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Abstract The goal of this paper is to study approaches to bridge the gap between first-order
and second-order type methods for composite convex programs. Our key observations are:
(1) Many well-known operator splitting methods, such as forward–backward splitting and
Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solu-
tions of the composite convex program and the solutions of a system of nonlinear equations
derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear
equations enables us to develop second-order type methods. These nonlinear equations may
be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix
is positive semidefinite due to monotonicity. By combining with a regularization approach
and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton
method and establish its convergence to global optimality. Preliminary numerical results on
�1-minimization problems demonstrate that our second-order type algorithms are able to
achieve superlinear or quadratic convergence.
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1 Introduction

This paper aims to solve a composite convex optimization problem in the form

min
x∈Rn

f (x) + h(x), (1.1)

where f and h are extended real-valued convex functions. Problem (1.1) arises from a wide
variety of applications, such as signal recovery, image processing, machine learning, data
analysis, and etc. For example, it becomes the sparse optimization problem when f or h
equals to the �1-norm, which attracts a significant interest in signal or image processing in
recent years. If f is a loss function associated with linear predictors and h is a regularization
function, problem (1.1) is often referred as the regularized risk minimization problem in
machine learning and statistics. When f or h is an indicator function onto a convex set,
problem (1.1) represents a general convex constrained optimization problem.

Recently, a series of first-order methods, including the forward–backward splitting (FBS)
(also known as proximal gradient) methods, Nesterov’s accelerated methods, the alterna-
tive direction methods of multipliers (ADMM), the Douglas–Rachford splitting (DRS) and
Peaceman–Rachford splitting (PRS) methods, have been extensively studied and widely
used for solving problem (1.1). The readers are referred to, for example, [3,6] and references
therein, for a review on some of these first-order methods. One main feature of these methods
is that they first exploit the underlying problem structures, then construct subproblems that
can be solved relatively efficiently. These algorithms are rather simple yet powerful since
they are easy to be implemented in many interesting applications and they often converge
fast to a solution with moderate accuracy. However, a notorious drawback is that they may
suffer from a slow tail convergence and hence a significantly large number of iterations is
needed in order to achieve a high accuracy.

A few Newton-type methods for some special instances of problem (1.1) have been inves-
tigated to alleviate the inherent weakness of the first-order type methods. Most existing
Newton-type methods for problem (1.1) with a differentiable function f and a simple func-
tion h whose proximal mapping can be cheaply evaluated are based on the FBS method to
some extent. The proximal Newton method [18,26] can be interpreted as a generalization of
the proximal gradient method. It updates in each iteration by a composition of the proximal
mapping with a Newton or quasi-Newton step. The semi-smooth Newton methods proposed
in [4,16,22] solve the nonsmooth formulation of the optimality conditions corresponding
to the FBS method. In [43], the augmented Lagrangian method is applied to solve the dual
formulation of general linear semidefinite programming problems, where each augmented
Lagrangian function is minimized by using the semi-smooth Newton-CG method. Similarly,
a proximal point algorithm is developed to solve the dual problems of a class of matrix spec-
tral norm approximation in [5], where the subproblems are again handled by the semi-smooth
Newton-CG method.

In this paper, we study a few second-order type methods for problem (1.1) in a general
setting even if f is nonsmooth and h is an indicator function. Our key observations are
that many first-order methods, such as the FBS and DRS methods, can be written as fixed-
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point iterations and the optimal solutions of (1.1) are also the solutions of a system of
nonlinear equations defined by the corresponding fixed-point mapping. Consequently, the
concept is to develop second-order type algorithms based on solving the system of nonlinear
equations. These nonlinear equations are often non-differentiable, but they are semi-smooth
due to the properties of the proximal mappings. Hence, we propose a regularized semi-
smoothNewtonmethod to solve the systemof nonlinear equations.Although the semi-smooth
Newton method had been extensively studied in 1990s [9,25,27,28,34,37], our usage is still
different in several aspects. Firstly, our regularization parameter is updated by a self-adaptive
strategy similar to the trust region algorithms. The regularization term is important since
the generalized Jacobian matrix corresponding to monotone equations may only be positive
semidefinite. Secondly, our approach keeps to use the semi-smooth Newton step as much as
possible if the residual is reduced sufficiently comparing to the last Newton step. Otherwise, a
hyperplane projection technique proposed by [32,33] is called to ensure global convergence
to an optimal solution of problem (1.1). When certain conditions are satisfied, we prove
that the semi-smooth Newton steps are always performed close to the optimal solutions.
Consequently, fast local convergence rate is established. Of course, the projection step may
be replaced by other globalization techniques for certain problems. Thirdly, the computational
cost can be further reduced if the Jacobian matrix is approximated by the limited memory
BFGS (L-BFGS) method for some cases.

Our main contribution is the study of some relationships between the first-order and
second-order type methods. Our semi-smooth Newton methods are able to solve the gen-
eral convex composite problem (1.1) as long as a fixed-point mapping is well defined. In
particular, ourmethods are applicable to constrained convexprograms, such as constrained�1-
minimization problem. In contrast, theNewton-typemethods in [4,16,18,22,26] are designed
for unconstrained problems. Unlike the methods in [5,43] applying the semi-Newton method
to a sequence of subproblems, our target is a single system of nonlinear equations. Although
solving the Newton system is a major challenge, the computational cost usually can be
controlled reasonably well when certain structures can be utilized. Since the hyperplane pro-
jection technique in [32,33] often slows down the numerical convergence of theNewton steps,
we only activate this step when it is necessary and the numerical efficiency is still determined
by the Newton steps. Our preliminary numerical results show that our proposed methods are
able to reach superlinear or quadratic convergence rates on typical �1-minimization problems.

The rest of this paper is organized as follows. In Sect. 2, we review a few popular operator
splittingmethods, derive their equivalent fixed-point iterations and discuss their semi-smooth
and monotone properties. We propose a semi-smooth Newton method and establish its con-
vergence results in Sect. 3. Numerical results on a number of applications are presented in
Sect. 4. Finally, we conclude this paper in Sect. 5.

1.1 Notations

Let I be the identity operator or identity matrix of suitable size. Given a convex function
f : Rn → (−∞,+∞] and a scalar t > 0, the proximal mapping of f is defined by

proxt f (x) := argmin
u∈Rn

f (u) + 1

2t
‖u − x‖22. (1.2)

The Fenchel conjugate function f ∗ of f is

f ∗(y) := sup
x∈Rn

{
xT y − f (x)

}
. (1.3)
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A function f is said to be closed if its epigraph is closed, or equivalently f is lower semi-
continuous. A mapping F : Rn → R

n is said to be monotone, if

〈x − y, F(x) − F(y)〉 ≥ 0, for all x, y ∈ R
n .

The mapping F is called nonexpansive (contractive) if F is Lipschitz continuous with con-
stant L ≤ 1 (L < 1), and firmly nonexpansive if

‖F(x) − F(y)‖22 ≤ 〈x − y, F(x) − F(y)〉 , for all x, y ∈ R
n .

The mapping F is called strongly monotone with modulus c > 0 if

〈x − y, F(x) − F(y)〉 ≥ c‖x − y‖22, for all x, y ∈ R
n .

It is said that F is cocoercive with modulus β > 0 if

〈x − y, F(x) − F(y)〉 ≥ β‖F(x) − F(y)‖22, for all x, y ∈ R
n .

The operator T is called α − averaged (α ∈ (0, 1]) if there exists a nonexpansive operator
R such that T = (1 − α)I + αR.

2 Preliminaries

In this section, we review the fixed-point characterizations of some operator splitting algo-
rithms and discuss some important properties of the associated fixed-point mappings. This
section consists of three subsections. Section 2.1 reviews some operator splitting algorithms
for problem (1.1), including FBS, DRS, and ADMM. These algorithms are well studied in
the literature, see [2,6,7,12] for example. Most of the operator splitting algorithms can also
be interpreted as fixed-point algorithms derived from certain optimality conditions. Then,
we present that the fixed-point mappings derived from the operator splitting algorithms are
semi-smooth and monotone in Sects. 2.2 and 2.3, respectively.

