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Abstract
In this paper, we first present a family of high order central discontinuous Galerkin methods
defined on unstructured overlapping meshes for the two-dimensional conservation laws. The
primal mesh is a triangulation of the computational domain, while the dual mesh is a quad-
rangular partition which is formed by connecting an interior point and the three vertexes of
each triangle on the primal mesh. We prove the L2 stability of the present method for linear
equation. Then we design and analyze high order maximum-principle-satisfying central dis-
continuous Galerkin methods for two-dimensional scalar conservation law, and high order
positivity-preserving central discontinuousGalerkinmethods for two-dimensional compress-
ible Euler systems. The performance of the proposedmethods is finally demonstrated through
a set of numerical experiments.
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1 Introduction

Manyproblems in science and engineering fields can be governed by a scalar conservation law
or a system of hyperbolic conservation laws. Various numericalmethods have been developed
for solving such conservation laws, such as the finite difference methods [13,29,32], the finite
volume methods [35], the discontinuous Galerkin (DG) methods [6,7,31] and the central DG
methods [11,24].

The DG method is a class of high order finite element methods, which was originally
introduced in 1973 by Reed and Hill [27]. Since the basis functions can be discontinuous,
the DG method is very flexible to achieve any order of accuracy and handle complicated
geometry and boundary conditions. It is also a very compact numerical scheme due to the
extremely local data structure. Therefore, it has been successfully developed for solving
various linear and nonlinear problems [3,4,6,7,9,26].

As a variant of the DG method, the central DG method is also one of popular high order
numerical methods for hyperbolic conservation laws, which was originally presented by Liu
et al. [24]. By evolving two sets of numerical solutions defined on overlapping meshes, the
central DG method does not rely on any exact or approximate Riemann solver at element
interfaces as in DG methods. Therefore, the central DG method is widely applied to various
problems, such as diffusion equations [25], Hamilton–Jacobi equations [15], ideal MHD
equations [16,17,34], the Camassa–Holm equation [19] and the shallow water equations
[10,18,21,22].

However, most of works on the central DG methods mentioned above are built on struc-
tured overlapping meshes. Therefore, they are only applied to some problems defined on
simple domains, such as rectangle, L-shape domain. In order to extend the central DG meth-
ods to problems onmore complex geometry domains, Xu andLiu [34] first presented a central
DG method defined on unstructured overlapping meshes. In their work, the primal mesh is
triangulation of the computational domain, and then they define the dual mesh according to
nodes in the primal mesh, one node is related to one cell in the dual mesh. Thus the cells
in the dual mesh are polygons with different numbers of edges, and more complex than the
cells in the primal mesh.

In this paper, in order to simplify the dual mesh, we define the dual mesh by a different
way, which is according to the edges in the primal mesh, one edge is related to one cell
in the dual mesh. Specifically, we first define the primal mesh by a triangulation of the
computational domain as any kind of finite element methods, then we take an interior point
in each triangle and connect the point to the three vertices of the triangle, this operation
forms a quadrangular partition of the computational domain which is used as the dual mesh.
Compared with the one in [34], the presented dual mesh is simpler. This idea comes from
the staggered discontinuous Galerkin method [14]. The central DG method is defined on
the presented unstructured overlapping meshes and is used to solve the two-dimensional
conservation laws.

The second objective of this paper is to design high order maximum-principle-satisfying
central DG methods on the presented unstructured overlapping meshes for the two-
dimensional scaler conservation law:

Ut + ∇ · F(U ) = 0, U (x, y, 0) = U0(x, y) (1)

with M = maxx,y U0(x, y) and m = minx,y U0(x, y).
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The unique entropy solution to (1) satisfies a strict maximum principle [8]. That is the
entropy solution U (x, y, t) ∈ [m, M] for any x, y and t . This property is also desired for
numerical schemes solving (1), for instance in someapplicationswhereU represents a volume
ratio, and it should always be in the range of [0, 1].

Many high order numerical schemes, which can be used to solve the conservation law
(1), do not in general satisfy the strict maximum principle. Therefore, much effort has been
devoted to this issue. Various maximum-principle-satisfying numerical methods have been
presented for solving the conservation law (1). One important breakthrough was made in
[35], where the authors proposed a very general framework to achieve maximum principle
especially for high order methods. There a sufficient condition was first given to ensure that
the cell averages of the numerical solution, which is from a high order finite volume WENO
method or a DGmethod on structured meshes with the Euler forward method in time, satisfy
themaximum principle. A linear scaling limiter was then designed and applied to enforce this
condition without destroying the local conservation and accuracy. For higher order temporal
accuracy, strong stability preserving (SSP) time discretizations were used, and they can be
expressed as a convex combination of the first order Euler forward method and therefore
keep the maximum principle property. Then, the scheme is extended to the high order finite
volume WENO method and the DG method on unstructured meshes in [37]. Based on the
work in [35], two authors of the present paper have designed amaximum-principle-satisfying
central DG method on structured overlapping meshes in [20]. Therefore, we will extend the
method to unstructured overlapping meshes in this paper, based on the works in [20,37].

Thirdly, we are interested in the high order positivity-preserving scheme for the compress-
ible Euler equations. For this conservation law system, the entropy solution in general does
not satisfy any maximum principle, but physically, the density and the pressure of the fluids
should be positive. Such property is important for the well-posedness of the equations, and
the violation of numerical schemes can lead to instability and the breakdown of the simula-
tion. With the success in [35], the authors further developed high order positivity-preserving
DG methods on structured meshes to compressible Euler equations in [36], which preserve
the positivity of density and pressure. A simpler and more robust strategy was later pro-
posed in [33]. Then the authors extended the high order positivity-preserving DGmethods to
unstructured meshes in [37]. In [20], two authors of the present paper extended the positivity-
preserving techniques in [33,36] to compressible Euler equations by using the central DG
method on structured overlapping meshes. Our development with the central DG methods in
[20], together with the successful analysis in [37], motivates us to examine both theoretically
and numerically the central DG methods on unstructured overlapping meshes in this paper
for solving compressible Euler equations while preserving positivity of density and pressure.

This paper is organized as follows. In Sect. 2, we present the central DG methods defined
on unstructured overlapping meshes for the conservation laws, and prove the L2 stability of
the present method for a linear hyperbolic equation. Then, we develop a maximum-principle-
satisfying high order central DG method for the two-dimensional scalar conservation laws
in Sect. 3. In Sect. 4, we construct and analyze positivity-preserving central DG methods for
two-dimensional compressible Euler equations, employing the positivity-preserving limiting
techniques similar to those in [5,20,33]. In Sect. 5, numerical experiments are presented,
which are followed by some concluding remarks in Sect. 6.
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2 Central DGMethods on Unstructured OverlappingMeshes

In this section, we extend the central DG methods on structured overlapping meshes in [24]
to unstructured overlapping meshes for solving the two-dimensional conservation laws:

Ut + ∇ · F(U) = 0, (2)

where U ∈ Rm×1 is a conservative variable, m ≥ 1 is an integer, the flux function F(U) and
its divergence are defined by

F(U) =

⎛
⎜⎜⎜⎜⎜⎜⎝

F1(U)

F2(U)

·
·
·

Fm(U)

⎞
⎟⎟⎟⎟⎟⎟⎠

, ∇ · F(U) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∇ · F1(U)

∇ · F2(U)

·
·
·

∇ · Fm(U)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ f11(U)
∂x + ∂ f12(U)

∂ y
∂ f21(U)

∂x + ∂ f22(U)
∂ y

·
·
·

∂ fm1(U)
∂x + ∂ fm2(U)

∂ y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with Fi (U) = ( fi1(U), fi2(U)) ∈ R1×2, i = 1, 2, . . . , m.

