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Abstract
In this paper, we propose a novel model for image segmentation by using the Cahn–Hilliard
equation. An interesting feature of this model lies in its ability of interpolating missing
contours along wide gaps in order to form meaningful object boundaries, which is often
achieved by curvature dependentmodels in the literature. To solve the associated equation, we
employ a recently developed technique, that is, the tailored-finite-point method, which helps
preserve sharp jumps and thus helps locate segmentation contours more exactly. Numerical
experiments are presented to demonstrate the effectiveness of the proposed model and its
features. In addition, analytical results on the existence and uniqueness of the associated
equation are also provided.
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1 Introduction andMotivations

Image segmentation is a fundamental problem in image processing and computer vision. It
aims to partition a given image into regions in order to recognize different objects, and it has
a wide range of applications in medical imaging, object detection, video surveillance, and
so on. During the last three decades, many different approaches have been proposed to deal
with this problem. These methods include clustering methods, graph partitioning methods,
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statistics based methods, partial differential equation (PDE) based methods, and variational
methods. In this work, we mainly focus on PDE/variational methods.

For those PDE/variational methods, a typical method for image segmentation is to evolve
active contours or snakes such that these contours could reside on object boundaries [4,9]. The
classical snake and active model was proposed by Kass, Witkin, and Terzopoulos [9], where
the active contours are driven to desired boundaries by internal forces such as regularity and
external one from the inhomogeneous distribution of image intensity. Later on, Caseslles,
Kimmel, and Sapiro proposed using geodesic active contours for image segmentation [3].

Instead of using curve evolution, there are also lots of region-based image segmentation
models in the literature. One of the most famous variational models for this problem is
due to Mumford and Shah [10]. They treated the given image as a function and searched
for its piecewise smooth approximation by minimizing some designed functional, and as
a result, object boundaries can be defined as the transition between adjacent patches of the
approximation function. In fact, besides for image segmentation, theMumford–Shah’smodel
has led to many variants with applications in almost all research topics in image processing,
such as image denoising, inpainting, and registration. The well-known Chan–Vese model [4]
can be regarded as a special case of the Mumford–Shah’s model, and it seeks for a binary
image to approximate the given image using level set function [12].

Even though they differ in the forms, the above segmentation models are all grey intensity
based, that is, their outputs mainly rely on grey intensity values of the given images. However,
due to the nature of real images, objects may not be well defined by the intensity values.
Specifically, some parts of objects could be occluded by other ones or even missing. For
instance, in medical images, target organs could be blended with other ones or tissues. As a
result, those intensity based models might not successfully segment those meaning objects.
To fix this problem, many segmentation models that incorporate prior shapes have been
developed [5]. Another possible way is to impose effective regularity condition on those
active contours. Recently, in [1,19], the authors proposed variational segmentation models
by using Euler’s elastica as the regularization of active contours. These models are able to
integrate missing or broken parts to form complete meaningful objects, and they are more
suited to capture objects with tiny but elongated structures than the Chan–Vese model.

In fact, ever since Mumford’s seminar work on segmentation with depth [11], Euler’s
elastica has been broadly used in the development of variational models in mathematical
imaging [1,15,19]. For instance, in [14], Chan, Kang, and Shen applied Euler’s elastica as an
interpolator for the inpainting problem. Their model is able to connect relatively large gaps
that cannot be fulfilled by using the total variation based regularizer. While these high-order
models could effectively accomplish many imaging tasks in image inpainting, denoising, and
segmentation, they are notoriously intractable both analytically and numerically, since the
associated Euler–Lagrange equations are highly nonlinear and of fourth-order. Therefore,
when compared with other lower order variational models, such as the well-known Rudin–
Osher–Fatemi model [13], these curvature dependent models could achieve more at the
expense of paying much more computational effort.

In this work, we plan to develop a novel segmentation model that takes advantage of the
favorable features of high-order PDEs and is also more easily handled than those Euler’s
elastica based models. Specifically, we propose using the Cahn–Hilliard equation together
with intensity fitting terms for the purpose of image segmentation. This ideamainly originated
from the attributes of the Cahn–Hilliard equation, which describes the process of phase
separation of a binary fluid.While theCahn–Hilliard equation is still of fourth-order, however,
when compared with those Euler–Lagrange equations associated with Euler’s elastica based
functionals, its highest order term is linear, which significantly reduces the difficulty of
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developing effective numerical schemes and also makes the analysis of suchmodels possible.
In fact, the Cahn–Hilliard equation has also been utilized in the field of image processing
[2,6]. In [2], Bertozzi, Esedoglu, and Gillette proposed using the Cahn–Hilliard equation for
the binary image inpainting, and in [6], multi-phase inpainting for grey images, and so on.

Different from the numerical schemes used inEsedoglu’s paper [2], in this paper, we intend
to apply a novel numerical scheme, that is, the tailored finite point method (TFPM) to solve
the equation of our proposed model. The TFPM was originally proposed by Han, Huang,
and Kellogg for solving a singular perturbation problem in order to resolve boundary/interior
layers [7]. Its salient feature lies in its ability of preserving sharp transitions, since the schemes
incorporate local information of the exact solutions of the related problems. Recently, in
[18], we have applied this technique for solving the Rician denoising and deblurring model
proposed by Getreuer, Tong, and Vese, and the improvement of the PSNR values can be
observed when the obtained numerical results are compared with those using traditional
finite difference schemes.