2.1 Operator Splitting and Fixed-Point Algorithms

In problem (1.1), let h be a continuously differentiable function. The FBS algorithm is the
iteration

xk+1 = proxt f (x
k − t∇h(xk)), k = 0, 1, . . . , (2.1)

where t > 0 is the step size. Define the following operator

TFBS := proxt f ◦ (I − t∇h). (2.2)

Then FBS can be viewed as a fixed-point iteration

xk+1 = TFBS(x
k). (2.3)

The DRS algorithm solves (1.1) by the following update:

xk+1 = proxth(z
k), (2.4)

yk+1 = proxt f (2x
k+1 − zk), (2.5)

zk+1 = zk + yk+1 − xk+1. (2.6)
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The algorithm is traced back to [10,11,20] to solve partial differential equations (PDEs). The
fixed-point iteration characterization of DRS is in the form of

zk+1 = TDRS(z
k), (2.7)

where
TDRS := I + proxt f ◦ (2proxth − I ) − proxth . (2.8)

Consider a linear constrained program:

min
x1∈Rn1 ,x2∈Rn2

f1(x1) + f2(x2)

subject to A1x1 + A2x2 = b,
(2.9)

where A1 ∈ R
m×n1 and A2 ∈ R

m×n2 . The dual problem of (2.9) is given by

min
w∈Rm

d1(w) + d2(w), (2.10)

where

d1(w) := f ∗
1 (AT

1 w), d2(w) := f ∗
2 (AT

2 w) − bTw.

Assume that f1 and f2 are convex. It is widely known that the DRS iteration for dual
problem (2.10) is the ADMM [14,15]. It is regarded as a variant of augmented Lagrangian
method and has attracted much attention in numerous fields. A recent survey paper [3]
describes the applications of the ADMM to statistics and machine learning. The ADMM is
equivalent to the following fixed-point iteration

zk+1 = TDRS(z
k),

where TDRS is the DRS fixed-point mapping for problem (2.10).

2.2 Semi-Smoothness of Proximal Mapping

We now discuss the semi-smoothness of proximal mappings. This property often implies that
the fixed-point mappings corresponding to operator splitting algorithms are semi-smooth or
strongly semi-smooth.

Let O ⊆ R
n be an open set and F : O → R

m be a locally Lipschitz continuous function.
Rademacher’s theorem says that F is almost everywhere differentiable. Let DF be the set of
differentiable points of F in O. We next introduce the concepts of generalized differential.

Definition 2.1 Let F : O → R
m be locally Lipschitz continuous at x ∈ O. The B-

subdifferential of F at x is defined by

∂B F(x) :=
{
lim
k→∞ F ′(xk)|xk ∈ DF , xk → x

}
.

The set ∂F(x) = co(∂B F(x)) is called Clarke’s generalized Jacobian, where co denotes the
convex hull.

The notion of semi-smoothness plays a key role on establishing locally superlinear conver-
gence of the nonsmooth Newton-type method. Semi-smoothness was originally introduced
by Mifflin [21] for real-valued functions and extended to vector-valued mappings by Qi and
Sun [28].

Definition 2.2 Let F : O → R
m be a locally Lipschitz continuous function. We say that F

is semi-smooth at x ∈ O if
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(a) F is directionally differentiable at x ; and
(b) for any d ∈ O and J ∈ ∂F(x + d),

‖F(x + d) − F(x) − Jd‖2 = o(‖d‖2) as d → 0.

Furthermore, F is said to be strongly semi-smooth at x ∈ O if F is semi-smooth and for any
d ∈ O and J ∈ ∂F(x + d),

‖F(x + d) − F(x) − Jd‖2 = O
(‖d‖22

)
as d → 0.

The examples of semi-smooth functions include the smooth functions, all convex func-
tions (thus norm), and the piecewise differentiable functions. Differentiable functions with
Lipschitz gradients are strongly semi-smooth. For every p ∈ [1,∞], the norm ‖ · ‖p is
strongly semi-smooth. Piecewise affine functions are strongly semi-smooth. Examples of
semi-smooth functions are thoroughly studied in [12,37].

The basic properties of proximal mapping is well documented in textbooks such as [2,29].
The proximal mapping prox f , corresponding to a proper, closed and convex function f :
R
n → R, is single-valued, maximal monotone and nonexpansive. Moreover, the proximal

mappings of many interesting functions are (strongly) semi-smooth. It is worth mentioning
that the semi-smoothness of proximal mapping does not hold in general [31].

We next review some existing results on the semi-smoothness of proximal mappings of
various interesting functions. The proximal mapping of �1-norm ‖x‖1, which is the well-
known soft-thresholding operator, is component-wise separable and piecewise affine. Hence,
the operator prox‖·‖1 is strongly semi-smooth. According to the Moreau’s decomposition,
the proximal mapping of �∞ norm (the conjugate of �1 norm) is also strongly semi-smooth.
For k ∈ N, a function with k continuous derivatives is called a Ck function. A function
f : O → R

m defined on the open setO ⊆ R
n is called piecewise Ck function, k ∈ [1,∞], if

f is continuous and if at every point x̄ ∈ O there exists a neighborhood V ⊂ O and a finite
collection of Ck functions fi : V → R

m, i = 1, . . . , N , such that

f (x) ∈ { f1(x), . . . , fN (x)} for all x ∈ V .

For a comprehensive study on piecewise Ck functions, the readers are referred to [30]. From
[37, Proposition 2.26], if f is a piecewise C1 (piecewise smooth) function, then f is semi-
smooth; if f is a piecewise C2 function, then f is strongly semi-smooth. As described in
[26, Section 5], in many applications the proximal mappings are piecewise C1 and thus semi-
smooth. Metric projection, which is the proximal mapping of an indicator function, plays an
important role in the analysis of constrained programs. The projection over a polyhedral set
is piecewise linear [29, Example 12.31] and hence strongly semi-smooth. The projections
over symmetric cones are proved to be strongly semi-smooth in [35].

2.3 Monotonicity of Fixed-Point Mappings

This subsection focuses on the discussion of the monotonicity of the fixed-point mapping
F := I − T , where T : Rn → R

n is a fixed-point operator. Later, we will show that the
monotone and nonexpansive property of F play critical roles in our proposed method.

Proposition 2.3 (i) Suppose that ∇h is cocoercive with β > 0, then FFBS = I − TFBS is
monotone and 2β

4β−γ
-averaged if 0 < t ≤ 2β.

(ii) Suppose that ∇h is strongly monotone with c > 0 and Lipschitz with L > 0, then FFBS
is strongly monotone if 0 < t < 2c/L2.
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(iii) Suppose that h ∈ C2, H(x) := ∇2h(x) is positive semidefinite for any x ∈ R
n and

λ̄ = maxx λmax(H(x)) < ∞. Then, FFBS is monotone if 0 < t ≤ 2/λ̄.
(iv) The fixed-point mapping FDRS := I −TDRS is monotone and firmly nonexpansive hence

1
2 -averaged.

(v) If T is α-averaged (α ∈ (0, 1]), then F = I − T is 1
2α -cocoercive.

Proof Items (i) and (ii) are well known in the literature, see [8,44] for example.
(iii) From the mean value theorem, for any x, y ∈ R

n , one has that

∇h(x) − ∇h(y) = H̄(x, y)(x − y),

where H̄(x, y) = ∫ 1
0 H(y + s(x − y))ds and thus λmax (H̄(x, y)) ≤ λ̄. Hence, we obtain

‖∇h(x) − ∇h(y)‖22 = 〈
H̄(x, y)(x − y), H̄(x, y)(x − y)

〉 ≤ λ̄ 〈x − y,∇h(x) − ∇h(y)〉 ,

which implies that ∇h is cocoercive with 1/λ̄. Hence, the monotonicity is obtained from
item (i) .