2.1 Unstructured OverlappingMeshes

Since the central DG methods evolve two copies of numerical solutions on unstructured
overlapping meshes, we first define the unstructured overlapping meshes. The primal mesh
(denoted by T C ) is a triangulation of the computational domain Ω . Then we take an interior
node in each triangle and connect the node to the three vertices of the triangle. Noting that
we have chosen some points outside the domain to make sure all cells on the dual mesh
are quadrangle. This is to simplify the dual mesh. This operation generates the dual mesh
(denoted by T D). Like the DG method, a few ghost cells (triangles) have been added along
the boundary of the domain in order to impose the boundary conditions. Those chosen points
outside the domain actually are the interior points of the ghost cells. The solutions on these
ghost cells are given according to the boundary conditions. Although parts of elements in the
dual mesh are outside of the computational domain, all elements in the dual mesh are covered
by the primal mesh together with the ghost cells. Thus the numerical solution on all elements
in the dual mesh can be directly obtained from the central DG scheme without any special
treatment provided that the solutions in all ghost cells are given according to the boundary
conditions. To avoid too small cells generated in the dual mesh, the interior node should be
chosen as far away from the edges of the triangle as possible. In general, the geometric center
of the triangle or the center of the inscribed circle of the triangle can be chosen as the interior
node. In the simulation, the geometric center of the triangle in the primal is chosen as the
interior node in order to generate the dual mesh.

For sake of understanding the unstructured overlapping meshes more clearly, a simple
illustration has been shown in Fig. 1, where the computational domain Ω is the triangle
A1A2A3 and is partitioned into 4 small triangles: A1A6A5, A6A2A4, A4A3A5 and A4A5A6.
The primal mesh is given by

T C = {A1A6A5, A6A2A4, A4A3A5, A4A5A6}.
In Fig. 1, points B1, B2, B3, B4 are the interior nodes of the four triangles in the primal mesh,
points C1, C2, . . . , C6 are the chosen nodes outside the domain, these points are used to
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Fig. 1 Unstructured overlapping meshes for the central DG methods. Solid line: primal mesh; dashed line:
dual mesh

generate the dual mesh T D , which includes 9 quadrangles, namely,

T D = {A1C1A6B1, B1A6B4A5, A1B1A5C6, A6C2A2B2, B2A2C3A4,

B2A4B4A6, B4A4B3A5, B3A4C3A3, B3A3C5A5}
The triangles G1A6A1, G2A2A6, G3A4A2, G4A3A4, G5A5A3 and G6A1A5 are the ghost
cells used to impose the boundary conditions. Noting that points C1, C2, . . . , C6 are the
interior nodes of the six ghost cells, respectively.

Associated with each mesh, we define the following discrete spaces:

WC = {v = (v1, v2, . . . , vm)� : vi |K C ∈ Pk(K C ), i = 1, 2, . . . , m,∀K C ∈ T C },
WD = {v = (v1, v2, . . . , vm)� : vi |K D ∈ Pk(K D), i = 1, 2, . . . , m,∀K D ∈ T D}.

Two copies of numerical solutions are assumed to be available at t = tn , denoted by
Un,� ∈ W�, and we want to find the solutions at t = tn+1 = tn + Δt , the superscript ‘�’
denotes C and D throughout this paper. For simplicity, we present the schemes in the case
of the forward Euler method for time discretization. High order time discretizations will be
discussed afterward.

2.2 Central DGMethods for Conservation Laws

For the conservation laws (2), the fully discretized central DGmethod with the forward Euler
method for time discretization is to look for Un+1,� ∈ W� such that for any V� ∈ W�|K �

with any K � ∈ T �,
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∫
K C

Un+1,C · VC dxdy =
∫

K C

(
θUn,D + (1 − θ)Un,C

)
· VC dxdy

+Δt
∫

K C

[
F(Un,D) · ∇VC

]
dxdy

−Δt
∫

∂K C

[
(F(Un,D) · nK C ) · VC

]
ds. (3)

∫
K D

Un+1,D · VDdxdy =
∫

K D

(
θUn,C + (1 − θ)Un,D

)
· VDdxdy

+Δt
∫

K D

[
F(Un,C ) · ∇VD

]
dxdy

−Δt
∫

∂K D

[
(F(Un,C ) · nK D ) · VD

]
ds. (4)

where nK � = (n1K � , n2K � ) denotes the outward unit normal vector of cell K �, θ =
Δt/τmax ∈ [0, 1] with τmax being the maximal time step allowed by the CFL restric-
tion. The product “·” is defined by U · V = ∑m

i=1 Ui Vi , F · ∇V = ∑m
i=1(Fi · ∇Vi ) =∑m

i=1( fi1
∂Vi
∂x + fi2

∂Vi
∂ y ), (F · n) · V =∑m

i=1(Fi · n)Vi =∑m
i=1( fi1n1 + fi2n2)Vi .

2.3 High Order Time Discretization

In order to match with high order accuracy in space, strong stability preserving (SSP) high
order time discretizations will be used [12] in the numerical tests. In this paper, we use the
third order Runge–Kutta method

U (1) = U n + ΔtL(U n)

U (2) = 3

4
U n + 1

4
(U (1) + ΔtL(U (1)))

U n+1 = 1

3
U n + 2

3
(U (2) + ΔtL(U (2))). (5)

Here L(U ) denotes the spatial operator.
When central DG methods are applied to nonlinear problems, nonlinear limiters are often

needed for some problems with strong shock. In this work, we use the total variation bounded
(TVB) corrected minmod slope limiter [7].

2.4 L2 Stability for Linear Hyperbolic Equation

Although the central DG method on unstructured overlapping meshes can be defined for the
nonlinear equation (2), we cannot prove a L2 stability for it when applied to the nonlinear
equation (2). Thus in this subsection, we only study the L2 stability for the linear hyperbolic
conservation law

Ut + ∇ · F(U ) = 0, (6)

where F(U ) = (U , U ).
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The central DG method for the linear equation (6) can be defined by: Find U n+1,� ∈ W �

such that for any V � ∈ W �|K � with any K � ∈ T �

∫
K C

U n+1,C V C dxdy =
∫

K C

(
θU n,D + (1 − θ)U n,C

)
V C dxdy

+Δt
∫

K C

[
(U n,D, U n,D) · ∇V C

]
dxdy

−Δt
∫

∂K C

[
((U n,D, U n,D) · nK C )V C

]
ds. (7)

∫
K D

U n+1,D V Ddxdy =
∫

K D

(
θU n,C + (1 − θ)U n,D

)
V Ddxdy

+Δt
∫

K D

[
(U n,C , U n,C ) · ∇V D

]
dxdy

−Δt
∫

∂K D

[
((U n,C , U n,C ) · nK D )V D

]
ds. (8)

where

W C = {v : v|K C ∈ Pk(K C ),∀ K C ∈ T C },
W D = {v : v|K D ∈ Pk(K D),∀ K D ∈ T D},

We now take the limit Δt → 0 to get the semi-discrete version of the central DG method:
Find U �(·, t) ∈ W � such that for any V � ∈ W �|K � with any K � ∈ T �

∫
K C

(
∂

∂t
U C
)

V C dxdy = 1

τmax

∫
K C

(
U D − U C

)
V C dxdy

+
∫

K C

[
(U D, U D) · ∇V C

]
dxdy

−
∫

∂K C

[
((U D, U D) · nK C )V C

]
ds. (9)

∫
K D

(
∂

∂t
U D
)

V Ddxdy = 1

τmax

∫
K D

(
U C − U D

)
V Ddxdy

+
∫

K D

[
(U C , U C ) · ∇V D

]
dxdy

−
∫

∂K D

[
((U C , U C ) · nK D )V D

]
ds. (10)

Theorem 1 The numerical solution U C and U D of the central DG method (9)–(10) satisfies
the following L2 stability condition

1

2

d

dt

∫
Ω

(
(U C )2 + (U D)2

)
dxdy = − 1

τmax

∫
Ω

(
U D − U C

)2
dxdy ≤ 0 (11)

with compactly supported boundary condition.