As a summary, the main contribution of this paper lies in the following two aspects:

• We propose a novel segmentation model that makes use of the Cahn–Hilliard equation
and also provide the analytical study of the proposed model, including its existence and
uniqueness of the associated equation.

• We apply the TFPM technique to solve the proposed model.

The outline of our paper is as follows.We first describe the proposedmodel that makes use
of the Cahn–Hilliard equation in Sect. 2, and then discuss the well-posedness of this model in
Sect. 3. In Sect. 4, we provide the details of applying TFPM for solving the resulting equation
of this model. Numerical experiments are presented in Sect. 5 to demonstrate the features of
the proposed model as well as the effectiveness of the numerical schemes, which is followed
by a conclusion in Sect. 6.

2 TheModified Cahn–HilliardModel

Suppose f is the given image, u is the corresponding recovered image. In what following, we
would like to consider the following Cahn–Hilliard type equation for image segmentation:

ut = −�
(
ε1�u − 2

ε1
W ′(u)

)
− [

λ1( f − c1)
2 − λ2( f − c2)

2] ε3

π
[
ε23 + (u − 1

2 )
2
] ,

(2.1)
where ε1, ε3, λ1, λ2 > 0, u satisfies ∂u

∂n = ∂�u
∂n = 0 on ∂�, the double-well function

W (u) = u2(u−1)2, and c1, c2 are two constants that could be assigned using some strategy.
For instance, we can set c1 = 1 and c2 = 0 initially, if the image function f is rescaled in
the range [0, 1], and with these values of c1, c2, we can solve Equation (2.1) to steady state,
and then update them using the following formula:

c1 =
∫
�

[
1
2 + 1

π
arctan

(
u− 1

2
ε3

)]
f dx

∫
�

[
1
2 + 1

π
arctan

(
u− 1

2
ε3

)]
dx

,
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c2 =
∫
�

[
1
2 − 1

π
arctan

(
u− 1

2
ε3

)]
f dx

∫
�

[
1
2 − 1

π
arctan

(
u− 1

2
ε3

)]
dx

,

and with this new values of c1, c2, we again solve Eq. (2.1) to steady state, and keep this
process until c1, c2 converge.

Equation (2.1) is not a gradient flow for an energy. Indeed, the first term on the right-
hand side of (2.1) is the gradient descent with respect to the H̄−1 inner product [16] of the
following energy:

E1(u) =
∫

�

(ε1

2
|∇u|2 + 2

ε1
W (u)

)
dx, (2.2)

which satisfies

d

dt
E1(u) = d

dt

∫

�

(ε1

2
|∇u|2 + 1

ε1
W (u)

)
dx

= −
∫

�

|∇w|2dx ≤ 0,

where w = −ε1�u + 1
ε1
W ′(u).

The second term in the right-hand side of (2.1) is the gradient descent with respect to the
L2 inner product of the following energy:

E2(u) = λ1

∫

�

( f − c1)
2Hε3

(
u − 1

2

)
dx

+ λ2

∫

�

( f − c2)
2
[
1 − Hε3

(
u − 1

2

)]
dx,

(2.3)

where, as in [4],

Hε3(z) = 1

2

(
1 + 2

π
arctan

(
z

ε3

))
,

is a C∞ regularization of the Heaviside function H given by

H(z) =
{
1, if z ≥ 0,
0, if z < 0,

and the one-dimensional Dirac measure δ0 = d
dz H(z) can be approximated by δε3 = H ′

ε3
,

where

δε3(z) = ε3

π
(
ε23 + z2

) .

The above model (Eq. (2.1)) can be extended for the segmentation of color images. For
a color image, f consists of three channels, that is f = ( f (1), f (2), f (3)). Then c1 and c2
are defined as vectors with three elements

c1(i) =
∫
�
Hε3

(
u − 1

2

)
f (i)dx∫

�
Hε3

(
u − 1

2

)
dx

, c2(i) =
∫
�

[
1 − Hε3

(
u − 1

2

)]
f (i)dx∫

�

[
1 − Hε3

(
u − 1

2

)]
dx

, i = 1, 2, 3.

Then for the segmentation of color images, our model can be expressed as follows:
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ut = −�
(
ε1�u − 2

ε1
W ′(u)

)

−
3∑

i=1

[
λ1( f (i) − c1(i))

2 − λ2( f (i) − c2(i))
2] ε3

π[ε23 + (
u − 1

2

)2]
, (2.4)

with the boundary condition ∂u
∂n = ∂�u

∂n = 0 on ∂�.
Moreover, our model can also be adapted to multi-phase segmentation. In what follows,

we only consider the case of four phases. For this, as in [17], we only need two segmentation
functions. Then we can write the energy E2 for four phases as follows:

