaKR
2

(
EK
R

)2
.

Technical Steps of the Development in Sect. 5

Here, we are presenting the main steps to reach (48).

Δxk
2

〈
∂t I

N (uk), ϕk
〉
+ 1

2

(

akIN (uk)ϕk
∣
∣
∣
∣

1

−1

−
〈
akIN (uk), ∂ξϕ

k
〉
+
〈
∂ξ I

N (uk), akϕk
〉

+
〈
∂ξa

k, ϕk
I
N (uk)

〉)

= −Δxk
2

〈
∂tε

k
p, ϕ

k
〉
− 1

2

(

akεkpϕ
k
∣
∣
∣
∣

1

−1

)

+ 1

2

〈
akεkp, ∂ξϕ

k
〉

− 1

2

〈
∂ξ ε

k
p, a

kϕk
〉
− 1

2

〈
ϕkεkp, ∂ξa

k
〉
.

Integration-by-parts yields

−1

2

(

akεkpϕ
k
∣
∣
∣
∣

1

−1

−
〈
akεkp, ∂ξϕ

k
〉
)

= −1

2

〈
∂ξ (a

kεkp), ϕ
k
〉
.
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With (32),(63)– (65), one obtains

Δxk
2

(
∂t I

N (uk), ϕk
)

N
+ ϕk,T RT B

(

f num,k
(
I
N (uk)−, IN (uk)+

)
− 1

2

(
Rak

)
·
(
Ru
))

+
(
1

2
akIN (uk)ϕk

∣
∣
∣
∣

1

−1

− ϕk,T RT B

(

f num,k
(
I
N (uk)−, IN (uk)+

)
− 1

2

(
Rak

)
·
(
Ru
))
)

︸ ︷︷ ︸
=:εk2(ak )

− 1

2

(
akIN (uk), ∂ξ ϕ

k
)

N
+ 1

2

(
∂ξ I

N (uk), akϕk
)

N
+ 1

2

(
∂ξa

k , IN (uk)ϕk
)

N

= Δxk
2

〈
T̂ k(uk), ϕk

〉
+ Δxk

4

〈
Q1(u

k), ∂xϕ
k
〉

+ Δxk
4

{ (
Q(uk), ϕk

)

N
−
(
Q1(u

k), ∂xϕ
k
)

N
+
(
Q2(u

k), akϕk
)

N

+
(
∂xa

k , Q3(u
k)ϕk

)

N

}
(47)

with

T̂ (uk) := −
{

∂tε
k
p + 1

2

(
∂x

(
akεkp

)
+ εkp∂xa

k∂xε
k
p

)

+ 1

2

(
Q(uk) + akQ2(u

k) + Q3(u
k)∂xa

k
)}

.

We transposed every term in (29) and subtracted it from equation (47). Using εk1 = I
N (uk)−

Uk yields

Δxk
2

(
∂tε

k
1, ϕ

k
)

+ ϕk,T RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2

(
Rak

)
·
(
Rεk1

))

+ εk2(a
k) − 1

2

(
akεk1, ∂ξϕ

k
)

N
+ 1

2

(
∂ξ ε

k
1, a

kϕk
)

N
+ 1

2

(
∂ξa

k, εk
1
ϕk
)

N

= Δxk
2

〈
T̂ k(uk), ϕk

〉
+ Δxk

4

〈
Q1(u

k), ∂xϕ
k
〉
+ Δxk

4

{ (
Q(uk), ϕk

)

N

−
(
Q1(u

k), ∂xϕ
k
)

N
+
(
Q2(u

k), akϕk
)

N
+
(
∂xa

k, Q3(u
k)ϕk

)

N

}
.

Putting ϕk = εk1 results in the energy equation similar to (37):

Δxk
4

d

d t
||εk1 ||2N + ε

k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2

(
Rak

)
·
(
Rεk1

))

+ εk2(a
k) − 1

2

(
akεk1, ∂ξ ε

k
1

)

N
+ 1

2

(
∂ξ ε

k
1, a

kεk1

)

N
+ 1

2

(
∂ξa

k , εk
1
εk1

)

N

= Δxk
2

〈
T̂ k(uk), εk1

〉
+ Δxk

4

〈
Q1(u

k), ∂xε
k
1

〉

+ Δxk
4

{ (
Q(uk), εk1

)

N
−
(
Q1(u

k), ∂xε
k
1

)

N
+
(
Q2(u

k), akεk1

)

N
+
(
∂xa

k , Q3(u
k)εk1

)

N

}

︸ ︷︷ ︸
Q̂k

.

Together with (38), one obtains

Δxk
4

d

d t
||εk1 ||2N + ε

k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)− 1

2

(
Rak

)
·
(
Rεk1

))

+ εk2(a
k) + 1

2

(
∂ξa

k , εk
1
εk1

)

N
= Δxk

2

〈
T̂ k(uk), εk1

〉
+ Δxk

4

〈
Q1(u

k), ∂xε
k
1

〉
+ Q̂k . (67)
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Summing this up over all elements results in

1

2

d

d t

K∑

k=1

Δxk
2

||εk1||2N +
K∑

k=1

ε
k,T
1 RT B

(

f num,k
(
(εk1)

−, (εk1)
+)

− 1

2

(
Rak

) (
Rεk1
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+ 1

2
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Δxk
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(
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1
εk1

)

N
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K∑
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Δxk
4

εk2(a
k)

=
K∑

k=1

Δxk
2

〈
T̂ k(uk), εk1

〉
+

K∑

k=1

Δxk
4

〈
Q1(u

k), ∂xε
k
1

〉
+

K∑

k=1

Q̂k .

Applying the same approach like in Eqs. (41)–(42) and the fact that ε1 ∈ P
N , it is||∂xεk1||2N ≤

c1N 2||εk1||2N and we get finally (48).

Calculating the Fluxes from Table 2

– Split central flux f num(u−, u+) = a−u−+a+u+
2 : One obtains
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and
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)
= −E1

L

(
a1L
2 E1

L − a1L
2 E1

L

)

= 0,

right: EK
R

(
f num,K
R − 1
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K
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R

)
= 1

2

(
EK
R

)2 (
aKR − aKR

) = 0.

– Edge based upwind flux f num(u−, u−) = a(x)u−: It is
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and
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right: EK
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.
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– Split upwind flux f num(u−, u−) = a−u−: It is

ak−1
R Ek−1

R

(
Ek−1
R − Ek

L

)
− 1

2

(

ak−1
R

(
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R
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(
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(
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2
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�
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,

where we used in the last step the assumption about the exactness of the interpolation
and the continuity of a. At the boundaries we get

left:
a1L
2

(
E1
L

)2
,

right:
aKR
2

(
EK
R

)2
.
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