Proof Let T = {K : K = K C ∩ K D ∩ Ω,∀K C ∈ T C , K D ∈ T D}, which is in fact
a refined triangulation of the computational domain. Taking the test functions V C = U C

and V D = U D in (9) and (10) respectively, summing up over K C ∈ T C for (9) and over
K D ∈ T D for (10), and then combing them together, one has
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1

2

d

dt

∫
Ω

(
(U C )2 + (U D)2

)
dxdy

= 1

τmax

∫
Ω

(
U D − U C

)
U C dxdy + 1

τmax

∫
Ω

(
U C − U D

)
U Ddxdy

+
∑

K C ∈T C

(∫
K C

[
(U D, U D) · ∇U C

]
dxdy −

∫
∂K C

[
((U D, U D) · nK C )U C

]
ds

)

+
∑

K D∈T D

(∫
K D

[
(U C , U C ) · ∇U D

]
dxdy −

∫
∂K D

[
((U C , U C ) · nK D )U D

]
ds

)

= − 1

τmax

∫
Ω

(
U D − U C

)2
dxdy

+
∑
K∈T

(∫
K

[
(U D, U D) · ∇U C

]
dxdy +

∫
K

[
(U C , U C ) · ∇U D

]
dxdy

)

−
∑
K∈T

(∫
∂K

[
((U CU D, U CU D) · nK )

]
ds

)

= − 1

τmax

∫
Ω

(
U D − U C

)2
dxdy +

∑
K∈T

∫
K

∇ · (U CU D, U CU D)dxdy

−
∑
K∈T

(∫
∂K

[
((U CU D, U CU D) · nK )

]
ds

)

= − 1

τmax

∫
Ω

(
U D − U C

)2
dxdy ≤ 0 (12)


�
Remark 1 Theorem1 indicates that the energydissipation term is 1

τmax

∫
Ω

(
U D − U C

)2
dxdy,

which is directly related to the difference of the two numerical solutions U C and U D .

3 Maximum-Principle-Satisfying Central DGMethod

In this section, we will present a high order central DG method satisfying the maximum
principle on unstructured overlapping meshes for the scalar conservation law (1).

3.1 Preliminaries and First Order Scheme

As shown in Fig. 2, let eC
i , i = 1, 2, 3 denote the edges of K C = A1A2A3, K C

i , i = 1, 2, 3
be a partition of K C , K C

i share the edge eC
i with K C and make sure the numerical solution

U n,D be a smooth polynomial within K C
i , i = 1, 2, 3. Similarly, let eD

i , i = 1, 2, 3, 4 denote
the edges of K D = B1B2B3B4, K D

i , i = 1, 2, 3, 4 be a partition of K D , K D
i share the edge

eD
i with K D , make sure U n,C be a smooth polynomial within K D

i , i = 1, 2, 3, 4. Note that
the point O in the left picture of Fig. 2 is the geometric center of the triangle K C and the point
Q in the right picture of Fig. 2 is the intersection of the diagonal line of the quadrangle K D .
Let nC

i represent outward unit normal vector of edge eC
i , lC

i be length of edge eC
i , i = 1, 2, 3

and |K C | denote the area of cell K C . Similarly, let nD
i represent outward unit normal vector

of edge eD
i , l D

i be length of eD
i , i = 1, 2, 3, 4 and |K D| denote the area of cell K D .
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Fig. 2 Illustration for notations on a cell K C = A1A2A3 in primal mesh (left) and a cell K D = B1B2B3B4
in the dual mesh (right)

A first order central DG scheme with θ = 1 for (1) can be given by

U n+1,C
K C =

3∑
i=1

|K C
i |

|K C |U n,D
K D

i
− Δt

|K C |
3∑

i=1

lC
i F(U n,D

K D
i

) · nC
i , (13)

U n+1,D
K D =

4∑
i=1

|K D
i |

|K D|U n,C
K C

i
− Δt

|K D|
4∑

i=1

l D
i F(U n,C

K C
i

) · nD
i . (14)

Herein, U n,C
K C (resp. U n,D

K D ) is the numerical solution on element K C (resp. K D).

Lemma 1 For the first order central DG scheme defined in (13)–(14), if U n,C
K C , U n,D

K D ∈
[m, M], ∀K C , K D, then U n+1,C

K C and U n+1,D
K D will belong to [m, M], ∀K C , K D, under the

CFL condition
almaxΔt ≤ smin, (15)

with a = maxU ,n |F′(U ) · n|, lmax = max{lC
i , l D

j , i = 1, 2, 3, j = 1, 2, 3, 4,∀K C , K D},
smin = min{|K C

i |, |K D
j |, i = 1, 2, 3, j = 1, 2, 3, 4,∀K C , K D}.

Proof Since U n+1,C
K C can be viewed as a function of U n,D

K D
i

, i = 1, 2, 3, we have

∂U n+1,C
K C

∂U n,D
K D

i

= |K C
i |

|K C | − Δt

|K C | l
C
i F′(U n,D

K D
i

) · nC
i ≥ 0. (16)

Thus U n+1,C
K C a monotone increasing function of U n,D

K D
i

, i = 1, 2, 3. Substituting U n,D
K D

i
=

d(d = m, M) into (27), one gets U n+1,C
K C = d , therefore we get U n+1,C

K C ∈ [m, M]. Similarly

we obtain U n+1,D
K D ∈ [m, M]. 
�
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3.2 High Order Scheme

A high order scheme satisfied by the cell average of a central DG method for (1), with first
order Euler forward time discretization, can be given by

Ū n+1,C
K C = (1 − θ)Ū n,C

K C + θ

|K C |
∫

K C
U n,Ddxdy

− Δt

|K C |
3∑

i=1

∫
eC

i

F(U n,D) · nC
i ds, (17)

Ū n+1,D
K D = (1 − θ)Ū n,D

K D + θ

|K D|
∫

K D
U n,C dxdy

− Δt

|K D|
4∑

i=1

∫
eD

i

F(U n,C ) · nD
i ds, (18)

where Ū n,C
K C (resp. Ū n,D

K D ) denotes the cell average over K C (resp. K D) of the numerical

solution U n,C (resp. U n,D).
Since these integrals on edges in (17)–(18) are always approximated by the (k + 1)-point

Gauss quadrature in the implementation of the central DG method, the scheme satisfied by
the cell average (still denoted by Ū n+1,C

K C , Ū n+1,D
K D ) for (1) becomes

Ū n+1,C
K C = (1 − θ)Ū n,C

K C + θ

|K C |
∫

K C
U n,Ddxdy

− Δt

|K C |
3∑

i=1

k+1∑
β=1

lC
i ωβF(U n,D

eC
i ,β

) · nC
i , (19)

Ū n+1,D
K D = (1 − θ)Ū n,D

K D + θ

|K D|
∫

K D
U n,C dxdy

− Δt

|K D|
4∑

i=1

k+1∑
β=1

l D
i ωβF(U n,C

eD
i ,β

) · nD
i , (20)

whereωβ, β = 1, 2, . . . , k +1 are the (k +1)-point Gauss quadrature weights on the interval
[− 1

2 ,
1
2 ] and satisfy

∑k+1
β=1 ωβ = 1, U n,D

eC
i ,β

is the value of U n,D evaluated at the β-th Gauss

point on edge eC
i , U n,C

eD
i ,β

is the value of U n,C evaluated at the β-th Gauss point on edge eD
i .