E2(u) =
∫

�

( f − c11)
2Hε3

(
u1 − 1

2

)
Hε3

(
u2 − 1

2

)
dx

+
∫

�

( f − c10)
2Hε3

(
u1 − 1

2

) (
1 − Hε3

(
u2 − 1

2

))
dx

+
∫

�

( f − c01)
2
(
1 − Hε3

(
u1 − 1

2

))
Hε3

(
u2 − 1

2

)
dx

+
∫

�

( f − c00)
2
(
1 − Hε3

(
u1 − 1

2

))(
1 − Hε3

(
u2 − 1

2

))
dx,

(2.5)

where c = (c11, c10, c01, c00) is a constant vector, u = (u1, u2), and

c11 =
∫
�

[
Hε3

(
u1 − 1

2

)
Hε3

(
u2 − 1

2

)]
f dx∫

�

[
Hε3

(
u1 − 1

2

)
Hε3

(
u2 − 1

2

)]
dx

,

c10 =
∫
�

[
Hε3

(
u1 − 1

2

) (
1 − Hε3

(
u2 − 1

2

))]
f dx∫

�

[
Hε3

(
u1 − 1

2

) (
1 − Hε3

(
u2 − 1

2

))]
dx

,

c01 =
∫
�

[(
1 − Hε3

(
u1 − 1

2

))
Hε3

(
u2 − 1

2

)]
f dx∫

�

[(
1 − Hε3

(
u1 − 1

2

))
Hε3

(
u2 − 1

2

)]
dx

,

c00 =
∫
�

[(
1 − Hε3

(
u1 − 1

2

)) (
1 − Hε3

(
u2 − 1

2

))]
f dx∫

�

[(
1 − Hε3

(
u1 − 1

2

)) (
1 − Hε3

(
u2 − 1

2

))]
dx

.

Therefore, we propose the following model for the four-phase segmentation:

∂u1
∂t

= −�
(
ε1�u1 − 2

ε1
W ′(u1)

)

−
3∑

i=1

[
( f (i) − c11(i))

2 − ( f (i) − c01(i))
2] Hε3(u2 − 1

2
)δε3(u1 − 1

2
)

−
3∑

i=1

[
( f (i) − c10(i))

2 − ( f (i) − c00(i))
2] (

1 − Hε3(u2 − 1

2
)
)
δε3(u1 − 1

2
),

∂u2
∂t

= −�
(
ε1�u2 − 2

ε1
W ′(u2)

)

−
3∑

i=1

[
( f (i) − c11(i))

2 − ( f (i) − c10(i))
2] Hε3(u1 − 1

2
)δε3(u2 − 1

2
)

−
3∑

i=1

[
( f (i) − c01(i))

2 − ( f (i) − c00(i))
2] (

1 − Hε3(u1 − 1

2
)
)
δε3(u2 − 1

2
),
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with the boundary conditions ∂ui
∂n = ∂�ui

∂n = 0, i = 1, 2 on ∂�. Certainly, it is easy to extend
our idea to general multi-phase segmentation.

3 Existence of Weak Solutions of theModified Cahn–Hilliard Equation

Based on the definitions of H , δ, we can rewrite our model (2.1) as follows

ut = −�

(
ε1�u − 2

ε1
W ′(u)

)
− δε3

(
u − 1

2

)
[λ1( f − c1)

2 − λ2( f − c2)
2]. (3.1)

We define a weak solution of the evolution Eq. (3.1), ∀v ∈ V,

d

dt
< u, v > + < ε1�u, �v > − <

2

ε1
W ′(u), �v >=< −δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], v >, (3.2)

where

V =
{
φ ∈ H2(�)

∣∣∣ ∂φ

∂ 	n = ∂�φ

∂ 	n = 0 on ∂�

}
.

Firstly, we give a priori bound for the L2 norm of the solution u, which is uniform in time.
In fact, the proof for the following energy estimate is similar to lemma 4.2 in the article [2].

Lemma 3.1 Given a weak solution as described above, there exist constants c(ε3, λ2, f ) > 0
and θ > 0 so that

1

2

d

dt

∫

�

u2dx ≤ c(ε3, λ2, f ) − θ

∫

�

u2dx, (3.3)

for all t ≥ 0.

Proof Multiply Eq. (3.1) by u, and integrate on �,

1

2

d

dt

∫

�

u2dx = −ε1

∫

�

(�u)2dx − 2

ε1

∫

�

W ′′(u)|∇u|2dx

−
∫

�

[λ1( f − c1)
2 − λ2( f − c2)

2]δε3udx .

Using the fact W ′′(u) ≥ γ u2 − C for all u, for some constants γ and C , then

1

2

d

dt

∫

�

u2dx ≤ −ε1

∫

�

(�u)2dx − 2γ

ε1

∫

�

u2|∇u|2dx + 2C

ε1

∫

�

|∇u|2dx

−
∫

�

[λ1( f − c1)
2 − λ2( f − c2)

2]δε3udx .

First, estimating the last termof the inequality above as follows:Note C̃1 = λ1
π

( f −c1)2+ 1
2 ≥

1
2 and C̃2 = λ2

π
( f − c2)2 + 1

2 ≥ 1
2 . As 0 ≤ u ≤ 1,

∫

�

C̃2
ε3u

ε23 + (u − 1
2 )

2
dx ≤

∫

�

C̃2
1

ε3
dx ≡ c(ε3, λ2, f );

and
∫

�

C̃1
ε3u

ε23 + (u − 1
2 )

2
dx ≥ ε3

∫

�

1
2u

ε23 + (u − 1
2 )

2
dx ≥ ε3

∫

�

1
2u

2

ε23 + 1
4

dx ≡ C̃
∫

�

u2dx .
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Then ∫

�

(−C̃1 + C̃2)
ε3u

ε23 + (u − 1
2 )

2
dx ≤ c(ε3, λ2, f ) − C̃

∫

�

u2dx .