(iv) It has been shown that the operator TDRS is firmly nonexpansive, see [20]. Therefore,
FDRS is firmly nonexpansive and hence monotone [2, Proposition 4.2].

(v) The proof simply follows from the definition of the α-average of T . ��
Items (i) and (ii) demonstrate that FFBS is monotone as long as the step size t is properly

selected. It is also shown in [44] that, when f is an indicator function of a convex closed
set, the step size interval in items (i) and (ii) can be enlarged to (0, 4β] and (0, 4c/L2),
respectively. Finally, we introduce an useful lemma on the positive semidefinite property of
the subdifferential of the monotone mapping, see [17, Proposition 2.3].

Lemma 2.4 For a Lipschitz continuous mapping F : Rn → R
n, F is monotone if and only

if each element of ∂B F(x) is positive semidefinite for any x ∈ R
n.

3 Semi-Smooth Newton Method for Nonlinear Monotone Equations

The purpose of this section is to design a Newton-type method for solving the system of
nonlinear equations

F(z) = 0, (3.1)

where F : R
n → R

n is semi-smooth and monotone. In particular, we are interested in
F(z) = z − T (z), where T (z) is a fixed-point mapping corresponding to certain first-order
type algorithms. Let Z∗ := {z ∈ R

n : F(z) = 0} denote the solution set to nonlinear
equations (3.1). It is known that Z∗ is a closed convex set if the mapping F is maximal
monotone.

3.1 A Regularized Semi-Smooth Newton Method with Projection Steps

The system of monotone equations has various applications [1,19,24,32,46]. Inspired by
a pioneer work [32], a class of iterative methods for solving nonlinear (smooth) monotone
equations were proposed in recent years [1,19,46]. In [32], the authors proposed a glob-
ally convergent Newton method by exploiting the structure of monotonicity, whose primary
advantage is that the whole sequence of the distances from the iterates to the solution set is
decreasing. The method is extended in [45] to solve monotone equations without nonsingu-
larity assumption.
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The main concept in [32] is introduced as follows starting from an initial point z0 . For an
iterate zk , let dk be a direction such that

〈
F(uk),−dk

〉
> 0,

where uk = zk + dk is an intermediate iterate. By monotonicity of F , for any z∗ ∈ Z∗ one
has

〈
F(uk), z∗ − uk

〉
≤ 0.

Therefore, the hyperplane

Hk :=
{
z ∈ R

n |
〈
F(uk), z − uk

〉
= 0

}

strictly separates zk from the solution set Z∗. Based on this fact, it was developed in [32] that
the next iterate is set by

zk+1 = zk −
〈
F(uk), zk − uk

〉

‖F(uk)‖22
F

(
uk

)
.

It is easy to show that the point zk+1 is the projection of zk onto the hyperplane Hk . The
hyperplane projection step is critical to construct a globally convergent method for solving
the system of nonlinear monotone equations. By applying the same technique, we develop a
globally convergent method for solving semi-smooth monotone equations (3.1).

It has been demonstrated in Lemma 2.4 that each element of the B-subdifferential of a
monotone and semi-smooth mapping is positive semidefinite. Hence, for an iterate zk , by
choosing an element Jk ∈ ∂B F(zk), it is natural to apply a regularized Newton method. It
computes

(Jk + μk I )d = −Fk, (3.2)

where Fk = F(zk), μk = λk‖Fk‖2 and λk > 0 is a regularization parameter. The regular-
ization term μk I is chosen such that Jk + μk I is invertible. From a computational view, it is
practical to solve the linear system (3.2) inexactly. Define

rk := (Jk + μk I )d
k + Fk . (3.3)

At each iteration, we seek a step dk by solving (3.2) approximately such that

‖rk‖2 ≤ τ min{1, λk‖Fk‖2‖dk‖2}, (3.4)

where 0 < τ < 1 is some positive constant. Then a trial point is obtained as

uk = zk + dk .

If ‖F(uk)‖2 is sufficiently decreased, we take a Newton step. Specifically, let ξ0 =
‖F(z0)‖2. When ‖F(uk)‖2 ≤ νξk with 0 < ν < 1, we call the Newton step is success-
ful and set

zk+1 = uk, ξk+1 = ‖F(uk)‖2 and λk+1 = λk . [Newton step] (3.5)

Otherwise, we take a safeguard step as follows. Define a ratio

ρk = − 〈
F(uk), dk

〉

‖dk‖22
. (3.6)
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Select some parameters 0 < η1 ≤ η2 < 1 and 1 < γ1 < γ2. If ρk ≥ η1, the iteration
is said to be successful. Otherwise, the iteration is unsuccessful. Moreover, for a successful
iteration, we take a hyperplane projection step when the residual of the projection step is
non-increasing and take a fixed-point iteration when it is increasing. In summary, we set

zk+1 =

⎧⎪⎨
⎪⎩

vk, if ρk ≥ η1 and ‖F(vk)‖2 ≤ ‖F(zk)‖2, [projection step]

wk, if ρk ≥ η1 and ‖F(vk)‖2 > ‖F(zk)‖2, [fixed-point step]

zk, if ρk < η1, [unsuccessful step]

(3.7)

where

vk = zk −
〈
F(uk), zk − uk

〉

‖F(uk)‖22
F

(
uk

)
, wk = zk − βF(zk), β ∈

(
0,

1

α

)
. (3.8)

The parameters ξk+1 and λk+1 are updated as

ξk+1 = ξk, λk+1 ∈
⎧⎨
⎩

(λ, λk), if ρk ≥ η2,

[λk, γ1λk], if η1 ≤ ρk < η2,

(γ1λk, γ2λk], otherwise,
(3.9)

where λ > 0 is a small positive constant. These parameters determine how aggressively
the regularization parameter is increased when an iteration is unsuccessful or it is decreased
when ρk ≥ η2. The complete approach to solve (3.1) is summarized in Algorithm 1.

Algorithm 1: An Adaptive Semi-smooth Newton (ASSN) method

1 Give 0 < τ, ν < 1, 0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2 ;

2 Choose z0 and ε > 0. Set k = 0 and ξ0 = ‖F(z0)‖2;
3 while not “converged” do
4 Select Jk ∈ ∂B F(zk );

5 Solve the linear system (3.2) approximately such that dk satisfies (3.4);

6 Compute uk = zk + dk and calculate the ratio ρk as in (3.6);

7 If ‖F(uk )‖2 ≤ νξk , update z
k+1, ξk+1 and λk+1 according to (3.5). Otherwise, set them according

to (3.7) and (3.9), respectively;
8 Set k = k + 1;

3.2 Global Convergence

We make the following assumption.

Assumption 3.1 The set Z∗ of optimal solutions is nonempty. The function F : Rn → R
n

is monotone and the corresponding fixed point operator T = I − F is α-averaged with
α ∈ (0, 1].

The assumption that T is α-averaged implies that F is Lipschitz continuous with modulus
L ≤ 2α. Hence, we have ‖Jk‖ ≤ L for any k ≥ 0 and any Jk ∈ ∂B F(zk). Since the Lipschitz
continuity of F is sufficient to obtain global convergence, the semi-smoothness of F actually
is not required in this subsection.