Note that the numerical solution U n,D (resp. U n,D) is a piecewise polynomial over the
cell K C (resp. K D), and thus in the central DG method, (19)–(20) can be rewritten as

Ū n+1,C
K C = (1 − θ)Ū n,C

K C + θ

|K C |
3∑

i=1

∫
K C

i

U n,Ddxdy

− Δt

|K C |
3∑

i=1

k+1∑
β=1

lC
i ωβF(U n,D

eC
i ,β

) · nC
i . (21)
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Ū n+1,D
K D = (1 − θ)Ū n,D

K D + θ

|K D|
4∑

i=1

∫
K D

i

U n,C dxdy

− Δt

|K D|
4∑

i=1

k+1∑
β=1

l D
i ωβF(U n,C

eD
i ,β

) · nD
i . (22)

Next, we will reformulate the right hand sides of (21) and (22). To do this, we define
seven mappings gi (ξ, η)(i = 1, 2, 3) and fi (ξ, η)(i = 1, 2, 3, 4) from a square [− 1

2 ,
1
2 ]2 to

K C
i (i = 1, 2, 3) and K D

i (i = 1, 2, 3, 4), respectively. It can be observed from Fig. 2 that
K C

i = O Ai Ai+1(i = 1, 2, 3) and K D
i = Q Bi Bi+1(i = 1, 2, 3, 4), herein we used A4 = A1

and B5 = B1. Thus the seven mappings are defined as follows:

g1(ξ, η) =
(
1

2
+ η

)
A1 +

(
1

2
+ ξ

)(
1

2
− η

)
A2 +

(
1

2
− ξ

)(
1

2
− η

)
O,

g2(ξ, η) =
(
1

2
+ η

)
A2 +

(
1

2
+ ξ

)(
1

2
− η

)
A3 +

(
1

2
− ξ

)(
1

2
− η

)
O,

g3(ξ, η) = (
1

2
+ η)A3 +

(
1

2
+ ξ

)(
1

2
− η

)
A1 +

(
1

2
− ξ

)(
1

2
− η

)
O,

f1(ξ, η) =
(
1

2
+ η

)
B1 +

(
1

2
+ ξ

)(
1

2
− η

)
B2 +

(
1

2
− ξ

)(
1

2
− η

)
Q,

f2(ξ, η) =
(
1

2
+ η

)
B2 +

(
1

2
+ ξ

)(
1

2
− η

)
B3 +

(
1

2
− ξ

)(
1

2
− η

)
Q,

f3(ξ, η) =
(
1

2
+ η

)
B3 +

(
1

2
+ ξ

)(
1

2
− η

)
B4 +

(
1

2
− ξ

)(
1

2
− η

)
Q,

f4(ξ, η) =
(
1

2
+ η

)
B4 +

(
1

2
+ ξ

)(
1

2
− η

)
B1 +

(
1

2
− ξ

)(
1

2
− η

)
Q. (23)

Then, let {ηβ, β = 1, 2, . . . , k + 1} be the Gauss qudrature points on [− 1
2 ,

1
2 ] with weights

ωβ, β = 1, 2, . . . , k + 1, and {ξ̂α, α = 1, 2, . . . , N } be the Gauss-Lobatto qudrature points
on [− 1

2 ,
1
2 ] with weights ω̂α, α = 1, 2, . . . , N , where N is the smallest integer such that

2N − 3 ≥ k. Therefore, for a two-variable polynomial p(ξ, η), if the degree of p(ξ, η) with
respect to its first variable is not more than k and the degreewith respect to the second variable
is not more than 2k + 1, the following quadrature rule is exact:

∫ 1
2

− 1
2

∫ 1
2

− 1
2

p(ξ, η)dξdη =
N∑

α=1

k+1∑
β=1

ω̂αωβ p(ξ̂α, ηβ) (24)

Utilizing (23) and (24), one has

∫
K C

i

U n,D(x, y)dxdy =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

U n,D(gi (ξ, η))

∣∣∣∣
∂gi (ξ, η)

∂(ξ, η)

∣∣∣∣ dξdη

= 2
∣∣∣K C

i

∣∣∣
∫ 1

2

− 1
2

∫ 1
2

− 1
2

U n,D(gi (ξ, η))

(
1

2
− η

)
dξdη

= 2
∣∣∣K C

i

∣∣∣
N∑

α=1

k+1∑
β=1

U n,D(gi (ξ̂α, ηβ))

(
1

2
− ηβ

)
ω̂αωβ
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= 2
∣∣∣K C

i

∣∣∣
N−1∑
α=1

k+1∑
β=1

U n,D(gi (ξ̂α, ηβ))

(
1

2
− ηβ

)
ω̂αωβ

+ 2
∣∣∣K C

i

∣∣∣
k+1∑
β=1

U n,D(gi (ξ̂N , ηβ))

(
1

2
− ηβ

)
ω̂N ωβ

= 2
∣∣∣K C

i

∣∣∣
N−1∑
α=1

k+1∑
β=1

(
1

2
− ηβ)ω̂αωβU n,D

K C
i ,α,β

+ 2
∣∣∣K C

i

∣∣∣
k+1∑
β=1

(
1

2
− ηβ

)
ω̂N ωβU n,D

eC
i ,β

(25)

Note that U n,D(gi (ξ, η)) is a polynomial of degree not more than k with respect to its two
variables, and thus U n,D(gi (ξ, η))2

∣∣K C
i

∣∣ ( 12 − η) is a polynomial of degree not more than
k and k + 1 with respect to its two variables, respectively, therefore the third equality in
(25) holds exactly. Since gi (ξ̂N , ηβ) is the β-th Gauss point on edge eC

i , we have used

U n,D(gi (ξ̂N , ηβ)) = U n,D
eC

i ,β
in the fifth equality, we also set U n,D(gi (ξ̂α, ηβ)) = U n,D

K C
i ,α,β

.

Similarly, one gets

∫
K D

i

U n,C (x, y)dxdy =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

U n,C ( fi (ξ, η))

∣∣∣∣
∂ fi (ξ, η)

∂(ξ, η)

∣∣∣∣ dξdη

= 2
∣∣∣K D

i

∣∣∣
∫ 1

2

− 1
2

∫ 1
2

− 1
2

U n,C ( fi (ξ, η))

(
1

2
− η

)
dξdη

= 2
∣∣∣K D

i

∣∣∣
N−1∑
α=1

k+1∑
β=1

U n,C ( fi (ξ̂α, ηβ))

(
1

2
− ηβ

)
ω̂αωβ

+ 2
∣∣∣K D

i

∣∣∣
k+1∑
β=1

U n,C ( fi (ξ̂N , ηβ))

(
1

2
− ηβ

)
ω̂N ωβ

= 2
∣∣∣K D

i

∣∣∣
N−1∑
α=1

k+1∑
β=1

(
1

2
− ηβ

)
ω̂αωβU n,C

K D
i ,α,β

+ 2
∣∣∣K D

i

∣∣∣
k+1∑
β=1

(
1

2
− ηβ

)
ω̂N ωβU n,C

eD
i ,β

(26)

where we used U n,C ( fi (ξ̂α, ηβ)) = U n,C
K D

i ,α,β
and U n,C ( fi (ξ̂N , ηβ)) = U n,C

eD
i ,β

due to the fact

that fi (ξ̂N , ηβ) is the β-th Gauss point on edge eD
i .