We refer to a standard interpolation inequality
∫

�

|∇u|2dx ≤ δ

∫

�

(�u)2dx + 1

δ

∫

�

u2dx,

and put everything together,

1

2

d

dt

∫

�

u2dx ≤ −ε1
∫
�
(�u)2dx − 2γ

ε1

∫
�
u2|∇u|2dx + 2Cδ

ε1

∫
�

|�u|2dx
+ 2C

ε1δ

∫

�

u2dx + c(ε3, λ2, f ) − C̃
∫

�

u2dx .
(3.4)

To satisfy the conditions 2Cδ
ε1

< ε1 and 2C
ε1δ

< C̃ = ε3
2ε23+ 1

2
, take C(4ε3+1)

ε1ε3
< δ <

ε21
2C . With

this choice, we have the following inequality:

1

2

d

dt

∫

�

u2dx ≤ c(ε3, λ2, f ) − θ

∫

�

u2dx,

where θ > 0. Thus the differential form of Gronwall’s inequality yields the estimate
∫

�

u2dx ≤ e−θ t
[∫

�

u20dx + ct

]
≤ c(ε3, λ2, f )t + ‖u0‖2L2(�)

Returning to inequality (3.4) once more, we integrate from 0 to T and employ the inequality
above to find

max
0≤t≤T

‖u‖2L2(�)
+ ‖u‖2

L2(0,T ;H2
0 (�))

≤ c(ε3, λ2, f )T + C̃‖u0‖2L2(�)
. (3.5)

�

Theorem 3.2 (Existence of weak solution) There exists a weak solution of (3.1).

Proof Step 1: Galerkin approximation.
Taking {wk}∞k=1 to be the complete set of appropriately normalized eigenfunctions for

L = −� in H2(�), {wk}∞k=1 is an orthogonal basis of H
2(�); {wk}∞k=1 is also an orthonormal

basis of L2(�). For each positive integer m, we look for a function um of the form:

um =
m∑

k=1

dkm(t)wk, (3.6)

where dkm(0) = (u0, wk), and um satisfies
(
dum
dt

, wk

)
+(ε1�um,�wk)−

(
2

ε1
w′(um),�wk

)
=(−δε3 [λ1( f −c1)

2−λ2( f −c2)
2], wk).

(3.7)
Since {wk}∞k=1 is an orthonormal basis and W ′(u) is linearized, we have

(
dum
dt

, wk

)
= d

dt
dkm(t),

B[um, wk; t] := (ε1�um,�wk) −
(
2

ε1
w′(um),�wk

)
= �m

l=1e
kl(t)dlm(t),
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for ekl(t) := B[wl , wk; t], (k, l = 1, . . . ,m). Note f k(t) := (−δε3 [λ1( f − c1)2 − λ2( f −
c2)2], wk). Then the relation (3.7) is also equivalent to

d

dt
dkm(t) + �m

l=1e
kl(t)dlm(t) = f k(t) (k = 1, . . . ,m), (3.8)

dkm(0) = (u0, wk). (3.9)

According to Picard existence theory, there exists a unique absolutely continuous function
dm(t) = (d1m(t), . . . , dmm (t)) satisfying (3.8) and (3.9) for a.e. 0 ≤ t ≤ T .

Step 2: Energy estimates.
Multiply Eq. (3.7) by dkm(t), sum for k = 1, . . . ,m,

(
dum
dt

, um

)
+ (ε1�um,�um) −

(
2

ε1
w′(um),�um

)

= (−δε3 [λ1( f − c1)
2 − λ2( f − c2)

2], um).

According to Lemma 3.1, we have

max
0≤t≤T

‖um‖2L2(�)
+ ‖um‖2

L2(0,T ;H2
0 (�))

≤ c(ε3, λ2, f )T + C̃‖u0‖2L2(�)
.

Fix any v ∈ V with ‖v‖H2(�) ≤ 1, and write v = v1 + v2, where v1 ∈ span{wk}∞k=0,
(v2, wk) = 0. Since the functions {wk}∞k=0 are orthogonal in H2(�), ‖v1‖H2(�) ≤
‖v‖H2(�) ≤ 1. Then we deduce that

(u′
m, v1) + (ε1�um,�v1) −

(
2

ε1
w′(um),�v1

)
= (−δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], v1).

< u′
m, v > = (u′

m, v) = (u′
m, v1),

consequently,

max
0≤t≤T

‖um‖2L2(�)
+‖um‖2

L2(0,T ;H2
0 (�))

+‖u′
m‖2L2(0,T ;H−2(�))

≤ c(ε3, λ2, f )T + C̃‖u0‖2L2(�)
.

Step 3: Existence.
According to the energy estimates, we see that {um}∞m=1 is bounded in L2(0, T ; H2

0 (�)),
{u′

m}∞m=1 is bounded in L2(0, T ; H−2(�)). By weak compactness, there exists {uml}∞l=1 ⊂
{um}∞m=1 and a function u ∈ L2(0, T ; H2

0 (�)) with u′ ∈ L2(0, T ; H−2(�)), such that

uml⇀u weakly in L2(0, T ; H2
0 (�)),

u′
ml⇀u′ weakly in L2(0, T ; H−2(�)).

Next fix N , and vN ∈ C1([0, T ]; V ) with the following form

vN = �N
k=1d

k(t)wk .