The following lemmademonstrates that the distance from zk to Z∗ decreases in a projection
step. The proof follows directly from [32, Lemma 2.1], and it is omitted.
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Lemma 3.2 For any z∗ ∈ Z∗ and any projection step, indexed by say k, we have that

‖zk+1 − z∗‖22 ≤ ‖zk − z∗‖22 − ‖zk+1 − zk‖22. (3.10)

Denote the index sets of Newton steps, projection steps, fixed-point steps and successful
iterations, respectively, by

KN := {k ≥ 0 | ‖F(uk)‖2 ≤ νξk},
KP := {k ≥ 0 | ρk ≥ η1, ‖F(uk)‖2 > νξk, ‖F(vk)‖2 ≤ ‖F(zk)‖2},
KF := {k ≥ 0 | ρk ≥ η1, ‖F(uk)‖2 > νξk, ‖F(vk)‖2 > ‖F(zk)‖2},

and

KS := {k ≥ 0 | ‖F(uk)‖2 ≤ νξk or ρk ≥ η1}.
We next show that if there are only finitely many successful iterations, the later iterates are
optimal solutions.

Lemma 3.3 Suppose that Assumption 3.1 holds and the index set KS is finite. Then zk = z∗
for all sufficiently large k and F(z∗) = 0.

Proof Denote the index of the last successful iteration by k0. By the definition of “successful”
and “unsuccessful”, we have that ρk < η1 for all k > k0. Therefore, from (3.7) and (3.9),
one has that zk0+i = zk0+1 := z∗, for all i ≥ 1 and additionally λk → ∞. We proceed by
contradiction. Suppose that φ := ‖F(z∗)‖2 > 0. For all k > k0, it follows from (3.3) that

dk = (Jk + λk‖Fk‖2 I )−1
(
rk − Fk

)
,

which, together with λk → ∞, ‖rk‖2 ≤ τ and the fact that Jk is positive semidefinite, imply
that dk → 0, and hence uk → z∗.

We now show that when λk is large enough, the ratio ρk is not smaller than η2. For this
purpose, we consider an iteration with index k > k0 sufficiently large such that

λk ≥ η2 + L

(1 − τ)φ
.

Then, it yields that

−
〈
F(zk), dk

〉
=

〈
(Jk + λk‖Fk‖2 I )dk), dk

〉
−

〈
rk, dk

〉

≥ λk‖Fk‖2‖dk‖22 − τλk‖Fk‖2‖dk‖22
≥ (η2 + L)‖dk‖22. (3.11)

The second line above is from that Jk is positive semidefinite and the residual condition (3.4).
The last inequality is obtained by ‖Fk‖2 = ‖F(z∗)‖2 = φ for k > k0. Further, we obtain

−
〈
F(uk), dk

〉
= −

〈
F(zk), dk

〉
−

〈
F(uk) − F(zk), dk

〉

≥ (η2 + L)‖dk‖22 − ‖F(uk) − F(zk)‖2 · ‖dk‖2
≥ η2‖dk‖22,

where the first inequality is derived by (3.11) and the second inequality comes from L-
Lipschitz continuity of F . Hence, we have ρk ≥ η2, which generates a successful iteration
and yields a contradiction. This completes the proof. ��
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We are now ready to prove the main global convergence result.

Theorem 3.4 If Assumption 3.1 holds, then we have limk→∞ ‖F(zk)‖2 = 0.

Proof If the index set KS is finite, the convergence is directly from Lemma 3.3. Thus, we
only need to consider the situation that the index set KS is infinite. The main task is to prove
that the full sequence {‖F(zk)‖2}k≥0 converges to zero in the following two cases.

Case (i): KN is finite.
Without loss of generality, we ignore KN and assume that KS = KP ∪ KF in this case.

Let z∗ be any point in solution set Z∗. For any k ∈ KF , we have that zk+1 = zk − βF(zk)
and

‖zk − z∗‖22 − ‖zk+1 − z∗‖22 = 2β
〈
F(zk), zk − z∗

〉
− β2‖F(zk)‖22

≥ β

(
1

α
− β

)
||F(zk)||22 ≥ 0, (3.12)

where the first inequality is due to F is 1
2α -cocoercive and the item (v) in Proposition 2.3,

and the last inequality is because of the choice of β. By Lemma 3.2, for any k ∈ KP , it yields
that

‖zk − z∗‖22 − ‖zk+1 − z∗‖22 ≥ ‖zk+1 − zk‖22. (3.13)

Therefore, the whole sequence {‖zk − z∗‖2}k≥0 is non-increasing and convergent, and the
sequence {zk}k≥0 is bounded. By (3.3) and (3.4), it follows that

‖Fk‖2 ≥ ‖(Jk + λk‖Fk‖2 I )dk‖2 − ‖rk‖2 ≥ (1 − τ)λk‖Fk‖2‖dk‖2,
which implies that ‖dk‖2 ≤ 1/[(1 − τ)λ]. This inequality shows that {dk}k≥0 is bounded,
and {uk}k≥0 is also bounded. By using the continuity of F , there exists a constant c1 > 0
such that

‖F(uk)‖−1
2 ≥ c1, for any k ≥ 0.

Using (3.7) and (3.8), for any k ∈ KP , we obtain that

‖zk+1 − zk‖2 = − 〈
F(uk), dk

〉

‖F(uk)‖2 ≥ c1ρk‖dk‖22 ≥ c1η1‖dk‖22. (3.14)

We next consider either

lim inf
k→∞ ‖Fk‖2 = 0 or lim inf

k→∞ ‖Fk‖2 = c2 > 0.

If lim infk→∞ ‖Fk‖2 = 0, the continuity of F and the boundedness of {zk}k≥0 imply
that the sequence {zk}k≥0 has some accumulation point ẑ such that F(ẑ) = 0. Since z∗ is an
arbitrary point in Z∗, we can choose z∗ = ẑ in (3.12) and (3.13) . Then {zk}k≥0 converges to
ẑ and {‖F(zk)‖2}k≥0 converges to zero.

If lim infk→∞ ‖Fk‖2 = c2 > 0, by using the continuity of F and the boundedness of
{zk}k≥0 again, there exist constants c3 > c4 > 0 such that

c4 ≤ ‖Fk‖2 ≤ c3, for all k ≥ 0.

We now show that {λk}k≥0 is bounded above. If λk is large enough such that ‖dk‖2 ≤ 1 and

λk ≥ η2 + L

(1 − τ)c4
,
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then by a similar proof as in Lemma 3.3 we have that ρk ≥ η2 and consequently λk+1 < λk .
Hence, it turns out that {λk}k≥0 is bounded from above, by say λ̄ > 0. Using (3.3), (3.4),
‖Jk‖ ≤ L and the upper bound of {λk}, we have

‖Fk‖2 ≤ ‖(Jk + λk‖Fk‖2 I )dk‖2 + ‖rk‖2 ≤ (L + (1 + τ)c3λ̄)‖dk‖2. (3.15)

Hence, it follows from (3.13), (3.14) and (3.15) that there exists a constant c5 > 0 such that
for any k ∈ KP ,

‖zk − z∗‖22 − ‖zk+1 − z∗‖22 ≥ c5||F(zk)||42. (3.16)

Then, by (3.12) and (3.16), we conclude that {‖F(zk)‖2}k≥0 converges to zero, which yields
a contradiction to the assumption c2 > 0. The convergence of {zk}k≥0 and {‖F(zk)‖2}k≥0 is
established in the case (i).

Case (ii): KN is infinite.
Let (ki )i≥0 enumerate all elements of the set {k + 1 : k ∈ KN } in increasing order.

Since ‖F(zki )‖2 ≤ ν‖F(zki−1)‖2 and 0 < ν < 1 for any i ≥ 1, we have that the sequence
{‖F(zki )‖2} converges to zero. For any k ∈ KP , we have ‖F(zk+1)‖2 ≤ ‖F(zk)‖2 from
the updating rule (3.7). For any k ∈ KF , we have that zk+1 = (I − βF)(zk) = [(1 −
αβ)I +αβR](zk) with αβ < 1. Since R is nonexpansive, from [7, Theorem 1], we have that
‖(R− I )(zk+1)‖2 ≤ ‖(R− I )(zk)‖2. By noticing that F(zk) = α(I − R)(zk), it follows that
‖F(zk+1)‖2 ≤ ‖F(zk)‖2, for any k ∈ KF . Moreover, for any k /∈ KN , there exists an index
i such that ki < k + 1 < ki+1, and hence ‖F(zk+1)‖2 ≤ ‖F(zki )‖2. Therefore, the whole
sequence {‖F(zk)‖}k≤0 converges to 0, which completes the proof. ��

Some comments to Theorem 3.4 are given as follows.