Plugging (25) and (26) into (21) and (22), respectively, one obtains

Ū n+1,C
K C = (1 − θ)Ū n,C

K C +
3∑

i=1

N−1∑
α=1

k+1∑
β=1

2θ
∣∣K C

i

∣∣
|K C |

(
1

2
− ηβ

)
ω̂αωβU n,D

K C
i ,α,β

+
3∑

i=1

k+1∑
β=1

(
2θ
∣∣K C

i

∣∣
|K C |

(
1

2
− ηβ

)
ω̂N ωβU n,D

eC
i ,β

− Δt

|K C | l
C
i ωβF(U n,D

eC
i ,β

) · nC
i

)
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= (1 − θ)Ū n,C
K C +

3∑
i=1

N−1∑
α=1

k+1∑
β=1

2θ
∣∣K C

i

∣∣
|K C |

(
1

2
− ηβ

)
ω̂αωβU n,D

K C
i ,α,β

+
k+1∑
β=1

2θ

(
1

2
− ηβ

)
ω̂N ωβ HC

β .

(27)

Ū n+1,D
K D = (1 − θ)Ū n,D

K D +
4∑

i=1

N−1∑
α=1

k+1∑
β=1

2θ
∣∣K D

i

∣∣
|K D| (

1

2
− ηβ)ω̂αωβU n,C

K D
i ,α,β

+
4∑

i=1

k+1∑
β=1

(
2θ
∣∣K D

i

∣∣
|K D|

(
1

2
− ηβ

)
ω̂N ωβU n,C

eD
i ,β

− Δt

|K D| l
D
i ωβF(U n,C

eD
i ,β

) · nD
i

)

= (1 − θ)Ū n,D
K D +

4∑
i=1

N−1∑
α=1

k+1∑
β=1

2θ
∣∣K D

i

∣∣
|K D| (

1

2
− ηβ)ω̂αωβU n,C

K D
i ,α,β

+
k+1∑
β=1

2θ

(
1

2
− ηβ

)
ω̂N ωβ H D

β , (28)

where

HC
β =

3∑
i=1

(∣∣K C
i

∣∣
|K C | U n,D

eC
i ,β

− lC
i Δt

2θ
( 1
2 − ηβ

)
ω̂N |K C |F(U n,D

eC
i ,β

) · nC
i

)
, (29)

H D
β =

4∑
i=1

(∣∣K D
i

∣∣
|K D| U n,C

eD
i C,β

− l D
i Δt

2θ
( 1
2 − ηβ

)
ω̂N |K D|F(U n,C

eD
i ,β

) · nD
i

)
. (30)

Let Sk = {(ξ̂α, ηβ) : α = 1, 2, . . . , N , β = 1, 2, . . . , k + 1}, SC
k = ⋃3

i=1 gi (Sk),

SD
k =⋃4

i=1 fi (Sk), then we have the following theorem from the analysis above.

Theorem 2 For the scheme defined in (17)–(18), assume Ū n,C
K C , Ū n,D

K D ∈ [m, M], ∀K C , K D. If

U n,C (x, y) ∈ [m, M],∀(x, y) ∈ SC
k ,∀K C and U n,D(x, y) ∈ [m, M],∀(x, y) ∈ SD

k ,∀K D,

then Ū n+1,C
K C and Ū n+1,D

K D will belong to [m, M], ∀K C , K D, under the CFL condition

almaxΔt ≤ 2θ

(
1

2
− ηk+1

)
ω̂N smin (31)

Proof On the one hand,U n,D
eC

i ,β
∈ [m, M], i = 1, 2, 3 imply that HC

β is a monotone increasing

function of U n,D
eC

i ,β
, i = 1, 2, 3 and belongs to [m, M] under the CFL condition (31) and

Lemma 1.
On the other hand,

∑3
i=1

∣∣K C
i

∣∣
|K C | = 1,

∑N
α=1 ω̂α = 1 and

∑k+1
β=1(

1
2 −ηβ)ω̂αωβ = 1

2 in (27),
thus

(1 − θ) +
3∑

i=1

N−1∑
α=1

k+1∑
β=1

2θ
∣∣K C

i

∣∣
|K C |

(
1

2
− ηβ

)
ω̂αωβ +

k+1∑
β=1

2θ

(
1

2
− ηβ

)
ω̂N ωβ = 1,

therefore, Ū n+1,C
K C can be viewed as a convex combination of Ū n,C

K C , U n,D
K C

i ,α,β
, HC

β , α =
1, 2, . . . , N − 1, β = 1, 2, . . . , k + 1.
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Substituting Ū n,C
K C = U n,D

K C
i ,α,β

= HC
β = d, d = m, M, α = 1, 2, . . . , N − 1, β =

1, 2, . . . , k + 1 into (27), one gets Ū n+1,C
K C = d , therefore we have the maximum principle

Ū n+1,C
K C ∈ [m, M]. Similarly we obtain Ū n+1,D

K D ∈ [m, M]. 
�

3.3 Maximum-Principle-Satisfying Limiter

In this subsection, we will give a maximum-principle-satisfying limiter which modifies the
central DG solutionsU n,C andU n,D , with their cell averages in [m, M], into Ũ n,C and Ũ n,D

such that the modified solutions will satisfy the sufficient condition in Theorem 2, while
maintaining accuracy and local conservation (see [35] for the analysis on accuracy). This
limiter is almost the same as the one for DG methods [37], as long as it is applied to U n,C

and U n,D separately. This limiter is given as follows. On each mesh element K �(� = C, D),
we modify the solution U n,� into

Ũ n,� = σ(U n,� − Ū n,�
K � ) + Ū n,�

K � , σ = min

{
1, | M − Ū n,�

K �

MK − Ū n,�
K �

|, | m − Ū n,�
K �

mK − Ū n,�
K �

|
}

with Mk = max(x,y)∈S�
k

U n,� and mk = min(x,y)∈S�
k

U n,�.
To achieve better accuracy in time and satisfy themaximum-principle, SSP high order time

discretizations will be used [12]. Such discretizations can be written as a convex combination
of the forward Euler method, and therefore the proposed schemes with a high order SSP time
discretization are still maximum-principle-satisfying. In this paper, we will use three-order
TVD Runge–Kutta method for the time discretization. The maximum-principle-satisfying
limiter is implemented in each stage of the Runge–Kutta method. When the nonlinear limiter
is also used, it is implemented before the maximum-principle-satisfying limiter.

4 Positivity-Preserving Central DGMethod

In this section, we will design a positivity-preserving central DG method for solving two-
dimensional compressible Euler equations based on the analysis in Sect. 3,

Ut + ∇ · F(U) = 0, (32)

where

U = (ρ, ρu, ρv, ρE)� ,

F(U) = (F(U), G(U)),

F(U) = (
ρu, ρu2 + p, ρuv, ρEu + pu

)�
,

G(U) = (
ρv, ρuv, ρv2 + p, ρEv + pv

)�
.