Choosingm ≥ N , multiply (3.7) by dk(t), sum k = 1, . . . , N , and then integrate with respect
to t ,

∫ T

0
(u′

m, vN ) + (ε1�um,�vN ) −
(
2

ε1
w′(um),�vN

)
dt

=
∫ T

0
(−δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], vN )dt .
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Letting m = ml , l → ∞,
∫ T

0
(u′, vN ) + (ε1�u,�vN ) −

(
2

ε1
w′(u),�vN

)
dt

=
∫ T

0

(
− δε3

[
λ1( f − c1)

2 − λ2( f − c2)
2
]
, vN

)
dt .

As C1([0, T ]; H2
0 (�)) is dense in L2([0, T ]; H2

0 (�)), then ∀v ∈ L2([0, T ]; H2
0 (�)), we

have
∫ T

0
(u′, v) + (ε1�u,�v) −

(
2

ε1
w′(u),�v

)
dt

=
∫ T

0
(−δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], v)dt .

Hence, (u′, v) + (ε1�u,�v) − ( 2
ε1

w′(u),�v) = (−δε3 [λ1( f − c1)2 − λ2( f − c2)2], v),
∀v ∈ V , a.e.0 ≤ t ≤ T . In order to prove u(0) = u0, first we note that

∫ T

0
(−v′, u) + (ε1�u,�v) −

(
2

ε1
w′(u),�v

)
dt

=
∫ T

0
(−δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], v)dt + (u(0), v(0)),

for each v ∈ C1([0, T ]; H2
0 (�)) with v(T ) = 0. Similarly, we have

∫ T

0
(−v′, um) + (ε1�um,�v) −

(
2

ε1
w′(um),�v

)
dt

=
∫ T

0
(−δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], v)dt + (um(0), v(0)).

Letting m = ml and l → ∞,
∫ T

0
(−v′, u) + (ε1�u,�v) −

(
2

ε1
w′(u),�v

)
dt

=
∫ T

0
(−δε3 [λ1( f − c1)

2 − λ2( f − c2)
2], v)dt + (u0, v(0)).

As v(0) is arbitrary, we deduced u(0) = u0. �

Theorem 3.3 (Uniqueness of weak solutions) A weak solution of (3.1) is unique.

Proof Assuming u1 and u2 are solutions to this Eq. (3.1), we have

< u′
1 − u′

2, v > + < ε1�(u1 − u2),�v > − <
2

ε1

(
W ′(u1) − W ′(u2)

)
,�v >

=< −
(

δε3(u1 − 1

2
) − δε3(u2 − 1

2
)

)
[λ1( f − c1)

2 − λ2( f − c2)
2], v > .

Note w = u1 − u2, w(0) = 0, and v = w,

< w′, w > + < ε1�w,�w > + <
2

ε1

(
12(u1 + u2 − 1)

)
w∇w,∇w >

=< −ε3

π
[λ1( f − c1)

2 − λ2( f − c2)
2] u1 + u2 − 1

[ε23 + (u1 − 1
2 )

2][ε23 + (u2 − 1
2 )

2]w,w > .
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Integrate with respect to t , and consider the energy estimate,

1

2
‖w‖2L2(�)

+ ε1‖�w‖2L2(0,T ;L2(�))
+

∫ T

0

∫

�

24

ε1
w2|∇w|2 + 24(2u2 − 1)

ε1
w|∇w|2dxdt

≤ C
∫ T

0

∫

�

w2dxdt .

By the interpolation inequality, we have
∫ T

0

∫

�

24(2u2 − 1)

ε1
w|∇w|2dxdt ≥

∫ T

0

∫

�

−24

ε1
|∇w|2dxdt

≥
∫ T

0

∫

�

−24

ε1
(δ|�w|2 + 1

δ
|w|2)dxdt .

Choosing δ ≤ ε21
24 ,

∫
�

w2dx ≤ C
∫ T
0

∫
�

w2dxdt . By Gronwall’s lemma, w ≡ 0, that is
u1 ≡ u2. �


4 Tailored Finite Point Method (TFPM)

Firstly, we will show how TFPM could be applied to solve the non-equilibrium radiation
diffusion equations. Let’s consider the following nonlinear parabolic problem in 1D case
[8]:

∂u
∂t − ∂

∂x (a(x, u) ∂u
∂x ) + c(x, u)u = f (x, t), ∀x ∈ [0, 1], t > 0;

u|x=0,1 = 0, t > 0;
u|t=0 = u0(x), x ∈ [0, 1],

where a(x, u) ≥ a0 > 0, c(x, u) ≥ −c0, c0 ≥ 0 and f (x, t) are given functions. Assuming
that h = N−1 be the mesh size, x j = jh, 0 ≤ j ≤ N and tn = nτ , 0 ≤ n ≤ M . We first
integrate the equation on a small volume [x j− 1

2
, x j+ 1

2
] × [tn, tn+1]:

∫ tn+1

tn

∫ x
j+ 1

2

x
j− 1

2

(
∂u

∂t
− ∂

∂x

(
a(x, u)