(i) In our arguments, we do not assume that {zk} is bounded. In fact, the subsequence
{zk}k∈KP∪KF is bounded because of (3.12) and (3.13). Hence, the existence of accu-
mulation points is up to the boundedness of the subsequence {zk}k∈KN . Then any
accumulation point of {zk} converges to some point z̄ such that F(z̄) = 0.

(ii) If the global error bound condition is satisfied at z̄, i.e., there exists a constant c > 0
such that

c‖z − z̄‖ ≤ ‖F(z)‖2, ∀z ∈ R
n, (3.17)

the whole sequence {zk} converges to z̄. Consider the case that the mapping F(x) is
derived from the fixed point mapping with respect to the FBS, where the function h in
(2.2) is strongly convex. Then the optimal solution z∗ is unique and the global error
bound condition is satisfied at z∗ [36, Theorem 4].

As is already shown, the global convergence of our Algorithm is essentially guaranteed
by the projection step and the fixed-point step. However, by noticing that (3.8) is in the form
of vk = zk − αk F(uk) with αk = 〈

F(uk), zk − uk
〉
/‖F(uk)‖22 > 0, the projection step is

indeed an extragradient step [12]. Since the asymptotic convergence rate of the extragradient
step is often not faster than that of the Newton step, a slow convergence may be observed
if the projection step and fixed-point step are always performed. Hence, our modification
(3.7) is practically meaningful. Moreover, we will next prove that the projection step and
fixed-point step will never be performed when the iterate is close enough to a solution under
some generalized nonsingular conditions.
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3.3 Fast Local Convergence

By the global convergence analysis, we can assume that z∗ is an accumulation point of the
sequence {zk} generated by Algorithm 1 such that F(z∗) = 0. We also make the following
assumption.

Assumption 3.5 For the mapping F defined in (3.1), the mapping F is semi-smooth and
BD-regular at z∗, which means that all elements in ∂B F(z∗) are nonsingular.

The semi-smoothness of the mapping F often holds since the proximal mapping is
(strongly) semi-smooth in many interesting applications. The BD-regularity is a common
assumption in the analysis of the local convergence of nonsmooth methods. When F is
BD-regular at z∗, from [27, Proposition 2.5] and [25, Proposition 3], there exists some con-
stants c6 > 0, κ > 0 and a neighborhood N (z∗, ε0) such that for any y ∈ N (z∗, ε0) and
J ∈ ∂B F(y), it holds that:

(1) z∗ is an isolated solution;
(2) J is nonsingular and ‖J−1‖ ≤ c6;
(3) the local error bound condition holds for F(z) on N (z∗, ε0), that is ‖y − z∗‖2 ≤

κ‖F(y)‖2.
Note that, the conditions that z∗ is isolated and ‖zk − z∗‖2 ≤ κ‖Fk‖2 (for k large enough)
indicate that the whole sequence {zk} converges to z∗.

We next show that Algorithm 1 turns into a Newton-type method in a neighborhood of z∗
and achieves a locally fast convergence.

Theorem 3.6 Suppose that Assumption 3.5 holds and the regularization parameter λk is
bounded above by λ̄ for any zk ∈ N (z∗, ε1) with ε1 := min{ε0, 1/(2Lc6τ λ̄)}. Then for
sufficiently large k, we have ‖F(uk)‖2 ≤ ν‖F(zk)‖2 and zk+1 = uk, and {zk} converges
superlinearly to z∗. If F is strongly semi-smooth at z∗, then {zk} converges quadratically to
z∗.
Proof It follows from the L-Lipschitz continuity of F that ‖Fk‖2 ≤ L‖zk − z∗‖2 ≤ Lε1 for
any zk ∈ N (z∗, ε1). Hence the definition of ε1 implies that

c6τ λ̄‖Fk‖2 ≤ 1/2. (3.18)

From (3.2), (3.4), (3.18) and ‖J−1
k ‖ ≤ c6, we obtain for a Newton step that

‖dk‖2 ≤ ‖(Jk + μk I )
−1Fk‖2 + ‖(Jk + μk I )

−1rk‖2
≤ c6L‖zk − z∗‖2 + c6τ λ̄‖Fk‖2‖dk‖2
≤ 2c6L‖zk − z∗‖2, (3.19)

where the last inequality is derived from a rearrangment of the second inequality. A direct
calculation gives

‖uk − z∗‖2 = ‖zk + dk − z∗‖2
= ‖zk + (Jk + μk I )

−1(Fk + (Jk + μk I )d
k − Fk) − z∗‖2

≤ ‖zk − z∗ − (Jk + μk I )
−1Fk‖2 + ‖(Jk + μk I )

−1‖ · ‖Fk + (Jk + μk I )d
k‖2

≤ ‖(Jk + μk I )
−1‖ · [‖Fk − F(z∗) − Jk(z

k − z∗)‖2 + μk‖zk − z∗‖2 + ‖rk‖2].
Using ‖(Jk + μk I )−1‖ ≤ c6, μk = λk‖Fk‖2 and ‖rk‖2 ≤ τλk‖Fk‖2‖dk‖2, we have

‖uk − z∗‖2 ≤ c6(‖Fk − F(z∗) − Jk(z
k − z∗)‖2

+ λ̄‖Fk‖2‖zk − z∗‖2 + τ λ̄‖Fk‖2‖dk‖2). (3.20)
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By the L-Lipschitz continuity of F and (3.19), we obtain

λ̄‖Fk‖2‖zk − z∗‖2 + τ λ̄‖Fk‖2‖dk‖2 ≤ Lλ̄(1 + 2c6Lτ)‖zk − z∗‖22. (3.21)

The semi-smoothness of F at z∗ implies

‖Fk − F(z∗) − Jk
(
zk − z∗

)
‖2 = o

(
‖zk − z∗‖2

)
, as ‖zk − z∗‖ → 0,

which, together with (3.20) and (3.21) shows that ‖uk − z∗‖2 = o(‖zk − z∗‖2). Hence, we
have L‖uk − z∗‖2 ≤ ν

κ
‖zk − z∗‖2 for sufficiently large k. The local error bound condition

implies that ‖zk − z∗‖2 ≤ κ‖F(zk)‖2 for sufficiently large k. Together with the Lipschitz
continuity of F , we obtain for sufficiently large k that

‖F(uk)‖2 ≤ L‖uk − z∗‖2 ≤ ν

κ
‖zk − z∗‖2 ≤ ν‖F(zk)‖2.

Then the updating rule (3.5) yields ‖F(uk)‖2 ≤ ν‖F(zk)‖2 and zk+1 = uk .
When F is strongly semi-smooth, the quadratic convergence ‖uk −z∗‖2 = O(‖zk −z∗‖22)

is established because of the property ‖Fk − F(z∗) − Jk(zk − z∗)‖2 = O(‖zk − z∗‖22). The
proof is completed. ��

It is clear that the BD-regular condition plays a key role in the above discussion. Although
the BD-regular condition is strong and may fail in some situations, there are some possi-
ble ways to resolve this issue. As is shown in [22, Section 4.2], suppose that there exists a
nonsingular element in ∂B F(z∗) and other elements in ∂B F(z∗)may be singular. By exploit-
ing the structure of ∂B F(z), one can carefully choose a nonsingular generalized Jacobian
when z is close enough to z∗. Hence, if z∗ is isolated, one can still obtain the fast local
convergence results by a similar proof as above. Another way is inspired by the literature on
the Levenberg–Marquardt (LM) method. The LM method is a regularized Gauss–Newton
method to deal with some possibly singular systems. It has been shown in [13] that the LM
method preserves a superlinear or quadratic local convergence rate under certain local error
bound condition, which is weaker than the nonsingular condition. Therefore, it remains a
future research topic to investigate local convergence of our algorithm under the local error
bound condition.