Here ρ denotes the density, u and v are the velocity components in the x and y direction,
respectively, p is the pressure and E is the total energy. For a closure of the system, we use
the following equation of state:

p = (γ − 1)ρ

(
E − 1

2
(u2 + v2)

)
. (33)

where γ are the ratio of specific heats of the fluid.
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We define an admissible set

H =

⎧⎪⎪⎨
⎪⎪⎩
U =

⎛
⎜⎜⎝

ρ

ρu
ρv

ρE

⎞
⎟⎟⎠ : ρ > 0, p(U) = (γ − 1)

(
ρE − 1

2
ρ(u2 + v2)

)
> 0

⎫⎪⎪⎬
⎪⎪⎭

,

which is a convex set [35].

4.1 First Order Scheme

A first order cental DG scheme with θ = 1 for (32) can be given by

Un+1,C
K C =

3∑
i=1

|K C
i |

|K C |U
n,D
K D

i
− Δt

|K C |
3∑

i=1

lC
i F(Un,D

K D
i

) · nC
i , (34)

Un+1,D
K D =

4∑
i=1

|K D
i |

|K D|U
n,C
K C

i
− Δt

|K D|
4∑

i=1

l D
i F(Un,C

K C
i

) · nD
i . (35)

Herein, Un,C
K C (resp. Un,D

K D ) is the numerical solution on element K C (resp. K D).

Lemma 2 For the first order cental DG scheme defined in (34)–(35), if Un,C
K C , Un,D

K D ∈ H,

∀K C , K D, then Un+1,C
K C and Un+1,D

K D will belong to H, ∀K C , K D, under the CFL condition

ãlmaxΔt < smin, (36)

where ã = ||(|(u, v) · n| + c)||∞, c2 = γ p/ρ. lmax and smin are same as the ones in Lemma
1.

Proof The scheme defined in (34) can be rewritten as

Un+1,C
K C =

3∑
i=1

(
|K C

i |
|K C |U

n,D
K D

i
− ΔtlC

i

|K C |F(Un,D
K D

i
) · nC

i

)
=

3∑
i=1

(
|K C

i |
|K C |Hi

)
(37)

where

Hi = Un,D
K D

i
− ΔtlC

i

|K C
i |F

(
Un,D

K D
i

)
· nC

i , (38)

ThusUn+1,C
K C is a convex combination ofHi , i = 1, 2, 3. Thenwe only need to proveHi ∈ H.

For the sake of convenience, we drop the superscript and the subscript of Un,D
K D

i
and nC

i ,

and let τ = ΔtlC
i

|K C
i | . Now we assume U = (ρ, ρu, ρv, ρE)� ∈ H and we want to prove

Hi = U − τF(U) · n ∈ H, n = (n1, n2) is an arbitrary unit vector.
By a direct computation, one has

Hi = U − τF(U) · n =

⎛
⎜⎜⎝

ρq
ρuq − τ pn1

ρvq − τ pn2

ρEq − τ ps

⎞
⎟⎟⎠ (39)
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where s = (u, v) · n, q = 1 − τ s. Then one gets

ρ(Hi ) = ρq, (40)

p(Hi ) = (γ − 1)

(
ρEq − τ ps − (ρuq − τ pn1)

2 + (ρvq − τ pn2)
2

2ρq

)

= pq

(
1 − γ − 1

2γ
c2

τ 2

q2

)
(41)

Since U ∈ H gives ρ > 0 and p > 0, then

Hi ∈ H ⇔ q > 0 and

√
γ − 1

2γ

cτ

q
< 1

⇔ 0 < τc < q. (42)

Herein, we used
√

γ−1
2γ < 1 due to γ > 1. Note that ã = ||(|(u, v) · n| + c)||∞ and the CFL

condition ãlmaxΔt < smin , we have ãτ < 1 and thus q > ãτq = τ(ã − ãτ s) > τ(ã −|s|) >

τc > 0. Therefore, Hi ∈ H holds and thus Un+1,C
K C ∈ H. Similarly, we obtain Un+1,D

K D

∈ H. 
�

Remark 2 The proof of this lemma is along the same lines as in Remark 2.4 of [36], where
the authors prove the positivity-preserving property of the first order DG method for the
one-dimensional compressible Euler equations. In another work [37], they claim the proof in
[36] can be extended to the first order positivity-preserving DG scheme on triangle meshes
for two-dimensional compressible Euler equations. The CFL condition (36) is different from
the one in the first order positivity-preserving DG scheme for two-dimensional compressible
Euler equations [37], and deduces that the time step is about half of the one in the DGmethod.

4.2 High Order Scheme

A high order scheme satisfied by the cell average of a cental DG method for (32), with first
order Euler forward time discretization, can be given by

Ūn+1,C
K C = (1 − θ)Ūn,C

K C + θ

|K C |
∫

K C
Un,Ddxdy

− Δt

|K C |
3∑

i=1

∫
eC

i

F(Un,D) · nC
i ds, (43)

Ūn+1,D
K D = (1 − θ)Ūn,D

K D + θ

|K D|
∫

K D
Un,C dxdy

− Δt

|K D|
4∑

i=1

∫
eD

i

F(Un,C ) · nD
i ds, (44)

where Ūn,C
K C (resp. Ūn,D

K D ) denotes the cell average over K C (resp. K D) of the numerical

solution Un,C (resp. Un,D).

Theorem 3 For the scheme defined in (43)–(44), assume Ūn,C
K C , Ūn,D

K D ∈ H, ∀K C , K D. If

Un,C (x, y) ∈ H,∀(x, y) ∈ SC
k ,∀K C and Un,D(x, y) ∈ H,∀(x, y) ∈ SD

k ,∀K D, then
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Ūn+1,C
K C and Ūn+1,D

K D will belong to H, ∀K C , K D, under the CFL condition

ãlmaxΔt ≤ 2θ

(
1

2
− ηk+1

)
ω̂N smin (45)

Proof By using same techniques as in Sect. 3, we can rewrite the scheme (43) as

Ūn+1,C
K C = (1 − θ)Ūn,C

K C +
3∑

i=1

N−1∑
α=1

k+1∑
β=1

2θ
∣∣K C

i

∣∣
|K C |

(
1

2
− ηβ

)
ω̂αωβU

n,D
K C

i ,α,β

+
k+1∑
β=1

2θ

(
1

2
− ηβ

)
ω̂N ωβHC

β .

(46)

where

HC
β =

3∑
i=1

(∣∣K C
i

∣∣
|K C |U

n,D
eC

i ,β
− lC

i Δt

2θ( 12 − ηβ)ω̂N |K C |F(Un,D
eC

i ,β
) · nC

i

)
. (47)

Under the CFL condition (45),HC
β defined in (47) is a formal first order positivity preserving

scheme as in (34), therefore HC
β ∈ H.

Note that Ūn+1,C
K C is a convex combination of Ūn,C

K C , U
n,D
K C

i ,α,β
, HC

β . Since H is a convex

set, one obtains Ūn+1,C
K C ∈ H. Similarly, Ūn+1,D

K D ∈ H. 
�

4.3 Positivity-Preserving Limiter

In this subsection, we will give a positivity-preserving limiter which modifies the cental DG
solutions Un,C and Un,D , with the cell averages in the set H, into Ũn,C and Ũn,D , such that
the modified solutions will satisfy the sufficient condition in Theorem 3, while maintaining
accuracy and local conservation (see [36]).