∂u

∂x

)
+ c(x, u)u

)
dxdt =

∫ tn+1

tn

∫ x
j+ 1

2

x
j− 1

2

f (x, t)dxdt,

then we use a trapezoid rule in time and a mid-point rule in space to get

un+1
j − unj

τ
−

an+1
j+ 1

2
un+1
x, j+ 1

2
+ an

j+ 1
2
un
x, j+ 1

2

2h

+
an+1
j− 1

2
un+1
x, j− 1

2
+ an

j− 1
2
un
x, j− 1

2

2h
+ cn+1

j un+1
j + cnj u

n
j

2

= f n+1
j + f nj

2
,

where an+1
j+ 1

2
= a(x j+ 1

2
, un+1

j+ 1
2
). The remaining is the discretization of the first order derivative

of u on each cell center. If we approximate them by a central difference scheme such as

ux, j+ 1
2

= u j+1 − u j

h
,

123



Journal of Scientific Computing (2019) 79:1057–1077 1067

we will get the classical finite volume scheme. But it might not be a suitable approximation
when there exist some boundary/interior layers and a relatively large mesh size has to be
used. Here we use some special basis functions to interpolate the function u on each cell
[x j , x j+1], and thus approximate the first-order derivative of u at the cell center using the
interpolation function. The basis functions are chosen based on the properties of the reduced
equation. For example, if we approximate ∂u

∂t , a(x, u), c(x, u), f (x, t) on the cell [x j , x j+1]
by some cell average constants v j+ 1

2
, a j+ 1

2
, c j+ 1

2
, f j+ 1

2
, where

a j+ 1
2

= 1

h

∫ x j+1

x j
a(x, ū(x))dx, with ū(x) = u j + u j+1 − u j

h
(x − x j ),

then the reduced equation on the cell [x j , x j+1] is

− a j+ 1
2

d2u

dx2
+ c j+ 1

2
u = f j+ 1

2
− v j+ 1

2
. (4.1)

The solution of the reduced equation satisfies

u(x) ∈
f j+ 1

2
− v j+ 1

2

c j+ 1
2

+ span{eλx , e−λx } with λ =
√
c j+ 1

2

a j+ 1
2

.

Then we get

ux, j+ 1
2

= λ
u j+1 − u j

e
λh
2 − e− λh

2

,

holds for all the functions u ∈ span{1, eλx , e−λx }, and therefore we obtain the following
tailored finite point scheme for Eq. (4.1):

−αn+1
j−1u

n+1
j−1 + αn+1

j un+1
j − αn+1

j+1u
n+1
j+1 = βn,

where the coefficients are

αn+1
j = 1

τ
+ αn+1

j−1 + αn+1
j+1 + cn+1

j

2
,

αn+1
j±1 = λ±

an+1
j± 1

2

2h
(
e

λ±h
2 − e− λ±h

2

) , with λ± =
√
c j± 1

2

a j± 1
2

,

βn = αn
j−1u

n
j−1 +

(
1

τ
− αn

j−1 − αn
j+1 − cnj

2

)
unj + αn

j+1u
n
j+1 + f n+1

j + f nj
2

.

In the following, we propose using the TFPM method to solve the steady state of the
modified Cahn–Hilliard equation (2.1). Let v = ε1�u − 2

ε1
W ′(u), then the steady state of

the Eq. (2.1) is equivalent to the following equations:

v = ε1�u − 2

ε1
W ′(u);

0 = −�v − [λ1( f − c1)
2 − λ2( f − c2)

2] ε3

π[ε23 + (u − 1
2 )

2] .
(4.2)
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For convenience, we convert the above equations into two coupled second-order parabolic
equations:

ut = ε1�u − 2

ε1
W ′(u) − v;

− vt = −�v − [λ1( f − c1)
2 − λ2( f − c2)

2] ε3

π[ε23 + (u − 1
2 )

2] ,
(4.3)

where u and v satisfy ∂u
∂n = ∂v

∂n = 0. For the first equation, we linearize W ′(u) as follows:

W ′(u) = 4u3 − 6u2 + 2u = (4u2 + 2)u − 6u2, (4.4)

where 4u2 + 2 and −6u2 can be seen as slice constants. Then we use TFPM [8] for the first
equation in (4.3) as we describe at the begin of this section. For example, we can use the
trapezoid rule which results in a second order accuracy in time (usually called the Crank–
Nicolson method), and get

un+1
i j − uni j

τ
= ε1

⎡
⎣
un
x,i+ 1

2 , j
− un

x,i− 1
2 , j

2h
+

un+1
x,i+ 1

2 , j
− un+1

x,i− 1
2 , j

2h

⎤
⎦

+ ε1

⎡
⎣
un
y,i, j+ 1

2
− un

y,i, j− 1
2

2h
+

un+1
y,i, j+ 1

2
− un+1

y,i, j− 1
2

2h

⎤
⎦

− 2

ε1
W ′

(
uni j + un+1

i j

2

)
− vni j . (4.5)

In order to capture some boundary and/or interior layers, we select some special basis
functions to interpolate the function u. For example, if we approximate ∂u

∂t on cell
[xi , xi+1]×[y j , y j+1] by some constants zi+ 1

2 , j+ 1
2
, then the solution of the reduced equation

satisfies

u(x, y) ∈
12
ε1

(uni j )
2 − vni, j − zi+ 1

2 , j+ 1
2

4(2(uni j )
2+1)

ε1

+ span{eξ x , e−ξ x , eξ y, e−ξ y},

where

ξ =
2
√
2(uni j )

2 + 1

ε1
.

As discussed above, one can easily get

ux,i+ 1
2 , j = ξ

ui+1, j − ui j

e
ξh
2 − e− ξh

2

; uy,i, j+ 1
2

= ξ
ui, j+1 − ui j

e
ξh
2 − e− ξh

2

.