3.4 Regularized L-BFGS Method with Projection Steps

In this subsection, we propose a regularized L-BFGSmethod with projection steps by simply
replace the Newton step in Algorithm 1 with a regularized L-BFGS step to avoid solving
the linear system (3.2). The L-BFGS method is an adaption of the classical BFGS method,
which tries to use a minimal storage. A globally convergent BFGS method with projection
steps is proposed in [46] for solving smooth monotone equations. The convergence of our
regularized L-BFGS method can be analyzed in a similar way as our regularized Newton
method by combining the convergence analysis in [46].We only describe the L-BFGS update
in the following and omit the convergence analysis.

For an iterate zk , we compute the direction by

(Hk + μk I )d
k = −Fk, (3.22)

where Hk is the L-BFGS approximation to the Jacobian matrix.
Choosing an initial matrix H0

k and setting δFk = Fk+1 − Fk , the Jacobian matrix can be
approximated by the recent m pairs {δFi , di }, i = k − 1, k − 2, . . . , k − m, i.e., using the
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standard formula [23] as

Hk = H0
k − [

H0
k Dk Fk

] [DT
k H

0
k Dk Lk

LT
k −Sk

]−1 [DT
k (H0

k )T

FT
k

]
, (3.23)

where Dk = [dk−m, . . . , dk−1], Fk = [δFk−m, . . . , δFk−1], Lk is a lower-triangular matrix
with entries

(Lk)i, j =
{

(dk−m−1+i )T (δFk−m−1+ j ) if i > j,

0 otherwise,

and Sk is a diagonal matrix with entries

(Sk)i i = (dk−m−1+i )T δFk−m−1+i .

Then we can compute the inverse regularized Jacobian matrix

(Hk + μk I )
−1 = H̄−1

k + H̄−1
k Ck R

−1
k CT

k (H̄ T
k )−1,

where H̄k = H0
k + μk I , Ck = [H0

k Dk Fk], Rk is defined by Rk = Vk − CT
k H̄−1

k Ck and

Vk =
[DT

k H
0
k Dk Lk

LT
k −Sk

]
.

Specifically, if k is smaller thanm, we use the classical BFGSmethod to approximate inverse
regularized Jacobian matrix, which just let d j = δF j = 0 for j < 0 in the formula (3.23).

We should point out that the usage of L-BFGS may not be suitable because the Jacobian
matrix may not be symmetric. It seems that no quasi-Newton method can provide a non-
symmetric but positive semidefinite approximation. Hence, we only take care of the positive
semidefiniteness rather than nonsymmetric property. Fortunately, our numerical experiments
show that it works in the �1-regularized optimization problem. Of course, one may also try
nonsymmetric type of quasi-Newton method.

4 Numerical Results

In this section, we conduct proof-of-concept numerical experiments on our proposed schemes
for the fixed-point mappings induced from the FBS and DRS methods by applying them to
�1-norm minimization problem. All numerical experiments are performed in Matlab on
workstation with a Intel(R) Xeon(R) CPU E5-2680 v3 and 128GB memory.

4.1 Applications to the FBS Method

Consider the �1-regularized optimization problem of the form

min μ‖x‖1 + h(x), (4.1)

where h is continuously differentiable. Let f (x) = μ‖x‖1. The systemof nonlinear equations
corresponding to the FBS method is F(x) = x − proxt f (x − t∇h(x)) = 0. The generalized
Jacobian matrix of F(x) is

J (x) = I − M(x)
(
I − t∂2h(x)

)
, (4.2)
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where M(x) ∈ ∂proxt f (x − t∇h(x)) and ∂2h(x) is the generalized Hessian matrix of h(x).
Specifically, the proximal mapping corresponding to f (x) is the so-called shrinkage operator
defined as

(
proxt f (x)

)
i
= sign(xi )max(|xi | − μt, 0).

Hence, one can take a Jacobian matrix M(x)which is a diagonal matrix with diagonal entries
being

(M(x))i i =
{
1, if |(x − t∇h(x))i | > μt,

0, otherwise.

Similar to [22], we introduce the index sets

I(x) := {i : |(x − t∇h(x))i | > tμ} = {i : (M(x))i i = 1},
O(x) := {i : |(x − t∇h(x))i | ≤ tμ} = {i : (M(x))i i = 0}.

The Jacobian matrix can be represented by

J (x) =
(
t (∂2h(x))I(x)I(x) t (∂2h(x))I(x)O(x)

0 I

)
. (4.3)

Using the above special structure of Jacobian matrix J (x), we can reduce the complexity of
the regularized Newton step (3.2). Let I = I(xk) and O = O(xk). Then, we have

(1 + μk)s
k
O = −Fk,O,

(t (∂2h(x))II + μI )skI + t (∂2h(x))IOskO = −Fk,I ,

which yields

skO = − 1

1 + μk
Fk,O,

(t (∂2h(x))II + μI )skI = −Fk,I − t (∂2h(x))IOskO.

The second equation in the above linear system is then solved by the conjugate gradient (CG)
method.

4.1.1 Numerical Comparison

In this subsection, we compare our proposed methods with different solvers for solving
problem (4.1) with h(x) = 1

2‖Ax − b‖22. The solvers used for comparison include ASSN,
SSNP, ALSB, FPC-AS [39], SpaRSA [40] and SNF [22]. ASSN is the proposed semi-
smooth Newton method with projection steps (Algorithm 1 ) and SSNP is the method which
only uses the projection steps. ASLB(i) is a variant of the line search based method by
combining the L-BFGSmethod and hyperplane projection technique. The number in bracket
is the size of memory. FPC-AS is a first-order method that uses a fixed-point iteration under
Barzilai–Borwein steps and continuation strategy. SpaRSA resembles FPC-AS, which is also
a first-order methods and uses Barzilai–Borwein steps and continuation strategy. SNF is a
semi-smooth Newton type method which uses the filter strategy and is one of state-of-the-
art second-order methods for �1-regularized optimization problem (4.1) and SNF(aCG) is
the SNF solver with an adaptive parameter strategy in the CG method. The parameters of
FPC-AS, SpaRSA and SNF are the same as [22].
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Table 1 Total number of A- and AT -calls NA and CPU time (in seconds) averaged over 10 independent runs
with dynamic range 20 dB

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

Time NA Time NA Time NA Time NA time NA

SNF 1.12 84.6 2.62 205 3.19 254.2 3.87 307 4.5 351

SNF(aCG) 1.11 84.6 2.61 205 3.19 254.2 4.19 331.2 4.3 351.2

ASSN 1.15 89.8 1.81 145 2.2 173 3.15 246.4 3.76 298.2

SSNP 2.52 199 5.68 455.6 8.05 649.4 20.7 1679.8 29.2 2369.6

ASLB(2) 0.803 57 1.35 98.4 1.66 121 2.79 202.4 3.63 264.6

ASLB(1) 0.586 42.2 1.01 71.6 1.29 92 2.54 181.4 3.85 275

FPC-AS 1.45 109.8 5.03 366 7.08 510.4 10 719.8 10.3 743.6

SpaRSA 5.46 517.2 5.54 519.2 5.9 539.8 6.75 627 9.05 844.4

The test problems are from [22], which are constructed as follows. Firstly, we randomly
generate a sparse solution x̄ ∈ R

n with k nonzero entries, where n = 5122 = 262144 and
k = [n/40] = 5553. The k different indices are uniformly chosen from {1, 2, . . . , n} and we
set the magnitude of each nonzero element by x̄i = η1(i)10dη2(i)/20, where η1(i) is randomly
chosen from {−1, 1}with probability 1/2, respectively, η2(i) is uniformly distributed in [0, 1]
and d is a dynamic range which can influence the efficiency of the solvers. Then we choose
m = n/8 = 32768 random cosine measurements, i.e., Ax = (dct(x))J , where J contains m
different indices randomly chosen form {1, 2, . . . , n} and dct is the discrete cosine transform.
Finally, the input data is specified by b = Ax̄+ε, where ε is a Gaussian noise with a standard
deviation σ̄ = 0.1.