Following [5,20,33,37], the positivity-preserving limiter is given as follows.

(a) First, we enforce the positivity of density. In each element K �, � = C, D, we modify the
density ρn,� into ρ̂n,�,

ρ̂n,� = αK (ρn,� − ρ̄n,�) + ρ̄n,�, αK = min
(x,y)∈S�

K

{
1, |(ρ̄n,� − ε)/(ρ̄n,� − ρn,�)|} .

Here ε is a small number such that ρ̄n,� ≥ ε for all K �. In our simulation, ε = 10−13 is
taken. We now define Ûn,�(ρ̂n,�, (ρu)n,�, (ρv)n,�, (ρE)n,�).

(b) Second, we enforce the positivity of pressure. For each (x, y) ∈ S�
K , we define

δ(x, y) =
{
1, if p̂(Ûn,�) > 0

p(Ūn,�)

p(Ūn,�)−p(Ûn,�)
, otherwise.

With this, the newly limited numerical solution is given as

Ũn,� = βK (Ûn,� − Ūn,�) + Ūn,�, βK = min
(x,y)∈S�

K

(δ(x, y)).
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Similar to the discussions in Sect. 3.3, for higher order temporal accuracy, high order
SSP time discretizations will be used [12]. With their intrinsic structure of being a convex
combination of the Euler forward method, and the admissible set H being convex, SSP
temporal discretizations will keep the positivity-preserving property of the overall methods.
When the solutions contains non-smooth structures such as strong shocks, nonlinear limiters
are often needed to further improve the numerical stability. In our numerical experiments,
a total variation bounded (TVB) corrected minmod slope limiter [7] is applied for some
examples and it is implemented before the positivity-preserving limiter.

5 Numerical Examples

In this section, numerical experiments are presented to demonstrate the performance of
the proposed methods for solving conservation laws. The time step is set according to the
theoretical analysis. Since the numerical results on the primal and dual meshes are similar,
we only show the numerical results on the primal mesh.

5.1 Scalar Conservation Laws

5.1.1 Linear Equation

In this test, we solve the linear transport equation ut + ux + uy = 0 with initial condition
u(x, y, 0) = sin(2π(x + y)) ∈ [−1, 1] and periodic boundary condition. The computational
domain is [0, 1] × [0, 1]. The coarsest primal mesh used in this test consists of 128 similar
triangles, which is shown in Fig. 3. Then we refine the mesh by dividing the each triangle into
four smaller identical triangles for the purpose of the accuracy test. The L2 and L∞ errors
and orders of accuracy for ρ at t = 0.1 are listed in Table 1 without the maximum-principle-
satisfying limiter and in Table 2 with the maximum-principle-satisfying limiter. The results
show that the centralDGmethodswith andwithout the limiter on the unstructured overlapping
meshes are (k + 1)st order accurate for Pk with k = 1, 2. To demonstrate the effectiveness
of the maximum-principle-satisfying limiter, we plot time series of the maximum value and
the minimum value of the numerical solution u with or without the maximum-principle-
satisfying limiter in Fig. 4. It can be seen from Fig. 4 that most of the time the maximum
value and the minimum value of the numerical solution are outside of the domain [−1, 1]
when the limiter is not used in the simulation, even though the mesh is refined. However
these values are always in the domain [−1, 1] when using the limiter.

5.1.2 Diagonal Advection of a Gaussian

In this test, we consider the advection equation ut + ux + uy = 0 in a square domain
[−1, 1] × [−1, 1], the initial condition is an axisymmetric Gaussian shape u(x, y, 0) =
e−75((x−x0)2+(y−y0)2) ∈ [0, 1], the boundary conditions areDirichlet. TheGaussian is initially
located at x0 = y0 = −0.5 and moves diagonally at speed

√
2. This problem is solved until

time t = 0.5 with 8192 similar triangles on the primal mesh which is obtained by refining
the mesh shown in Fig. 3 three times. The numerical results at t = 0.5 are shown in Fig. 5,
the exact solution is also plotted in the same picture for a comparison. It can be seen that the
numerical solution matches well with the exact solution.
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Table 1 The L2 and L∞ errors
and orders of accuracy of u at
t = 0.1 without limiter for linear
transport equation

Mesh L2 error Order L∞ error Order

P1

128 5.44E−02 – 1.36E−01 –

512 1.39e−02 1.97 3.37E−02 2.01

2048 3.49E−03 1.99 8.77E−03 1.94

8192 8.74E−04 2.00 2.14E−03 2.03

P2

128 3.64E−03 – 6.78E−03 –

512 4.82E−04 2.92 1.23E−03 2.46

2048 5.68E−05 3.08 1.55E−04 2.99

8192 7.10E−06 3.00 1.93E−05 3.01

Table 2 The L2 and L∞ errors
and orders of accuracy of u at
t = 0.1 with limiter for linear
transport equation

Mesh L2 error Order L∞ error Order

P1

128 7.12E−02 – 1.86E−01 –

512 1.89E−02 1.92 4.98E−02 1.90

2048 4.29E−03 2.13 1.44E−02 1.79

8192 1.02E−03 2.08 3.52E−03 2.03

P2

128 1.17E−02 – 3.42E−02 –

512 7.72E−04 3.93 1.86E−03 4.20

2048 7.38E−05 3.39 2.16E−04 3.10

8192 9.17E−06 3.01 3.56E−05 2.59

Fig. 3 The coarsest primal mesh
(128 elements) for the accuracy
test
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Fig. 5 Diagonal advection of a Gaussian. Left: the contours of the numerical results at t = 0.5; right: x-profiles
(y = 0), dots: numerical solution, solid line: exact solution

5.1.3 Burgers Equation

We consider the Burgers equation

ut +
(

u2

2

)

x
+
(

u2

2

)

y
= 0 (48)

with smooth initial condition

u(x, 0) = 0.5 + sin(π(x + y))
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Table 3 The L2 and L∞ errors
and orders of accuracy of u at
t = 0.05 without limiter for
Burgers equation

Mesh L2 error Order L∞ error Order

P1

128 9.72E−02 – 1.17E−01 –

512 3.15E−02 1.62 4.70E−02 1.32

2048 8.25E−03 1.94 1.34E−02 1.81

8192 2.10E−03 1.97 3.64E−03 1.88

P2

128 8.90E−03 – 1.41E−02 –

512 1.46E−03 2.69 4.01E−03 1.81

2048 2.25E−04 2.70 6.69E−04 2.58

8192 3.38E−05 2.73 1.01E−04 2.73

Table 4 The L2 and L∞ errors
and orders of accuracy of u at
t = 0.05 with limiter for Burgers
equation

Mesh L2 error Order L∞ error Order

P1

128 9.84E−02 – 1.18E−01 –

512 3.60E−02 1.45 5.68E−02 1.05

2048 9.29E−03 1.97 1.53E−02 1.89

8192 2.29E−03 2.01 3.73E−03 2.04

P2

128 1.07E−02 – 1.42E−02 –

512 1.66E−03 2.69 3.99E−03 1.83

2048 2.65E−04 2.64 6.73E−04 2.57

8192 4.18E−05 2.67 1.05E−04 2.68

and periodic boundary condition.
The computational domain is [−1, 1] × [−1, 1]. The mesh used in this test is same to

the test in Sect. 5.1.1. We present L2 and L∞ errors and orders of accuracy for u at t =
0.05 in Table 3 without the maximum-principle-satisfying limiter and in Table 4 with the
maximum-principle-satisfying limiter. The results also show that the central DG methods
on the unstructured overlapping meshes are (k + 1)st order accurate for Pk with k = 1, 2.
Numerical and exact solutions at t = 0.62 (at the time the solution becomes very sharp) are
plotted in Fig. 6, it can be observed the numerical solution is agree with the exact solution.