Then the tailored finite point scheme for the parabolic equation of u reads
(
1 + 2τ

ε1

(
2(uni j )

2 + 1
))

un+1
i j

− ε1τξ

2h
(
e

ξh
2 − e− ξh

2

) (un+1
i+1, j + un+1

i−1, j + un+1
i, j+1 + un+1

i, j−1 − 4un+1
i j )
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=
(
1 − 2τ

ε1

(
2

(
uni, j

)2 + 1

))
uni j

+ ε1τξ

2h
(
e

ξh
2 − e− ξh

2

)
(
uni+1, j + uni−1, j + uni, j+1 + uni, j−1 − 4uni j

)

+ 12τ

ε1

(
uni j

)2 − τvni j , (4.6)

which can be solved by BiCGSTAB. For the second equation in (4.3), using the Crank–
Nicolson scheme directly, we obtain

vn+1
i j − vni j

τ
= �hv

n+1
i j + �hv

n
i j

2
+ [λ1( f − c1)

2 − λ2( f − c2)
2] ε3

π[ε23 + (u − 1
2 )

2] ,

that is(
1 + 2τ

h2

)
vn+1
i j − τ

2h2

(
vn+1
i+1, j + vn+1

i−1, j + vn+1
i, j+1 + vn+1

i, j−1

)
=

(
1 − 2τ

h2

)
vni j

+ τ

2h2

(
vni+1, j + vni−1, j + vni, j+1 + vni, j−1

)

+ τ [λ1( f − c1)
2 − λ2( f − c2)

2] ε3

π [ε23 + (u − 1
2 )

2] ,
(4.7)

which can also be solved by BiCGSTAB. Of course, we can also use the traditional finite
difference method to solve equations (4.3), which is denoted as FDM for convenience in the
following.

5 Numerical Experiments

In this section, we present some experimental results by applying the proposed numerical
methods for our modified Cahn–Hilliard model on various synthetic and real images. For all
the numerical experiments, we use the following stopping criterion:

‖uk − uk−1‖2
‖uk−1‖2 < tol,

where tol = 1E − 5, ‖ · ‖2 is the L2-norm on �, and k refers to the iteration number.
Before presenting the numerical results, we first discuss the parameters used in our exper-

iments. Note that in our proposed model (c.f. Eq. (2.1)), there are four parameters: ε1, ε3 and
λ1, λ2. The parameter ε1 mainly determines the evolution of u. To help connect the broken
parts of objects, one needs to choose relatively large values of these two parameters in order
to encourage the propagation of those regions in which u is close to 1. However, large val-
ues of ε1 lead to much wide transition layers, which surely blurs the desired segmentation
boundary. To fix this problem, in our experiments, we take two stages: we first set ε1 to be
some relatively large values, and once the steady state of u by solving Eq. (2.1) is achieved,
we replace them by small values and resume the iterative process until a new steady state is
arrived. Based on the feature of the Cahn–Hilliard equation, the small value of ε1 gives rise
to thin transition layers, which helps locate the goal segmentation boundary.

The parameter ε3 controls how closely the function Hε3(x) approximates the Heaviside
function H(x). In the experiments, we fix ε3 = 0.1. As for the fitting term coefficients λ1
and λ2, generally, λ2 = 1 and λ1 is around 1.
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Fig. 1 The image corrupted by the Gaussian noise with σ = 0.20, the segmented image using our model
(TFPM), and the plot of c1, c2 versus iteration

Note that we need to solve time-dependent equations for our model, the initial values of
u and v have to be set up. In our experiments, we choose the initial value of u by using a
threshold value. Precisely, for a given image f whose values are scaled in the interval [0, 1],
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Fig. 2 The segmented image using our model, the energy, relative error in uk , which are shown in log-scale
in the figures and the slices at the same location for the image

we first set up a threshold f0 ∈ (0, 1), and then assign the initial u to be 1 in the region
{ f ≥ f0} and 0 in the complement region. And the initial value of v could be calculated
accordingly by using v = ε1�u − 2

ε1
W ′(u).
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Fig. 3 The initial image “Tiger” (a), the segmented images and the contours using our model CH (b, c),
respectively

We first consider a synthetic image with different geometric shapes as shown in Fig. 1.
This image is contaminated by the Gaussian noise with zero mean and standard deviation
σ = 0.2. In this experiment, we use λ1 = 1.1, while ε1 = 5 for the first stage, and ε1 = 0.01
for the second stage. We present the initial segmentation (the initial u), the one after the
first stage, and the one after the second stage, that is, the final segmentation in Fig. 1. From
these plots, one can see that the proposed model is able to segment all those objects inside
the image regardless of the strongly noisy background. Moreover, Fig. 1 also shows that the
intensity averages c1 and c2 could arrive at their steady states around 100 iterations, which
indicates the efficiency of the proposed method.

To further illustrate the merits of using the TFPM based scheme, in Fig. 2, we compare its
performance with the one using conventional finite difference methods (FDM) for solving
Eq. (2.1). For this, the evolutions of energy, relative error of u, and the area of u > 0.5
(segmented region) versus iterations for the two methods are presented. The plots indicate
that the energy and relative error of u drop faster for the TFPM than for the FDM, and thus
the final segmentation can also be attained more quickly by using the TFPM scheme than
the FDM.