To compare fairly, we set an uniform stopping criterion. For a certain tolerance ε, we obtain
a solution xnewt using ASSN such that ‖F(xnewt )‖ ≤ ε. Then we terminate all methods by
the relative criterion

f (xk) − f (x∗)
max{ f (x∗), 1} ≤ f (xnewt ) − f (x∗)

max{ f (x∗), 1} ,

where f (x) is the objective function and x∗ is a highly accurate solution obtained by ASSN
under the criterion ||F(x)|| ≤ 10−14.

We solve the test problems under different tolerances ε ∈ {10−0, 10−1, 10−2, 10−4, 10−6}
and dynamic ranges d ∈ {20, 40, 60, 80}. Since the evaluations of dct dominate the overall
computation, we mainly use the total numbers of A- and AT -calls NA to compare the effi-
ciency of different solvers. Tables 1, 2, 3, and 4 show the averaged numbers of NA and CPU
time over 10 independent trials. These tables show that ASSN and ASLB are competitive to
other methods. For the low accuracy, SpaRSA and FPC-AS show a fast convergence rate.
ASSN and ASLB are both faster than or close to FPC-AS and SpaRSA regardless of NA and
CPU time in most cases. In the meanwhile, ASSN and ASLB are competitive to the second-
order methods under moderate accuracy. The CPU time and NA of ASSN and ASLB are less
than the Newton type solver SNF in almost all cases, especially for the large dynamic range.
ASLB with a memory size m = 1 shows the fastest speed in low accuracy. It is necessary
to emphasize that L-BFGS with m = 1 is equal to the Hestenes–Stiefel and Polak–Ribière
conjugate gradient method with exact line search [23]. Compared with ASSN, SSNP has a
slower convergent rate, which implies that our adaptive strategy on switching Newton and
projection steps is helpful.
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Table 2 Total number of A- and AT -calls NA and CPU time (in seconds) averaged over 10 independent runs
with dynamic range 40 dB

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

Time NA Time NA Time NA Time NA time NA

SNF 2.12 158.2 4.85 380.8 6.07 483.2 6.8 525 7.2 562.4

SNF(aCG) 2.07 158.2 4.84 380.8 6.1 483.2 7.1 553.6 7.22 573.6

ASSN 2.34 182.2 3.67 285.4 4.29 338.6 5.11 407 5.92 459.2

SSNP 6.05 485.6 12.3 978.6 19.5 1606.6 27.3 2190.8 37.1 2952.2

ASLB(2) 1.39 98.2 2.19 154.4 2.64 194 3.45 250.4 4.49 323.6

ASLB(1) 1.25 86.8 1.84 127.4 2.2 161.6 3.2 225.6 4.59 319.2

FPC-AS 2.08 158 5.31 399.4 7.8 578.6 10.1 720.4 10.5 775

SpaRSA 5.56 523.4 5.56 530 6.27 588.2 7.45 671.6 8.11 759.6

Table 3 Total number of A- and AT -calls NA and CPU time (in seconds) averaged over 10 independent runs
with dynamic range 60 dB

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

Time NA Time NA Time NA Time NA Time NA

SNF 5.66 391.8 9.31 648.8 11.1 777.6 11.8 828.2 12.5 876.6

SNF(aCG) 5.62 391.8 9.28 648.8 11 777.6 12.2 861.2 12.7 889

ASSN 3.92 295.4 5.38 416.4 6.45 492 7.49 582.4 8.19 642.4

SSNP 21.5 1607.2 29.5 2247.6 32.2 2478.8 41.9 3236.2 50.9 3927.4

ASLB(2) 2.11 146.2 2.89 201.6 3.54 250.6 4.5 317.6 5.42 383.4

ASLB(1) 2.11 143.8 2.66 187.8 3.25 228.2 4.22 295 5.22 368.6

FPC-AS 3.02 232.2 8.84 644 11.5 844.2 13.8 1004.2 14.6 1031.8

SpaRSA 6.01 561.2 6.39 598.2 7.27 683.2 8.25 797.8 9.84 900.6

Table 4 Total number of A- and AT -calls NA and CPU time (in seconds) averaged over 10 independent runs
with dynamic range 80 dB

Method ε : 100 ε : 10−1 ε : 10−2 ε : 10−4 ε : 10−6

Time NA Time NA Time NA Time NA Time NA

SNF 7.47 591 10.7 841.6 12.4 978.6 13 1024.8 13.6 1057.8

SNF(aCG) 7.56 591 10.6 841.6 12.4 978.6 13.2 1042.2 13.9 1099.4

ASSN 6.39 482.8 7.66 601 8.66 690.6 9.9 780.6 10.5 833.4

SSNP 36.1 2820.6 34.2 2767.2 42.7 3497 51.3 4201.4 56.6 4531.2

ASLB(2) 3.65 255.8 4.03 299.4 4.98 355.6 5.61 411.4 6.21 440

ASLB(1) 3.02 213.6 3.59 258 4.24 299.2 4.95 357.6 5.52 385.6

FPC-AS 4.16 321.2 8.18 611.4 10.7 788.4 12.1 886 12.1 900.8

SpaRSA 5.74 543.2 6.96 665.4 8.17 763.2 9.1 873.6 9.85 930.2
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Fig. 1 Residual history with respect to the total numbers of A- and AT -calls NA . a 20 dB, b 40 dB, c 60 dB,
d 80 dB

In particular, ASSN and ASLB have a better performance for high accuracy. Figures 1
and 2 illustrate the residual historywith respect to the total number of A- and AT -calls NA and
the total number of iterations. Since two first-order methods have a close performance and
ASLB(1) performs better than ASLB(2), we omit the the figure of FPC-AS and ASLB(2).
These figures also show that ASSN and ASLB have a better performance than SNF and
SNF(aCG) independent of dynamic ranges. In particular, quadratic convergence is observable
from ASSN in these examples.

4.2 Applications to the DRS Method

Consider the Basis-Pursuit (BP) problem

min ‖x‖1, subject to Ax = b, (4.4)

where A ∈ R
m×n is of full row rank and b ∈ R

m . Let f (x) = 1�(Ax −b) and h(x) = ‖x‖1,
where the set � = {0}. The system of nonlinear equations corresponding to the DRS fixed-
point mapping is
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Fig. 2 Residual history with respect to the total numbers of iteration. a 20 dB, b 40 dB, c 60 dB, d 80 dB

F(z) = proxth(z) − proxt f (2proxth(z) − z) = 0. (4.5)

For the simplicity of solving the subproblems in theDRSmethod, wemake the assumption
that AA� = I . Then it can be derived that the proximal mapping with respect to f (x) is

proxt f (z) =
(
I − A�A

)
z + A� (

prox1�
(Az − b) + b

)

= z − A�(Az − b).

A generalized Jacobian matrix D ∈ ∂proxt f ((2proxth(z) − z)) is taken as follows

D = I − A�A. (4.6)

The proximal mapping with respect to h(x) is

(
proxth(z)

)
i = sign(zi )max(|zi | − t, 0).
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One can take a generalized Jacobian matrix M(z) ∈ ∂proxth(z) as a diagonal matrix with
diagonal entries

Mii (z) =
{
1, |(z)i | > t,
0, otherwise.

Hence, a generalized Jacobian matrix of F(z) is in the form of

J (z) = M(z) + D(I − 2M(z)). (4.7)

Let W = (I − 2M(z)) and H = W + M(z) + μI . Using the binomial inverse theorem, we
obtain the inverse matrix

(J (z) + μI )−1 =
(
H − A�AW

)−1

= H−1 + H−1A� (
I − AWH−1A�)−1

AWH−1.