5.2 Euler Equations

5.2.1 Accuracy Test

In this test, we solve the Euler equations with initial conditions given by

ρ(x, y, 0) = 1 + 0.99 sin(2π(x + y)), u(x, y, 0) = v(x, y, 0) = 1, p(x, y, 0) = 1.

The computational domain is [0, 1] × [0, 1] and the boundary condition is periodic. The
mesh used in this test is same to the test in Sect. 5.1.1. The L2 and L∞ errors and orders of
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Fig. 6 Numerical solution at t = 0.62 for the Burgers equation. Left: numerical result; right: exact solution

Table 5 The L2 and L∞ errors
and orders of accuracy of ρ at
t = 0.01 without limiter

Mesh L2 error Order L∞ error Order

P1

128 5.65E−02 – 1.42E−01 –

512 1.50E−02 1.91 3.82E−02 1.89

2048 3.68E−03 2.03 1.04E−02 1.88

8192 9.15E−04 2.01 2.62E−03 1.99

P2

128 4.00E−03 – 1.13E−02 –

512 7.37E−04 2.44 2.14E−03 2.40

2048 1.33E−04 2.47 3.07E−04 2.80

8192 1.72E−05 2.95 4.50E−05 2.77

accuracy for ρ at t = 0.1 are listed in Table 5 without the positivity-preserving limiter and
in Table 6 with the positivity-preserving limiter. The results show that the present methods
are (k + 1)st order accurate for Pk approximation with k = 1, 2. We can observe from both
tables that the errors are different only on the coarsest mesh with P1 approximation. This is
due to the fact that negative value of density appears on the coarsest mesh when using P1

approximation and the limiter is implemented in the computation.While for the refined mesh
or when using P2 approximation, no negative value of density appears on these meshes and
thus the limiter is actually not implemented.

5.2.2 Riemann Problem

In this test, we shall investigate the performance of the central DG methods on unstructured
overlapping meshes for the problems with shocks. We consider two Riemann problems with
initial conditions given by

(ρ, u, v, p) =

⎧⎪⎪⎨
⎪⎪⎩

(0.5313, 0.1, 0.1, 0.4), x > 0.5, y > 0.5,
(1.0222,−0.6179, 0.1, 1), x < 0.5, y > 0.5,
(0.8, 0.1, 0.1, 1), x < 0.5, y < 0.5,
(1, 0.1, 0.8276, 1), x > 0.5, y < 0.5.
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Table 6 The L2 and L∞ errors
and orders of accuracy of ρ at
t = 0.01 with limiter

Mesh L2 error Order L∞ error Order

P1

128 5.74E−02 – 1.42E−01 –

512 1.50E−02 1.94 3.84E−02 1.89

2048 3.68E−03 2.03 1.04E−02 1.89

8192 9.15E−04 2.01 2.62E−03 1.99

P2

128 4.00E−03 – 1.13E−02 –

512 7.37E−04 2.44 2.14E−03 2.40

2048 1.33E−04 2.47 3.07E−04 2.80

8192 1.72E−05 2.95 4.50E−05 2.77
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Fig. 7 The contours of the numerical results at t = 0.2 for the first Riemann problem. Top left: density; top
right: pressure; bottom left: velocity component u; bottom right: velocity component v

and

(ρ, u, v, p) =

⎧⎪⎪⎨
⎪⎪⎩

(1.0, 0, 0.3, 1.0), x > 0.5, y > 0.5,
(2.0, 0, 0.3, 1.0), x < 0.5, y > 0.5,
(1.039, 0,−0.8133, 0.4), x < 0.5, y < 0.5,
(0.5197, 0,−0.4259, 0.4), x > 0.5, y < 0.5,

The computational domain is [0, 1]×[0, 1]with 131072 similar triangles on the primal mesh
which is obtained by refining the mesh (shown in Fig. 3) five times. The boundary condition
is outflow. The numerical results at t = 0.2 for the first Riemann problem are shown in Fig. 7.
The numerical results at t = 0.3 for the second Riemann problem are shown in Fig. 8. These
results match well with the ones in [1].
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Fig. 8 The contours of the numerical results at t = 0.3 for the second Riemann problem. Top left: density;
top right: pressure; bottom left: velocity component u; bottom right: velocity component v

Fig. 9 The primal mesh (3604 elements) for the double rarefaction problem

5.2.3 Double Rarefaction Riemann Problem

In this test, we consider a double rarefaction Riemann problem [36], with the initial condition
as

(ρ, u, v, p) =
{

(7,−1, 0, 0.2), x ≤ 0,
(7, 1, 0, 0.2), x > 0

on the computational domain [−1, 1] × [0, 0.2]. The primal mesh used in the test includes
3604 elements as shown in Fig. 9. The exact solution contains vacuum, and thus we use
positivity-preserving limiter in this example. Since no shock occurs in the problem, we do
not use the TVB limiter. The left column of Fig. 10 reports the numerical density and pressure
which is in good agreement with the exact solutions shown in right column of Fig. 10. It can
be observed that both the low density and low pressure are captured well.

5.2.4 Shock Diffraction Problem

In this test, we consider a shock diffraction problem where shock passing a sharp convex
corner, which has been a benchmark problem in computational fluid dynamics and was tested
in many works [30,37]. Standard numerical methods often result in negative density and/or
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Fig. 10 The numerical results at t = 0.6 for the double rarefaction problem. Top left: numerical density; top
right: exact density; bottom left: numerical pressure; bottom right: exact pressure

negative pressure, and it is important to utilize positivity-preserving methods to simulate this
example. The initial condition is given by

(ρ, u, v, p) =
{

(7.04113, 4.07795, 0, 30.05945), x ≤ 0.5, y > 6,
(1.4, 0, 0, 1), otherwise,

on an irregular computational domain[0, 13] × [0, 11] − [0, 1] × [6x, 6] which is divided
into 27086 triangular elements on the primal mesh, the part of mesh is shown in Fig. 11.
We use inflow boundary condition at {x = 0, y ∈ [6, 11]}, reflective boundary condition at
{x ∈ [0, 1], y = 6} and {x ∈ [0, 1], y = 6x}, and outflow boundary condition elsewhere.
The primal mesh is shown in Fig. 11, with 27086 elements. In Fig. 12, the computed density
and pressure at t = 2.3 are plotted, and no negative pressure or density is encountered during
the simulation with the presented positivity-preserving central DG methods.

6 Conclusions

In this paper, we have developed a family of high order accurate central DG methods
defined on unstructured overlapping meshes for the conservation laws in two-dimensional
spaces, including the maximum-principle-satisfying central DG methods and the positivity-
preserving central DG methods. The maximum-principle-satisfying limiter and positivity-
preserving limiter are implemented locally. Some numerical experiments are carried out in
this paper, which demonstrate the validity and accuracy of proposed method. Therefore, we
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Fig. 11 Part of the primal mesh (27086 elements) for the shock diffraction problem

Fig. 12 The numerical results at t = 2.3 for the shock diffraction problem. Left: density; right: pressure

will extend the present method to other problems in the future works, such asMHD equations
[28], attraction-repulsion system with nonlinear diffusion [23] and Biot’s equations [2].
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