In Figs. 3 and 4, we then consider a real image with a tiger walking in a lake. In this
experiment, we use ε1 = 80 for the first stage, ε1 = 0.01 for the second stage, and λ1 = 0.65.
The goal of segmentation is to capture the complete boundary of the tiger. Note that there
are many stripes on its body and tail, and standard intensity based segmentation models,
such as the Chan–Vese model [4], could segment these stripes as individual objects, which
can be observed in Fig. 4a–f. More importantly, those conventional methods fail to segment
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Fig. 4 The segmented images and the contours using the Chan–Vese model with different values of the fidelity
parameters. We set λ1 = 5, λ2 = 4.5 in the Chan–Vese model for plots (a, b); λ1 = 0.8, λ2 = 1 for plots (c,
d); and λ1 = 0.5, λ2 = 0.5 for plots (e, f). One can see that the tail part cannot be captured for each case

the tail part, since there exist relatively large gaps along the tail. To see this, in Fig. 4, we
present the results of the Chan–Vese model by using several different groups of values of
the fidelity parameters λ1 and λ2 (see [4] for details), and observe that by choosing these
parameters in a wide range, the Chan–Vese model cannot capture the tiger’s tail as complete
as our model. To interpolate those large gaps in segmentation, in [19], the authors proposed
using Euler’s elastica as the regularization term for active contours, and the tail part can
be largely recovered. However, in that work, one has to minimize a curvature dependent
functional, which is challenging and also expensive numerically. In contrast, our proposed
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Fig. 5 The initial image “Vessel” (a), the segmented images and the contours using our model CH (b, c),
respectively

model is more tractable and involves much less computational cost, in other words, by using
the Cahn–Hilliard equation, our model is able to achieve the goal of restoring boundaries
along relatively large gaps as those curvature dependent models, and but at a much lower
cost, as shown in Fig. 3b, c.

InFig. 5,we apply ourmodel for amedical imagewith tubular vessels in an inhomogeneous
background. In this experiment, we use ε1 = 4 for the first stage, ε1 = 0.01 for the second
stage, and λ1 = 0.85. For this example, one again sees that our model successfully capture
the meaningful elongated vessels by connecting those broken parts automatically, as shown
in Fig. 5b, c. However, as an intensity based segmentation model, the Chan–Vese model can
only segment out thosewhite regions, leaving those broken butmeaningful parts separated. To
illustrate this, we also test different fidelity parameters of the Chan–Vese model and present
the associated results in Fig. 6. These experiments again show that the proposed model can
produce visually better segmentation results than the Chan–Vese model for some images.

In Fig. 7, we present the result of color image segmentation by applying our model (Eq.
(2.4)). As for the grey image segmentation, the initial value of u is determined by a threshold.
Precisely, for a given color image f , each channel f (i), i = 1, 2, 3, is first rescaled to be in
[0, 1], then we set up a threshold f0 ∈ (0, 1), and assign the initial u to be 1 in the region
∩3
i=1{ f (i) ≥ f0} and 0 in the complement region. The plots show that our segmentation

model is applicable for color images.
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Fig. 6 The segmented images and the contours using the Chan–Vese model with different values of the fidelity
parameters. We set λ1 = 5, λ2 = 4.5 in the Chan–Vese model for plots (a, b); λ1 = 1, λ2 = 1.2 for plots (c,
d); and λ1 = 0.5, λ2 = 0.5 for plots (e, f). One can see that there exist lots of fine vessels cannot be captured
for each case

In Fig. 8, we apply our model for a real image “Flowers”, which presents four different
phases: the blue sky, the yellow petals, the red petals, and the flower rods. As [17], the initial
values of the two segmentation functions u1 and u2 are given by circles as shown in Fig. 8b.
Once the final steady state of u1 and u2 is obtained, one can identify the four phases by the
disjoint sets: {u1 ≥ 1

2 , u2 ≥ 1
2 }, {u1 ≥ 1

2 , u2 < 1
2 }, {u1 < 1

2 , u2 ≥ 1
2 }, {u1 < 1

2 , u2 < 1
2 }.

This experiment demonstrates that our model is also successful in dealing with multiphase
segmentation.
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Fig. 7 A real color image and the segmentation using our model

Fig. 8 The real image “Flowers” (a), the initial contours of u1 and u2 (b), and the segmentation result by
using our model (c)

6 Conclusions

In this work, we develop a new image segmentation model by incorporating the Cahn–
Hilliard equation into the process of segmentation. Besides effectively segmenting objects
from noisy background just like those conventional segmentation models, such as the Chan–
Vese model, the proposed model is also able to automatically restore those missing contours
along wide gaps, which is often achieved by curvature dependent models in the literature.
As the Cahn–Hilliard equation presents in a relatively simpler form than those fourth-order
Euler–Lagrange equations originated from curvature based models, the proposed model is
more tractable both numerically and analytically. To efficiently solve the associated equation
as well as preserve its features, we develop numerical schemes using the technique of TFPM
[7]. The well-posedness analysis of the proposed model is also provided.

123



Journal of Scientific Computing (2019) 79:1057–1077 1077

References

1. Bae, E., Tai, X.C., Zhu, W.: Augmented lagrangian method for an Euler’s elastica based segmentation
model that promotes convex contours. Inverse Probl. Imaging 11(1), 1–23 (2017)
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