For convenience, we write the diagonal entries of matrix W and H as

Wii (z) =
{−1, |(z)i | > t,
1, otherwise

and Hii (z) =
{

μ, |(z)i | > t,
1 + μ, otherwise.

Then WH−1 = 1
1+μ

I − S, where S is a diagonal matrix with diagonal entries

Sii (z) =
{ 1

μ
+ 1

1+μ
, |(z)i | > t,

0, otherwise.

Hence, I − AWH−1A� = (1 − 1
1+μ

)I + ASA�. Define the index sets

I(x) := {i : |(z)i | > t} = {i : Mii (x) = 1},
O(x) := {i : |(z)i | ≤ t} = {i : Mii (x) = 0}

and AI(x) denote the matrix containing the column I(x) of A, then we have

ASA� =
(
1

μ
+ 1

1 + μ

)
AI(x)A

�
I(x). (4.8)

The above property implies the positive definiteness of I − AWH−1A� and can be used to
reduce the computational complexity if the submatrix AI(x)A�

I(x) is easily available.

4.2.1 Numerical Comparison

In this subsection, we compare our methods with two first-order solvers: ADMM [42] and
SPGL1 [38]. The ASLB solver is not included since its performance is not comparable
with other approaches. Our test problems are almost the same as the last subsection and the
only difference is that we set b = Ax̄ without adding noise. We use the residual criterion
‖F(z)‖ ≤ ε as the stopping criterion for ADMM and ASSN. Because the computation of
residual of SPGL1 needs extra cost, we use its original criterion and list the relative error
“rerr” to compare with ADMM and ASSN. The relative error with respect to the true solution
x∗ is denoted by

rerr = ||xk − x∗||
max(||x∗||, 1) .
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Table 5 Total number of A- and AT -calls NA , CPU time (in seconds) and relative error with dynamic range
20 dB

Method ε : 10−2 ε : 10−4 ε : 10−6

Time NA rerr Time NA rerr Time NA rerr

ADMM 10.9 646 2.781e−04 14 1026 2.658e−06 19.4 1438 2.467e−08

ASSN 8.58 694 1.175e−04 9.73 734 2.811e−06 10.7 813 4.282e−09

SPGL1 17.3 733 2.127e−01 54.4 2343 2.125e−01 72.3 3232 2.125e−01

Table 6 Total number of A- and AT -calls NA , CPU time (in seconds) and relative error with dynamic range
40 dB

Method ε : 10−2 ε : 10−4 ε : 10−6

Time NA rerr Time NA rerr Time NA rerr

ADMM 6.92 504 2.092e−04 12 875 2.623e−06 17.3 1306 2.926e−08

ASSN 5.79 469 7.595e−05 7.19 582 8.922e−07 8.43 632 2.006e−08

SPGL1 29.8 1282 2.350e−02 58.5 2477 2.346e−02 68.1 2910 2.346e−02

Table 7 Total number of A- and AT -calls NA , CPU time (in seconds) and relative error with dynamic range
60 dB

Method ε : 10−2 ε : 10−4 ε : 10−6

Time NA rerr Time NA rerr Time NA rerr

ADMM 7.44 599 1.901e−03 13.5 980 2.501e−06 18.7 1403 2.913e−08

ASSN 5.48 449 1.317e−03 9.17 740 1.922e−06 10.2 802 1.930e−08

SPGL1 55.3 2367 5.020e−03 70.7 2978 5.017e−03 89.4 3711 5.017e−03

Table 8 Total number of A- and AT -calls NA , CPU time (in seconds) and relative error with dynamic range
80 dB

Method ε : 10−2 ε : 10−4 ε : 10−6

Time NA rerr Time NA rerr Time NA rerr

ADMM 7.8 592 5.384e−04 13.8 1040 2.481e−06 17.7 1405 2.350e−08

ASSN 4.15 344 5.194e-04 7.92 618 1.205e−06 8.74 702 5.616e−09

SPGL1 32.2 1368 4.862e−04 56.1 2396 4.859e−04 67.4 2840 4.859e−04

We revise the ADMM in yall11 by adjusting the rules of updating the penalty parameter and
choosing the best parameters so that it can solve all examples in our numerical experiments.
The parameters are set to the default values in SPGL1. Since the matrix A is only available
as an operator, the property (4.8) cannot be applied in ASSN.

We solve the test problemsunder different tolerances ε ∈ {10−2, 10−4, 10−6} anddynamic
ranges d ∈ {20, 40, 60, 80}. Similar to the last subsection, we mainly use the total numbers
of A- and AT -calls NA and CPU time to compare the efficiency among different solvers.

1 Downloadable from http://yall1.blogs.rice.edu.
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Fig. 3 Residual history with respect to the total numbers of A- and AT -calls NA . a 20 dB, b 40 dB, c 60 dB,
d 80 dB

We also list the relative error so that we can compare ADMM, ASSN with SPGl1. These
numerical results are reported in Tables 5, 6, 7 and 8. The performance of ASSN is close
to ADMM for tolerance 10−2 and is much better for tolerance 10−4 and 10−6 independent
of dynamic ranges. For all test problems, SPGL1 can only obtain a low accurate solution. It
may be improved if the parameters are further tuned.

Figures 3 and 4 illustrate the residual history with respect to the total number of A- and
AT -calls NA and the total number of iterations. SPGL1 is omitted since it cannot converge
for a high accuracy. The figures show that ASSN has a similar convergent rate as ADMM in
the initial stage but it achieves a faster convergent rate later, in particular, for a high accuracy.

5 Conclusion

The purpose of this paper is to study second-order typemethods for solving composite convex
programs based on fixed-point mappings induced from many operator splitting approaches
such as the FBS and DRS methods. The semi-smooth Newton method is theoretically guar-
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Fig. 4 Residual history with respect to the total numbers of iteration. a 20 dB, b 40 dB, c 60 dB, d 80 dB

anteed to converge to a global solution from an arbitrary initial point and achieve a fast
convergent rate by using an adapt strategy on switching the projection steps and Newton
steps. Our proposed algorithms are suitable to constrained convex programs when a fixed-
point mapping is well-defined. It may be able to bridge the gap between first-order and
second-order type methods. They are indeed promising from our preliminary numerical
experiments on a number of applications. In particular, quadratic or superlinear convergence
is attainable in some examples of Lasso regression and basis pursuit, although the BD-regular
condition required for fast local convergence has not been established rigorously. The Jaco-
bian of the �1-regularized problem (4.1) is (4.3). The term ∂2h(x))I(x)I(x) behaves well in
our numerical experiments. Similarly, the structure of ASA� in (4.8) for the Jacobian of
the basis-pursuit problem (4.4) also helps. Moreover, the number of the A- and AT -calls of
ASSN when solving the Newton systems shows that the CG method works well in general.
It further indicates that the BD-regular condition may hold on these examples.

One of the key issues for solving the monotone nonsmooth equations is the convergence
to global optimality. Note that, if h(x) in problem (1.1) is an indicator function of a closed
convex set C , the nonsmooth equations with respect to FBS are in the form of F(z) = z −
�C (x −∇ f (x)) = 0, which are equivalent to a variational inequality (VI) problem. Various
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globally convergent projection-type or extragradient-type methods have been proposed to
solve the VI, see the survey paper [41] and references therein. They may provide us plenty
of alternative choices other than the hyperplane projection step in this paper.

There are a number of future directions worth pursuing from this point on, including the-
oretical analysis and a comprehensive implementation of these second-order algorithms. To
improve the performance in practice, the second-ordermethods can be activated until the first-
order type methods reach a good neighborhood of the global optimal solution. Since solving
the corresponding system of linear equations is computationally dominant, it is important to
explore the structure of the linear system and design certain suitable preconditioners.
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